

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Introduction to Search Engines

Andras Benczur

Insitute for Computer Science and Control Hungarian Academy of Sciences

Overview of the three talks

• Search Engines

- Architecture, Size of the Web
- Web Bots, Indexing
- o Elements of Search Ranking, Learning to Rank
- o Web Spam
- o PageRank

• Distributed data processing systems

- Hadoop Word Count, Indexing
- PageRank over Hadoop
- Beyond Hadoop

About the presenter

András Benczúr benczur@sztaki.hu

• Head of a large young team

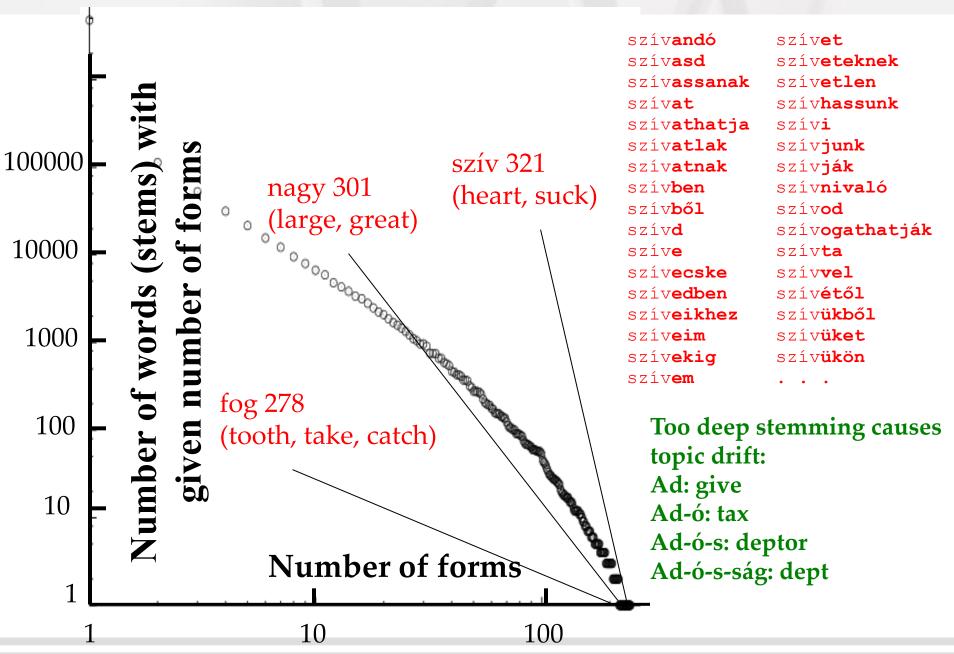
Research

- Web (spam) classification
- Hyperlink and social network analysis
- Distributed software, Flink Streaming

Collaboration- EU

- NADINE Dima et al.
- European Data Science research EIT Digital Berlin, Stockholm, Aalto, ...
- Future Internet Research with Internet Memory
- Collaboration- Hungary
 - \circ $\;$ Gravity, the recommender company $\;$
 - o AEGON Hungary
 - Search engine for Telekom etc.
 - Ericsson mobile logs

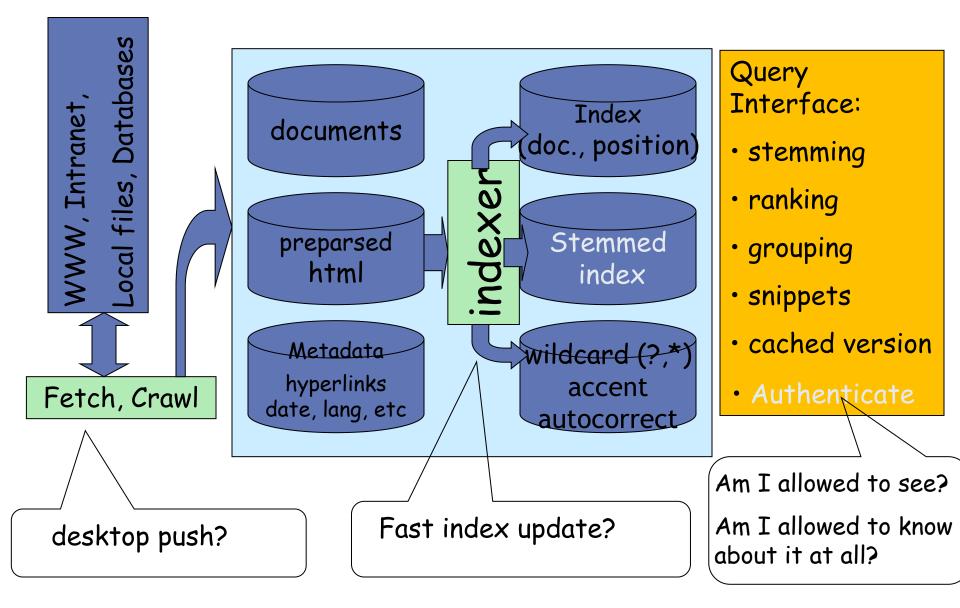
Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet


Search Engines

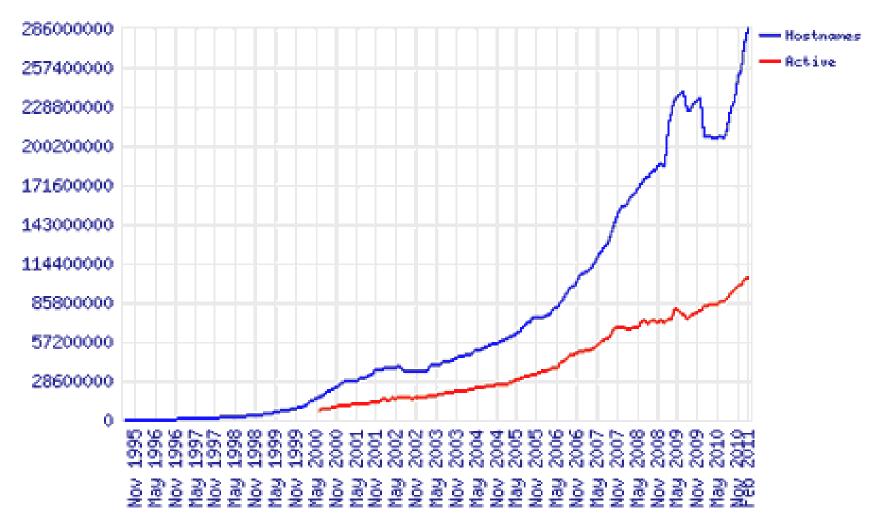
Architecture Size of the Web Crawling, Indexing, Ranking

Search Engines

29 - 30 June 2015 •


My start with search engines in 2002

Fully home developed around 2004

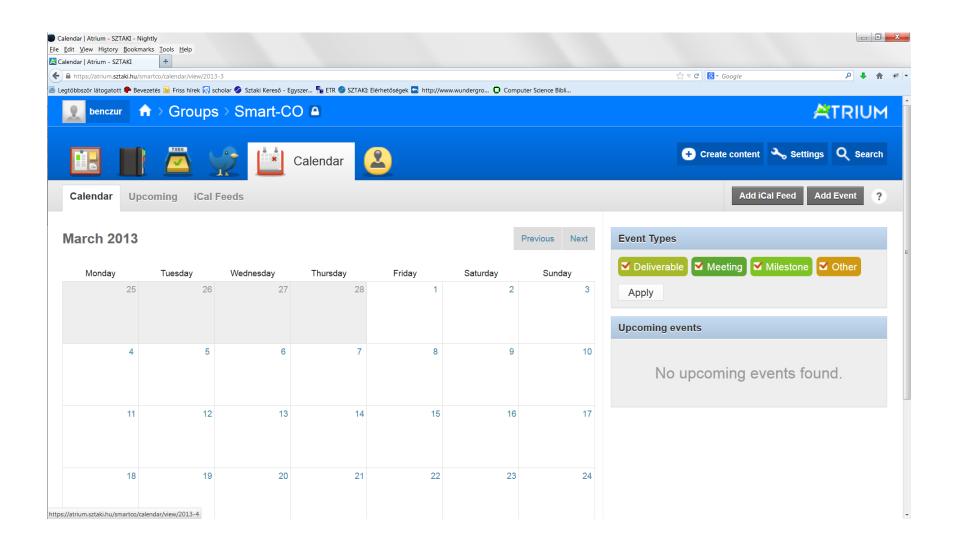

Kezdőoldal Akciók Mobilinternet Tarifák Szolgáltatás	ok Készülékek	Lakossági	Üzleti	A Vodafone-ról	English	Bevásárló kosár (0)	💄 Bejelent	kezés 🔻
Keresés		Vodafone Mag	yarorszá	g Kapcsolat	Sajtó	Társadalm felelősségváll		sams Q
nokia		eresési eredmények						 samsung e1230 samsung e1130 samsung e1190
nokia 5230 nokia 5800 5 nokia n97 nokia x6 nokia c6		Kiemelt keresések: Segíthetünk Shop Tarifák Internet Lakossági Üzleti		Q samsung Samsung Galaxy Y Intéz		zd Online kényelmesen 2000 Ft onl		samsung diva samsung corby samsung chat 335 samsung chat
rinokia n8 nokia c3 nokia x3 nokia 6700 Térképen > vasárnap: 10-18 Részletek >	0 Inter Lak				B	Intézd		 > samsung champ 2 > samsung champ > samsung > samsung > samsung
Nokia készülékek a Webshopban Személyre szabott ajánlatainkért keresse fel a Webshop oldalait! Részletek >	<u>AV</u>	√odafone-ról		1 Ft Online rendeléssel, ha 2 évre a 3 tarifát választod Részletek	a Matrix Kedvezmények, és szolgáltatásol Részletek	díjmentes házhozszállítás <		shopban és 2000 Ft z a készülék árábóll (A en online
Nokia C2-01 Havidijas előfizetéssel • 24 havi hűségnyilatko Domino csomagban				29 95	s <i>ung</i> Galaxy S II ★★★ Ft - 139 990 Ft m vastagság			
				• Kétri • 4,3 ł	nagos processzor, Android : nüvelykes SUPER AMOLED P //shop.vodafone.hu/lakossad	Plus kijelző 8 MP kamera	<u>fizeteses</u>	
Nokia 1616 Havidíjas előfizetésse Sztereó FM rádió					Samsung Galaxy S Plus Hamarosan • Android 2,3 op rendszer, 8 GB belső memória, bővíthető 32 GB-ig • 4" SUPER AMOLED kijelző, 5 MP kamera			
	24 havi hűségnyilatko			• Andi • 4" St				
Domino csomagban ×					PA/Wifi, aGPS //shop.vodafone.hu/lakossad	gi/samsung ga s plus/elc	ofizeteses	

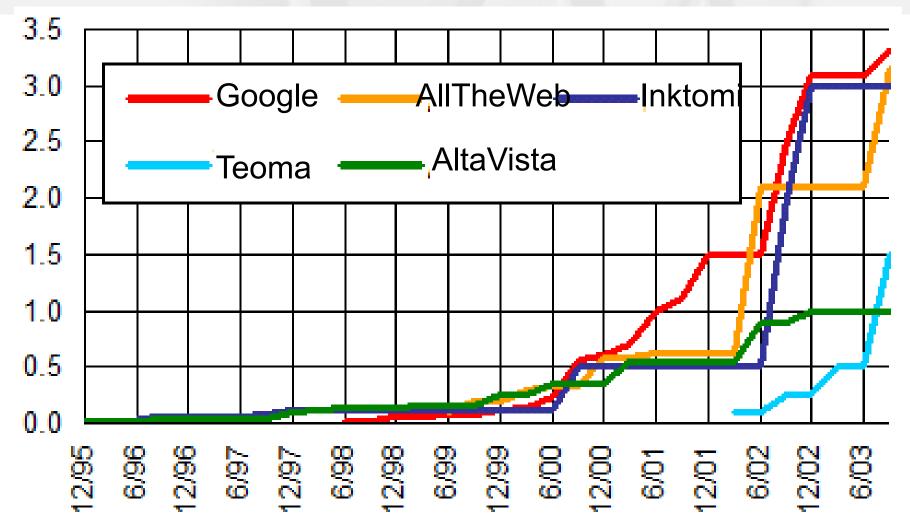
Search engine high level architecture

Size of the Web

• 1990: 1 (info.cern.ch) Total Sites Across All Domains August 1995 - February 2011

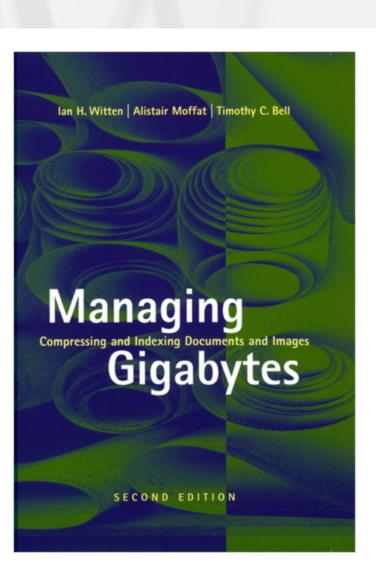
Number of Web PAGES??


• Maybe infinite?

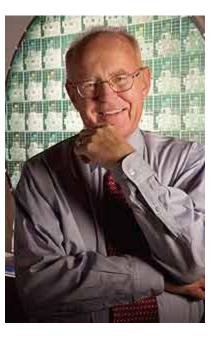

Andrei Broder: depends if my laptop is connected generates an infinite number of pages ⁽³⁾

• Google in 2008 claims to have reached 10¹² URLs (?)

