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induced by inter-qubit couplings
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effects for tent map, Grover algorithm;
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• Pauli random error correction method
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Quantum Hardware Melting Induced by Quantum Chaos

The quantum computer hardware is modeled as a (one)two-dimensional lattice of
qubits (spin halves) with static fluctuations/imperfections in the individual qubit
energies and residual short-range inter-qubit couplings. The model is described
by the many-body Hamiltonian (B.Georgeot, D.S. PRE (2000)):

Hs =
∑

i(∆0 + δi)σz
i +

∑
i<j Jijσ

x
i σx

j ,

where the σi are the Pauli matrices for the qubit i, and ∆0 is the average level

spacing for one qubit. The second sum runs over nearest-neighbor qubit pairs,
and δi, Jij are randomly and uniformly distributed in the intervals [−δ/2, δ/2]
and [−J, J ], respectively. Quantum chaos border for quantum hardware:

J > Jc ≈ ∆c ≈ 3δ/nq � ∆n ∼ δ2−nq

Emergency rate of quantum chaos: Γ ∼ J2/∆c.

http://www.quantware.ups-tlse.fr EU IST-FET project EDIQIP
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Quantum computer melting induced by inter-

qubit couplings. Color represents the level of

quantum eigenstate entropy Sq (red for max-

imum Sq ≈ 11, blue for minimum Sq = 0).

Horizontal axis is the energy of the computer

eigenstates counted from the ground state to

the maximal energy (≈ 2nq∆0). Vertical

axis gives the value of J/∆0 (from 0 to 0.5).

Here nq = 12, Jc/∆0 = 0.273, and one

random realization of couplings is chosen.

What are effects of quantum many-body chaos

on the accuracy of quantum computations?

Static imperfections vs. random errors

in quantum gates of a quantum algorithm.

http://www.quantware.ups-tlse.fr EU IST-FET project EDIQIP
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Elementary quantum gates
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Fidelity decay due to errors

Accuracy measure of quantum computation is fidelity: f(t) = |<ψ(t)|ψε(t)>|2 .

Quantum algorithm: |ψ(t)> = U
t |ψ(0)> , U = UNg · . . . · U1� �� �

elementary gates

.

Errors: Uj → Uj e
iδH

, δH ∼ ε .

(i) Decoherence due to residual couplings of quantum computer to external bath:

δH random and different at each j and t,

e.g.: random phase fluctuations: δφ ∈ [−ε, ε] in phase-shift gates.

(ii) Static imperfections in the quantum computer itself:

δH (random but) constant at each j and t,

e.g.: δH =

nq−1�
j=0

δj σ
(z)
j + 2

nq−2�
j=0

Jj σ
(x)
j σ

(x)
j+1 , Jj, δj ∈ [−ε, ε] .

(iii) Non-unitary errors in quantum computation:

eiδH is non-unitary (δH �= δH†, density matrix and quantum trajectories approach,

J.W.Lee, DS PRE 71, 056202 (2005) )

http://www.quantware.ups-tlse.fr EU IST-FET project EDIQIP
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Example: model of quantum tent map

H(t) =
T p2

2
+ V (θ)

∞∑

n=−∞
δ(t − n)

2π2π

θ θ

V (θ)V ′(θ)

Classical map :

pn+1 = pn − V ′(θn)

θn+1 = θn + T pn+1

Quantum map : p = −i∂/∂θ

|ψ(t + 1)>= U |ψ(t)>

U = e−iTp2/2 e−iV (θ)

V (θ) =

� −k
2θ(θ − π)

k
2(θ − π)(θ − 2π)

, V
′
(θ) =

�
k(π

2 − θ) if 0 ≤ θ ≤ π

k(−3π
2 + θ) if π ≤ θ ≤ 2π

http://www.quantware.ups-tlse.fr Klaus M. Frahm, Robert Fleckinger, Dima L. Shepelyansky
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Quantum algorithm for tent (and saw-tooth) map
Quantum register identification: |p> ≡ |α0>0 |α1>1 . . . |αnq−1>nq−1 .

p =

nq−1�
j=0

αj 2
j ∈ {0, . . . , N − 1}

N = 2nq = dimension of Hilbert space; nq = number of qubits; αj ∈ {0, 1}.

