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FWL in Ulam appr. of PF operators Introduction

Ulam approximant of Perron-Frobenius operator

Discretized phase-space:
Adjacency matrix A = P(j → i)

N = Nx × Ny cells.

x x’

y y’

ij

Nc : traj. from cell j

Ni : traj. to call i

{

Ai ,j = Ni/Nc
∑

i Ai ,j = 1 (closed systems)
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Discretized phase-space:
Adjacency matrix A = P(j → i)

N = Nx × Ny cells.

x x’

y y’

ij

Nc : traj. from cell j

Ni : traj. to call i

{

Ai ,j = Ni/Nc
∑

i Ai ,j = 1 (closed systems)

Spectrum and PF theorem

AψR
i = λiψ

R
i

ψL
i A = ψL

i λi

Unique largest real
eigenvalue

Corresponding eigenvector
positive

Fractal Wey law for open
quantum systems

Nγ ∝ Nν , N = V /~
ν = d − 1, d : FTS
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FWL in Ulam appr. of PF operators two models

Two models

Scattering

{

ȳ = y + K sin(x + y/2)
x̄ = x + (y + ȳ)/2 (mod2π)

N = 110 × 110, K = 7, a = 2
λ1 = 0.756 λ3 = −0.01 + i0.513
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Scattering

{

ȳ = y + K sin(x + y/2)
x̄ = x + (y + ȳ)/2 (mod2π)

N = 110 × 110, K = 7, a = 2
λ1 = 0.756 λ3 = −0.01 + i0.513

Dissipation

{

ȳ = ηy + K sin x

x̄ = x + ȳ (mod2π)

N = 110 × 110, K = 7, η = 0.3
λ1 = 1 λ3 = −0.258 + i0.445

L. Ermann (LPT, Toulouse, ANR–CNRS) Ulam meth., fractal Weyl law and complex networks September 15th 2010 4 / 20



FWL in Ulam appr. of PF operators results

Spectral properties
Spectrum (µi =

P

l ψ1(l)|ψi (l)|)
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FWL in Ulam appr. of PF operators results

Fractal Weyl law

ν vs. d0 (repeller-attractor) −→ ν = d0/2 (d : FTS)

0.8 1 1.2 1.4 1.6 1.8 2
d

0

0.4

0.6

0.8

1
ν

0.8 1.2 1.6 2d
0

1.6

2

d

d, d0 → box counting

• → m1:
K = 7 a ∈ [0.8, 6]
× → m2:
K = 15 η ∈ [0.3, 1]
∗ → m2: K = 10
� → m2: K = 12
N → m2: K = 7

� → Henon

a = 1.2, 1.4; b = 0.3
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Complex networks from intermittency maps Introduction

Google matrix and PageRank

Google matrix

G = αS + (1 − α)E/N

S is constructed from the adjacency

matrix A of directed network links

between N nodes.

1 Sij = Aij/
P

k
Akj

2 columns with only zero elements are

replaced by 1/N

The second term describes a finite
probability 1 − α for WWW surfer to
jump at random to any node so that
the matrix elements Eij = 1.
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Complex networks from intermittency maps Introduction

Google matrix and PageRank

Google matrix

G = αS + (1 − α)E/N

S is constructed from the adjacency

matrix A of directed network links

between N nodes.

1 Sij = Aij/
P

k
Akj

2 columns with only zero elements are

replaced by 1/N

The second term describes a finite
probability 1 − α for WWW surfer to
jump at random to any node so that
the matrix elements Eij = 1.

example

PageRank: p
G follows PFT (with λ1 = 1)

α = 0.85 (random after 6 clicks)

Gp = p
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Complex networks from intermittency maps Introduction

Real networks

Characteristic properties

Small world: average distance between 2 nodes
∼ log N

Scale–free: distribution of in/out-coming links
P(k) ∼ k−ν (νi ≃ 2.1, νo ≃ 2.7)
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Complex networks from intermittency maps Introduction

Real networks

Characteristic properties

Small world: average distance between 2 nodes
∼ log N

Scale–free: distribution of in/out-coming links
P(k) ∼ k−ν (νi ≃ 2.1, νo ≃ 2.7)

Explanation

Constant growth: new nodes appear regularly, and
are attached to the network.

Preferential attachment: nodes are preferentially
linked to already high connected vertices.
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Complex networks from intermittency maps Introduction

Real networks

Characteristic properties

Small world: average distance between 2 nodes
∼ log N

Scale–free: distribution of in/out-coming links
P(k) ∼ k−ν (νi ≃ 2.1, νo ≃ 2.7)

Explanation

Constant growth: new nodes appear regularly, and
are attached to the network.

Preferential attachment: nodes are preferentially
linked to already high connected vertices.