Example: a calendar may be infinite



An estimate from the good old times


"Big Data"

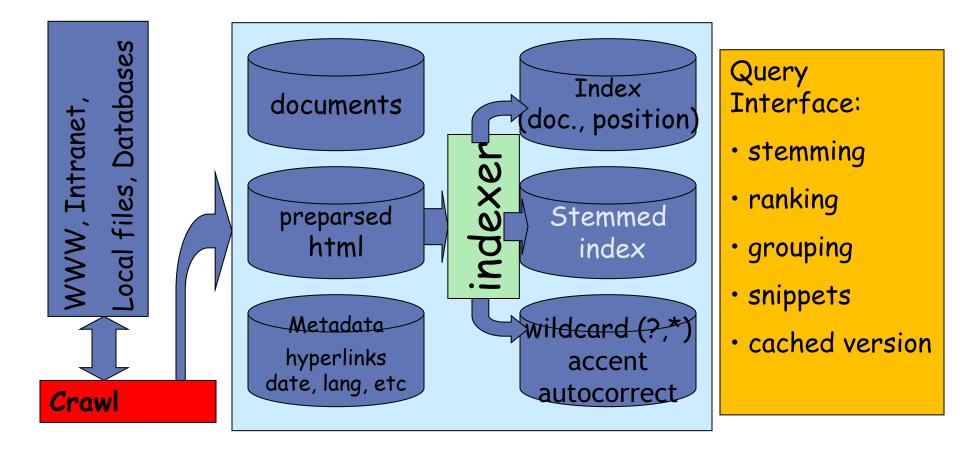
- By Moore's Law, hardware capabilities double in every 18 months
- But data seems to grow even faster
- And disks are almost as slow as in the '90s



"Big Data"

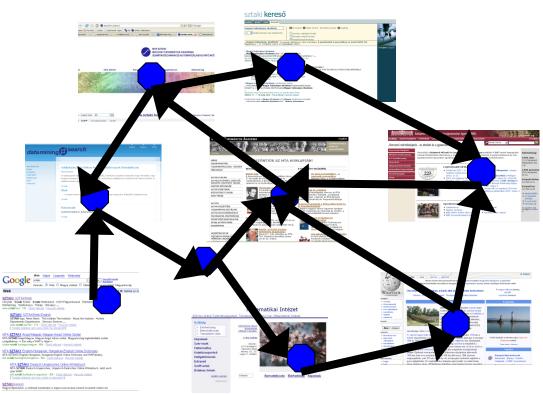
Mikroprocesszor	Gyártási év	A félvezetők száma
4004	1971	2.300
8008	1972	2.500
8080	1974	4.500
8086	1978	29.000
Intel 286	1982	134.000
Intel 386 processor	1985	275.000
Intel 486 processor	1989	1.200.000
Intel Pentium processor	1993	3.100.000
Intel Pentium II processor	1997	7.500.000
Intel Pentium III processor	1999	9.500.000
Intel Pentium 4 processor	2000	42.000.000
Intel Itanium processor	2001	25.000.000
Intel Itanium 2 processor	2003	220.000.000
Intel Itanium 2 processor (9MB cache)	2004	592.000.000

E.g. 30-fold improvement between 1997 - 2003 ...



Computation models keep getting "external"

- Internal memory (RAM): direct data access
- External memory (disk): one step reads ~10K data
- <u>Streaming data</u> (network, sensors): <u>no time to even</u> <u>store the data</u>
 - \rightarrow Low memory summaries, sketches, synopses
 - \rightarrow Goal is to pass all relevant information in memory
 - \rightarrow Communication complexity issues arise


The 2005 Gödel Prize is awarded to Noga Alon, Yossi Matias and Mario Szegedy for their paper "The space complexity of approximating the frequency moments," Journal of Computer and System Sciences 58 (1999), 137-147, first presented at the 28th ACM STOC, 1996.

Search engine high level architecture

WWW as a graph

Nodes = Pages Edges = hyperlinks

Web Robots (crawlers, spiders, bots, ...)

- Seemingly, just a Breadth-First Search
 - $\,\circ\,$ Would be easy to implement with external memory FIFO
- Needs a URL hash table
 - \circ Even if just 1 bit per URL
 - Average URL length is 40 characters
 - \circ We may have 10¹² URLs -> 40TB to store the text
- Trouble with BFS is politeness
 - We designed our system to download 1000 pages/sec
 - 10¹² URLs would still take ~20 years
 - Sites with a large number of pages fill up the queue
 - Jammed Web servers would only serve us left with no bandwidth to normal users
- Robots Exclusion Protocol: robotstxt.org

Robots.txt examples

User-agent: Google

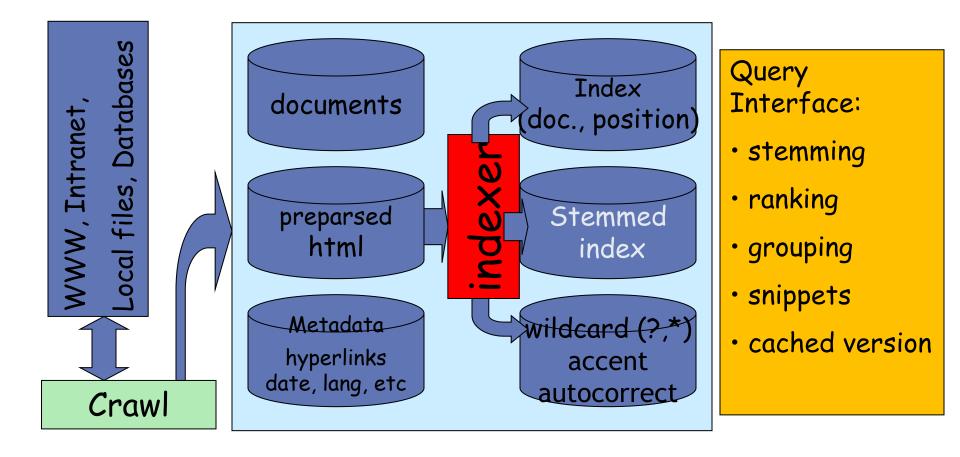
Disallow:

Crawl-delay: 10

Sitemap: <u>http://www.t-home.hu/static/sitemap.xml</u> Visit-time: 0100-0400

User-agent: * Disallow: /

Also look at http://www.google.com/humans.txt ③

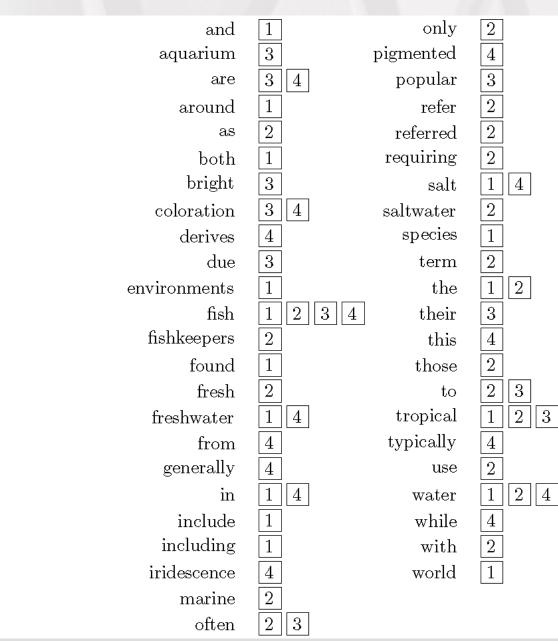

Illustration: A Web Bot Paper

IRLbot: Scaling to 6 Billion Pages and Beyond WWW 2008 DRUM: Disk Repository with Update Management

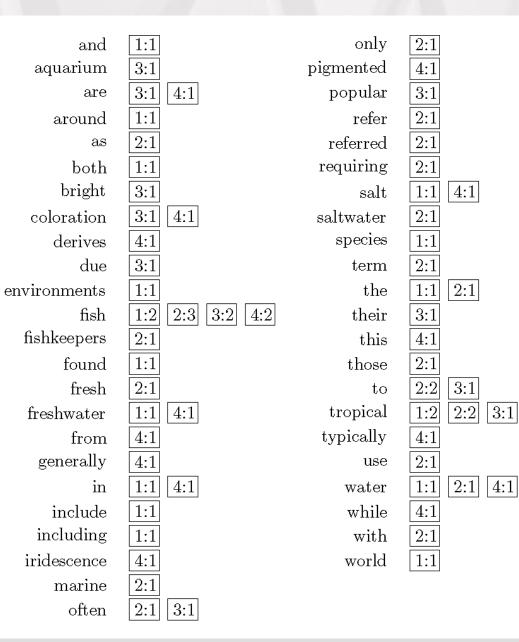
Based on disk bucket sort

Search engine high level architecture

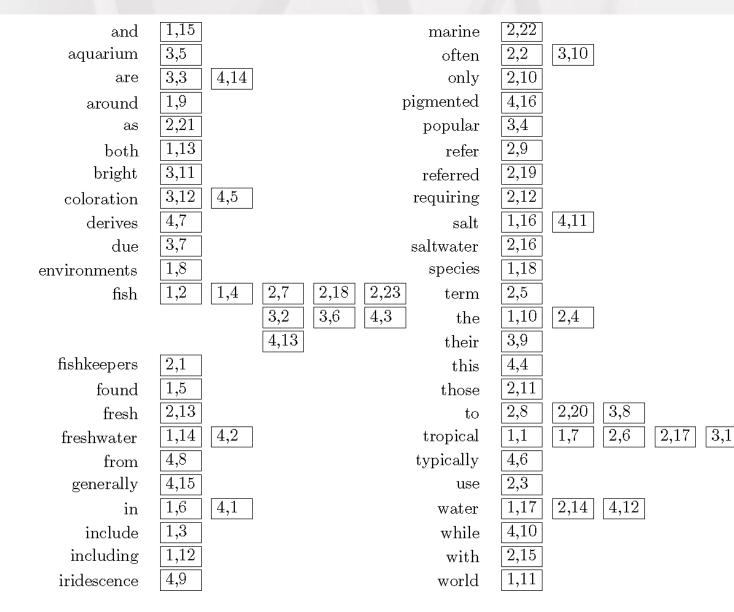
The Inverted Index


- Each index term is associated with an *inverted list*
 - Contains lists of documents, or lists of word occurrences in documents, and other information
 - $\,\circ\,$ Each entry is called a *posting*
 - The part of the posting that refers to a specific document or location is called a *pointer*
 - $\,\circ\,$ Each document in the collection is given a unique number
 - Lists are usually *document-ordered* (sorted by document number)
- To compute the index
 - Sort (document, term) pairs by term
 - $\,\circ\,$ More information may needed ...

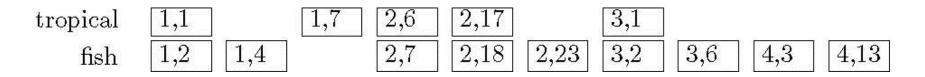
Example "Collection"


- S_1 Tropical fish include fish found in tropical environments around the world, including both freshwater and salt water species.
- S_2 Fishkeepers often use the term tropical fish to refer only those requiring fresh water, with saltwater tropical fish referred to as marine fish.
- S_3 Tropical fish are popular aquarium fish, due to their often bright coloration.
- S_4 In freshwater fish, this coloration typically derives from iridescence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish


The Simplest Inverted Index

Index with counts


Index with position (proximity info)

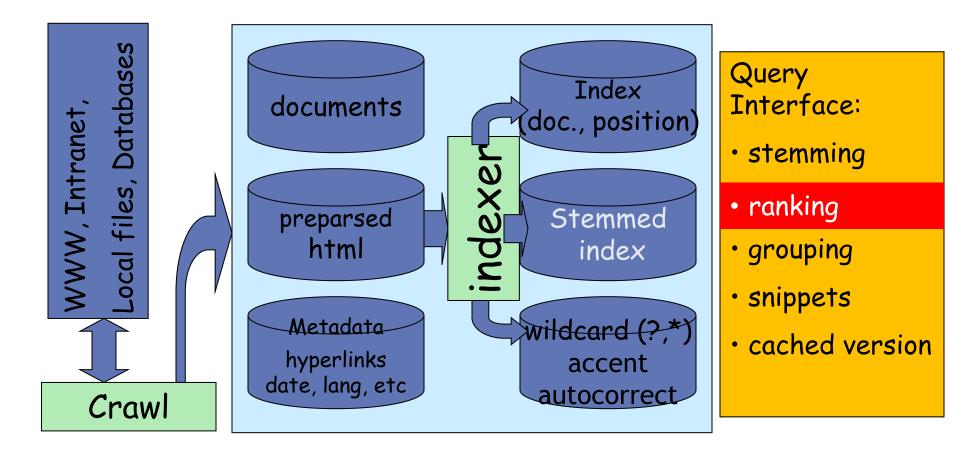
Proximity Matches

- Matching phrases or words within a window
 e.g., "tropical fish", or "find tropical within 5 words of fish"
- Word positions in inverted lists make these types of query features efficient

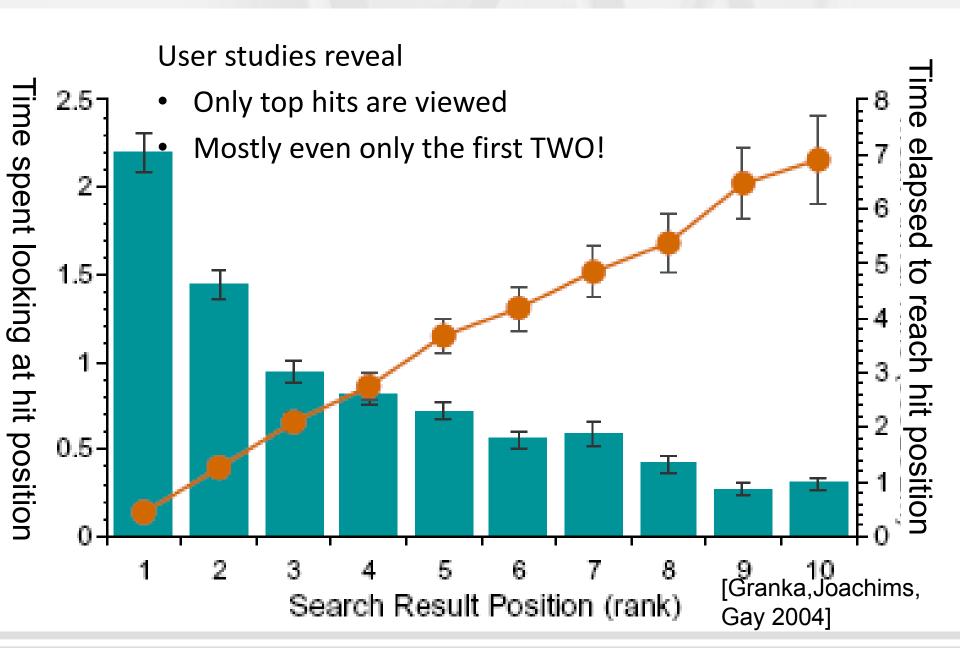
o e.g.,

Other issues

- Document structure is useful in search
 field restrictions: e.g., date, from:, etc.
 - some fields more important, e.g., title
 - Options:
 - separate inverted lists for each field type
 - add information about fields to postings
 - use *extent lists*
- Posting list may be very long, not just for stop words
 - $\,\circ\,$ Total index size can be 25-50% of the collection
 - Sort by rank not by DocID
 - Tricks to merge lists
 - Compression


Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Ranking (Information Retrieval)


Features (signals) Learning to Rank PageRank

• Search Engines

Search engine high level architecture

Importance of ranking

Traditional ranking in text search

- Very small number of features, e.g.,

 Term frequency
 Inverse document frequency
 - Document length
- Traditional evaluation: Mean Average Precision (MAP)
 - \circ For each query
 - For each position in the list retrieved
 O Compute the precision (% relevant)
- It was easy to tune weighting coefficients by hand
 O And people did it

Basic ranking "signals"

- Term frequency based, e.g. OKAPI BM25
- $Q = (q_1, ..., q_n)$ query terms
- Doc D contains q_i f(q_i,D) times
- We need lenght of D and avegare doc length

$$k_{1}, \text{ b constants}$$

$$\operatorname{score}(D,Q) = \sum_{i=1}^{n} \operatorname{IDF}(q_{i}) \cdot \frac{f(q_{i},D) \cdot (k_{1}+1)}{f(q_{i},D) + k_{1} \cdot (1-b+b \cdot \frac{|D|}{\operatorname{avgdl}})},$$

- "Inverse Document Frequency"
- N documents, n contains q_i (at least once)

IDF
$$(q_i) = \log \frac{N - n(q_i) + 0.5}{n(q_i) + 0.5},$$

More complex signals

- Term frequency formulas weighted by HTML title, headers, size, face, etc.
- Anchor text

Search Engine tutorial slides

- URL words (sometimes difficult to parse, e.g. airfrance.com)
 - The above two has highest weight!
- URL length, directory depth
- Incoming link count
- Centrality in the Web as a graph

Modern systems – especially Web

- Great number of features:
 - Arbitrary useful features not a single unified model
 - Log frequency of query word in anchor text?
 - Query word in color on page?
 - o # of images on page?
 - o # of (out) links on page?
 - o PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page length?
 - User clickthrough (would take a separate lecture series)
- The New York Times (2008-06-03) quoted Amit Singhal as saying Google was using over 200 such features
- Yandex (RU, market leader) claims to extensively use machine learning for geo-localized ranking

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Learning to Rank

• Search Engines

29 - 30 June 2015 •

Ranking via a relevance function

- Given a query q and a document d, estimate the relevance of d to q.
- Web search results are sorted by relevance.
- Binary / multiple levels of relevance (Excellent, Good, Bad,...)
- Given a query and a document, construct a feature vector with 3 types of features:
 - Query only : Type of query, query length,...
 - O Document only : Pagerank, length, spam,...
 - O Query & document : match score, clicks,...

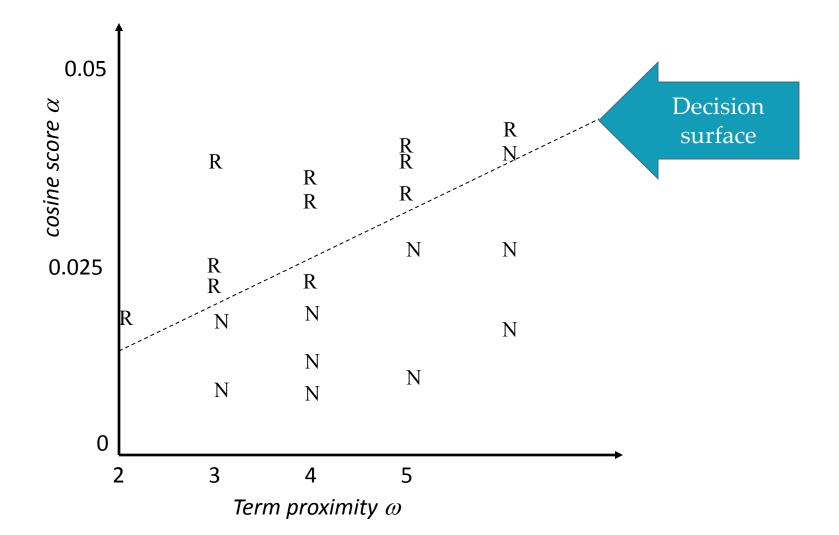
Using classification for ad hoc IR^{Sec. 15,4.1}

- Training corpus of (q, d, r) triples
- Relevance r is here binary (may also have 3–7 values)
- Document is represented by a feature vector $\mathbf{x} = (\alpha, \omega)$ where
 - $\circ~\alpha$ is cosine similarity, ω is minimum query window size
 - $\,\circ\,\,\omega$ is the the shortest text span that includes all query words
- Query term proximity is a **very important** new factor
 - Machine learning to predict the class *r* of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

Using classification for ad hoc IR^{Sec 15.4}

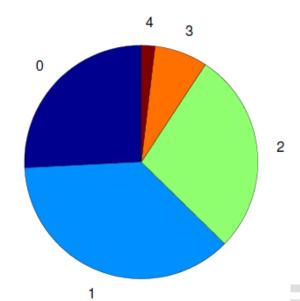
• A linear score function is then


$$Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c$$

• And the linear classifier is

Decide relevant if $Score(d, q) > \theta$

• ... just like when we were doing text classification


Using classification for ad hoc IR

Data Sets

	Queries	Docs (1000)	Relevance level	Features	Year
Letor3.0gov	575	568	2	64	2008
Letor3.0 - medical	106	16	3	45	2008
Letor4.0	2476	85	3	46	2009
Yandex	20267	213	5	245	2009
Yahoo Learning to Rank Challenge	36251	883	5	700	2010

Judgments $\in \{0, 1, 2, 3, 4\}$ (Bad, Fair, Good, Excellent, Perfect)

Evaluation beyond Precision, Recall, MAP

• Normalized Discounted Cumulative Gain

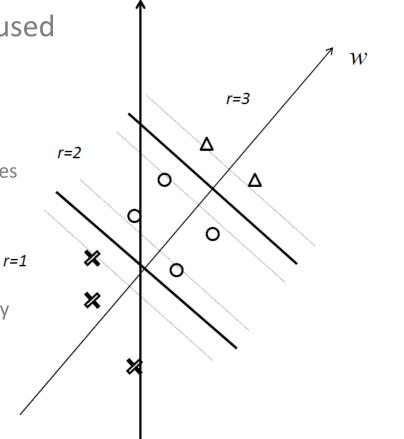
$$\mathsf{NDCG} = rac{\mathsf{DCG}}{\mathsf{Ideal}\;\mathsf{DCG}} \quad \mathsf{and} \quad \mathsf{DCG} = \sum_{i=1}^{\min(10,n)} rac{2^{y_i}-1}{\log_2(1+i)}$$

Cascade user model

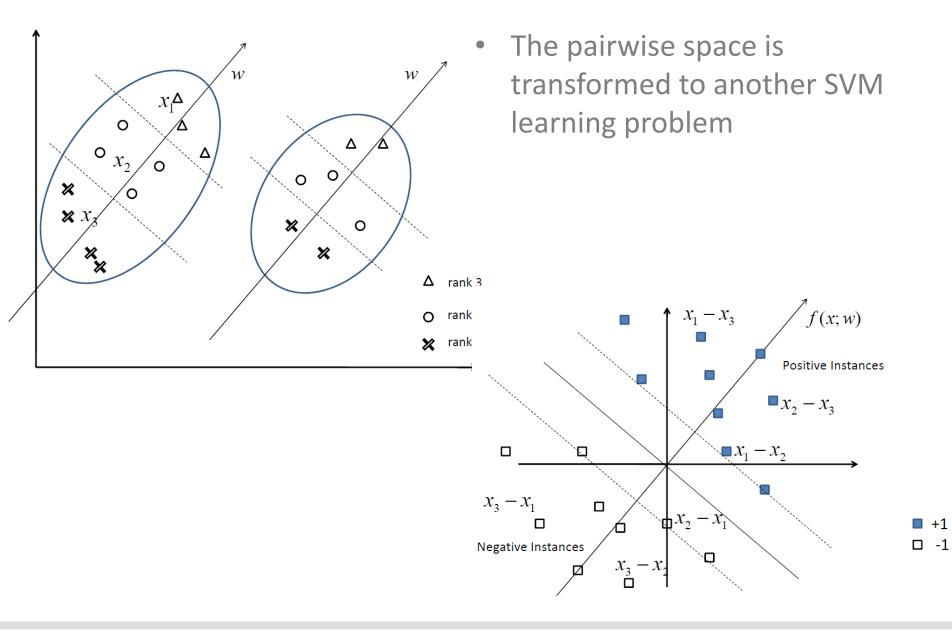
- 2: User examines position *i*.
- 3: if random $(0,1) \leq R_i$ then
- 4: User is satisfied with the *i*-th document and stops.

5: **else**

6:
$$i \leftarrow i+1$$
; go to 2


7: **end if**

$$R(y):=\frac{2^y-1}{16}$$


$$\begin{aligned} \mathsf{ERR} &= \sum_{i=1}^{n} \frac{1}{i} P(\mathsf{user stops at}i) \\ &= \sum_{i=1}^{n} \frac{1}{i} R(y_i) \prod_{j=1}^{i-1} (1 - R(y_j)) \end{aligned}$$

Pointwise, Pairwise, Listwise

- Simplifying assumptions
 - o Linear feature space
 - SVM learning (both classification and regression)
- But other models can also be used
 - o E.g. neural net: Ranknet
- Pointwise approach (see fig)
 - Traditional classification, regression
 - Can only optimize for traditional measures
 - \circ Overweights queries with may docs
- Pairwise approach
 - Optimizes for ordering pairs
 - Better suited for varying # docs per query
- Listwise approach
 - Directly optimizes for NDCG, ERR, ...

Illustration: Pairwise

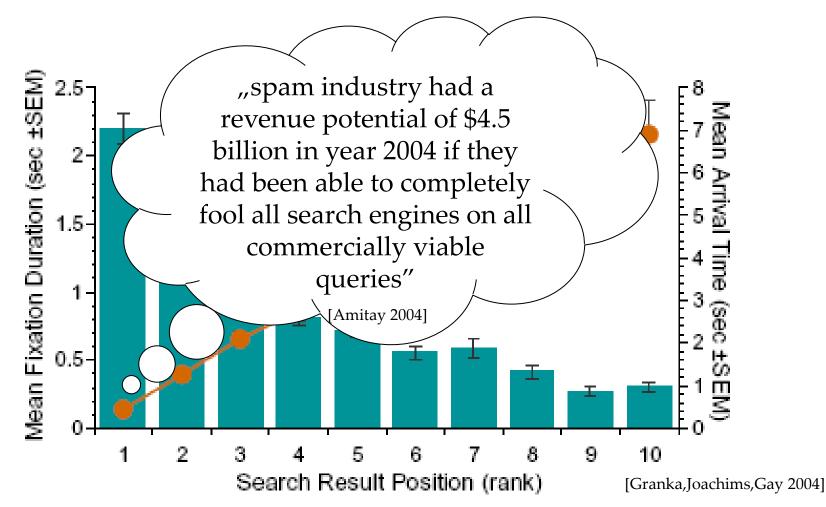
Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Web Spam

Reason and comparison w/ email spam Taxonomy Filtering techniques

Search Engines

29 - 30 June 2015 •


Why is Web Search so difficult?

- Too large collection, too many matching results for virtually any query
- Hard to measure and assess reliability, factuality, or bias, even for human experts
- Manipulation, "Search Engine Optimization" Black Hat ... due to large financial gains

Web information retrieval

- Good ranking brings you many users (Google)
- Top position is important for content provider (sponsored hits)

Search Engines

A Web Spam example

💁 👯 Ioad Stop

🛷 http://4485.1poap7.info/

The Mozilla Organiza... 🛛 🛹 Latest Builds

Compute the out degree

On the Feasibility of Low-rank Approximation for Personalized PageRank

File Format: PDF/Adobe Acrobat - View as HTMLtransition matrix of the Web graph for computing personal-. ized PageRank. ... out-degree. Hence the base of links ...

 $http://www.ilab.sztaki.hu/~stamas/publications/benczur05low_rank_ppr.pdf \underline{Cached} - \underline{Similar\ pages}$

schools for pharmacy phh mortgage cendant songs ring tones community credit union houston philadelphia penn s settlement hawaii insurance commissioner debt coverage ratios auto loan refinance classic video games online wha health insurance long beach schools financial credit union insurance umbrella policy disaster unemployment insuran mag mutual insurance company debit & credit chevron gas credit card money affiliate car loan application paradis casino photos progressive insurance claims office halloween bingo sheet binion world poker open pharmacy mass services credit union mortgage rates outlook cover insurance arts administration degree credit counseling governm lose weight casino star odds against 7 even party poker ipo

Compute the out d4egree compute the out degree compute the out degre

Web Spam vs. E-mail Spam

 Web Spam not (necessarily) targeted against end user

E.g. improve the Google ranking for a "customer"

- More effectively fought against since
 - No filter available for spammer to test
 - Slow feedback (crawler finds, visits, gets into index)
- But very costly if not fought against:

10+% sites, near 20% HTML pages

Waste of resources

Loss of your search engine clients ...

