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SHORT DESCRIPTION OF THE RESULTS

Quantum chaos in a quantum small world

We introduce and study a quantum small world model. It is obtained
from the one-dimensional Anderson model with diagonal disorder taken
on a ring of L sites with an addition of randomly chosen shortcut links
typical of the small world models. The density p of shortcuts is very
small so that the total number of shortcuts pL ¿ L. Without short-
cuts the eigenstates of the model are exponentially localized with the
length ξ ≈ 100V 2/W 2, where V is a hopping matrix element and
W is a diagonal disorder amplitude. Using the Lanczos diagonaliza-
tion we study numerically localization-delocalization transition with up
to L = 32000. The localized phase is characterized by the Poisson
level spacing statistics while the delocalized phase has the Wigner-
Dyson statistics typical of the random matrix theory. We show that the
localized phase exists at p < pc and the delocalized phase appears at
p > pc with pc ≈ 1/(4ξ).



CLASSICAL SMALL WORLD NETWORKS

Six degrees of separation

It is believed that a randomly chosen pair of people among
the six billion available individuals can be related by a short
chain of immediate acquaintances.

This property, called the “small world effect” was first inves-
tigated by Stanley Milgram in the late 1960.

He distributed to a random selection of people in Nebraska
letters addressed to some acquaintances of his in Boston.
The instructions were to transmit them from person to per-
son on a basis of immediate relationship.

A reasonable number of these letters did eventually reach
their destinations and Milgram found that in average it had
only taken six steps to get from Nebraska to Boston. He
conjectured therefore that any two people in the world are
separated by just “six degrees of separation”.



Small world networks in practice

The small-world effect is in fact quite widespread, and ap-
pears in social networks modeling for example collabora-
tion between scientists, artists, power grids and neural net-
works (Tables from Refs.[1-4]).



MODEL FOR CLASSICAL SMALL WORLDS

The Watts - Strogatz Model
Nature, Vol. 393, June 1998.

The Newman - Watts Model (1999)
In a circular graph with L vertexes each vertex is linked to
z = 2k of its nearest neighbors, then with some probability
p, pLk shortcuts are added randomly to the network.

(b)(a)

(a) An example of a small-world graph with L = 24, k = 1 and, in
this case, four shortcuts (b) An example with k = 3 (from Ref.[2]).

Our quantum network model corresponds to case (a)

This model reflects the so called clustering we observe in
real networks, our neighbors are likely to be neighbors of
each other.



RECENT RESULTS IN SMALL WORLD THEORY

The Average vertex separation l of the graph
It is found that l obeys the following equation :

l = L F (pzL)/2z (1)

where F (x) is an universal scaling function depending only
on its argument x.

Graph of the Scaling function F = 2zl/L as a function of its
argument x = pzL (from Ref.[2]).

It is shown that F has the following asymptotic forms

F (x) ≈ logx

x
as x →∞, (2)

and

F (x) ≈ 1 ∼ as x → 0. (3)



THE QUANTUM SMALL WORLD MODEL

Schroedinger equation
The Schroedinger equation of the small world network reads

εnψn + V (ψn+1 + ψn−1) +

∑
s

V (ψn+s + ψn−s) = Eψn (4)

Here εi are random variables homogeneously distributed
within [−W/2;W/2] and V is the hopping matrix element,
with periodic boundary conditions applied. The summation
is taken over all randomly established shortcuts from the
site n to any other site in the network. The number of such
shortcuts in the entire network is stotal = pL. We take
V = 1.

We note that at p = 0 our model is in fact the (1D) Ander-
son Model. Here the eigenstates are exponentially local-
ized:

ψn ∼ 1√
ξ
exp−|n−n0|/ξ (5)

with the localization length

ξ ≈ 100(V/W )2 (6)

in the middle of the energy band E ≈ 0 and for weak
disorder W/V (when 1 < ξ < L).