Quantum Fourier transform: p ↔ θ and e
−iTp2/2 |p> =

�
j<k

e
i(···)αjαk� �� �
B

(2)
jk

(···)

�
j

e
i(···)αj� �� �

B
(1)
j

(···)

|p> .

with simple and controlled phase-shift:

B
(1)
j (φ) =

�
1 0

0 eiφ

�
, B

(2)
jk (φ) =

�
	 1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 eiφ



� .

Double controlled phase-shift: B
(3)
jkl(φ) = B

(2)
jl

�
φ
2



B

(2)
jk

�
φ
2



C

(N)
kl B

(2)
jk

�
−φ

2



C

(N)
kl .

Number of elementary gates: ng ≈ 9 n2
q/2

http://www.quantware.ups-tlse.fr Klaus M. Frahm, Robert Fleckinger, Dima L. Shepelyansky
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Poincaré section (K = kT = 1.7)

Fidelity decay with errors
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(static: x = t/tc, (a), (b), (c),

random: x = t/tr, (d))

Husimi function

t = 5 16 qubits t = 15

t = 5625, ε = 0 ε = 7 · 10−7

h̄eff = T = 2π/N, N = 2nq

http://www.quantware.ups-tlse.fr Klaus M. Frahm, Robert Fleckinger, Dima L. Shepelyansky
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Eigenstates of operating quantum computer:

hypersensitivity to static imperfections

0.000 0.001 0.002ε

1.3

1.4

E

Variation of quasienergy (red curve) and corre-

sponding eigenstate (shown by Husimi function)

of unitary evolution operator of quantum saw-

tooth map with strength of static imperfections

ε:

ψ = e
−iT n̂2/4

e
ik(θ̂−π)2/2

e
−iT n̂2/4

ψ = e
−iE

ψ

Here ε = 0, 4 × 10−4, 10−3 (right top,

left/right bottom); and K = kT =
√

2, T =

2π/N, N = 2nq, J = 0, nq = 9. Mixing of

levels takes place at critical interaction strength:

εχ ∼ 1/
√

N ∼ 2
−nq/2

http://www.quantware.ups-tlse.fr G.Benenti, G.Casati, S.Montangero and D.L.Shepelyansky
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Random matrix theory for fidelity decay

Fidelity with average initial state: f(t) =

���� 1

N
tr

�
U

−t
�

U e
iδHeff

�t
�����

2

Regime (1 − f) � 1 : f(t) ≈ 1 − t

tc

− 2

tc

t−1�
τ=1

(t − τ) C(τ)

with:
1

tc

=
1

N
tr
�

δHeff
2
�

, C(τ) =
tc

N
tr

�
U

−τ
δHeff U

τ� �� 	
δHeff(τ)

δHeff

�

U ∈ COE (CUE) ⇒ Scaling law:

−〈ln f(t)〉U ≈ N

tc

χ

�
t

N

�
, χ(s) = s +

2

β
s

2 − 2


 s

0

dτ̃ (s − τ̃) b2(τ̃) .

with the “two-level form factor”: b2(τ̃).

http://www.quantware.ups-tlse.fr Klaus M. Frahm, Robert Fleckinger, Dima L. Shepelyansky
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Scaling analysis for chaotic dynamics
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Quantum chaos and random matrix theory for fidelity decay,
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Integrable dynamics

t = 22783 , Fit: − ln(f(t)) =
t

t̃c

+
t2

t̃ct̃H

.

nq = 14

Position of initial gaussian wave packet

ε = 0 ε = 5 · 10−7, f = 0.5
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Time scale of reliable quantum computations
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Time scale tf with f(tf) = 0.9 :

Theory from RMT-approach:

If ε � (2nq n2
gnq)

−1/2:

tf ≈ 0.1 tc ≈ 1/(10ε2 nq n2
g)

Ng = tf ng ≈ 1/(10ε2 nq ng)

If ε � (2nq n2
gnq)

−1/2:

tf ≈ 0.2
√

tctH ≈ 2nq/2/(5ε ng
√

nq)

Random errors: Ng ≈ 5/ε2

http://www.quantware.ups-tlse.fr Klaus M. Frahm, Robert Fleckinger, Dima L. Shepelyansky



Quantum error correction of coherent errors by randomization,
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Pauli Random Error Correction (PAREC)
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The basic idea of the PAREC-method: The two boxes (full

lines) represent two sequences of universal quantum gates for

nq = 4 qubits. Two random sequences of Pauli operators

(X̂1, Ŷ2, Ẑ3, 14) and (Ŷ1, X̂2, X̂3, Ẑ4) are also indicated.

