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Abstract

Since the first quantum computers will likely suffer severe memory constraints, it is interesting to study
quantum algorithms for the simulation of chaotic maps, which investigate non-trivial physics with only 10-15
qubits. This poster details a recent study about the entanglement properties of the quantum memory under the
effect of such an algorithm, and the sensibility of these properties to noise in the implementation of the quantum
computer. (ref. PRA 67, 054303 (2003), available as quant-ph/0301086).

A need for practical algorithms

Although there is already a number of theoretical results for ideal (noiseless) quantum com-
puters which prove the superiority of the quantum computational model over the classical
one, no scalable quantum computer has been built so far, and the technological and (maybe)
fundamental problems concerning their design indicate that in the foreseeable future the
quantum computer community will not have access to devices with a memory larger than
10-15 qubits.

It is therefore interesting, for the time being, to design and study quantum algorithms with
very limited memory requirements, which could however be used as a test-ground for error
correction strategies. In this context, the quantum algorithms for the simulation of chaotic
maps are ideal candidates, because they satisfy the previous requirement and allow for the
investigation of non-trivial physical phenomena.

Classical and quantum (chaotic) maps

We study time-dependent Hamiltonian systems with periodic conditions on q and on p, which
can show the phenomenon of dynamical chaos. The discretised dynamics, determined by the
parameters K and L, can be understood as a “kick” followed by a free evolution:

{
q̄ = q + p̄ mod 2π
p̄ = p−K dV

dq mod 2πL H(t) =
p2

2
−KV (q)

∑
n

δ(t− n)

In the quantum case one must consider also the number of levels N (with h̄ = 2πL/N). The
Floquet operator (evolution operator corresponding to one iteration of the map) is a product
of two terms, which are diagonal respectively in p̂ and q̂.

UF = e−ip̂
2/2h̄e−iK V (q̂)/h̄ = exp

[
−iπL

N
n̂2
p

]
· exp

[
−iK

L

(
2π
N

)α−1

Pα(n̂q)

]

Since the Floquet operator is a composition of operator which are diagonal in the posi-
tion and momentum space, it is easily implemented using the QFT (F) to move from one
representation to the other:

UF = F† ◦ e−iαx2
◦F ◦ e−iβV̂ (x)

Differently from the classical case, this allows for an efficient simulation of the evolution
of the system for one time step on a quantum computer, for those potentials which are
polynomials, by considering x =

∑n−1
j=0 aj2

j :

e−2πiγxα

=
∏

j1...jα

e−2πiγaj1 ···ajα2j1+...+jα
=

∏

j1...jα

RPCj1...jα
(
γ2j1+...+jα

)

Complexity: it is easily seen that, if nq is the number of qubits the wave function is ex-
panded on, the exponentiation circuit requires nαq gates, and that it is the most expensive
subroutine of the quantum double-well algorithm. Thus this algorithm can calculate one time
step in the quantum map in polynomial time (with respect to nq), while classical algorithms
cannot do better than nq2nq (since they are limited by fast Fourier transforms).

All multi-controlled phase shifts are broken down into one or two qubit primitives (Hadamard
gates, phase shifts and controlled phase shifts), but this does not change the complexity. For
α = 4 one additional working qubit is required, while for α = 2 all the qubits are used
for storing the representation of the quantum state. Further optimisations can reduce the
circuit size by a factor 1

α!

The algorithm in this poster has been implemented using a quantum language developed
by one of the authors (S.Bettelli, “Toward an architecture for quantum programming”,
cs.PL/0103009, accepted on EPJD), and the numerical experiments have been performed
up to nq ∼ 20 qubits.

The classical sawtooth map

K = 0.5

The chaotic map which we have chosen
for this study is the sawtooth map, determined
by the potential V (q) = − q2

2 .
It is easy to understand that for positive

K the potential behaves repulsively and the
classical map become globally chaotic. Due to
the discontinuity of V ′(q) the KAM theorem
does not apply. The map shows normal diffu-
sion, with the diffusion coefficient, defined by
D0(K) = 〈p2〉/t, which grows quadratically
for large K (D0(K) ' Dql = (π2/3)K2) but
is depressed for small K (D0(K) ∼ 3.3K2.5),
and shows oscillations around the asymptotic
value for K > 1.

