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Abstract

It is widely believed that measurements in a quantum system introduce noise and decoherence, thus destroying
localization. Indeed, it was shown that, for the kicked rotator in a localized regime, a complete measurement
of the momentum induces diffusion. In this poster we show that, contrary to the expectations, if we properly
choose our measurement operators, we can still have a localized regime. Such operators can be naturally
implemented as single-qubit measurements on a quantum computer simulating a kicked rotator. A transition
localization/delocalization, obtained by increasing the kick strength and/or by measuring different qubits is
discussed.

Classical kicked rotator - Chirikov Standard Map

H = T
2 I2 + k cos θ

∑
n δ(τ − tT )

{
It+1 = It + k sin θt

θt+1 = θt + TIt+1

The classical dynamics depends on K = kT

* K = 0: integrable system

* 0 < K < Kg ≈ 0.97 mixed phase space -
bounded motion

* K À Kg diffusion in the momentum space:
〈(It − I0)

2〉 ∼ Dt

Quantum kicked rotator

Quantization: θ → θ̂
I → n̂ = −i~ ∂

∂θ (~ = 1)

Evolution over a period T : Floquet operator

U(T, k) = Ufree(T )× Ukick(k) = e−i T
2 n̂2

eik cos θ̂
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Dynamical localization:

after a time tH the diffusion process stops.
The eigenstates of U(T )in the momentum repre-
sentation are localized ψn ∼ e|n−n0|/` ` ∼ D/2
is the localization length

Mapping to a solid state model
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Measurement

Quantum measurement on a state |ψ〉 are described by a set of {Mm}
measurement operators
measurement operators satisfy: completeness equation

∑
m MmM†

m = I
Probability of outcome m: p(m) = 〈ψ|MmM†

m|ψ〉.
completeness equation ⇐⇒ P

m p(m) = 1

state after the measurement: |ψm〉 = Mm|ψ〉√
p(m)

POVM measurement

Positive Operator-Valued Measurement {Em}
Em positive operators,

∑
m Em = I

p(m) = 〈ψ|Em|ψ〉 ≥ 0; |ψm〉 = Em|ψ〉√
p(m)

Projective Measurement

Pm is a projector, (P
†
m = Pm, P2

m = Pm).

Observable M M =
∑

m mPm

p(m) = 〈ψ|Pm|ψ〉; |ψm〉 = Pm|ψ〉√
p(m)

Measurement-induced quantum diffusion

Kaulakys,Gontis, Phys.Rev.A 56, 1997; Facchi, Pascazio, Scardicchio, Phys.Rev.Lett.83, 1999

Kicked rotator: periodicity in θ → discrete momentum states |n〉; eigenvalues In = n (~ = 1);
〈θ|n〉 = einθ/

√
2π Measurements in the momentum basis Pm = |m〉〈m|

Kaulakys and Gontis- simulations:
measurement in the momentum basis after
each S kicks: Diffusion
〈(nt − n0)2〉 = k2

2T t (if S = 1)
a) no measurements

c) S=200

d) S=1
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Facchi et al.: Density Matrix formalism. Measurement at each step, Pn(t) = Tr(|n〉〈n|ρt)
probability of outcome n for the momentum, after t steps. Analytical calculations for the
evolution in time of 〈n〉 and 〈n2〉.
Results: 〈n〉t = 〈n〉0 -no drift

〈n2〉t = 〈n2〉0 + k2

2T - diffusion

The Density Matrix is diagonal in the momentum basis after each measurement
(no quantum coherence). k2

2T is not the exact classical diffusion coefficient D
Classical dynamics is not recovered by such a measurement procedure

Classical analog

After a measurement in the momentum basis, for the Heisenberg principle θ is fully
undetermined and can be replaced by a random variable. A corresponding classical map (ξt

is a stochastic process) is:
{

θt = ξt

It+1 = It + k sin θt
This gives rise to a diffusive dynamics and the
same scaling 〈I2〉 = k2

2T
also in the classically integrable case

Quantum computer

• Quantum bit (qubit): 2 level system, logical states |0〉, |1〉; α|0〉+ β|1〉
• Quantum register: set of nq qubits, Hilbert space H of size N = 2nq

• |j〉 ∈ H, |j〉 = |a1(j), a2(j), . . . , anq (j)〉, j = 0, . . . , N − 1

• a1(j), . . . , anq (j) binary representation of j
j = 2nq−1a1(j) + 2nq−2a2(j) + . . . + anq (j)

