٠		•			•		•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•			•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	٠	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•
•								•	•		\bullet					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																										•	•	•	•	•	•							•
																											•											•

Recommendation Systems part 2

School for advanced sciences of Luchon 2015

Debora Donato

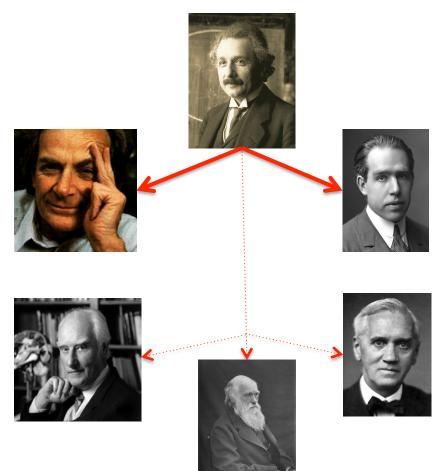
debora@stumbleupon.com

- Similarity-based methods
 - User-similarity
 - Item-similarity
- Similarity score
 - Rating-based similarity
 - Structural similarity
- Serendipitous Rec
 LDA

- Also known as Memory-based collaborative filtering.
- Divided in two main classes
 - User similarity: people who agree in their past evaluations tend to agree again in their future evaluations
 - Item similarity: objects that are similar to what a user has collected before.

User similarity

- For a given user, find other similar users whose ratings strongly correlate with the current user.
- Recommend items rated highly by these similar users, but not rated by the current user.



- Weight all users with respect to similarity with the active user.
- Select a subset of the users (*neighbors*) to use as predictors.
- Normalize ratings and compute a prediction from a weighted combination of the selected neighbors' ratings.
- Present items with highest predicted ratings as recommendations.

- Let denote with $S_{\mu\nu}$ the similarity score between user u and user v
- To select the set U_u of users that are most similar to user u, there are two neighborhood selection strategies:
 - 1. maximum number of neighbors consists of using the most similar *k* users to u based on similarity score
 - 2. correlation threshold is based on selecting all the users whose similarity weight is above a given threshold.

The predicted rating of user u on object $\boldsymbol{\alpha}$ is

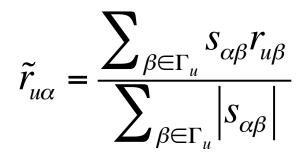
$$\tilde{r}_{u\alpha} = \overline{r}_{u} + k \sum_{v \in \hat{U}_{u}} s_{uv} (r_{u\alpha} - \overline{r}_{v})$$

where

- $r_{u\alpha}$: rating from user u on object α
- Γ_u : set of objects that user u has evaluated

•
$$\overline{r_u} = \frac{1}{|\Gamma_u|} \sum_{\alpha \in \Gamma_u} r_{u\alpha}$$
: average rating given by u
• $k = \frac{1}{\sum_v |s_{uv}|}$: normalization factor

The predicted rating of user u on object α is



where

- $S_{\alpha\beta}$: item-item similarity score
- Γ_u : set of objects that user u has evaluated

- Similarity of users/objects is the key problem
- Two scenarios:
 - Available ratings -> correlation metrics
 - No ratings available -> structural properties of the input data
- external information such as users' attributes, tags and objects' content meta information can be utilized

• When explicit information is available (5 levels from 1 to 5)

$$S_{xy}^{\cos} = \frac{r_x \cdot r_y}{|r_x| \cdot |r|}$$

Where

- For users similarity r_x and r_y are rating vectors in the N-dimensional object space.
- For items similarity r_x and r_y are rating vectors in the N-dimensional user space.