The unitary Pauli operators outside the dashed boxes (full lines)

are applied to the qubits whereas the ones inside the dashed boxes

(dashed lines) are taken into account by appropriate permutations

of the elementary quantum gates. Due to the identities X̂2 =

Ŷ 2 = Ẑ2 = 1 the inserted random sequences of Pauli operators

change the computational basis but leave the ideal quantum

algorithm unchanged.

The PAREC method eliminates coherent errors produced by static imperfections and increases

significantly the maximum time over which realistic quantum computations can be performed

reliably. Furthermore, it does not require redundancy using all qubits for logical purposes.

http://www.quantware.ups-tlse.fr O. Kern, G. Alber and D. L. Shepelyansky



Quantum error correction of coherent errors by randomization,
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Pauli Random Error Correction (PAREC)

Quantum Poincaré sections with Husimi-

functions in tent map at t = 3000 in scaled

momentum and position variables ỹ = p ∈
[0, 2π] and x̃ = x ∈ [0, 2π]: The parame-

ters are K = 1.7 and nq = 10. The initially

prepared coherent states are centered around

(π/4, 0) (left panel) and (5.35, 0) (right

panel). First row: ideal dynamics; second

row: static imperfections with ε = 5× 10−6;

third row: PAREC-method applied after each

sequence of ngef = 20 universal quantum

gates of Ref. [17]. The probability density is

coded in colors (red/maximum, blue/zero).

http://www.quantware.ups-tlse.fr O. Kern, G. Alber and D. L. Shepelyansky
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Pauli Random Error Correction (PAREC)
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Dependence of the fidelity f(t) on the number of iterations: Parameters as in the left panel of

previous Fig.; left: static imperfections without error correction, PAREC after each map iteration,

after each ngef = 50, and after each ngef = 20 quantum gates (from bottom up); right: static

imperfections without error correction, with PAREC after each map iteration and after each

sequence of ngef = 20 quantum gates (full curves), best fits for linear- and quadratic-in-time

decays (dashed curves).

http://www.quantware.ups-tlse.fr O. Kern, G. Alber and D. L. Shepelyansky



Quantum computation of the Anderson transition in presence of imperfections,
Phys.Rev. A 69, 014302 (2004) KIAS, Seoul, 22 - 24 August, 2005

Quantum computation of the Anderson transition
in presence of imperfections

The stationary Schrödinger equation for the Anderson model: a particle on a d-dimensional

lattice in a random potential:
�

�m V�mψ�m+�n + E�nψ�n = Eψ�n, In d ≥ 3 dimensions the wave

functions are exponentially localized for sufficiently large (compared to V�m) typical value of En

and delocalized for small typical value of En (P.W. Anderson (1958)).

Our model: 1-dim. kicked rotator with frequency modulation.

Anderson localization → dynamical localization of quantum chaos in the kicked rotator model

(S. Fishman et al. (1982)).

3 dimensions → 1 dimension plus frequency modulation with 2 incomensurate frequencies

(D.L.S (1983)).

Our Hamiltonian H: H0(n) + k(1 + ε cos(Ω1t) cos(Ω2t)) cos θ
�

m δ(t − m),

The time evolution: ψ̄ = UTUkψ, UT = exp {−iH0(n)}
Uk = exp {−ik(1 + 0.75 cos(Ω1t) cos(Ω2t)) cos θ}.

A. A. Pomeransky and D. L. Shepelyansky



Quantum computation of the Anderson transition in presence of imperfections,
Phys.Rev. A 69, 014302 (2004) KIAS, Seoul, 22 - 24 August, 2005

The quantum algorithm

The quantum states n = 0, ..., N − 1 are represented by one quantum register with nq qubits so that
N = 2nq . The initial state with all probability at n0 = 0 corresponds to the state |00...0〉 (momen-
tum n changes on a circle with N levels). The random phase multiplication UT = exp(−iH0(n)) in
the momentum basis is performed as a random sequence of one-qubit phase shifts and controlled-NOT gates.
Then the kick operator Uk = exp(−ik(t) cos θ) is performed as follows. First, one applies the QFT to
change the representation. Then θ can be written in the binary representation as θ/2π = 0.a1a2..anq

with ai = 0 or 1. It’s convenient to use the notation θ = πa1 + θ̄ to single out the most signifi-
cant qubit. Then due to the relation cos θ = (−1)a1 cos θ̄ = σz

