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CNRS, Université Paul Sabatier, Toulouse, France

http://www.quantware.ups-tlse.fr/

S.Bettelli, A.Chepelianskii, B.Georgeot, J.W.Lee,
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Quantum computation of the Anderson

transition in presence of imperfections

The stationary Schrödinger equation for the Anderson

model: a particle on a d-dimensional lattice in a random

potential:
X

~m

V~mψ~m+~n + E~nψ~n = Eψ~n,

In d ≥ 3 dimensions the wave functions are exponentially

localized for sufficiently large (compared to V~m) typical value of

En and delocalized for small typical value ofEn (P.W. Anderson

(1958)).

Our model: 1-dim. kicked rotator with frequency modulation.

Anderson localization → dynamical localization of quantum

chaos in the kicked rotator model (S. Fishman et al. (1982)).

3 dimensions → 1 dimension plus frequency modulation with 2

incomensurate frequencies. (D.L. Shepelyansky (1983)).

Our Hamiltonian H:

H0(n) + k(1 + ε cos(Ω1t) cos(Ω2t)) cos θ
X

m

δ(t −m),

The time evolution:

ψ̄ = UTUkψ, UT = exp {−iH0(n)}
Uk = exp {−ik(1 + 0.75 cos(Ω1t) cos(Ω2t)) cos θ}.

A. A. Pomeransky and D. L. Shepelyansky
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The quantum algorithm

The quantum states n = 0, ..., N − 1 are represented by one quan-
tum register with nq qubits so that N = 2nq . The initial state with

all probability at n0 = 0 corresponds to the state |00...0〉 (momentum
n changes on a circle with N levels). The random phase multiplication

UT = exp(−iH0(n)) in the momentum basis is performed as a random
sequence of one-qubit phase shifts and controlled-NOT gates. Then the

kick operator Uk = exp(−ik(t) cos θ) is performed as follows. First, one
applies the QFT to change the representation. Then θ can be written in

the binary representation as θ/2π = 0.a1a2..anq with ai = 0 or 1. It’s

convenient to use the notation θ = πa1 + θ̄ to single out the most signif-
icant qubit. Then due to the relation cos θ = (−1)a1 cos θ̄ = σz1 cos θ̄

the kick operator takes the form Uk = e−ik(t) cos θ = e−iσ
z
1k(t) cos θ̄.

This operator can be approximated to an arbitrary precision by a se-
quence of one-qubit gates applied to the first qubit and the diagonal op-

erators Sm = eima1θ̄. We used the following sequence: Rγ(θ̄) =

HS1H e−i
γ
4σ
z
1 HS−2H e−i

γ
2σ
z
1 HS2H e−i

γ
4σ
z
1 HS−1H =

e−iσ
z
1γ cos(θ̄) + O(γ3), where H = (σz1 + σx1 )/

√
2 is the Hadamard

gate. Thus the kick operator is given by Uk = Rγ(θ̄)
l + O(lγ3), where

the number of steps l = k/γ and we used in our numerical simulations the
small parameter γ = k/l ≈ 0.2 that gives l ≈ 5 − 10 for k ∼ 1 − 2.

The number of gates is ∼ k, so the algorithm is more efficient for moderate
k. Then one goes back to the momentum representation by the QFT.

One complete iteration of the algorithm requires ng elementary gates where

ng = 2[k/γ](nq+2)+n2
q+12nq+9 with the square brackets denoting

the integer part.

A. A. Pomeransky and D. L. Shepelyansky
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Effects of static imperfections

The model of static imperfections was introduced by

B.Georgeot and D.Shepelyansky (1999). In this model all

gates are perfect but between the gates acts a perturbation

with Hamiltonian ϕ̂ =
P

j(ηjσ
z
j + µjσ

x
jσ

x
j+1). Here ηj, µj

vary randomly with j = 1, ..., nq.
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Top row: logarithm of probability log10 |ψn|2 vs. momentum n after

t = 10000 iterations; dark gray curves are shifted down by 5 (left) and

2 (right). Bottom row: dependence of IPR ξ on time t. The left/right

column corresponds to localized/delocalized phase at k = 1.2 and k = 2.4

respectively. The three curves represent ε = 0; 2 × 10−5; 6 × 10−5 with

color changing from light gray to black with increase of ε; µ = ε, nq = 10.