Important to keep into consideration 'tendencies'

• Pearson coefficient for measuring rating correlation between users u and v:

$$s_{uv}^{PC} = \frac{\sum_{\alpha \in O_{uv}} (r_{u\alpha} - \overline{r_u})(r_{v\alpha} - \overline{r_v})}{\sqrt{\sum_{\alpha \in O_{uv}} (r_{u\alpha} - \overline{r_u})^2} \sqrt{\sum_{\alpha \in O_{uv}} (r_{v\alpha} - \overline{r_v})^2}}$$

Where

 $-O_{uv} = \Gamma_u \cap \Gamma_v$ is the set of items rated by both u and v

Pearson coefficient for measuring rating correlation between items α and β:

$$s_{\alpha\beta}^{PC} = \frac{\sum_{u \in U_{\alpha\beta}} (r_{u\alpha} - \overline{r_{\alpha}})(r_{u\beta} - \overline{r_{\beta}})}{\sqrt{\sum_{u \in U_{\alpha\beta}} (r_{u\alpha} - \overline{r_{\alpha}})^2} \sqrt{\sum_{u \in U_{\alpha\beta}} (r_{u\beta} - \overline{r_{\beta}})^2}}$$

Where

- $U_{\alpha\beta}$ is the set of users who rated both α and β

- Used also for binary vectors
 - Amazon use case: "User who bought this also bought"
- Constrained Pearson coefficient
 - To take into consideration positive and negative rates
 - $-\overline{r_x}$ is substituted by the "central rating" (3 stars)
- Weighted Pearson coefficient
 - To capture confidence in the correlation

$$S_{uv}^{WPC} = \begin{cases} s_{uv}^{PC} \frac{|O_{uv}|}{H} & \text{for } |O_{uv}| \le H \\ s_{uv}^{PC} & \text{otherwise} \end{cases}$$

- Similarity can be defined using the external attributes such as tag and content information (difficult to obtain)
- structural similarity only exploit data network structure
- For sparse data, structural similarity outperforms correlation
- Computed by projecting the rating bipartite network into a monopartite user-user or itemitem network

The node similarity is given by the number of Common Neighbors (CN)

Many possible variations:

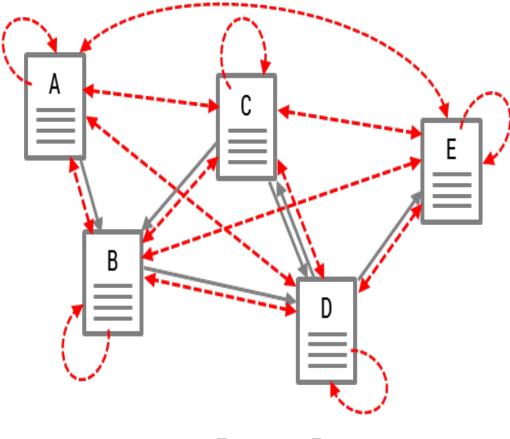
Ju

- Salton Index, Jaccard Index, Sørensen Index, Hub Promoted Index (HPI), Hub Depressed Index (HDI) and Leicht-Holme-Newman Index (LHN1)
- Variations to reward lessconnected neighbors with a higher weight: Adamic- Adar Index (AA) and Resource Allocation Index (RA)
- Preferential Attachment Index (PA) builds on the classical preferential attachment rule in network science

CN	$s_{xy} = \Gamma_x \cap \Gamma_y $
Salton	$s_{xy} = \Gamma_x \cap \Gamma_y / \sqrt{k_x k_y}$
Jaccard	$s_{xy} = \Gamma_x \cap \Gamma_y / \Gamma_x \cup \Gamma_y $
Sørensen	$s_{xy} = 2 \Gamma_x \cap \Gamma_y /(k_x + k_y)$
HPI	$s_{xy} = \Gamma_x \cap \Gamma_y / \min\{k_x, k_y\}$
HDI	$s_{xy} = \Gamma_x \cap \Gamma_y / \max\{k_x, k_y\}$
LHN1	$s_{xy} = \Gamma_x \cap \Gamma_y / (k_x k_y)$
AA	$s_{xy} = \sum_{z \in \Gamma_x \cap \Gamma_y} 1 / \ln k_z$
$\mathbf{R}\mathbf{A}$	$s_{xy} = \sum_{z \in \Gamma_x \cap \Gamma_y} 1/k_z$
PA	$s_{xy} = k_x k_y$

