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The engine of cometary orbital evolution

• The orbital evolution of comets in the planetary region is
mostly due to close encounters with the giant planets.

• An important parameter is the planetocentric velocity:
• fast encounters – with hyperbolic planetocentric orbits – are

effective only if deep;
• slow encounters – with temporary satellite captures – can

greatly modify cometary orbits even if rather shallow.

• Long-period comets practically never undergo “really slow”
encounters.

• The outcomes can be extremely sensitive to initial conditions.



Sensitivity to initial conditions

LeVerrier was the first to show quantitatively the sensitivity to
initial conditions in his study of the 1779 close encounter with
Jupiter of comet Lexell.
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The post-1779 values of −1/a, in AU−1 given by LeVerrier as a
function of µ; the lower horizontal line corresponds to the pre-1779
value of −1/a.



Why an analytical theory

The orbits of long period comets are not restricted to low
inclinations; among the consequences of this, we have:

• wide range of encounter velocities;

• extended time spans without encounters, due to large
Minimum Orbital Interception Distances (MOIDs) with the
giant planets’ orbits.

An analytical theory of close encounters can help to:

• identify regions of interest in the space of initial conditions,
minimizing the need to run long numerical integrations in
which “nothing happens”;

• get a global understanding of the possible outcomes of close
encounters.



Extended Öpik’s theory of close
encounters

Model: restricted, circular, 3-dimensional 3-body problem; far from
the planet, the small body moves on an unperturbed heliocentric
keplerian orbit.

The encounter with the planet: modelled as an instantaneous
transition from the incoming asymptote of the planetocentric
hyperbola to the outgoing one, taking place when the small body
crosses the b-plane (O76, CVG90).

Our contribution: added equations to take into account the finite
nodal distance and the time of passage at the relevant node
(VMGC03, V06, VAR15).

Limitation: this model does not take into account the secular
variation of the nodal distance, that has to be given as an
additional input.



Encounter algorithm

pre-encounter post-encounter

a, e, i ,Ω, ω, fb a′, e ′, i ′,Ω′, ω′, f ′b
↓ ↑

X ,Y ,Z ,Ux ,Uy ,Uz X ′,Y ′,Z ′,U ′x ,U
′
y ,U

′
z

↓ ↑
U, θ, φ, ξ, ζ, tb =⇒ U, θ′, φ′, ξ′, ζ ′, tb

The algorithmic path describing an encounter:

• we go from orbital elements to planetocentric coordinates and
velocities describing a rectilinear motion;

• we pass from coordinates and velocities to Öpik variables;

• we apply the velocity vector rotation due to the encounter;

• we then retrace the same steps in the opposite order, back to
orbital elements.



Geometric setup
The reference frame (X ,Y ,Z ) is planetocentric, the Y -axis is in
the direction of planet motion, the Sun is on the negative X -axis.

The direction of the incoming asymptote is defined by two angles,
θ and φ, so that the planetocentric unperturbed velocity ~U, in
units of the heliocentric velocity of the planet, has components:

Ux = U sin θ sinφ; Uy = U cos θ; Uz = U sin θ cosφ.

As a consequence of an encounter the direction of ~U changes but
its modulus U does not.

U = U(a, e, i)

θ = θ(a, e, i) = θ(a,U)

φ = φ(a, e, i , sgn(sin(fb)),

sgn(cos(ω + fb)))
x
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The b-plane

• The b-plane of an encounter is the plane containing the
planet and perpendicular to the planetocentric unperturbed
velocity ~U.

• The vector from the planet to the point in which ~U crosses the
plane is ~b, and the coordinates of the crossing point are ξ, ζ.

• The coordinate ξ = ξ(a, e, i , ω, fb) is the local MOID.

• The coordinate ζ = ζ(a, e, i ,Ω, ω, fb, λp) is related to the
timing of the encounter.



The b-plane circles

It is possible to show that the locus of b-plane points for which the
post-encounter orbit has a given value of a′, i.e. of θ′, say a′0 and
θ′0, is a circle (VMGC00) centred on the ζ-axis, at ζ = D, of radius
|R|, with

D =
c sin θ

cos θ′0 − cos θ

R =
c sin θ′0

cos θ′0 − cos θ
,

where the scale factor c = m/U2 is the value of the impact
parameter corresponding to a velocity deflection of 90◦.



The b-plane circles

Such a simple property reminds us of Galileo’s words:
“...[l’universo] è scritto in lingua matematica, e i caratteri son
triangoli, cerchi, ed altre figure geometriche...”; it has interesting
consequences:

• it is a building block of the algorithm allowing to understand
the geometry of impact keyholes (VMGC03);

• it can be used to explain the asymmetric tails of energy
perturbation distributions (VMGC00).

In the rest of the talk we discuss some properties of close
encounters that can be deduced from this theory.