The Inverse Participation Ratio ξ is the inverse sum of the

squares of the probabilities, 1/ξ =
P

i |ψi|4, where ξ ∼ is

the ”number of nonzero components”.

A. A. Pomeransky and D. L. Shepelyansky
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Static imperfections in QA for

Anderson transition

The time evolution of the probability distribution |ψn|2 in
the localized (left column, k = 1.2) and delocalized (right

column, k = 2.4) phases for

nq = 7 qubits (N = 2nq),

with 0 ≤ t ≤ 400 (verti-

cal axis) and −N/2 < n ≤
N/2 (horizontal axis); kc =

1.8. The strength of static

imperfections is ε = µ = 0

for top row and ε = µ =

10−4 for bottom row.

Dependence of the IPR ξ and the excitation probability:
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n=(N/4,3N/4) |ψn|2

(full and dashed curves for left

and right scales respectively)

on the kick strength k for

nq =10 and t≥ 105, ε=0;

10−5; 2×10−5; 4×10−5;

8×10−5 (curves from right

to left); µ=0.

A. A. Pomeransky and D. L. Shepelyansky



Quantum computation of the Anderson transition in

presence of imperfections, quant-ph/0306203

Critical point shift

Dependence of the shift of the critical point ∆kc(ε) =
kc − kc(ε) on rescaled imperfection strength ε̃ = εng

√
nq

for ε = 2 × 10−5 (dia-

monds), 4 × 10−5 (tri-

angles) and 8 × 10−5

(squares); open/full sym-

bols are for µ = 0,

8 ≤ nq ≤ 13 and

µ = ε, 8 ≤ nq ≤ 11

respectively; kc = 1.8.

The dashed lines show

the scaling relation. −1.8 −1.6 −1.4 −1.2 −1 −0.8

log ε
−0.8
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−0.4

−0.2

0
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~

The shift of the critical point ∆kc(ε) = kc − kc(ε)

depends on ε, µ and nq. From the IPR data obtained for

various ε, µ, nq we find that the global parameter dependence

can be described by the scaling relation ∆kc(ε) = Aε̃ α,

ε̃ = εng
√
nq. The data fit gives A = 3.0, α = 0.64 for

µ = 0 and A = 4.8, α = 0.68 for µ = ε.

In the vicinity of the critical point the algorithm gives a

quadratic speedup in computation of diffusion rate and local-

ization length, comparing to the known classical algorithms.

A. A. Pomeransky and D. L. Shepelyansky
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Imperfection effects for multiple applications of the quantum

wavelet transform

Wavelet Transforms (WT) Applications

• Wavelets obtained by dilations and trans-
lations of an original mother function

• Frequency-time analysis

• Continuous and discrete WT.

• signal treatment - analysis
and denoising of time series

• data and image compression

• multifractal analysis

Efficient implementation on Quantum Computers:
Daubeschies and Haar wavelet transforms

Circuit developed in A. Fijaney and C. Williams, Lecture Notes in Computer Science 1509, 10 (Springer, 1998); quant-ph/9809004

M. Terraneo and D. L. Shepelyansky
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QUANTUM ALGORITHM: the Daubechies wavelets

D(4) = (D
(4)
4 ⊕ I

2nq−4
)(Π8 ⊕ I

2nq−8
) . . . (D

(4)

2i
⊕ I

2nq−2i
)(Π

2i+1 ⊕ I
2nq−2i+1) . . .Π

2nq
D

(4)

2nq

• D
(4)
2n is the wavelet kernel, acting on vectors of length 2n

D
(4)
2n

= (I
2n−1⊗C1)P2n(N⊗I

2n−1)(N⊗I
2n−2⊕I

2n−1) . . . (N⊗I2⊕I2n−4)(N⊕I2n−2)P2n(I
2n−1⊗C0)