- Two nodes are similar if they are connected by many paths
- $[A^n]_{ij}$: number of paths between nodes i and
- Local Path Index: $s_{xy}^{LP} = (A^2)_{xy} + \varepsilon (A^3)_{xy}$
- Katz similarity:

$$S_{xy}^{Katz} = \beta A_{xy} + \beta^2 (A^2)_{xy} + \beta^3 (A^3)_{xy} + \dots$$



$$R_{i+1} = (1 - \alpha)(S^T + \mathbf{w} \times \mathbf{d}^T)R_i + \alpha \mathbf{w}$$

Image courtesy: http://parkcu.com/blog/pagerank/

Topic Sensitive or Personalized Pagerank

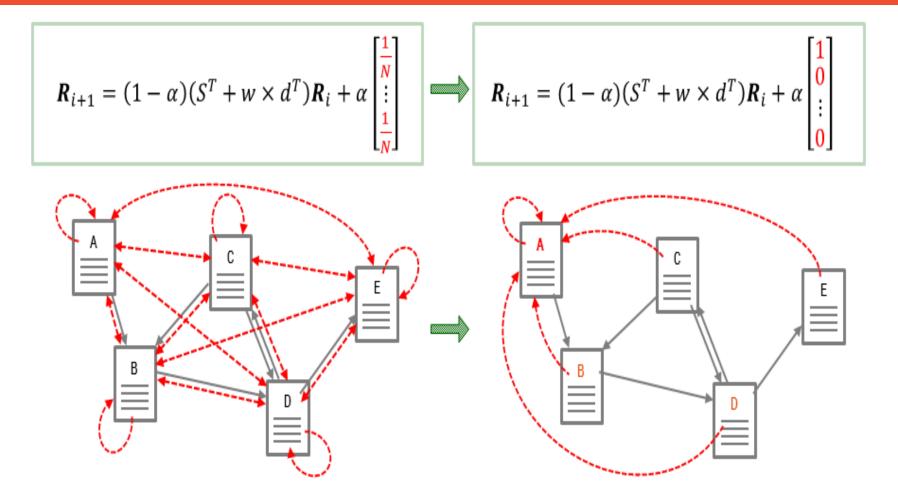


Image courtesy: http://parkcu.com/blog/pagerank/

Many other variations

 SimRank: based on the assumption that two nodes are similar if they are connected to similar nodes

$$s_{xy}^{SimRank} = C \frac{\sum_{z \in \Gamma_x} \sum_{z' \in \Gamma_x} s_{zz'}^{SimRank}}{k_x k_y}$$

- Local Random Walk: To measure similarity between nodes x and y, a random walker is introduced in node x
 - the initial occupancy vector is $\pi_x(0) = e_x$
 - At each t: $\pi_x(t+1) = P^T \pi_x(t)$