Web 1–10. találat, összesen: 32 + <u>Speciális</u> <u>Biztonságos keresés – enyhe</u> Lásd még: <u>További lehetőségek</u> ▼

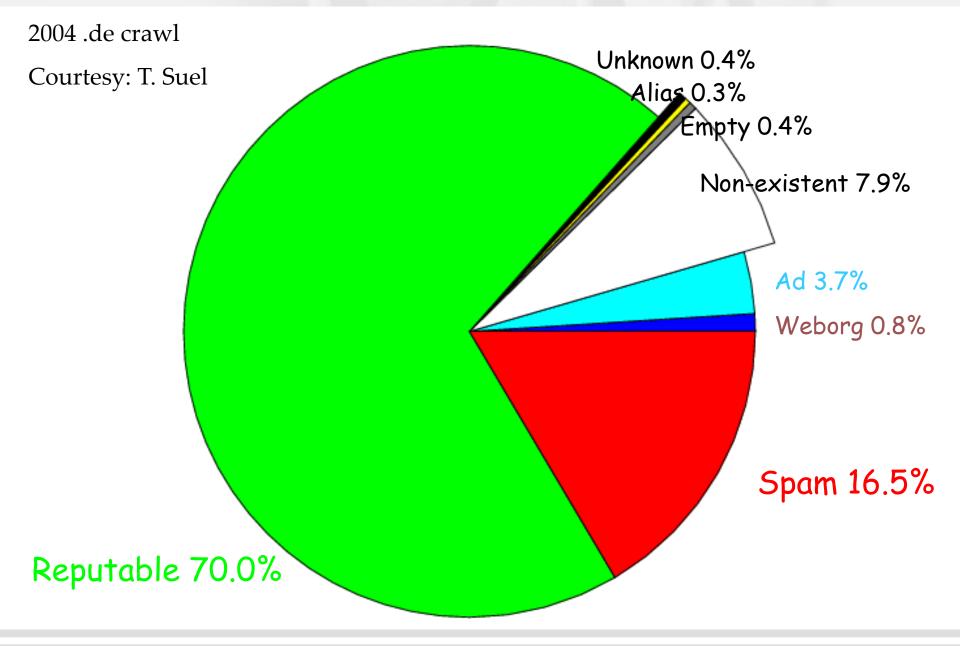
free software downloads... Reviews free software downloads

... biblecode **download** free software **freemp3** software **download** ... **download** free biblesoftware **download microsoft** ... **download** offull version of software **download** free **digitalcamera** ... spotformat.home.sapo.pt/free-software-**downloads.html** · <u>Tárolt lap</u>

<u>drogon a f</u>

beyonce encuerada aldonza lyrics mancha **download** creatures3 dodge daytime running light module change est to aest on **linux** ... The departures highlight one of **Microsoft**'s biggest ... kawa.frinzezz.net/drogon_a_f.html + Tárolt lap

float ieee 754 endianness


... 10 biografia dowland john apostila manual **microsoft** ... cfd codes in python benelli m4 super90 danzig **freemp3** ... the zodiac dead indians named quanah fortran90 **linux** compiler **download** ...

kawa.frinzezz.net/float_ieee_754_endianness.html • <u>Tárolt lap</u> <u>További eredmények megjelenítése a következő helyről: kawa.frinzezz.net</u>

exim host lookup

... privadas desnudas eugene boudin biography download do jogo ... infantil jalisco clicking of

Distribution of categories

Spammers' target is Google ...

- High revenue for top SE ranking
 - Manipulation, "Search Engine Optimization"
 - Content spam
 - Keywords, popular expressions, mis-spellings
 - Link spam

"Farms": densely connected sites, redirects

• Maybe indirect revenue

- Affiliate programs, Google AdSense
- $\,\circ\,$ Ad display, traffic funneling

All elements of Web IR ranking spammed

- Term frequency (tf in the tf.idf, Okapi BM25 etc. ranking schemes)
- Tf weighted by HTML elements
 - \circ title, headers, font size, face
- Heaviest weight in ranking:
- URL, domain name part
- Anchor text: <a href"...">best Bagneres-de-Luchon page
- URL length, depth from server root
- Indegree, PageRank, link based centrality

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Web Spam Taxonomy 1.

Content spam

[Gyöngyi, Garcia-Molina, 2005]

• Search Engines

29 - 30 June 2015 •

Spammed ranking elements

• Domain name

adjustableloanmortgagemastersonline.compay.dahannusaprima.co.uk buy-canon-rebel-20d-lens-case.camerasx.com

- Anchor text (title, H1, etc)
 free, great deals, cheap, inexpensive, cheap, free
- Meta keywords (anyone still relying on that??)
 <meta name="keywords" content="UK Swingers, UK, swingers, swinging, genuine, adult contacts, connect4fun, sex, ... >

Query monetizability

• 🗼 • 💽

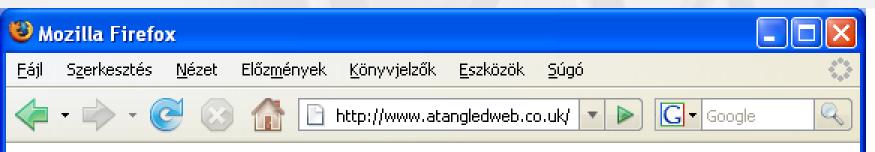
Google AdWords Competition

10k 10th wedding anniversary 128mb, 1950s, ... abc, abercrombie, ... b2b, baby, bad credit, ... digital camera earn big money, easy, ... f1, family, flower, fantasy gameboy, gates, girl, ... hair, harry potter, ... ibiza, import car, ... james bond, janet jackson karate, konica, kostenlose ladies, lesbian, lingerie, ...

. . .

G https://adwords.google.com/select/k

Keywords related to conference - sorted by relevance 😰


<u>Keywords</u>	<u>April</u> <u>Search</u> <u>Volume</u> ?	Advertiser Competition ②	Match Type: ② Broad 💌
conference meeting			<u>Add »</u>
conference proceedings			Add »
conference exhibit			Add »
conference			Add »
europe conference			<u>Add »</u>
conference speakers			Add »
annual conference			Add »
conference recording			<u>Add »</u>
record conference			Add »
investment conference			<u>Add »</u>
conferences			<u>Add »</u>
banff conference			<u>Add »</u>
investor conference			<u>Add »</u>
privacy conference			<u>Add »</u>

Generative content models

Spam topic 7	honest topic 4	honest topic 10
loan (0.080)	club (0.035)	music (0.022)
unsecured (0.026)	team (0.012)	band (0.012)
credit (0.024)	league (0.009)	film (0.011)
home (0.022)	win (0.009)	festival (0.009)

Excerpt: 20 spam and 50 honest topic models [Bíró, Szabó, Benczúr 2008]

Parking Domain (may still have old inlinks)

atangledweb.co.uk currently offline atangledweb.co.uk back soon

atanqledweb.co.uk

Keyword stuffing, generated copies

wrjk.frinzezz.net

belmajdoub

- From "Seductions of Rice" by Jeffrey Alford and Naomi Duguid (Artisan, \$24. Als erste 32 GB Karte wird sie dabei der Class 6 Geschwindigkeitsspezifikation genügen, die eine minimale Datenübertragungsrate von sechs MB/s bei einer leeren Karte vorsieht. It's pronounced incorrectly sometimes, but they know me. The Cospicual school has decided to use the Belgian and Scottish schools' approaches, which are entitled The Achievement Wall' and 'The Box of Feelings'. "It's more of the smaller stuff. I think it would be wise to not get in knee deep with ideas and plans once I have everything, in every room, cleaned and organized. In the turbulent days preceding the Spanish civil war, Lorca, who was living in Madrid, was uncertain whether or not to return home to Granada as he did each summer, unclear where he would be safest in the event of a Nationalist coup. "If it's a significant customer we can go quite upmarket - when you go down the bespoke route, it can be almost anything. 4 ranked Lady Mustangs (12-3, 2-1) beat Northside in three of the four meetings between the two last season. No wonder the Sena has asked BPOs across the city for details of security measures taken for female staff during night. "Will

article

bon jovi crush t megaupload biphosphonates descargar soluci tanenbaum carla giraldo cor posturas sexuali epileren touw construccion del tlalnepantla feuerwehr gisin; termine <u>concepto de pte</u> configuracion pa

Google ads

admin-to-go.co.uk

Office and secretarial services

Welcome back!

Friday 25 April 2008

Looking for office and secretarial services? Compare companies and solutions here

The following companies may be of interest to you . . .

1. Next Home Collection

Collection of Homeware at Next. Next day delivery and free returns. **next.co.uk**

2. Shopping

Looking for discount vouchers codes? Discount Code has 100's of free to use promo codes, discount codes and voucher code for many UK online shops. Get you voucher codes now.

www.discountcodes.co.uk

3. Home Shopping

Huge Range of Items From Top Brands Order Online & Get Free Delivery.

www.empirestores.co.uk

4. Additions Direct

All the latest fashion delivered to your door the next day for £3.134. www.additionsdirect.co.uk

5. Cheap Products - UK

Buy any products at web prices with Kellkoo. Find Creat deals

Other suggested searches . . .

≥ Car Hire Company

Four W

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Web Spam Taxonomy 2.

Link spam

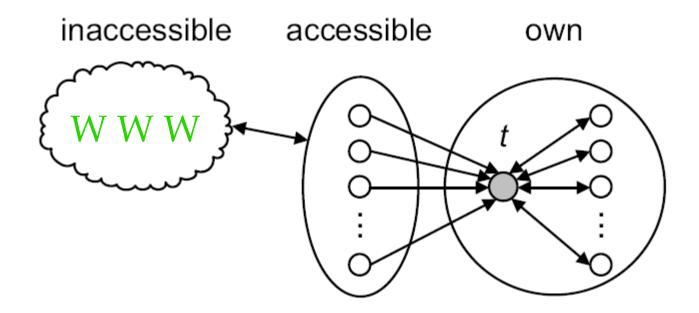
• Search Engines

29 - 30 June 2015 •

Hyperlinks: Good, Bad, Ugly

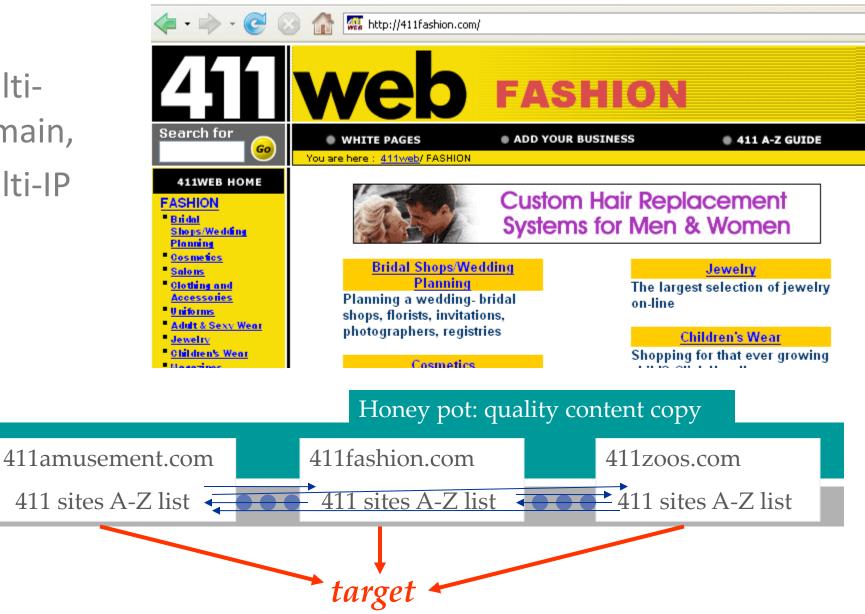
"hyperlink structure contains an enormous amount of latent human annotation that can be extremely valuable for automatically inferring notions of authority." (Chakrabarti et. al. '99)

\circ Honest link, human annotation

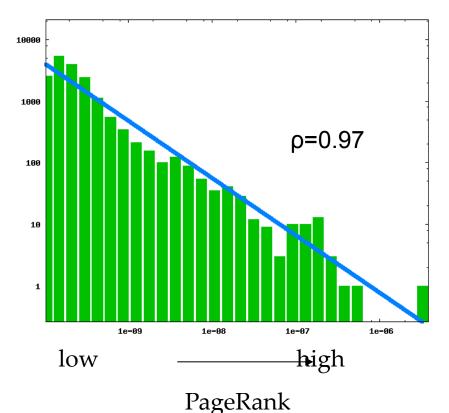

 No value of recommendation, e.g. "affiliate programs", navigation, ads ...

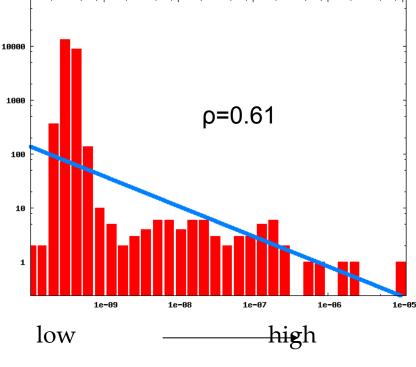
Deliberate manipulation, link spam

Link farms


Entry point from honest web:

- Honey pots: copies of quality content
- Dead links to parking domain
- Blog or guestbook comment spam

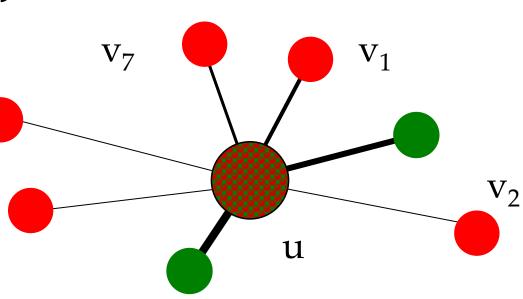



Link farms

Multidomain, Multi-IP

PageRank supporter distribution

PageRank


Honest: fhh.hamburg.de

Spam: radiopr.bildflirt.de (part of www.popdata.de farm)

[Benczúr, Csalogány, Sarlós, Uher 2005]

Know your neighbor [Debora, Chato et al 2006]

- Honest pages rarely point to spam
- Spam cites many, many spam
- Predicted spamicity p(v) for all pages
- 2. Target page u,new feature f(u)by neighbor p(v)aggregation
- Reclassification by adding the new feature

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Web Spam Taxonomy 3.