1 cos θ̄ the kick operator takes the form

Uk = e−ik(t) cos θ = e−iσz
1k(t) cos θ̄. This operator can be approximated to an arbitrary precision by a sequence

of one-qubit gates applied to the first qubit and the diagonal operators Sm = eima1θ̄. We used the following

sequence: Rγ(θ̄) = HS1H e−i
γ
4σz

1 HS−2H e−i
γ
2σz

1 HS2H e−i
γ
4σz

1 HS−1H = e−iσz
1γ cos(θ̄) + O(γ3),

where H = (σz
1 + σx

1)/
√

2 is the Hadamard gate. Thus the kick operator is given by Uk = Rγ(θ̄)l + O(lγ3),
where the number of steps l = k/γ and we used in our numerical simulations the small parameter γ = k/l ≈ 0.2
that gives l ≈ 5 − 10 for k ∼ 1 − 2. The number of gates is ∼ k, so the algorithm is more efficient for moderate
k. Then one goes back to the momentum representation by the QFT. One complete iteration of the algorithm
requires ng elementary gates where ng = 2[k/γ](nq + 2) + n2

q + 12nq + 9 with the square brackets denoting
the integer part.

A. A. Pomeransky and D. L. Shepelyansky



Quantum computation of the Anderson transition in presence of imperfections,
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Static imperfections in QA for Anderson transition

The time evolution of the probability distribution

|ψn|2 in the localized (left column, k = 1.2) and de-

localized (right column, k = 2.4) phases for nq = 7

qubits (N = 2nq), with 0 ≤ t ≤ 400 (vertical

axis) and −N/2 < n ≤ N/2 (horizontal axis);

kc = 1.8. The strength of static imperfections is

ε = µ = 0 for top row and ε = µ = 10−4 for

bottom row.

0.5 1 1.5 2 2.5

k
0

200

400

600

ξ

0

0.2

0.4

0.6

W Dependence of the IPR ξ and the excitation proba-

bility: W =
�

n=(N/4,3N/4) |ψn|2 (full and dashed

curves for left and right scales respectively) on the

kick strength k for nq = 10 and t ≥ 105, ε = 0;

10−5; 2×10−5; 4×10−5; 8×10−5 (curves from right

to left); µ=0.

A. A. Pomeransky and D. L. Shepelyansky



Quantum computation of the Anderson transition in presence of imperfections,
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Critical point shift

−1.8 −1.6 −1.4 −1.2 −1 −0.8

log ε
−0.8
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−0.4

−0.2

0

0.2

log∆kc

~

Dependence of the shift of the critical point

∆kc(ε) = kc − kc(ε) on rescaled imperfec-

tion strength ε̃ = εng
√

nq for ε = 2×10−5

(diamonds), 4×10−5 (triangles) and 8×10−5

(squares); open/full symbols are for µ = 0,

8 ≤ nq ≤ 13 and µ = ε, 8 ≤ nq ≤ 11 re-

spectively; kc = 1.8. The dashed lines show

the scaling relation.
The shift of the critical point ∆kc(ε) = kc −kc(ε) depends on ε, µ and nq. From the IPR data

obtained for various ε, µ, nq we find that the global parameter dependence can be described by

the scaling relation ∆kc(ε) = Aε̃ α, ε̃ = εng
√

nq. The data fit gives A = 3.0, α = 0.64 for

µ = 0 and A = 4.8, α = 0.68 for µ = ε.

In the vicinity of the critical point the algorithm gives a quadratic speedup in computation of

diffusion rate and localization length, comparing to the known classical algorithms.

A. A. Pomeransky and D. L. Shepelyansky
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The complexity of quantum algorithm
The quantum states n = 0, ..., N − 1 are represented by one quantum register with nq qubits so that

N = 2nq . The initial state with all probability at n0 = 0 corresponds to the state |00...0〉 (momentum n
changes on a circle with N levels). The random phase multiplication UT = exp(−iH0(n)) in the momentum
basis is performed as a random sequence of one-qubit phase shifts and controlled-NOT gates. Then the kick operator
Uk = exp(−ik(t) cos θ) is performed. One complete iteration of the algorithm requires ng elementary gates

where ng ≈ 10k(nq + 2) + n2
q.