• Quantum register described by |ψ〉 =
∑

j∈H ψj |j〉
• Unitary Evolution - Unitary elementary operations = Quantum Gates

Kicked Rotator simulated on a Quantum computer

Initial state |ψ0〉 =
∑

j ψ0
j |j〉 in the momentum representation

j < N/2: negative momenta; typical initial condition ψ0
j = δj,N/2

Classical Algorithm

• Free rotation Ufree(T ) diagonal in the
momentum basis: ∼ N operations

• Fast Fourier Transform (FFT) ∼
N log N operations→ position basis

• Kick Ukick(k) diagonal in position ba-
sis, ∼ N operations

• FFT back to momentum representa-
tion

Quantum Algorithm

• Free rotation Ufree(T ) decomposed in
log N2 = n2

q quantum gates

• Quantum Fourier Transform (QFT)∼
log N2 operations → position basis

• Kick Ukick(k) realized in ∼ n3
q elemen-

tary gates

• QFT back to momentum representa-
tion

∼ N log N ⇐= 1 MAP STEP =⇒∼ log N3

Measurements on a quantum computer

Measuring the momentum {Pm = |m〉〈m|} ⇐⇒ Measuring ALL the qubits.

Partial measurements are possible. We measure only a part of the quantum register

The density matrix is not diagonal after such a measurement: Quantum Correlations - Quan-
tum Effects are still present
Localization is a quantum effect due to interference: are there cases in which localization is
preserved?
Measuring qubit nm: 2 projectors P0(nm), P1(nm), onto the states where qubit nm is 0 or 1.

P0,1(nm) =
∑

k∈S0,1(nm) |k〉〈k| S0,1(nm) : {k ∈ [0, N − 1]; anm(k) = 0, 1}.

Measuring the most significant qubit: selecting positive/negative momenta

P0(1) =
P

k=0,N/2−1 |k〉〈k| P1(1) =
P

k=N/2,N |k〉〈k|

Measurement of a qubit: example

P0,1(nm) =
∑

k∈S0,1(nm) |k〉〈k| S0,1(nm) : k ∈ [0, N − 1]; anm(k) = 0, 1

nm = nq: P0(nq) projects onto even mo-

mentum states, P1(nq) onto odd states.

nm = 1: P0(1) projects onto negative

momentum, P1(1) on positive momentum

states.

The sets S0,1(nm) are collection of 2nm−1

intervals of size 2nq−nm

Example: nq = 10
nm = 2

sets of size 28 = 256, S0(2), S1(2) −500 −250 0 250 500
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Kicked Rotator with measurements

We consider a kicked rotator in a localized regime, T = 2, k = 2, . . . 20, N = 2nq

nq = 9, . . . 12. The initial state is concentrated in n0 = 0, j0 = N/2 j < N/2 corresponds
to negative momenta, j > N/2 to positive ones. After each map iteration we perform
a measurement of qubit nm. In the system without measurement, diffusion stops due to
localization effects. Depending on the measured qubit nm, we have different regimes

• Diffusion if nm is the least significant qubit, nm = nq

• Localized regimes, depending on the choice of nm, and on the values of k

• Localization/delocalization transition at fixed nm, by increasing k

Simulation of the measurement procedure
1 Sampling the measurement procedure: at each step we compute 〈ψ|P0(nm)|ψ〉,
〈ψ|P1(nm)|ψ〉 and according to this probabilities we project onto P0(nm)|ψ〉,
P1(nm)|ψ〉. We perform t such steps. Then we average over M realizations of this
dynamics. Sampling Method

2 At each step we compute P0,1(nm)|ψ〉. Then we add a random phase at each vectors.
|ψ〉 → eiφ0P0(nm)|ψ〉 + eiφ1P1(nm)|ψ〉. So P0(nm)|ψ〉 and P1(nm)|ψ〉 are incoherent.
Phase Method

Then, we compute 〈n2〉 =
∑

n n2|ψn|2 and the Inverse Participation Ratio (IPR) ξ =
1/

∑
n |ψn|2 to find localized/extended regimes.

In the case (1) we computed |ψav
n |2 = 1

M

∑
l=1,M |ψn(l)|2, where l labels the measurement

procedure.