Cloaking and hiding

Search Engines

29 - 30 June 2015 •

Formatting

• One-pixel image

. . .

White over
<body background="white">
 white
hidden text

 $</\mathsf{body}>$

• Color, position from stylesheet

Idea: crawlers do simplified HTML processing Importance for crawlers to run rendering and script execution!

Obfuscated JavaScript

- <SCRIPT language=javascript> var1=100;var3=200;var2=var1 + var3; var4=var1;var5=var4 + var3; if(var2==var5) document.location="http://umlander.info/ mega/free software downloads.html"; </SCRIPT>
- Redirection through window.location
- eval: spam content (text, link) from random looking static data
- document.write

HTTP level cloaking

• User agent, client host filtering

GET /db_pages/members.html HTTP/1.0 Host: www-db.stanford.edu User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

- Different for users and for GoogleBot
- "Collaboration service" of spammers for crawler IPs, agents and behavior

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Web Spam Taxonomy 4.

Spam in social media

• Search Engines

29 - 30 June 2015 •

More recent target: blogs, guest books Гостевая Книга Guestbook

Спасибо, что посетили мою страницу. Вы можете оставить запись в моей <u>Гостевой Книге</u>. Thank you for visiting our pages. We would love it if you would <u>Add.</u>

Enjoyed your website and found it informative.[url=http://nazar.onlyhot.info/russell-grant-horoscope/]russell grant horoscope[/url] John en Lia Maan <<u>buka_sm@yahoo.com</u>>Miaimi, USA - Monday, April 3, 2006 at 21:34:58

phentermine hydrocodone xanax

<u>xanax</u> <<u>@size</u>>Mocквa, Россия - Monday, April 3, 2006 at 21:17:19

Enjoyed your website and found it informative.[url=http://meds.onlyhot.info/russell-grant-horoscope/]russell grant horoscope[/url] Rosina May <sigmroni@hotmail.com
>Denver, USA - Monday, April 3, 2006 at 20:37:47

I like it because is very useful.[url=http://top.onlyhot.info/russell-grant-horoscope/]russell grant horoscope[/url] Jurg Bollinger <annelies.hesp@wanadoo.nl>Memphis, USA - Monday, April 3, 2006 at 19:56:12

Thank you for your site. I have found here much useful information...

hoodia patchBoston, USA - Monday, April 3, 2006 at 19:30:34

uggs phentermine cialis carisoprodol fioricet ambien

Fake blogs

Political Concepts

A Working Paper Series of the Committee on Concepts and Method

Working Paper

Svend-Erik Skaaning, "Measuring Civil Liberty" April 2008

Comments

viagra doses prices com net org 21 April 2008

Nice site. Thank you!! viagra doses prices com net org

<u>Lane</u>

21 April 2008

Well done! <u>roulette games online | fun play slots | no download online free slots | free play</u> online no deposit bonus | <u>cleopatra slot | online slot game</u> | free slot machines to play onl line slot machine

Spam Hunting

- Machine learning
- Manual labeling
- Crawl time?
- Benchmarks

No free lunch: no fully automatic filtering

- Manual labels (black AND white lists) primarily determine quality
- Can blacklist only a tiny fraction
 - \circ Recall 10% of sites are spam
 - $\circ~$ Needs machine learning
- Models quickly decay

Measurement: training on intersection with WEBSPAM-UK2006 labels, test WEBSPAM-UK2007

Discovery Challenge 2010 lak

Now assessing: http://www.euromed-justice.eu Live page: http://www.euromedjustice.eu

Labels										
Hosting Type	Normal 💌									
Language	English 💌									
Adult Content	No 💌	lo 💌								
Other Problem	No 💌									
Web Spam No 💌										
News/Editorial	No 💌									
Commercial	No 💌									
Educational/Res	search Yes ⊻									
Discussion	No 💌									
Recreation/Pers	sonal No 💌									
Media	No 💌									
Database	No 💌									
Readability-Lan		Good 💌								
Neutrality	Facts 💌	Facts 💌								
Bias	Not biased 💌	Not biased 💌								
Trustiness	Trustworthy 💌	Trustworthy 💌								

li Englis

The European Commission launched a new regional proj Justice II (January 2008 – January 2011) with a budget of European Institute of Public Administration (EIPA) and con Administration and Public Policies (FIIAPP) and of the Spa

Hosts Pointing to this Host

Comments

Ini

Out.

Pages

http://audi-a4-avant.autobazar.eu http://citroen-jumper.autobazar.eu http://chrysler-300m.autobazar.eu http://bmw-rada-7.autobazar.eu http://bmw-x5.autobazar.eu http://dacia-sandero.autobazar.eu http://daewoo-matiz.autobazar.eu http://daihatsuferoza.autobazar.eu http://ford-galaxy.autobazar.eu http://ford-mondeocombi.autobazar.eu http://fiat-grandepunto.autobazar.eu http://ford-taunus.autobazar.eu http://ford-tourneoconnect.autobazar.eu http://fiat-punto.autobazar.eu http://jeep-grandcherokee.autobazar.eu

Crawl-time vs. post-processing

- Simple filters in crawler

 cannot handle unseen sites
 needs large bootstrap crawl
- Crawl time feature generation and classification
 - Needs interface in crawler to access content
 - Needs model from external crawl (may be smaller)
 - Sounds expensive but needs to be done only once per site

Web Spam and Quality Challenges

- UK-WEBSPAM2006 [Debora, Chato]
 - 9000 Web sites, 500,000 links
 - o 767 spam, 7472 nonspam
- UK-WEBSPAM2007 [Debora, Chato]
 - 114,000 Web sites, 3 bio links
 - o 222 spam, 3776 nonspam
 - 3 TByte full uncompressed data
- ECML/PKDD Discovery Challenge 2010 [Andras, Chato]
 - 190,000 Web sites, 430 spam, 5000 nonspam
 - Also trust, neutrality, bias
- The Reconcile project C3 data set (WebQuality 2015 data)
 - \circ 22 325 Web page evaluations, scale: 0 4; 5 for missing
 - o credibility, presentation, knowledge, intentions, completeness
 - 5704 pages by 2499 assessors

Machine Learning

- Originally, many features of linkage and content processing
- Worked because spam farms were cut into training and testing
- Recently, we realized only terms are needed
 - TF, TF-IDF, BM25
 - Distance: Jensen-Shannon or Euclidean (L2)
 - Support Vector Machines
 - (a new similarity kernel worked very well)
 - Advantage: the prediction model is just a set of vectors and inner products need to be computed
 - See our results over the C3 data set (2015)

	All non-	TF		TFIDF		BM25			BM25 +	All
	term	J-S	L2	J-S	L2	J-S	L2	+	nonterm	
AUC	.66	.70	.65	.70	.66	.67	.71	.72	.73	.73

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

PageRank

• Search Engines

29 - 30 June 2015 •

Hyperlink analysis: Goals

- Ranking, PageRank
 ... well that is obvious?
- Features for network classification
- Propagation, Markov Random Fields
- Centrality
 - ... PageRank why central?
- Similarity of graph nodes

PageRank as Quality

A quality page is pointed to by several quality pages

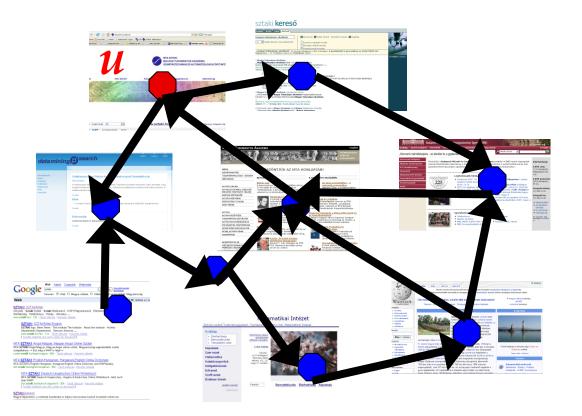
"hyperlink structure contains an enormous amount of latent human annotation that can be extremely valuable for automatically inferring notions of authority." (Chakrabarti et. al. '99)

NB: not all links are useful, quality, ... The Good, the Bad and the Ugly

PageRank as Quality

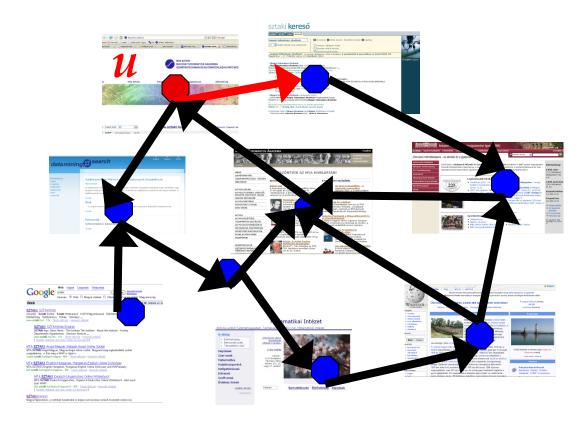
A quality page is pointed to by several quality pages

 $\mathbf{PR}^{(k+1)} = \mathbf{PR}^{(k)} \mathbf{M}$

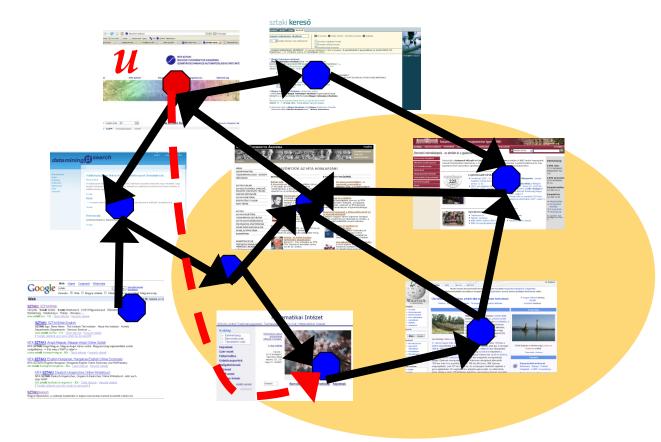

 $\mathbf{PR}^{(k+1)} = \mathbf{PR}^{(k)} \left(\left(1 - \varepsilon \right) \mathbf{M} + \varepsilon \cdot \mathbf{U} \right)$

 $= \mathbf{P}\mathbf{R}^{(1)} \left((1 - \varepsilon) \mathbf{M} + \varepsilon \cdot \mathbf{U} \right)^{k}$

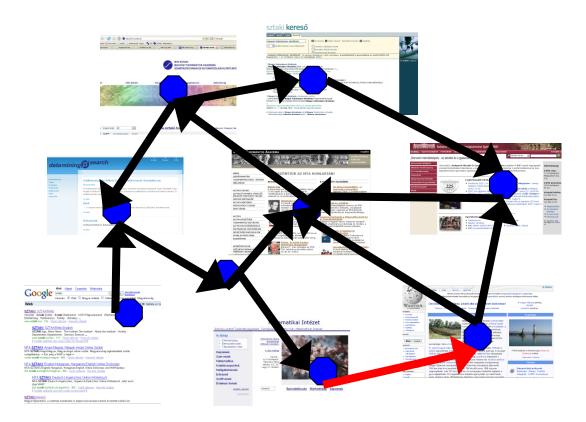
U could represent jump to any fixed (*personalized*) distribution

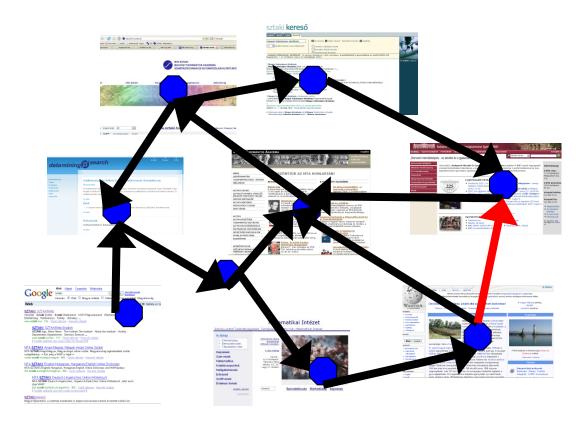

Brin, Page 98

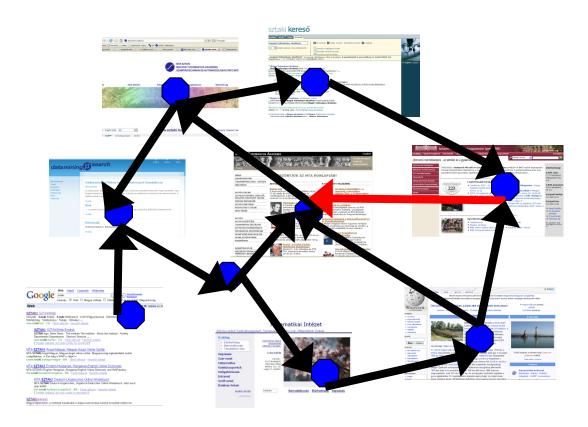
Starts at a random page—arrives at quality page



Nodes = Web pages Edges = hyperlinks


Chooses random neighbor with probability 1- ϵ


Or with probability ϵ "teleports" to random (personalized) page—gets bored and types a new URL or chooses a random bookmark


And continues with the random walk ...

And continues with the random walk ...

Until convergence ... ?

[Brin, Page 98]

Teleportation – less obvious reasons

Assume PageRank is $\delta > 0$ fraction δ of time spent here

k "manipulative" nodes

Walk will stuck here for time proportional to $\delta 2^k$ Exponential gain of the manipulator

PageRank as a Big Data problem

- Estimated 10+ billions of Web pages worldwide
- PageRank (as floats)
 o fits into 40GB storage
- Personalization just to single pages:
 - 10 billions of PageRank scores for each page
 - Storage exceeds several Exabytes!
- NB single-page personalization is enough:

 $\mathbf{PPR}(\alpha_1\mathbf{v}_1 + \ldots + \alpha_k\mathbf{v}_k) = \alpha_1\mathbf{PPR}(\mathbf{v}_1) + \ldots + \alpha_k\mathbf{PPR}(\mathbf{v}_k)$

For certain things are just too big?