PageRank of WWW

p ∼ 1/jβand β ≃ 0.9 (where j is the order index)

Conjecture: β and ν are correlated.
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Complex networks from intermittency maps models

Intermittency maps: 2 models

A.S. Pikovsky, Phys. Rev. A 43, 3146 (1991).

f1(x) =



x + (2x)z1/2 for 0 ≤ x < 1/2
(2x − 1 − (1 − x)z2 + 1/2z2 )/(1 + 1/2z2 ) for 1/2 ≤ x ≤ 1

f2(x) =



x + (2x)z1/2 for 0 ≤ x < 1/2
a sin [π(x − 1/2)] for 1/2 ≤ x ≤ 1
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Complex networks from intermittency maps results

Intermittency maps motivation

steady state invariant distribution

g(x) ∝ t(x) by a trajectory (t ∼ 1
x1−z1

∝ g(x))∗: power law distrib. (for small values of x)

f1-map: fully chaotic while

f2-map: a fixed point attractor appears for a > 0.945 (when f2(x) = x).

[∗] Y.Pomeau and P.Manneville, Comm. Math. Phys. 74, 189 (1980); A. Lichtenberg and M. Lieberman, Regular and Chaotic Dynamics,

Springer, N.Y. (1992).
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Complex networks from intermittency maps results

Link distribution

sharp drop of ingoing links

power law decay of outgoing links

κ = dx
dx

(div. near x = 1)

−→ κ ∼ 1

(1−x)(1−z2)

The number of nodes with κ links is
Nn ∼ (1 − x) ∼ 1

κ1/(1−z2)

and the differential distribution of nodes
Nout

L ∼ dNn

dκ
∼ 1

κµ with µ = 2−z2
1−z2

:

For this case with z2 = 0.2 → µ = 9/4

sharp drop of outgoing links

power law decay of ingoing links

κ = dx
dx

∼ 1
x1−1/2ν since x ∼ (1 − x)2ν near

x = 1 (ν = 1 in our case)
The number of nodes with κ links is

Nn ∼ x ∼ 1
κ2ν/(2ν−1)

and the differential distribution of nodes
N in

L
∼ dNn

dκ
∼ 1

κµ with µ = 4ν−1
2ν−1

For our case with ν = 1 → µ = 3

f1-map link distribution
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Complex networks from intermittency maps Spectral properties

Spectrum

f1-map (N = 12000, z1 = 2, z2 = 0.2)
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Complex networks from intermittency maps Spectral properties

Spectrum

f1-map (N = 12000, z1 = 2, z2 = 0.2)
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Complex networks from intermittency maps PageRank analysis

PageRank

f1-map, N = 105
(t:z1 = 2, z2 = 0.2; b:z2 = 0.2, α = 1)
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Complex networks from intermittency maps PageRank analysis

PageRank

f1-map, N = 105
(t:z1 = 2, z2 = 0.2; b:z2 = 0.2, α = 1)

β (pj ∼ 1/jβ) N = 105, z2 = 0.2, α = 1
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Complex networks from intermittency maps PageRank analysis

PageRank transition for f2-map (z1 = 2 and N = 105)

top: a = 0.96; bottom: α = 1
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Complex networks from intermittency maps PageRank analysis
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FWL in Linux Kernel results

Procedure Call Network of Linux Kernel

10 versions from V 1.0 to V 2.6 (A. Chepelianskii arXiv:1003.5455 (2010))
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FWL in Linux Kernel results

Procedure Call Network of Linux Kernel

10 versions from V 1.0 to V 2.6 (A. Chepelianskii arXiv:1003.5455 (2010))
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FWL in Linux Kernel results

Procedure Call Network of Linux Kernel

10 versions from V 1.0 to V 2.6 (A. Chepelianskii arXiv:1003.5455 (2010))
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integrated density of states

γ = −2 ln |λ|
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FWL in Linux Kernel results

Fractal Weyl law in Linux Kernel

Cluster growing fractal dimension

The average mass 〈Mc 〉,

with uniformly distributed seed.

〈Mc〉 ∝ ld .
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Number of states

γ = −2 ln |λ|
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directed links:
ν|λ|>0.25 ≃ 0.62; ν|λ|>0.1 ≃ 0.63

inverted links:

ν|λ|>0.25 ≃ 0.69; ν|λ|>0.1 ≃ 0.65
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FWL in Linux Kernel results

Fractal Weyl law in Linux Kernel

Coarse grained eigenstates V 2.6.32, N = 285509

64 from |λ| = 1 (B) to |λ| ≃ 0.4 (T)

t-p: (complete) 307 cells of 930 sites; b-p: (first part) 300 cells, of 62 sites.
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Conclusions

Concluding remarks

1 FWL on UA of PFO
L. Ermann and D. Shepelyansky, EPJB 75, 299 (2010).

2 Dynamical systems
↓

Ulam network construction for PFO
↓

Complex directed networks

1-D Intemittency maps: control and tune parameters
(counterexample of PageRank dependence on in(out)-going distribution)
L. Ermann and D. Shepelyansky, PRE 81 036221 (2010).

3 FWL on real complex networks
↓

Linux Kernel Archituecture
L. Ermann, A. Chepelianskii and D. Shepelyansky, arXiv 1005.1395, submitted PRE.
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Conclusions

Thank you
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