• P2n: permutation matrix, P2n|a0, a1, . . . , an−1〉 = |an−1, . . . , a1, a0〉
• Π2n: shuffling matrix, Π2n|a0, a1, . . . , an−2, an−1〉 = |an−1, a0, a1, . . . , an−2〉

N not gate - C0, C1 2× 2 ma-
trices related to the Daubechies
coefficients

C̃0 = 2

„

c2 c3
c3 −c2

«

C̃1 = 1
2

 c0
c3

1

1 −c0
c3

!

C0 = 1
q

det C̃0

C̃0 C1 = 1
q

det C̃1

C̃1

M. Terraneo and D. L. Shepelyansky
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The Model

Dynamical model given by repeated ap-
plications of WT - efficient simulation
on quantum computers. ψ in a Hilbert
space of N = 2nq states - dynamics
described by the evolution operator Û :
ψ = Ûψ.

Û = D(4)†e−ik(x−π)2/2D(4)e−iTn
2/2

n momentum −N/2 ≤ n < N/2, x = 2πj/N with

j = 0, . . . N − 1 index in the wavelet basis.

Algebraic localization: |Un,n′|2 ∼ 1
|n−n′|α

|n− n′| � 5k, α = 4; |n− n′| � 5k, α = 2

Density plot of the |Un,n′|
2. Top: k = 100

(left), k = 1000 (right); bottom is for k = 1000:
a doubled resolution of left upper quarter (left),

perturbed operator with static errors.

M. Terraneo and D. L. Shepelyansky
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Imperfections

We simulate the gate sequence in the
presence of imperfections:

• Noisy gates: each gate is perturbed
by a random unitary rotation by an
angle η, −ε/2 ≤ η ≤ ε/2.

• Static imperfections: given by the
Hamiltonian H =

∑
l ηlσ

z
l +µlσ

x
l σ

x
l+1

(l = 1, . . . nq). ηl static one-qubit en-
ergy shifts, −ε/2 ≤ ηl ≤ ε/2, µl inter-
qubit coupling, −µ/2 ≤ µl ≤ µ/2

Effects on IPR ξ and on the wave function ψn.
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Fidelity time scales

Fidelity: f(t) = |〈ψε(t)|ψ(t)〉|2
ng gates per map iteration
Ng = ngtf total number of gates
f(tf)=0.9 timescale definition

• Noisy gates:
f(t) ≈ exp (−Aε2ngt)
tf = C/(ε2ng)
Ng = C/(ε2)

• Static imperfections:
f(t) ≈ exp (−nq(εngt)2)
tf = D/(εng

√
nq)

Ng = D/(ε
√
nq)

0 200 400 600 800
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~

Panels: a) fidelity scaling; b) tf vs. ε for

noisy gates (diamonds), static imperfections

(triangles µ = 0, circles µ = ε). c) Ng

scalings: ε̃ = ε for noisy gates, ε̃ = ε
√
nq

M. Terraneo and D. L. Shepelyansky
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Threshold for Fault Tolerant Quantum Computation

Fault Tolerant Quantum Computation (FTQC): Assumptions of random errors
(corresponding to noisy gates in our simulations)
Accuracy border pr = ε2r ∼ 10−4 → fidelity is close to 1 up to Ng ∼ C/ε2r gates.

Static Imperfections: new threshold εs ∼ Dε2r/(Cn
1/2
q )

for nq = 10, D and C from our numerical data we obtain ps = ε2s ∼ 10−9.

New techniques to correct static errors: spin echo techniques ????

References:

A. Fijaney and C. Williams, Lecture Notes in Computer Science 1509, 10 (Springer, 1998);

P.Hoyer, quant-ph/9702028 (1997) (QWT); A.Steane, quant-ph/0207119 (2002) (FTQC);

I.Daubechies, Ten Lectures on wavelets, CBMS-NSF Series in App. Math., (SIAM, Phil., 1999).