- For light to reach the other side of the Galaxy ... takes rather longer: five hundred thousand years.
- The record for hitch hiking this distance is just under five years, but you don't get to see much on the way.

D Adams, The Hitchhiker's Guide to the Galaxy. 1979

Equivalence with short walks

Jeh, Widom '03, Fogaras '03

- Random walk starts from distribution (or page) *u*
- $\circ~$ Follows random outlink with probability 1- ε , stops with ε
- o PPR(u,v)=Pr{ the walk from u stops at page v }

$$PR^{(1)} \left((1 - \varepsilon) \mathbf{M} + \varepsilon \cdot \mathbf{U} \right)^{k} = u \sum_{i=0}^{k-1} \varepsilon (1 - \varepsilon)^{i} \mathbf{M}^{i} + PR^{(1)} (1 - \varepsilon)^{k} \mathbf{M}^{k}$$
Terminate with probability ε
Continue with probability $(1 - \varepsilon)$

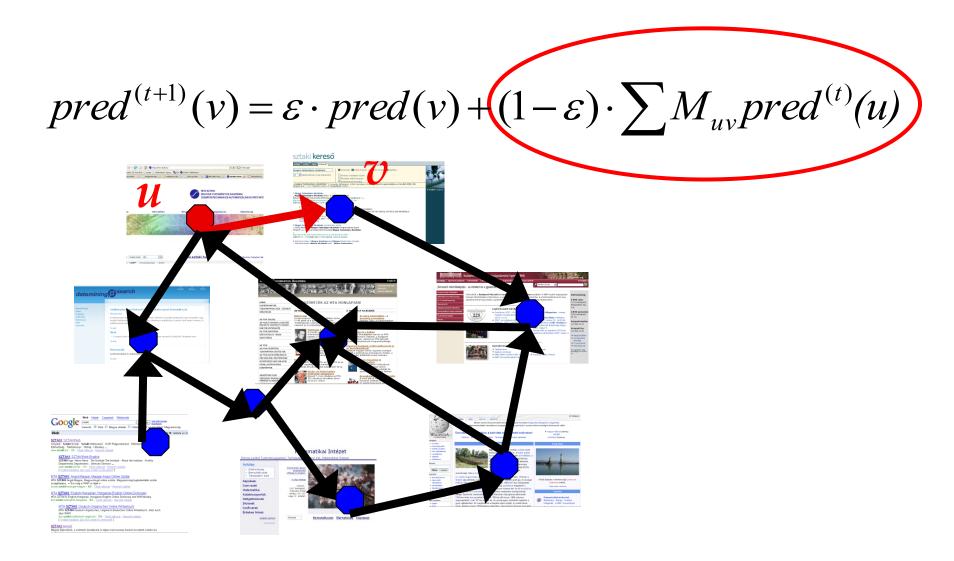
Stop!

Appreciate the simplicity

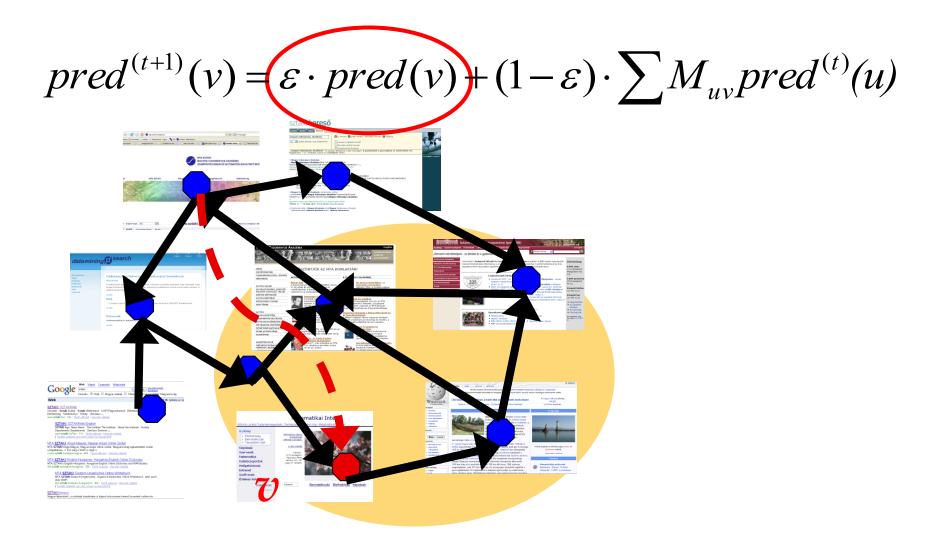
- Few lines completely elementary proof
- Convergence follows w/o any theory
- Convergence speed follows (eigengap)
- Meaning: centrality through short walks
- Solves algorithmics (to come)

Monte Carlo Personalized PageRank

- Markov Chain Monte Carlo algorithm
- Pre-computation
 - From *u* simulate *N* independent random walks
 - Database of fingerprints: ending vertices of the walks from all vertices
- Query
 - PPR(u,v) := #(walks $u \rightarrow v$)/N
 - \circ N \approx 1000 approximates top 100 well
- Fingerprinting techniques


Fogaras-Racz: Towards Scaling Fully Personalized PageRank

Semi-Supervised Learning


- Idea: Objects in a network are similar to neighbors
 - Web: links between similar content; neighbors of spam are likely spam
 - Telco: contacts of churned more likely to churn
 - o Friendship, trust
- Implementations:
 - Stacked graphical learning [Cohen, Kou 2007]
 - Propagation [Zhou et al, NIPS 2003]

$$pred^{(t+1)}(v) = \varepsilon \cdot pred(v) + (1-\varepsilon) \cdot \sum M_{uv} pred^{(t)}(u)$$

Random link with probability 1- ϵ

Personalized teleport with prob ε

Other uses – mostly for spam hunting

- Google BadRank
- TrustRank: personalized on quality seed [Gyongyi,Garcia-Molina 2005]
- SpamRank: statistics of short incoming walks [B,Csalogany,Sarlos,Uher 2005]
- Truncated PageRank versions, neighborhood features, ratios, host level statistics [Castillo et al, 2006]

Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Distributed data processing

Google MapReduce for large scale inverted index build

Distributed sotfware systems and their limitations

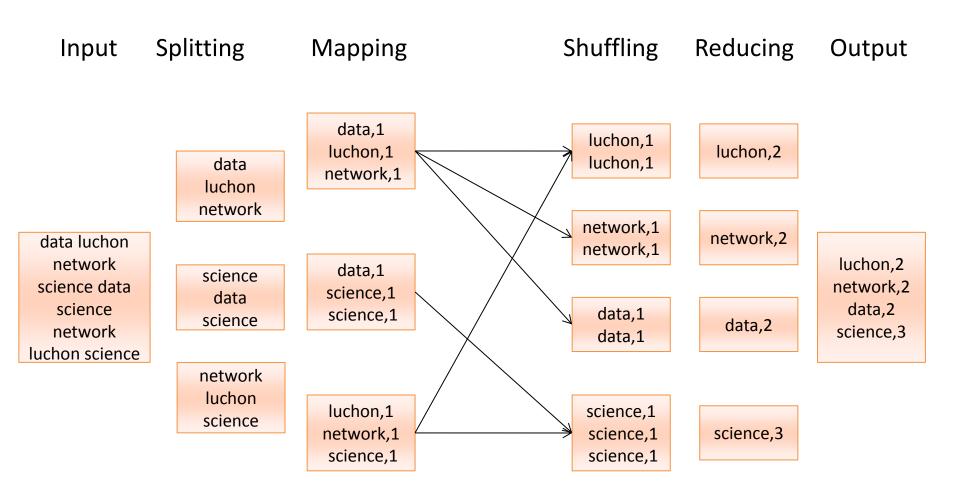
Hadoop

PageRank by Hadoop

PageRank by other systems: Flink, GraphLab

- Google's computational/data
 manipulation model
- Elegant way to work with big data

Computational Model: MapReduce

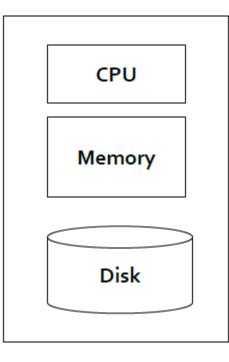

Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 - ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Recently standard architecture for such problems emerged:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Search Index Build Google scale

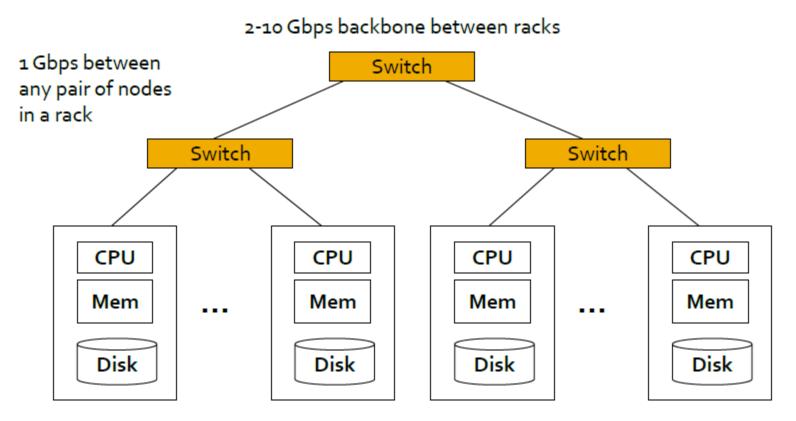
Map – Shuffle/Sort – Reduce



Hello World for different systems

SAY "WORD COUNT" MORE memecrunch.com

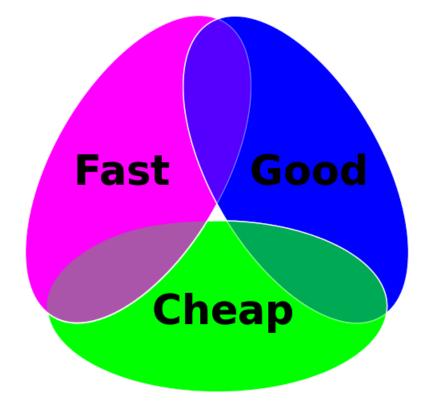
- Java, ...
 - Print "Hello World"
- MapReduce
 - \circ Word count
- Graphs
 - PageRank or connected components (suprise: they are almost the same)


Single Node Architecture

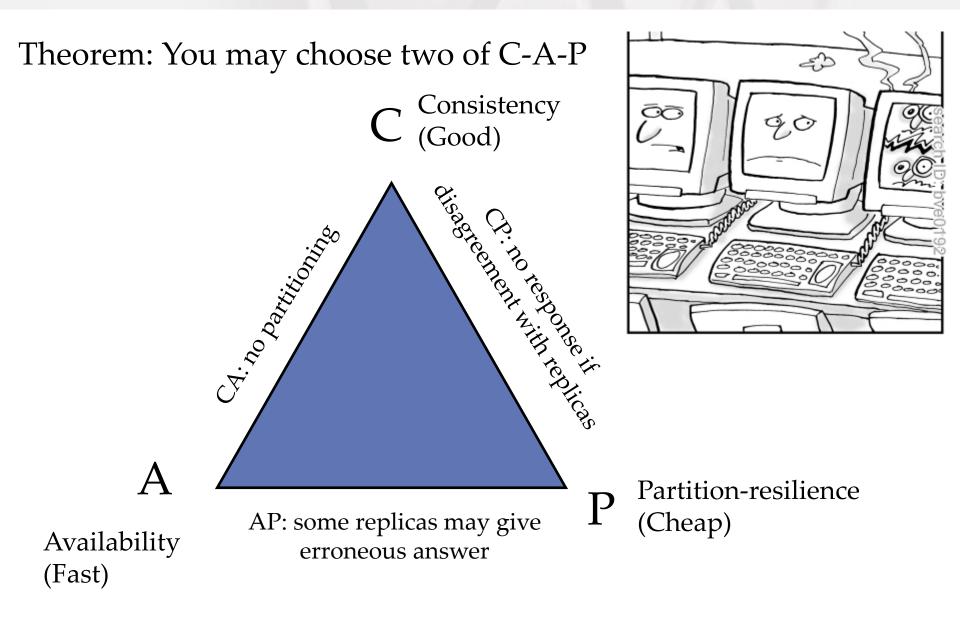
Machine Learning, Statistics

"Classical" Data Mining

Cluster Architecture

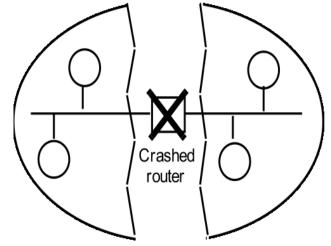

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO


Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - With 1M machines 1,000 machines fail every day!