$$s_{xy}^{LRW}(t) = q_x \pi_{xy}(t) + q_y \pi_{yx}(t)$$

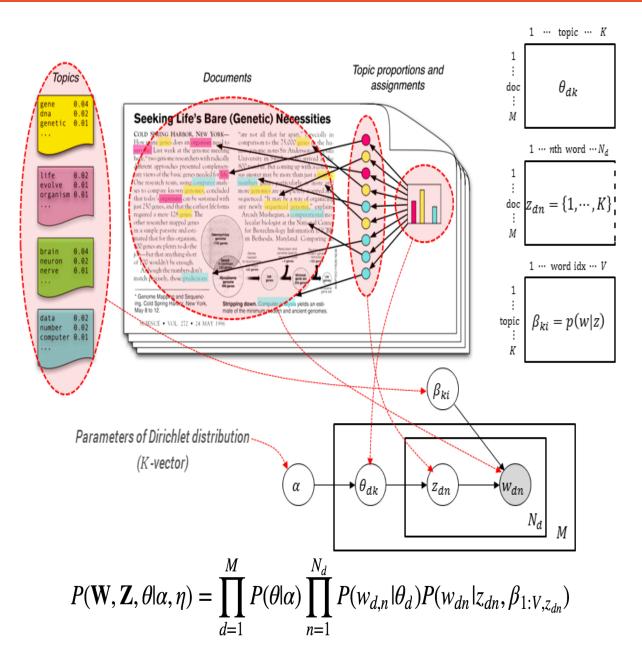
- q is the initial configuration function and t denotes the time step
- q may be detrmined by the node degree $q_x = k_x / M$

- User attributes:
 - u: <age,gender, location, career,...>
- Content meta information
 Information retrieval
- User-generated tags

SERENDIPITOUS RECS

- Content features extraction
 - Dimensionality Reduction
 - Build LDA model using "Head" URLs
 - Use the model to classify "Tail" URLs in Latent Topic Space
- Document Graph
 - Compute pairwise similarity between documents with topic overlaps Cosine Similarity, Weighted Jaccard
 - Build a graph where documents make up the nodes and the similarity score make up the edge weights.
- Page Rank
 - Run topic sensitive page rank over the document graph.
 - Spot influential documents per topic and index for fast retrieval

Content Categorization: Discovering Semantic Groups



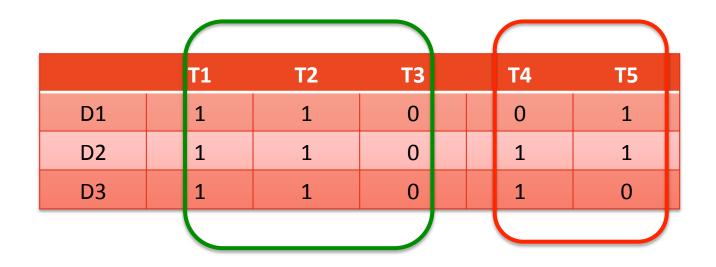
- Unsupervised (Classic LDA) and generative
- Well suited for domain adaptation (taxonomy shift)
- Allows making topic clusters as loose/tight as needed
 - α controls the peak-ness of the per-document topic distributions
 - ${\boldsymbol \beta}$ controls the peak-ness of the per-topic word distributions
- Can be extended to discover relations, hierarchies, etc.,

- Periodically evaluate the model
 - Perplexity $2^{Entropy} = 2^{-\sum p \log p}$
 - Measure of how surprised the model is on an average when having to guess between k equally probable choices.
 - The average log probability of the trained model having seen the test samples
 - Use human judgment from word intrusion and topic intrusion tasks
- Good topic associations can be initialized from previous
 trainings or from separate topic clustering

J Topic Mixtures

recipe	photography	nasa	israel							
sugar	art	earth	jews							
baking	design	moon	egypt							
cooking	photograph	planet	bible							
oven	artist	jesus								
butter	camera	syria								
food	digital	solar_system	iran							
vanilla	architecture	universe	russia							
cream	illustration	astronomer	new testament							
black_pepper	painting	science	god							
facebook	cannabi	cannabis_(drug)								
internet	ро	police								
twitter	cr	crime								
advertising	1	law								
youtube	pr	prison								
marketing	can	cannabis								
myspace	d	drug								
google	mu	murder								
social media	g	gun								
mass_media	mass_media federal_bureau_of_investigation									
_										

- Given an initial document d, we can pick similar document i.e., document with a similar distribution on the topic space.
- Using topical page rank to control serendipity



- A/B Testing
 - Measure the difference in user behavior (implicit/explicit signals and retention):
 - "A Recommended item" vs. "Randomly picked item from the set"
 - "Serendipity free stumbling session" vs. "Sessions with serendipitous recommendations"