M. Terraneo and D. L. Shepelyansky
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The (classical and quantum) sawtooth map

Time-dependent Hamiltonians with periodicity on q and p. The discretised
dynamics, parametrised by K and L, is a “kick” followed by a free evolution:

q̄ = q + p̄ mod 2π p̄ = p−K dV
dq mod 2πL V (q) = q2

2 (sawtooth)

In the quantum case one introduces the number of levels N (with h̄ = 2πL/N).
The Floquet operator (evolution operator corresponding to one iteration of the
map) is a product of two terms, which are diagonal respectively in p̂ and q̂.

UF = e−ip̂
2/2h̄e−iK V (q̂)/h̄ = exp

[
−iπLN n̂2

p

]
· exp

[
−iKL

(
2π
N

)α−1Pα(n̂q)
]

Complexity: ng ∼ nαq → n2
q. High level primitives are broken down into one or

two qubit gates. Algorithm implemented using a quantum language developed in
[7], numerical experiments performed up to nq ∼ 20 qubits.

S. Bettelli and D. L. Shepelyansky
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Characterisation of entanglement

We have chosen to study the evolution of the entanglement of formation
of the two most significant qubits in the quantum computer memory while the
quantum sawtooth map algorithm is running, using the “concurrence” C. The
concurrence depends on the reduced density matrix ρ of the two qubits. If one
defines ρ̃ = (σy⊗σy)ρ∗(σy⊗σy), then C is max{0, λ1−λ2−λ3−λ4} where the

λi are the square roots of the eigenvalues, in decreasing value order, of
√
ρ̃ρ

√
ρ̃

[see Wootters, Phys. Rev. Lett. 80, 2245 (1998)]. The initial state we use is
|ψ 〉 ∝ (| 00 〉 + | 11 〉) ⊗ |φ 〉, for which C = 1, and L is always a multiple of 4.

This quantity does not account for the overall entanglement of the quantum
memory, but it has been proven to be linked to interesting physical properties
(like quantum phase transitions), and its degradation due to “errors” in the
computation should be correlated to the powerfulness of the computation.

S. Bettelli and D. L. Shepelyansky
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Behaviour of the concurrence for an ideal computer

0

-1

-2

 0  100  200  300  400  500

lo
g 

C

t

Initial evolution of the concurrence for the saw-
tooth map at K = 0.5, L = 4 and nq = 8, 12, 16
(curves from top to bottom respectively). The
smooth curves show the fit C(t) = A exp(−γt)+
C of the relaxation to the asymptotic value C.

0

-1

-2

-3
 0  4000  8000 t

log C
Behaviour of C(t) on a larger time scale, show-
ing the asymptotic regime. The initial state is
(| 00 〉 + | 11 〉)|φ 〉/

√
2 where |φ 〉 is the uniform

superposition of all but the two most significant
qubits.

S. Bettelli and D. L. Shepelyansky
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Classical diffusion and concurrence decay

2

1

0

-1

-2

-1 -0.5 0

lo
g 

 ~ γ 

log K

Dependence of the rescaled rate of the con-
currence decay, γ̃ = 2γL2 = (γ/γc)D0(K), on
the chaos parameter K for nq = 19, L = 16
(triangles down); nq = 18, L = 8 (circles) and
nq = 17, L = 4 (triangles up). The solid curve
gives the values of the diffusion rate D0(K).

 1  2  3  4

 0.9

 1

 1.1

K

R
This picture shows the data on a larger scale with
R = γ̃/Dql (symbols) and R = D0(K)/Dql. It
is evident that γ̃ follows not only the general
trend of D0 but also its oscillations, showing
that γ is almost exactly the classical relaxation
rate γc = D0(K)/(2L2).