However, in the vicinity of critical point in real d-dimensions the number of states grows with

time as nd ∼ t. Hence, up to time t the classical computation may use only N levels in each

direction so that the total number of levels is Nd ∼ t. Other levels are only very weakly populated

on this time scale and therefore they can be eliminated with a good accuracy. Thus, the number

of classical operations for t kicks can be estimated as ngcl ∼ tNd logd N ∼ t2 logd t. At the

same time the quantum algorithm will need ng ∼ dn2
qt ∼ t log2 t gates assuming d quantum

registers with Nd = 2dnq ∼ t states. The coarse-grained characteristics of the probability

distribution can be determined from few measurements of most significant qubits, e.g. W . Thus,

even if each iteration step is efficient, the speedup is only quadratic near the critical point.

A. A. Pomeransky and D. L. Shepelyansky



Phase diagram for the Grover algorithm with static imperfections,
Eur. Phys. J. D 31, 131 (2005) KIAS, Seoul, 22 - 24 August, 2005

Phase diagram for the Grover algorithm
with static imperfections

An unstructured database is presented by N = 2nq states of quantum register with nq

qubits: {|x〉}, x = 0, . . . , N − 1. The searched state |τ〉 can be identified by oracle function

g(x), defined as g(x) = 1 if x = τ and g(x) = 0 otherwise. The Grover iteration operator Ĝ

is a product of two operators: Ĝ = D̂Ô. Here the oracle operator Ô = (−1)g(x̂) is specific to

the searched state |τ〉, while the diffusion operator D̂ is independent of |τ〉: Dii = −1 + 2
N

and Dij = 2
N (i �= j). For the initial state |ψ0〉 =

�N−1
x=0 |x〉/√N , t applications of the

Grover operator Ĝ give:

|ψ(t)〉 = Ĝt|ψ0〉 = sin ((t + 1)ωG)|τ〉 + cos ((t + 1)ωG)|η〉

where the Grover frequency ωG = 2 arcsin(
�

1/N) and |η〉 =
�(0≤x<N)

x�=τ |x〉/√N − 1.

Hence, the ideal algorithm gives a rotation in the 2D plane (|τ〉, |η〉).

A. A. Pomeransky, O. V. Zhirov and D. L. Shepelyansky



Phase diagram for the Grover algorithm with static imperfections,
Eur. Phys. J. D 31, 131 (2005) KIAS, Seoul, 22 - 24 August, 2005

The implementation of the operator D through the elementary gates requires an ancilla qubit.

As a result the Hilbert space becomes a sum of two subspaces {|x〉} and {|x+N〉}, which differ

only by a value of (nq + 1)-th qubit. These subspaces are invariant with respect to operators

O and D: O = 1 − 2|τ〉〈τ | − 2|τ + N〉〈τ + N |, D = 1 − 2|ψ0〉〈ψ0| − 2|ψ1〉〈ψ1|,
where |ψ1〉 =

�N−1
x=0 |x + N〉/√N and |ψ0,1〉 correspond to up/down ancilla states. Then

D can be represented as D = WRW (Grover (1997)), where the transformation W =

Wnq . . . Wk . . . W1 is composed from nq one-qubit Hadamard gates Wk, and R is the

nq-controlled phase shift defined as Rij = 0 if i �= j, R00 = 1 and Rii = −1 if i �= 0

(i, j = 0, . . . , N −1). In turn, this operator can be represented as R = Wnqσ
x
nq−1 . . . σx

1 ∧nq

σx
nq−1 . . . σx

1Wnq, where ∧nq is generalized nq-qubit Toffolli gate, which inverts the nq-th qubit

if the first nq − 1 qubits are in the state |1〉. The construction of ∧nq from 3-qubit Toffolli gates

with the help of only one auxillary qubit is described by A.Barenco et al. (1995). As a result

the Grover operator G is implemented through ng = 12ntot − 42 elementary gates including

one-qubit rotations, control-NOT and Toffolli gates. Here ntot = nq + 1 is the total number of

qubits.
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Oscillations of the Grover search probability

Probability of searched state wG(t) (top) and

fidelity f(t) (bottom) as a function of the

iteration step t in the Grover algorithm for

ntot = 12 qubits. Dotted curves show re-

sults for the ideal algorithm (ε = 0), dashed

and solid curves correspond to imperfection

strength ε = 4 ·10−4 and 10−3, respectively.