Level spacing statistics
In the localized regime at p = 0 the level spacing s obeys
the Poisson probability distribution PP (s) = exp(−s).
For p > 0 our numerical data show that P (s) evolves from
the Poisson distribution for strong disorder to the Wigner-
Dyson distribution PWD(s) = (π/2) exp(−πs2/4) typi-
cal for random matrices, which appears in our case at weak
disorder. This next figure gives an example of such an evo-
lution at L = 32000.
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The red and blue curves represent the Poisson and Wigner - Dyson
distributions. Diamonds, triangles, circles and black disks do

respectively represent the level spacing statistics at
W/V = 4,3,2,1; p = 0.02, L = 32000. Averaging was done over

60 network realizations.

These data were obtained by Lanczos diagonalization of
the sparse Hamiltonian matrices.



Dependence of P(s) on the system size L

The data show that for W > Wc: the level spacing statis-
tics tends to the Poisson distribution when the size of the
network L increases. On the opposite for W < Wc the
level spacing statistics tends to the Wigner - Dyson distri-
bution.
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The red and blue full curves represent the Poisson and Wigner -
Dyson distributions. Blue symbols represent P (s) for W = 2 at

L = 1000 (stars) and L = 32000 (circles). Red pluses and triangles
show P (s) respectively for L = 1000 and L = 32000 at W/V = 3.
Averaging was done for 1000 realizations of the network at L = 1000

and for 60 realizations for L = 32000; p = 0.02.



η a level spacing distribution criteria

A convenient criteria to determine whether P (s) is closer
to the Poisson or to the Wigner - Dyson distribution is η

defined as:

η =

∫ s0
0 (P (s)− PWD(s))ds∫ s0
0 (PP (s)− PWD(s))ds

(7)

Where s0 ≈ 0.47 is the lowest s coordinate of the two
intersections of PP (s) and PWD(s). For η = 0 the level
spacing statistics obeys a Wigner - Dyson distribution on
the contrary for η = 1 one has the Poisson distribution.

η and localization properties

For η = 0 eigenstates are delocalized in the whole system,
as in the random matrix case. On the contrary for η = 1

eigenstates are localized on localization length ξ.



RANDOM MATRICES AND ANDERSON
LOCALIZATION

IN QUANTUM SMALL WORLDS

η dependence on W/V and L The dependence of η on
W/V and L is investigated numerically.
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η as a function of W/V for different values of L ranging from 1000 to
32000, respectively for red circles, blue circles, red diamonds, blue
diamonds, red triangles, blue triangles. Averaging was done over 60

network realizations for L = 32000 and over 1000 networks for
L = 1000; p = 0.02.

The above figure shows that the transition from random
matrices to Anderson localization takes place approximately
at Wc ≈ 2.6 and η ≈ 0.83.



Dependence of transition on density p and disorder W
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Stars are points of the curve η(W, p) = 0.8 for
p = 0.005,0.01,0.02,0.04 on the (W, p) plane with logarithmic

scale. L = 8000 is fixed. The line represents
p = 1/4ξ ≈ 1

400
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For η fixed to the transition value η ≈ 0.8 p and ξ obey the
relation:

p ≈ 1

4ξ
(8)

Indeed when the double of localization length 2ξ is lower
than the average distance between shortcuts: 1/2p the
eigenstates are localized. In the opposite case eigenstates
become delocalized since particles can pass from one short
link to another.



RESULTS AND CONCLUSIONS

Using the efficient Lanczos algorithm we studied numeri-
cally the level spacing statistics P (s) in the quantum small
world model up to matrix size L = 32000.

We found a transition from Poisson statistics (localized phase)
to Wigner - Dyson statistics (delocalized phase). The tran-
sition takes place at the density of shortcuts pc ≈ 1/4ξ

where ξ is the localization length in the 1D Anderson model.

For p < pc the quantum network becomes effectively dis-
connected, even if classically all sites are connected. In the
opposite case quantum information spreads rapidly over
the whole network by the shortcuts.
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