Entanglement and its characterisation
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The possibility for quantum systems to be en-
tangled is more than a simple correlation: the
state which describes the whole system cannot
be factorised. One of the main problems of
the theory of quantum information is to find a
measure for the phenomenon of entanglement.
The entanglement of formation can be under-
stood simply as the number of qubits which
are to be exchanged on average in order to
build up a given quantum state for a bi-partite
system:

E(ρ) = min
ρ→{pi,ψi}

∑

i

piS(trB |ψi 〉〈ψi |)

For the more general case of multi-partite sys-
tems, no satisfactory definition has been found
up to now. The additivity properties are not
yet clear too.

Many researchers think that the power of quantum computation must be linked to the
possibility of exploiting entangled states. Without this resource, one should resort either
to an exponentially large memory or to measurement devices with exponential precision.
That notwithstanding, the simple presence of entanglement is not sufficient to beat classical
computation (→ Gottesmann and Knill’s theorem).

There exist also a universal computational model (see Raussendorf, “One-way quantum
computer”, Phys. Rev. Lett. 86, 5188 (2001)) where a particular initially entangled state is
used as the only resource, renouncing to multi-qubit gates: the implementation of the com-
putation exploits only one-qubit gates and one-qubit measures, which destroy the entangled
state in order to produce the final result.

We have chosen to study the evolution of the entanglement of formation of the two most
significant qubits in the quantum computer memory while the quantum sawtooth map al-
gorithm is running, using the “concurrence” C. The concurrence depends on the reduced
density matrix ρ of the two qubits. If one defines ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy), then C is
max{0, λ1−λ2−λ3−λ4} where the λi are the square roots of the eigenvalues, in decreasing
value order, of

√
ρ̃ρ

√
ρ̃ [see Wootters, Phys. Rev. Lett. 80, 2245 (1998)]. The initial state

we use is |ψ 〉 = | 00 〉+| 11 〉√
2

|φ 〉, for which C = 1, and L is always a multiple of 4.

This quantity does not account for the overall entanglement of the quantum memory, but it
has been proven to be linked to interesting physical properties (like quantum phase transi-
tions), and its degradation due to “errors” in the computation should be correlated to the
powerfulness of the computation.

Behaviour of the concurrence on a perfect computer
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Initial evolution of the concurrence for the
sawtooth map at K = 0.5, L = 4 and nq =
8, 12, 16 (curves from top to bottom respec-
tively). The smooth curves show the fit C(t) =
A exp(−γt)+C of the relaxation to the asymp-
totic value C.
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Behaviour of C(t) on a larger time scale, show-
ing the asymptotic regime. The initial state is
(| 00 〉+| 11 〉)|φ 〉/√2 where |φ 〉 is the uniform
superposition of all but the two most signifi-
cant qubits.
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Dependence of the rescaled rate of the con-
currence decay, γ̃ = 2γL2 = (γ/γc)D0(K), on
the chaos parameter K for nq = 19, L = 16
(triangles down); nq = 18, L = 8 (circles) and
nq = 17, L = 4 (triangles up). The solid curve
gives the values of the diffusion rate D0(K).
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R This picture shows the data on a larger
scale with R = γ̃/Dql (symbols) and R =
D0(K)/Dql. It is evident that γ̃ follows not
only the general trend of D0 but also its oscil-
lations, showing that γ is almost exactly the
classical relaxation rate γc = D0(K)/(2L2).

The scaling of the residual value of the concurrence
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The decrease of the concurrence seems to be
linked to the classical relaxation of the proba-
bility of being located in the initial region. It
is therefore natural to write the generic state
|ψ 〉 as

∑
a | a 〉|φa 〉, where a = 00, 01, 10 or 1,

and to conjecture that C is approximated by

δPquant = |W00 +W11 −W01 −W10|

(Wa = 〈φa |φa 〉 is the a-region probability).

We have checked the validity of this conjecture also in the more complicated case (mixed
phase space) of the double-well map, where the decrease of δPclass (black, 5 · 106 points)
is polynomial, dominated by the Poincaré recurrences. It is possible to see that C (red,
nq = 16, L = 4) follows δPclass up to t ∼ − 1

γc
lnC.