A typical example of imperfection effects on the accuracy of the Grover algorithm for a fixed

disorder realization of HS on 3 × 4 qubit lattice.
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Husimi function in the Grover algorithm

Evolution of the Husimi function in the Grover

algorithm at times t = 0, 17, and 34 (from

left to right), and for ε = 0, 0.001, and

0.008 (from top to bottom). The qubit lat-

tice and disorder realization are the same as in

previous Fig. The vertical axis shows the com-

putational basis x = 0, . . . , 2N − 1, while

the horizontal axis represents the conjugated

momentum basis. Density is proportional to

color changing from maximum (red) to zero

(blue).
the probability is mainly distributed over four states corresponding to four straight lines in phase

space: |τ0〉 = |τ〉 ; |τ1〉 = |τ + N〉 ; |η0〉 = |η〉 ; |η1〉 =
�(0≤x<N)

x �=τ |x + N〉/√N − 1
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Phase diagram for spectral density

Phase diagram for the spectral density S(ω)

as a function of imperfection strength ε,

ntot = 12, same disorder realization as in

previous Fig. Color is proportional to density

S(ω) (yellow for maximum and blue for zero).

The transition rate induced by imperfections after one Grover iteration is given by the Fermi

golden rule: Γ ∼ ε2n2
gntot, where ntot appears due to random contribution of qubit couplings ε

while n2
g factor takes into account coherent accumulation of perturbation on ng gates used in one

iteration. In the Grover algorithm the four states are separated from all other states by energy

gap ∆E ∼ 1 (sign change introduced by operators O and D). Thus these four states become

mixed with all others for ε > εc ≈ 1.7/(ng
√

ntot), when Γ > ∆E.
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Averaging over disorder

Dependence of probabilities wG (a,c) and

w4 (b,d) on rescaled imperfection strength

ε/εc. For panels (a,b) ntot = 12, squares

and pluses show data for two typical disor-

der realizations, green/grey area shows the

region of probability variation for various dis-

order realizations (see text), full thick curves

give average dependence w̄G, w̄4.

Dashed area bounded by thin curves show the region of probability variation in the single-kick

model, open circles give the average data in this model with rescaling factor R = 0.56. Panels

(c,d) show w̄G, w̄4 for ntot = 9 (triangles), 12 (full circles), 15 (open squares) and 16 (full

squares). In panel (c) full curves are given by theory for same ntot values from top to bottom,

R = 0.56.
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Theoretical estimates for the Grover algorithm

In the regime where the dynamics of Grover algorithm is dominated by four states subspace

the single-kick model can be treated analytically. The matrix elements of the effective Hamiltonian

in this space are

Heff =

�
���

A + a 0 −iωG 0

0 A − a 0 −iωG

iωG 0 B b

0 iωG b B

�
��� , (1)

where A = −Rng

�nq
i=1 ai〈τ |σ(z)

i |τ〉, B = Rng

�nq
i<j bi,j − b, a = −Rnganq+1 and

b = Rng(bnq+1,nq+2−Lx + bnq+1,Lx + bnq,nq+1 + bnq+1−Lx,nq+1) and qubits are arranged on

Lx ×Ly lattice, and numerated as i = x + Lx(y − 1), with x = 1, . . . , Lx, y = 1, . . . , Ly.

In the limit of large nq the terms a, b are small compared to A, B by a factor 1/
√

nq and Heff

is reduced to 2 × 2 matrix, which gives wG = 2ω2
G/[(A − B)2 + 4ω2

G].
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For large nq the difference A − B has a Gaussian distribution with width σ =

Rng

�
nq/3

�
α2 + 2β2 = εRng

√
nq. The convolution of wG with this distribution gives

w̄G =
�

π/2(1 − erf(
√

2ωG/σ)) exp (2ω
2
G/σ

2
) ωG/σ (2)

This formula gives a good description of numerical data in Fig. c that confirms the validity of single-

kick model. For σ � ωG and a typical disorder realization with (A−B) ∼ σ the actual frequency

of Grover oscillations is strongly renormalized: ω ≈ (A − B) ∼ σ � ωG, and in agreement

with previous Fig. ω ∼ ε/εc. In this typical case wG ∼ ω2
G/σ2 � 1 (almost total probability

is in the states |η0〉,|η1〉). Hence, the total number of quantum operations Nop, required for

detection of searched state |τ〉, can be estimated as Nop ∼ NM/ω ∼ σ/ω2
G ∼ εN/εc, where

NM ∼ 1/wG ∼ σ2/ω2
G is a number of measurements required for detection of searched state.

Thus, in presence of strong static imperfections the parametric efficiency gain of the Grover

algorithm compared to classical one is of the order εc/ε. For ε ∼ ωG the efficiency is comparable

with that of the ideal Grover algorithm while for ε ∼ εc there is no gain compared to the classical

case.
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