S. Bettelli and D. L. Shepelyansky
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Numerical results on the residual value of the concurrence

This picture shows the dependence of the residual value of the concurrence

-2

-1

1 2 3 4

lo
g 

C

log  g

C̄ versus the conductance g = ND0(K)/L2:
half filled circles show the dependence on L=
4, 8, 12, 16, 20 for K = 0.5 and nq = 14, 15, 16;
diamonds and triangles show the variation with
K for nq = 14, L = 16; nq = 15, L = 8 and
nq = 16, L = 4. The filled circles connected
by dashed lines show the dependence on N for
K=0.5, L=4.

The solid line marks the slope 1/
√
g. We attribute the presence of strong

fluctuations to the fact that the value C̄ is averaged only over the time but there
is no averaging over the parameters. Thus, from the point of view of disordered
systems C̄ represents only one value for one realisation of disorder.

S. Bettelli and D. L. Shepelyansky
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Concurrence decay induced by noisy gates

This picture illustrates the dependence of the decay rate on the error intensity
and the number of qubits. The straight line shows the averaged behaviour Γ =

−5

−4

−3

−5 −4 −3

lo
g 

Γ

log ε2N½

0.58ε2
√
N . Quite naturally we find that Γ ∝ ε2 [see,

for instance, • Phys. Rev. A, 66, 054301 (2002)]. This

scaling becomes better and better for large ε values
where Γ is larger. However, more surprisingly there
is an exponential growth of Γ ∝

√
N . This result is

very different from those obtained in other papers
[see • and Phys. Rev. Lett. 87, 227901 (2001)], where the

time scale for the fidelity and the decoherence rate for tunnelling oscillations
varied polynomially with n. A possible explanation is that the eigenstates are
exponentially sensitive to imperfections due to the chaotic structure of the wave
functions [see e.g. Eur. Phys. J. D 20, 293 (2002)].

S. Bettelli and D. L. Shepelyansky
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Quantum phase space distributions

Quantum algorithm simulating the quantum kicked rotator model, a system displaying

quantum chaos and dynamical localization; phase space= cylinder (θ = phase, n = momentum).

Classical dynamics controlled by K = kT . Global chaos sets in for K > Kg = 0.9716...

ψ̄ = Ûψ = e−ik cos θ̂e−iT n̂
2/2ψ

Wigner distribution in phase space: → real but positive or negative

W (θ, n) =
PN−1

m=0
e
−2iπ
N
n(m−Θ/2)

2N ψ(Θ −m)∗ψ(m), with Θ = Nθ
2π .

Husimi distribution: W (θ, n) Gaussian-smoothed over cells of size h̄→ real non negative

Both functions permit direct comparison with classical phase space densities

B. Lévi, B. Georgeot and D. L. Shepelyansky



Quantum computing of quantum chaos in the kicked rotator model,

Phys. Rev. E 67, 046220 (2003)

Wigner and Husimi distributions with imperfections

Plot of Husimi (left) and Wigner (right) distribu-
tions for the quantum kicked rotator simulated on a
quantum computer at t = 103 for K = 1.3 > Kg,
T = 2π/N , N = 2nq and number of qubits nq = 7.
Initial state is |Ψ0 >= |n0 >, with n0 = 1. Top: am-
plitude of noise in gates is ε = 0; middle: ε = 0.002;
bottom: ε = 0.004. Left: color represents intensity
level from blue (minimal) to red (maximal). Right:
grayness represents amplitude of the Wigner func-
tion, from white (minimal negative value) to black
(maximal positive value).

B. Lévi, B. Georgeot and D. L. Shepelyansky
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Stability of individual values of Wigner function
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t
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δW
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Relative error on the Wigner function δWε = 〈|W−Wε|〉/〈|W |〉
as a function of time for K = Kg, T = 2π/N , N = 2nq and

nq = 10. From bottom to top quantum noise is ε = 10−4,

ε = 10−3.5, ε = 10−3. W is averaged over 2N values in the

chaotic zone.