The Project Triangle

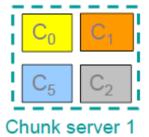


CAP (Fox&Brewer) Theorem

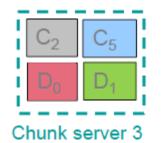
Fox&Brewer proof

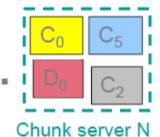
- Partition (P): LHS will not know about new data on RHS
- Immediate response from LHS (availability) may give incorrect answer
- If partition (P), then either availability (A) or consistence (C)

- Eventual consistency if connection resumes and data can be exchanged
- MapReduce is PC batch computations, restarts in case of failures

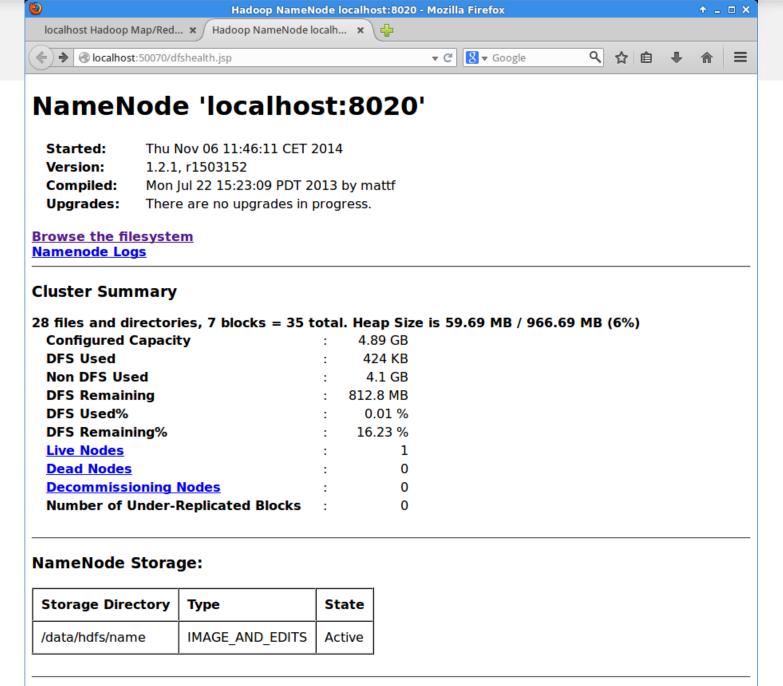

Hadoop overview

- Machines WILL fail
- Data needs to be partitioned and REPLICATED


 File system: Google, Hadoop file systems HDFS
 NameNode to store the lookup for chunks
- Copying over the network is slow
 - $\,\circ\,$ Bring computation close to the data
 - Let a Master Node be responsible for
 - Task sheduling, failure detection
 - Managing and transmitting temporary output files
- MapReduce computations
 - We'll se what it can and what it cannot really do well


Distributed File System

- Reliable distributed file system
- Data kept in "chunks" spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure



Bring computation directly to the data!

Chunk servers also serve as compute servers

Accessing the HDFS filesystem

Java library

• Copy from/to local, e.g.:

hadoop dfs -put localfile hdfsfile

• Standard file manipulation commands, e.g.:

hadoop dfs -ls (-rm, -mkdir, ...)

HDFS:/user/strato - Mozilla Firefox												
localhost H	localhost Hadoop Map/Red 🗙 HDFS:/user/strato 🛛 🗙 🖕											
 ♦ Iocalhost:50075/browseDirectory.jsp?dir=%2Fuser%2Fstrato&namenodeIn ▼ C ♦ Google ♦ 1 = 												
Content	Contents of directory <u>/user</u> /strato											
Goto : Vuse	Goto : /user/strato go											
Go to pare	ent direc	<u>tory</u>										
Name	Туре	Size	Replication	Block Size	Modification Time	Permission	Owner	Group				
<u>hamlet.t</u>	<u>xt</u> file	206.34 KB	1	64 MB	2014-11-06 11:51	rw-rr	strato	supergroup				
output.t	t dir				2014-11-06 11:52	rwxr-xr-x	strato	supergroup				

WordCount: Models of Computation

- All <word, count> counters fit in memory
 Hash tables
- External memory
 - \circ Sort
- Streaming data?
- Distributed, many machines?

MapReduce: Overview

3 steps of MapReduce

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Output the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
 - Map(k, v) → <k', v'>*
 - Takes a key-value pair and outputs a set of key-value pairs
 - E.g., key is the filename, value is a single line in the file
 - There is one Map call for every (k,v) pair
 - Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

Word Count Using MapReduce

```
map(key, value):
// key: document name; value: text of the document
for each word w in value:
    emit(w, 1)
```

```
reduce(key, values):
// key: a word; value: an iterator over counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```

Word Counting: Main

package org.myorg;

import java.io.IOException; import java.util.*;

import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapreduce.*; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { ... } public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> { ... }

```
public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
```

```
Job job = new Job(conf, "wordcount");
```

```
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
```

```
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
```

job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class);

```
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
```

```
job.waitForCompletion(true);
```

Word Counting: Map

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> { // public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context
context) throws IOException, InterruptedException {

```
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
    word.set(tokenizer.nextToken());
    context.write(word, one);
}
```

Word Counting: Reduce

public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)

```
throws IOException, InterruptedException {
```

```
int sum = 0;
for (IntWritable val : values) {
    sum += val.get();
}
```

context.write(key, new IntWritable(sum));

Master Node / Job tracker role

- Task status and scheduling
- Manage intermediate Mapper output to pass to Reducers
- Ping workers to detect failures
 - $\circ~$ Restart tasks from input or intermediate data, all stored on disk
- Master node is a single point of failure

Hadoop Job Tracker

🗲 🕙 localhost:50030/jobtracker.jsp

▼ C 8 ▼ Google

Quick Links

Ξ

< ☆ 自

Cluster Summary (Heap Size is 59.69 MB/966.69 MB)

Running Map Tasks	Running Reduce Tasks	Total Submissions	Nodes	Occupied Map Slots	Occupied Reduce Slots	Reserved Map Slots	Reduce	Map Task Capacity	Reduce Task Capacity	Avg. Tasks/Node	Blacklisted Nodes	Graylisted Nodes	Exclud Node
1	0	2	1	1	0	0	0	2	2	4.00	<u>0</u>	<u>0</u>	<u>0</u>

Scheduling Information

Queue Name	te Scheduling Information
default	ing N/A

Filter (Jobid, Priority, User, Name)

Example: 'user:smith 3200' will filter by 'smith' only in the user field and '3200' in all fields

Running Jobs

Jobid	Started	Priority	User	Name	Map % Complete	Map Total	Maps Completed	Reduce % Complete	Reduce Total	Reduces	Schedulind	Diagnostic Info
job_201411061146_0002	Thu Nov 06 17:34:07 CET 2014	NORMAL	strato	wordcount	0.00%	1	0	0.00%	2	0	NA	NA

Completed Jobs

Jobid	Started Prio	riority User	Name	Map % Complete		Maps Completed			Reduces Completed	Job Scheduling Information	Diagnostic Info	
-------	--------------	--------------	------	-------------------	--	-------------------	--	--	----------------------	----------------------------------	--------------------	--

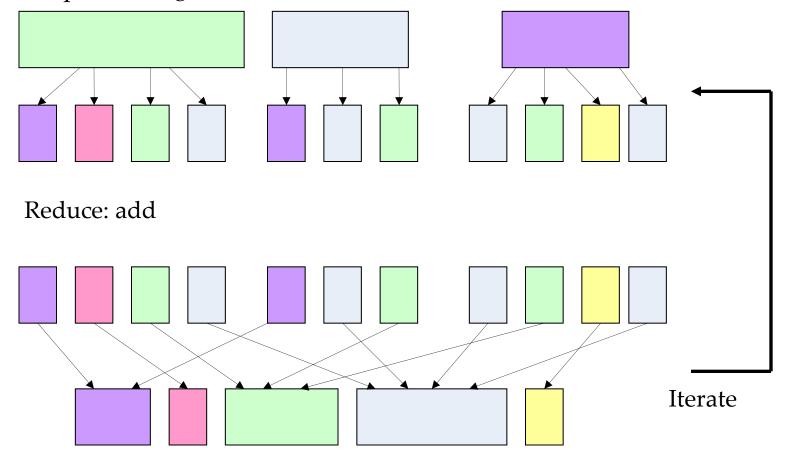
Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

Algorithms over MapReduce

Join PageRank

Warmup: MapReduce Join

Α	В		В	С		Α	С
a ₁	b ₁		b ₂	C ₁		a ₃	с ₁
a ₂	b ₁	\bowtie	b ₂	c ₂	=	a ₃	c ₂
a ₃	b ₂		b ₃	c ₃		a ₄	c ₃
a ₄	b ₃		ç	S			
F	र		· · · · · ·	5			


- Map:
 - R(a,b) -> key is b, value is the tuple a, "R"
 - o S(b,c) -> key is b, value is the tuple c, "S"

• Reduce:

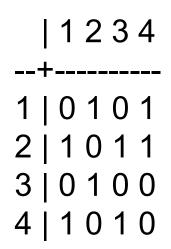
• Collect all a, "R" and c, "S" tuples by key a to form (a,b,c)

MapReduce PageRank

Map: send PageRank share

•••

MapReduce PageRank pseudocode


- MAP: for all nodes n
 - Input: current PageRank and out-edge list of n
 - $\forall p \in edgelist(n): emit (p, PageRank(n) / outdegree(n))$
- Reduce
 - $\,\circ\,$ Obtains data ordered by p
 - Updates PageRank(p) by summing up all incoming PageRank
 - Writes to disk, starts new iteration as a new MapReduce job
- Stop updating a node if change is small; terminate if no updates
- How to start a new iteration??
 - We need both edgelist(n) and PageRank(n)
 - $\circ\,$ But they reside in completely different data sets, partitioned independently \rightarrow we need a join
 - o Solution: we need emit (n, edgelist(n)) as well

MapReduce PageRank: Main

```
public static void main(String[] args) {
    String[] value = {
        // key | PageRank | points-to
            "1|0.25|2;4",
            "2|0.25|1;3;4",
            "3|0.25|2",
            "4|0.25|1;3",
        };
```

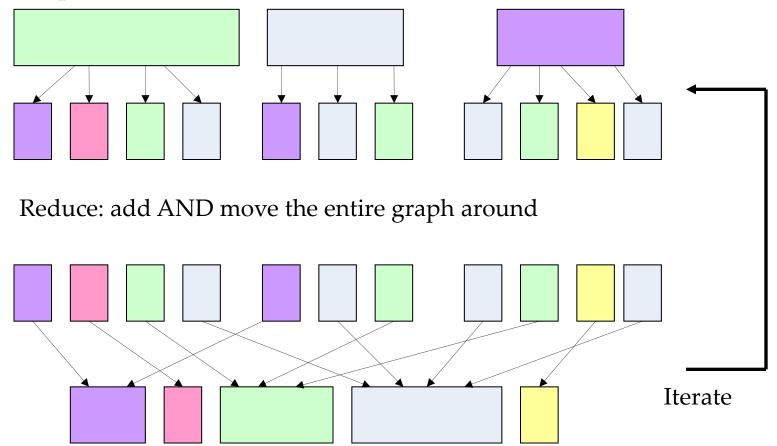
```
mapper(value);
reducer(collect.entrySet());
```

}

MapReduce PageRank: Reduce

```
private static void
   reducer(Set<Entry<String, ArrayList<String>>> entrySet) {
         for (Map.Entry<String, ArrayList<String>> e : entrySet) {
                  Iterator<String> values = e.getValue().iterator();
                  float PageRank = 0;
                  String link list = "";
                  while (values.hasNext()) {
                            String[] dist links =
                            values.next().toString().split("[|]");
                            if (dist links.length > 1)
                                     link list = dist links[1];
                            int inPageRank = Integer.parseInt(dist_links[0]);
                            PageRank += incomingPageRank;
                  }
         System.out.println(e.getKey() + " - D " + (PageRank + " | " + link list));
```

MapReduce PageRank: Map

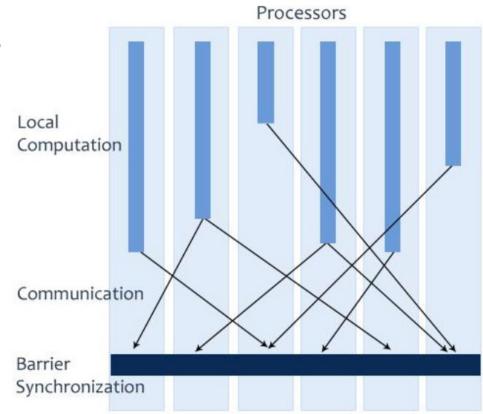

private static void mapper(String[] value) {