The b-plane circles

In practical applications, one has to keep in mind that:

• to each point on the b-plane of a close encounter corresponds
one (and only one!) post-encounter orbit;

• for a given impact parameter b, the size of the resulting
velocity deflection, and thus of the perturbation, depends on
the ratio c/b, where b is the modulus of ~b, and c is the scale
factor already seen;

• a large velocity deflection does not necessarily imply a large
semimajor axis perturbation.



Keyholes

A keyhole (Chodas 1999) is a small region of the b-plane of a
specific close encounter of an asteroid with the Earth such that, if
the asteroid passes through this region, it will hit the planet or
have a very close encounter with it at a subsequent return.

The positions of keyholes in
the b-plane of the encounter
of 7 August 2027 of
1999 AN10, for impacts in
2034, 2044, and 2046 (from
Chodas 1999).
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Keyhole locations

The positions of keyholes in
the b-plane of the encounter
of 7 August 2027 of
1999 AN10, for a very close
encounter in 2040 (from
Chodas 1999).
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How good is the theory?

Keyholes are located at, or near to, the intersections of the Line of
Variations (LoV) and the relevant b-plane circle.

�

6 0 6

�

6

0

6

q

0 3 6 9

0

3

6

9

Keyholes to
2040 encounter

Left: b-plane circles for resonant return in 2040, 2030, 2044, 2046.
Right: Chodas’ plot for 2040, suitably rotated; the circle comes
from a best fit.



Shape and size of an impact keyhole

Problem: how varies the distance between two points of the
b-plane of the current encounter when considering their images
after propagation to the b-plane of the next encounter?

Result: the horizontal distance on the b-plane is essentially
unchanged, the vertical one is stretched by a large factor,
depending on the circumstances of the encounter.

Geometric consequence: the pre-image of the Earth on the b-plane
of the encounter preceding the collision is a thick arclet closely
following the shape of the circle corresponding to the suitable
orbital period.



Apophis keyholes: theory
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Left: LoV and theoretical keyholes for impacts in 2034, 2035,
2036, 2037 on the 2029 b-plane; Earth radius includes focussing,
dots show the 6/7 resonance. Right: same keyholes, and pre-image
of the Earth, in the δω-δM plane; the origin is a “central” 2029
collision.



Apophis 2036 keyhole: practice
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Left: LOV and 2036 theoretical keyhole, together with dots
showing numerically found impact solutions; one of them is a
“central” collision, the others are inside the “real” 2036 keyhole.
Right: same impact solutions in the δω-δM plane.



Keyholes are useful

The ∆V necessary to avoid the 2036 collision of 2004 MN4 with
the Earth (Carusi 2005); the 2029 encounter lowers ∆V by four
orders of magnitude.



The 2029 encounter of Apophis

On 13 April 2029 Apophis will encounter the
Earth, and will be transferred into an Apollo
orbit (it is currently an Aten).

We can visualize the b-plane circle within
which Apophis has to pass in order to
become an Apollo.

Colours give the post-encounter orbital
geometry:

• magenta, ascending node,
pre-perihelion;

• yellow, ascending node, post-perihelion;

• black, descending node, post-perihelion;

• cyan, descending node, pre-perihelion;

ξ−10 10

ζ

−10

10



The distribution of energy perturbations

The asymmetric energy perturbation distribution obtained
numerically by Everhart (E69): the devil is in the (de)tails...



Cartography of the b-plane

Everhart’s experiment:
parabolic initial orbits, with
q/aJ = 0.1, i = 27◦, i.e.
U = 1.48, θ = 114◦.

The plot shows some
relevant b-plane circles.

Red circle: collisional cross
section of Jupiter, of radius
bc = 3.3rp.
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Horizontal line: parabolic post-encounter orbits.

Blue circles: post-encounter orbits with a′ = aJ ,−aJ ,−aJ/2.

Green lines: conditions for ∂a′/∂ζ = 0.

Circles corresponding to different values of a′ do not intersect.



Cartography of the b-plane

All of Everhart’s orbits have the same probability of collision with
Jupiter, since Öpik’s collision probability per revolution depends on
U, θ, φ (i.e., on a, e, i) and the cross-section of the planet:

P =
σ

π sin θ| sinφ| sin i

=
b2c
a2J

√
1 + 2U cos θ + U2(1− sin2 θ sin2 φ)

U sin2 θ| sinφ|| cosφ| .

If, instead of the planet cross-section, we consider the area of the
circle corresponding to a certain post-encounter ∆a, we obtain the
probability of having a perturbation of size ∆a or larger.



Cartography of the b-plane

Consider the circle for
a′ = aJ , within which one of
Everhart’s comets would be
captured to an elliptical orbit
of with a′ ≤ aJ .