−7 −6 −5 −4 −3 −2

log(nq
1.5ε2)
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lo
gt

w

−8 −3log(nqε
2)

1

6

lo
gt

w

Time scale tW such that δWε(tW ) = 1/2 vs system parameters for

5 ≤ nq ≤ 11. Here K = Kg, T = 2π/N . W is averaged in the

chaotic (©) or integrable (4) zones. Straight lines: theoretical

formula tW ≈ CW/(n
α
qε

2), with α = 1.5, CW = 0.02 (full line)

or CW = 0.03 (dashed line). Inset: same for T = 0.5 and K = 5

and 5 ≤ nq ≤ 14. W is averaged in the localized zone. Full line:

theoretical formula with α = 1, CW = 0.012.

B. Lévi, B. Georgeot and D. L. Shepelyansky
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Statistical properties of individual values of Wigner function

2 4 6 8 10 12
nq

0
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0.4
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ξ/
4N

2

Inverse participation ratio ξ = 1/(N2
∑

W4
i ) of

the Wigner function vs nq at t = 103 and ε = 0
for T = 2π/N , N = 2nq and K = 0.5 (full curve),
K = 0.9 (dashed curve), K = 1.3 (long-dashed
curve), K = 2.0 (dot-dashed curve).

0 5 10 15
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lo
gξ

ξ vs nq at t = 103 and ε = 0 for T = 2π/N ,
N = 2nq and K = 2 (full line), and T = 0.5 and
K = 5 (dashed line). Dotted lines show ξ ∝ N2 (i.e.
Wi ∝ 1/N3/2) (non-localized regime) and ξ ∝ N

(i.e. Wi ∝ 1/N) (localized regime).

B. Lévi, B. Georgeot and D. L. Shepelyansky
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Strong superadditivity of the

entanglement of formation follows from

its additivity

Entanglement of formation

Entanglement of two subsystems A and B in a pure state:

E(ψ) = S(TrB(|ψ 〉〈ψ |)) = S(TrA(|ψ 〉〈ψ |)),
where S is the von Neumann entropy: S(ρ) = −Trρ log2 ρ.

For mixed states: the entanglement of formation (EoF):

EF(ρ) = min{pi,ψi}
P

i piE(ψi),

with ρ =
P

i pi|ψi 〉〈ψi | (C.H. Bennett et al. (1996)).

Additivity

Let us consider two separate systems 1 and 2 (each is a

bipartite system with the parts 1A, 1B and 2A, 2B respec-

tively, we always consider entanglement between A and B).

What is the EoF of the state ρ1 ⊗ρ2 of the composite system?

It has been conjectured that it is the sum of the EoFs of the

parts 1 and 2 (the EoF is additive):

EF(ρ1 ⊗ ρ2)
?
= EF (ρ1) + EF(ρ2).

This is trivially true for pure states.There are proofs for

particular classes of states (G. Vidal et al. (2002)).

A. A. Pomeransky



Strong superadditivity of the entanglement of formation

follows from its additivity, quant-ph/0305056

Strong superadditivity

Within the same setting, it is natural to compare the EoF

of a system with the sum of the EoF’s of its subsystems. It has

been conjectured (K.G.H. Vollbrecht and R.F. Werner (2001))

that the former is not less than the latter:

EF(ρ)
?

≥ EF (Tr2ρ) + EF(Tr1ρ).

This property is called strong superadditivity. It is sufficient to

proof this conjecture for pure states. The strong superadditivity

implies both the additivity of the EoF and that of the Holevo

classical channel capacity (K. Matsumoto et al. (2002)).

Equivalence of the conjectures

We show that, conversely, the additivity of the EoF implies

the strong superadditivity, that is the two conjectures are

equivalent (see [5] for the details). We used the methods of

convex analysis, introduced in this context by K.M.R. Audenaert

and S.L. Braunstein (quant-ph/0303045), most notably the

notion of the conjugated function. We use also some properties

of optimal decompositions of density matrices which are known

from the work of F. Benatti and H. Narnhofer (2001).

P.W. Shor (quant-ph/0305035) has proved that the ad-

dititivity of the EoF, the strong superadditivity of the EoF,

the additivity of the Holevo classical channel capacity and the

additivity of the minimal output entropy conjectures are all

equivalent.

A. A. Pomeransky
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