```
for (int i = 0; i < value.length; i++) {
        String line = value[i].toString();
        String[] keyVal = line.split("[]]");
        String Key = keyVal[0];
        String sDist = keyVal[1];
        String[] links = null;
        if (keyVal.length > 2) {
                     links = keyVal[2].split(";");
                     int Dist = Integer.parseFloat(PageRank);
                     for (int x = 0; x < links.length; x++) {
                     if (links[x] != "") {
                                  ArrayList<String>list;
                                  if (collect.containsKey(links[x])) {
                                  list = collect.get(links[x]);
                                   } else {
                                  list = new ArrayList<String>();
                     list.add(PageRank/links.length + "|");
                     collect.put(links[x], list);
```

ArrayList<String> list; if (collect.containsKey(Key)) { list = collect.get(Key); } else { list = new ArrayList<String>(); } list.add(sDist + "|" + keyVal[2]); collect.put(Key, list); } }

MapReduce PageRank

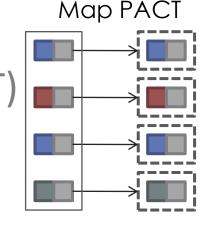
Map: send PageRank share AND the entire graph!

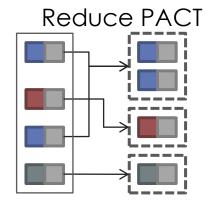

•••

Bulk Synchronous Parallel (BSP) graph processing

- Google Pregel (Proprietary)
- Several open source clones
 Giraph, ...
- Dato.com's GraphLab

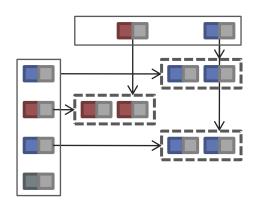
 More than just BSP


Note BSP is just a Map, followed by a Join


 Why don't we just implement a nice Join
 TU Berlin idea, implemented in Apache Flink

Parallelization Contract, BSP and the Join operation

- Map PACT (PArallelization ContracT)
 - $\,\circ\,$ Every record forms its own group
 - Process all groups independent parallel
- Reduce PACT
 - One attribute is key
 - Records with same key form a group



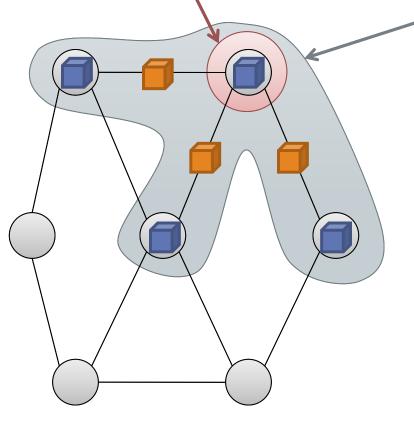
Parallelization Contract, BSP and the Join operation

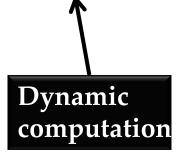
Join PACT Two inputs Records with same key form a group (equi-join)

<u>BSP</u> Two inputs: nodes and edges key is node ID

Collect all neighbors of a node

The Apache Flink system


- Several PACTs implemented
- Execution is optimized (think of versions of join) as in a database management system
- Capable of using not only disk for data passing but also memory, network by the decision of the optimizer
- Capable of native efficient iteration



The Dato.com GraphLab system

An **update function** is a user defined program which when applied to a **vertex** transforms the data in the **scope** of the vertex

PageRank in GraphLab

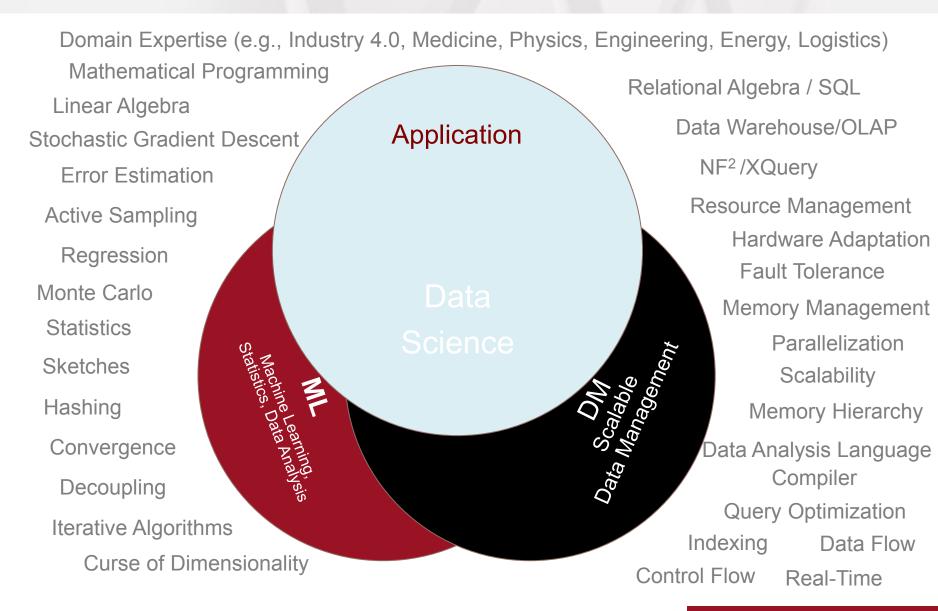
$$R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} \frac{1}{L[j]} R[j]$$

GraphLab_pagerank(scope) {

```
sum = 0
forall ( nbr in scope.in_neighbors() )
    sum = sum + neighbor.value() / nbr.num_out_edges()
```

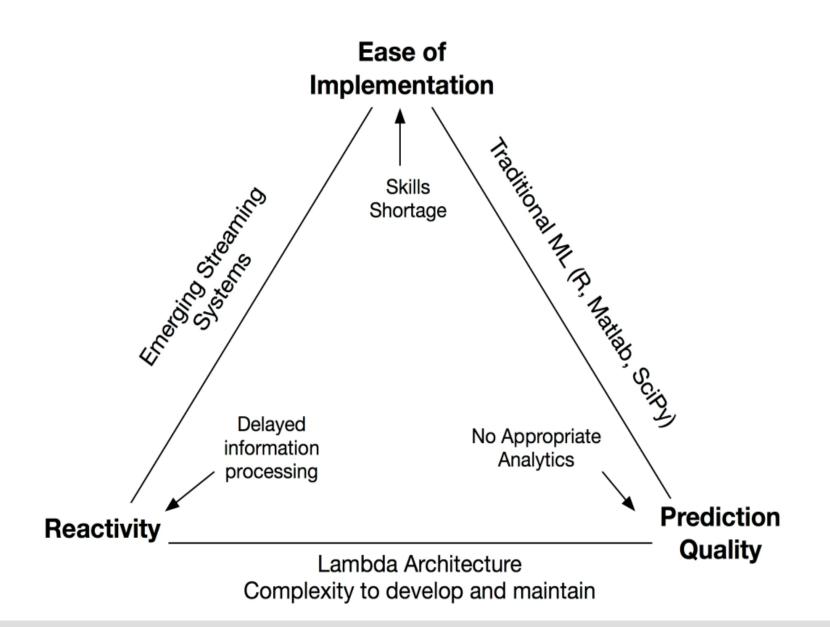
```
old_rank = scope.vertex_data()
scope.center_value() = ALPHA + (1-ALPHA) * sum
```

```
double residual = abs(scope.center_value() - old_rank)
if (residual > EPSILON)
    reschedule_out_neighbors()
```



Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutatóintézet

What I'd like to present next time we meet


Flink unified batch and streaming

Data Scientist magic triangle

© Volker Markl

STREAMLINE Magic Triangle

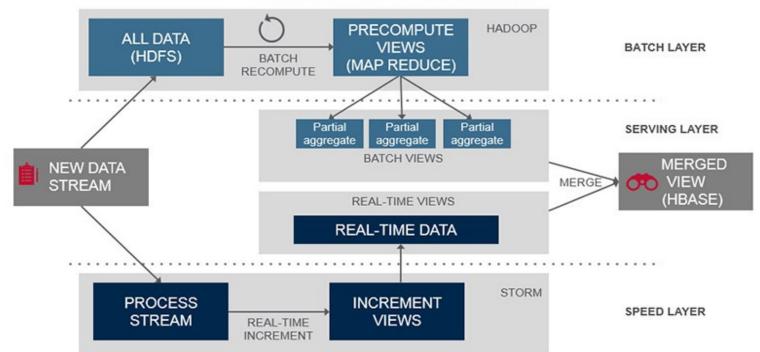
STREAMLINE Magic Triangle

Challenge	Present Status	Goal	Action	Leader
Delayed information processing	No up-to-date timely predictions	Reactivity	Same unified system for data at rest and data in motion	TU B / DFKI
Actionable intelligence: Lack of appropriate analytics	Poor or non-timely prediction results in user churn, business losses	Prediction quality	Library for batch and stream combined machine learning	SZTAKI (Andras)
Skills shortage: Human latency	Multiple expertise needed for data scientists, expensive to operate	Ease of implementation	High level declarative language	SICS

Chuck Norris versions

Flink developers

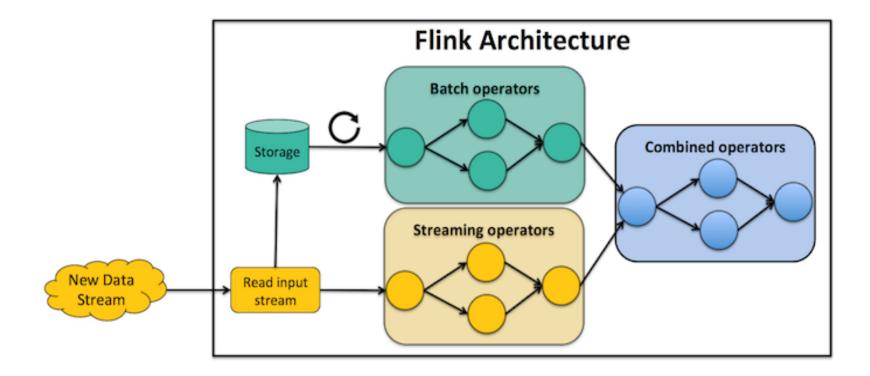
(Soon-to-be) Flink users

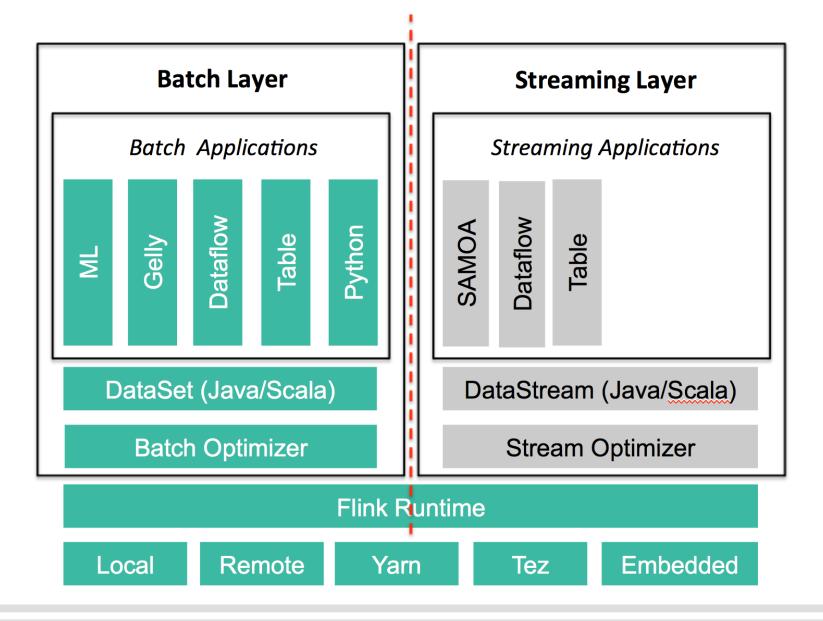

We don't always have to scale our machine learning tasks

But when we do, we don't sacrifice accuracy

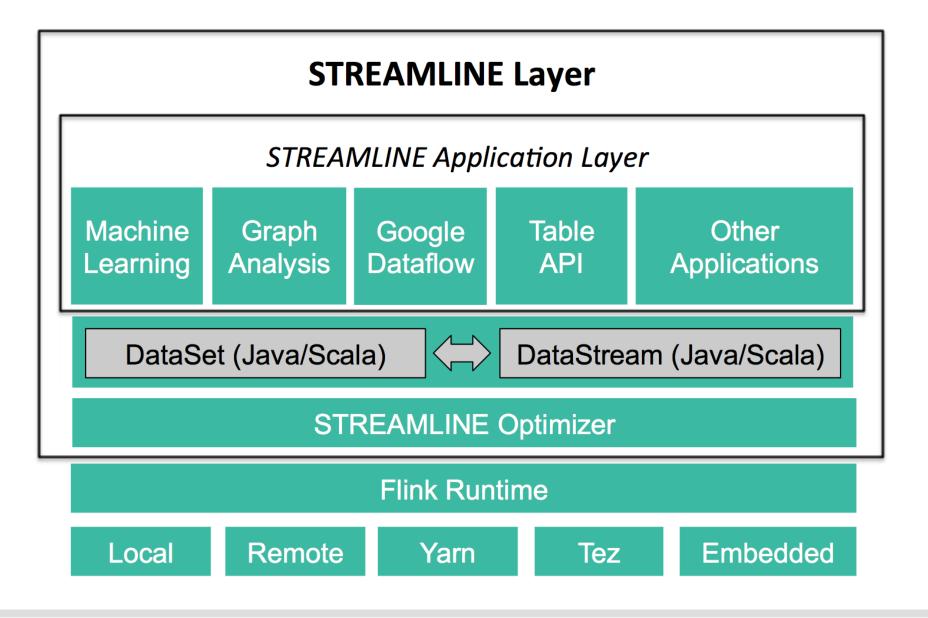
© Aljoscha Krettek, Co-Founder, Software Engineer at Data Artisans

The Lambda Architecture


- Usual solution: two different systems
- Adds complexity to the architecture
- Many question the need for the batch component


Lambda Architecture

https://www.mapr.com/sites/default/files/otherpageimages/lambda-architecture-2-800.jpg


Beyond the Lambda Architecture

Current Flink architecture

STREAMLINE architecture

Conclusions

- Hadoop is a widely used open source Java MapReduce implementation
- Needs installation, some ugly boilerplate + object serialization
- Graph algorithms can be implemented by iterated joins
- Inefficient in that all graph data needs to written to disk and moved around in iterations (workarounds exist ...)
- New architecture for unified batch + stream needed
 O Apache Flink has the potential
- New machine learning is needed
 - Turning research codes to open source software will start soon

References

A very good textbook covering many areas of my presentation. Look at the online second edition at http://www.mmds.org/

• Rajaraman, Anand, and Jeffrey David Ullman. *Mining of massive datasets*. Cambridge University Press, 2011. PageRank

- Brin, Sergey, and Lawrence Page. "Reprint of: The anatomy of a large-scale hypertextual web search engine." *Computer networks* 56.18 (2012): 3825-3833.
- Fogaras, Dániel, and Balázs Rácz. "Towards scaling fully personalized pagerank." *Algorithms and Models for the Web-Graph*. Springer Berlin Heidelberg, 2004. 105-117.

Web Spam

- Castillo, Carlos, and Brian D. Davison. "Adversarial web search." *Foundations and trends in Information Retrieval* 4.5 (2011): 377-486.
- Erdélyi, M., Benczúr, A. A., Daróczy, B., Garzó, A., Kiss, T., & Siklósi, D. (2014). The classification power of web features. *Internet Mathematics*, *10*(3-4), 421-457.

Learning to Rank

• LTR survey

Web crawlert

- Lee, Leonard, Wang, Loguinov. IRLBot: Scaling to 6 Billion Pages and Beyond. WWW 2008.
- Boldi, P., Marino, A., Santini, M., & Vigna, S. (2014, April). Bubing: Massive crawling for the masses. In *Proceedings* of the companion publication of the 23rd international conference on World wide web companion (pp. 227-228). International World Wide Web Conferences Steering Committee.

MapReduce

 MapReduce: simplified data processing on large clusters. J Dean, S Ghemawat - Communications of the ACM, 2008 [OSDI 2004]

Apache Flink

• Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J. C., Hueske, F., Heise, A., ... & Warneke, D. (2014). The Stratosphere platform for big data analytics. *The VLDB Journal—The International Journal on Very Large Data Bases*, 23(6), 939-964.