Its area is 8.7 times larger
than that the collisional
cross-section of Jupiter.
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That is, for Everhart’s experimental setup, capture to an orbit of
period P ′ ≤ PJ is almost 9 times more frequent than collision with
Jupiter.



The distribution of energy perturbations

The analytical theory allows us to reproduce Everhart’s asymmetric
tails of the energy perturbation distribution.



Capture of parabolic comets to
short-period orbits

Let us consider the efficiency of capture to orbits of P ≤ 200 yr in
the case of parabolic comets encountering one of the outer planets.

We consider three cases:

• very high planetocentric velocity, U = 2, i.e., twice the
heliocentric velocity of the planet;

• high planetocentric velocity, U = 1, i.e., the same as the
heliocentric velocity of the planet;

• moderately high planetocentric velocity, U = 0.5, i.e., half of
the heliocentric velocity of the planet.

To each of these cases correspond suitable ranges of perihelion
distances and inclinations.



Comet capture by Neptune
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Capture to P < 200 yr of parabolic comets by Neptune.

The ratio ρ = R2/b2c is the ratio of capture and the collision cross
sections.

For U = 2: q = 30.1÷ 3.76 au, i = 110◦.7÷ 180◦.

For U = 1: q = 30.1÷ 15.1 au, i = 45◦.0÷ 0◦.

For U = 0.5: q = 30.1÷ 28.5 au, i = 13◦.5÷ 0◦.



Comet capture by Jupiter

U bc R ρ
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Capture to P < 200 yr of parabolic comets by Jupiter.

The ratio ρ = R2/b2c is the ratio of capture and the collision cross
sections.

For U = 2: q = 5.20÷ 0.65 au, i = 110◦.7÷ 180◦.

For U = 1: q = 5.20÷ 2.60 au, i = 45◦.0÷ 0◦.

For U = 0.5: q = 5.20÷ 4.92 au, i = 13◦.5÷ 0◦.



Comet ejection by Jupiter
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Efficiency of ejection to 1 000 au < a′ <∞ for comets
encountering Jupiter with U = 0.5, relative to collision with the
planet.

In this case, the cross sections ratio is ρ = (R2
a′=1000 − R2

a′=∞)/b2c .



Comet ejection by Neptune

a ρ
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Efficiency of ejection to 1 000 au < a′ <∞ for comets
encountering Neptune with U = 0.5, relative to collision with the
planet.

In this case, the cross sections ratio is ρ = (R2
a′=1000 − R2

a′=∞)/b2c .



Transition prograde→retrograde

Consider a prograde orbit of given a, e, i of a comet that can
encounter Jupiter; is it possible that an encounter with the latter
turns the orbit into a retrograde one?

And, if yes, under what conditions?

Let us start from the expressions of U and θ as functions of a, e, i :

U =

√√√√3− ap
a
− 2

√
a(1− e2)

ap
cos i

cos θ =
1− U2 − ap

a

2U
.



Transition prograde→retrograde

For i = 90◦, U becomes:

U =

√
3− ap

a
,

that implies:
ap
a

= 3− U2.

Substituting back in the expression for θ:

cos θi=90◦ = − 1

U
.

This implies that transitions to retrograde orbits can take place
only if U ≥ 1, no matter what the mass of the planet is.



Transition prograde→retrograde

Thus, to obtain a transition from prograde to retrograde, we need
a close encounter that changes θ into θ′ > θi=90◦.

This is something that we know how to obtain: the b-plane
coordinates must be within the circle of radius |Ri ′=90◦ | centred in:

ξ = 0

ζ = Di ′=90◦ ,

with Di ′=90◦ ,Ri ′=90◦ given by:

Di ′=90◦ =
c sin θ

cos θ′i ′=90◦ − cos θ

Ri ′=90◦ =
c sin θ′i ′=90◦

cos θ′i ′=90◦ − cos θ
.



Transition prograde→retrograde
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The plane U-cos θ; to each triple a, e, i corresponds a point in this
plane.

Close encounters displace the orbit vertically in this plane.



Transition prograde→retrograde

For Everhart’s parabolic
comets (q/aJ = 0.1,
i = 27◦), the condition
i ′ = 90◦ implies:

a′i ′=90◦/aJ = 1.26.
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That is, all of Everhart’s parabolic comets deflected in orbits of
period P ≤ 1.41PJ would be on retrograde post-encounter orbits.



Conclusions

The main merit of the analytical theory of close encounters is the
geometric insight it provides into the problem; examples:

• the theory of resonant returns and keyholes;

• the explanation of the asymmetry of the tails of the energy
perturbation distributions;

• the conditions leading to prograde-retrograde transitions and
vice-versa.

Besides, its quantitative predictions can be useful in order to have
a quick evaluation of the efficiency in some problems of orbital
evolution dominated by planetary encounters.
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