If one makes the hypothesis that δPquant is a good approximation for C also in the asymptotic
regime, then C is determined by its fluctuations. Due to the discretisation of the momen-
tum, the symmetry is broken and, in each of the Wa’s, the terms have random signs; for this
reason one finds C ∝ 1/

√
N , where N = 2nq is the number of levels in the discretisation.

It is however known in solid state physics that only the states in the Thouless energy domain
∆T have a significant scalar superposition, and one can further conjecture that N must be
replaced by Neff ∼ ∆T /∆ ∼ g (where g = DN/L2 is the Thouless conductance), giving
C ∼ 1/

√
g.

It is possible to estimate ∆T by using the diffusion relation h̄2〈n2〉 = 〈p2〉 = D0t,
which determines a characteristic time for “travelling through” the momentum spectrum:√
〈n2〉 ∼ N ⇒ tD ∼ (Nh̄)2/D0 ∼ L2/D0. With this characteristic time and the indetermi-

nation ∆T tD ∼ h̄, one finds ∆T ∼ D0/(NL). On the other hand, ∆, the average separation
of the quasi-energy levels, is ∆ ∼ h̄/N ∼ L/N2, since ω = E/h̄ and ∆ω ∼ 1/N .
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The previous conjecture has been tested nu-
merically. This picture shows the dependence
of the residual value of the concurrence C̄ ver-
sus the system conductance g = ND0(K)/L2

for a broad range of parameters: half filled cir-
cles show the dependence on L=4, 8, 12, 16, 20
for K=0.5 and nq =14, 15, 16; diamonds and
triangles show the variation with K for nq =
14, L= 16; nq = 15, L= 8 and nq = 16, L= 4.
The filled circles connected by dashed lines
show the dependence on N for K=0.5, L=4.

The solid line marks the slope 1/
√
g. We attribute the presence of strong fluctuations to

the fact that the value C̄ is averaged only over the time but there is no averaging over the
parameters. Thus, from the point of view of disordered systems C̄ represents only one value
for one realisation of disorder.

The decay induced by noisy gates
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Here nq = 12,K = 0.5, L = 4.

The last part of this study concerns the ef-
fect of noisy gates on the residual concurrence.
This picture illustrates the procedure for ex-
tracting numerically the induced decay rate.
The two lower curves show the dependence
C(t) for the perfect algorithm (top) and the
algorithm with noisy gates at noise amplitude
ε = 0.003 (bottom). In the latter case the av-
erage is done over 20 noise realizations. The
curve in the upper part shows the ratio of C(t)
at ε = 0.003 to its value in a perfect algorithm;
this ratio is averaged over a 100 kick moving
window to reduce fluctuations. The dashed
straight line shows a fit of the ratio to an ex-
ponential decay proportional to e−Γt (the ini-
tial classical relaxation drop is excluded from
the fit).
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This picture illustrates the dependence of the
decay rate on the error intensity and the num-
ber of qubits. The straight line shows the av-
eraged behaviour Γ = 0.58ε2

√
N . Quite natu-

rally we find that Γ ∝ ε2 [see, for instance, •
Phys. Rev. A, 66, 054301 (2002)]. This scal-
ing becomes better and better for large ε val-
ues where Γ is larger. However, more sur-
prisingly there is an exponential growth of
Γ ∝ √

N .

This result is very different from those obtained in other papers [see • and
Phys. Rev. Lett. 87, 227901 (2001)], where the time scale for the fidelity and the deco-
herence rate for tunnelling oscillations varied polynomially with n. A possible explanation is
that the eigenstates are exponentially sensitive to imperfections due to the chaotic structure
of the wave functions [see e.g. Eur. Phys. J. D 20, 293 (2002)], but more investigation is
required.

Summary and future studies

• The decay of the concurrence in an operating quantum computer is determined by the
underlying relaxation rate of the classical dynamics.

• The residual level of entanglement in a perfect algorithm scales as the inverse square
root of the conductance of the system.

• This residual entanglement is destroyed by a decoherence whose effective rate grows
exponentially with the number of qubits. (This is an unexpected result).

• We are currently studying the behaviour of the concurrence on a chaotic map with
mixed phase space structure (Poincaré recurrences).
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