Sampling the measurement procedure: average wave function
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T = 2, k = 2, nq = 10, t = 55. Examples
of wave function, for the free case, a case
where localization is preserved and a case
where measuring a single qubits induces
diffusion. Violet curve: no measurements,
black curve nm = nq − 8, red curve
nm = nq

Main plot: average over M = 50 measure-

ment realizations. Inset: only one mea-

surement realization

Results - Sampling the measurement procedure
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〈n2〉 as a function of time t. Parameters

are T = 2, k = 2. Violet curve: evolu-

tion without measurements, the diffusion

is frozen by localization effects. Upper

curves: we measure the least significant

qubit (nm = nq), thus obtaining a diffu-

sive behavior. Colors are black for nq = 9,

red for nq = 10, green for nq = 11, blue

for nq = 12. Lower curves (thin black and

yellow nq = 9, 12): nm = nq − 8, The be-

havior is typical of a localized regime. 〈n2〉
does not depend on the size of the system

N = 2nq
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IPR ξ of |ψav
n |2 as a function of time t. Pa-

rameters are T = 2, k = 2. Violet curve:

evolution without measurements, the dif-

fusion is frozen by localization effects. Up-

per curves: we measure the least significant

qubit (nm = nq), thus obtaining a diffu-

sive behavior ξ ∼ N . Colors are black for

nq = 9, red for nq = 10, green for nq = 11,

blue for nq = 12. lower curves (thin black

and yellow nq = 9, 12): nm = nq − 8, The

behavior is typical of a localized regime. ξ

does not depend on N = 2nq

Comparison - Phase and Sampling methods

10
1

10
3

10
5

t

10
1

10
3

10
5

<
n2 >

10
1

10
3

10
5

10
7

t

10
0

10
1

10
2

10
3

<
n2 >

k = 2, 6, T = 2, nq = 10. Phase method:

red (k = 6) and green (k = 2) curves. Sam-

pling method: black (k = 2) and blue (k = 6)

curves. Upper Plot: comparison for two dif-

fusive cases (nm = nq). Lower plot: compar-

ison for two localized cases (nm = nq − 8).

We notice that the agreement is very good.

Moreover, since the simulations are faster

with the phase method, we could reach larger

t. For instance, in the lower plot, it is shown

that the anomalous diffusion 〈n2〉 ∼ t0.2

stops into a localized state.

k dependence - localization/delocalization transition
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Sampling method: IPR for the average

wave function as a function of k, for nm =

nq − 8 and nq = 9 (squares), nq = 9 (di-

amonds), nq = 11 (triangles), nq = 12

(stars). Up to k = 6 ξ does not depends

on the size of the system (signature of lo-

calization). For larger k, ξ shows a depen-

dence on N , typical of an extended state.

In the inset, ξ vs. k for the evolution with-

out measurements
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Sampling method: IPR for the aver-

age wave function as a function of k,

for nm = nq − 9 and nq = 10 (dia-

monds), nq = 11 (triangles), nq = 12

(stars). Increasing nm changes the local-

ization/delocalization border. The transi-

tion seems to depend on k via the ratio

between the free localization length and

2nq−nm . In the inset, ξ vs. k for the evo-

lution without measurements

k dependence - localization/delocalization transition
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Phase Method: IPR as a function of k, for

nm = nq−8 and nq = 9 (squares), nq = 9

(diamonds), nq = 11 (triangles), nq = 12

(stars). Up to k = 6 ξ does not depends

on the size of the system (signature of lo-

calization). For larger k, ξ shows a depen-

dence on N , typical of an extended state.

Here the ξ values are different if compared

to the sampling method, but we get the

same k values for the localized/extended

transition
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Phase Method: IPR as a function of k

for nm = nq − 9 and nq = 10 (dia-

monds), nq = 11 (triangles), nq = 12

(stars). Increasing nm changes the local-

ization/delocalization border. The transi-

tion seems to depend on k via the ratio

between the free localization length and

2nq−nm . Here the ξ values are different

if compared to the sampling method, but

we get the same k values for the local-

ized/extended transition

Summary and perspectives

* Measurement of a single qubit in the Kicked Rotator in a localized regime

1 nm = nq least significant qubit: measurement induces diffusion

2 nm − nq > 9 for small k localization is still present

3 transition localized / extended states in k for fixed nm − nq

role of the free localization length in the transition

4 Random Phase Method and Sampling Method give qualitatively the same results

5 good agreement for 〈n2〉, differences in ξ

* There exist measurements which preserve quantum localization

* Such measurements are naturally implemented on a Quantum Computer as single qubit
measurements

* Role of the localization length of the unperturbed system in the transition

• Experimental set-ups

• Detailed study of the measurement process with a density matrix formalism


