Ranking prediction by online learning

Róbert Pálovics

Informatics Laboratory, Department of Computer and Automation Research Institute, Hungarian Academy of Sciences
https://dms.sztaki.hu/en

$$
\text { July 2, } 2015
$$

OUTLINE

- Online ranking prediction
- Exploiting social influence in online RS
- Location-aware online learning

RECOMMENDER SYSTEMS

- Utility matrix R, only a few known values
- Rating prediction vs. ranking prediction
\rightarrow Explicit vs implicit data
- Collaborative filtering vs. contend based

ONLINE RANKING PREDICTION

- Online recommendation
- after each event recommend a new top list of items
- after each event update the recommender model
- implicit data
- Temporal evaluation
- for each tuple $<u, i, t>$ (user, item, timestamp)
- evaluate the given single tuple in question against the recommended top list
- Iterate on the dataset only at once

ONLINE RANKING PREDICTION

- Evaluate the given single tuple in question against the recommended top list
- There is only one single relevant item, use

$$
\begin{gathered}
\operatorname{DCG@K}(a)= \begin{cases}0 & \text { if } \operatorname{rank}(i)>K \\
\frac{1}{\log _{2}(\operatorname{rank}(i)+1)} & \text { otherwise. }\end{cases} \\
\qquad \begin{aligned}
\text { top list for }<u, i, t> \\
\operatorname{rank}(\mathrm{i})
\end{aligned}
\end{gathered}
$$

MATRIX FACTORIZATION

- Model $\hat{R}=P \cdot Q$, where $P \in \mathbb{R}^{n \times k}$ and $Q \in \mathbb{R}^{k \times m}, \hat{r}_{u i}=p_{u} \cdot q_{i}$
- Objective - mean squared error (MSE), for $(u, i) \in \operatorname{Tr}$

$$
F_{u i}=\left(r_{u i}-\hat{r}_{u i}\right)^{2}
$$

- Optimization - stochastic gradient descent (SGD)

$$
p_{u} \leftarrow p_{u} \text { - lrate } \cdot \frac{\partial F}{\partial p_{u}}=p_{u} \text { - lrate } \cdot \text { Err } \cdot q_{i}
$$

Online Matrix Factorization

- Single iteration over the training data in temporal order
- Updating after each new element
- High learning rates
- More emphasis on recent events

Works well on non-stationary datasets

Network Influence

- User-User social graph + User-Item activity time series (bipartite graph)
- Detect social influences, influential pairs
- Improve top- k recommendation

Social network

LAST.FM

- Online service in music based social networking
- "Scrobbling": collecting listening activity of users
- Music recommendation system
- Social network
- Users see each others scrobbling activity
|CSt•f(ncm

Influence Probability

- Key concept: influence between neighbors u and v, subsequent scrobble, $v \xrightarrow{a ; \Delta t \leq t} u$
- and the reason is influence
- Influence probability
$P($ Influence,$v \xrightarrow{a ; \Delta t \leq t} u)=P($ Influence $\mid v \xrightarrow{a ; \Delta t \leq t} u) \cdot P(v \xrightarrow{a ; \Delta t \leq t} u)$

Influence Probability, Left Term

$P($ Influence,$v \xrightarrow{a ; \Delta t \leq t} u)=P($ Influence $\mid v \xrightarrow{a ; \Delta t \leq t} u) \cdot P(v \xrightarrow{a ; \Delta t \leq t} u)$

- Approximation by measurements

$$
P(\text { Influence } \mid v \xrightarrow{a ; \Delta t \leq t} u) \approx P(\text { Influence } \mid \Delta t \leq t) \approx 1-c \log t
$$

- Slowly decreasing logarithmic function

Influence Probability, Right Term

$$
P(\text { Influence }, v \xrightarrow{a ; \Delta t \leq t} u)=P(\text { Influence } \mid v \xrightarrow{a ; \Delta t \leq t} u) \cdot P(v \xrightarrow{a ; \Delta t \leq t} u)
$$

\rightarrow Probability of event $v \xrightarrow{a ; \Delta t \leq t} u$ in the time series

- Learned by modeling

Experiments - About Last.fm

- Available for us under NDA for Last.fm, selection criteria
- Structure: network + scrobbling time series
- 71, 000 users, 285, 241 edges
- 2 year scrobble timeline, 2, 073, 395 artists
- between 01 January 2010 and 31 December 2011
- 979,391, 001 scrobbles
- 57,274, 158 1st-time scrobbles
- We train factor models only on the 1st time scrobbles
- Artists with popularity less than 14 are excluded
- Evaluation on each 1st time scrobble in the second year

Experiments - Final Combination

- Factor and influence models combine well, the average improvement is
- 7 \% for DCG@10

LOCATION-AWARE ONLINE LEARNING

- Twitter dataset
- Temporal hashtag recommendation
- Twitter: highly non-stationary data
- (u, h, l, t) geoinfo
- Idea: tree structure of geographical areas

number of records	$6,978,478$
number of unique user-hashtag pairs	$2,993,183$
number of users	792,860
number of items	268,489
number of countries	49

TREE CONSTRUCTION

- 214,230 nodes containing 190,315 leaves.
- The depth of the tree is 6
- The hashtag time series data covered 30,450 leaves from the whole tree.

RECENCY

$$
\begin{gathered}
P(\tau=t)=(\alpha-1) \cdot t^{-\alpha} \text { and } P(1 \leq \tau \leq t)=1-t^{(1-\alpha)} \\
P(t<\tau \leq t+\Delta t \mid \tau>t)=\frac{P(\tau \leq t+\Delta t)-P(\tau \leq t)}{1-P(\tau \leq t)}=1-\left(1+\frac{\Delta t}{t}\right)^{(1-\alpha)}
\end{gathered}
$$

Modeling

- Online MF as baseline \rightarrow NOT working!
- Tree + Recency + Bias model:

$$
\hat{r}(u, h, t, l)=\sum_{n \in \operatorname{Path}(1)} \hat{w}_{n} \cdot f\left(t-t_{n, h}\right)
$$

- \hat{w}_{n} node biases learned with SGD
- \hat{w}_{n} already includes node reliability and popularity
- Different heuristic baselines

Results

