A measurement which preserves localization
 Marcello Terraneo
 Laboratoire de Physique Théorique, IRSAMC, Université Paul Sabatier, Toulouse

Abstract

It is widely believed that measurements in a quantum system introduce noise and decoherence, thus destroying localization. Indeed, it was shown that, for the kicked rotator in a localized regime, a complete measurement of the momentum induces diffusion. In this poster we show that, contrary to the expectations, if we properly choose our measurement operators, we can still have a localized regime. Such operators can be naturally implemented as single-qubit measurements on a quantum computer simulating a kicked rotator. A transition localization/delocalization, obtained by increasing the kick strength and/or by measuring different qubits is discussed.

Quantization: $\theta \rightarrow \hat{\theta}$
$I \rightarrow \hat{n}=-i \hbar \frac{\partial}{\theta}$$\quad(\hbar=1)$ $U(T, k)=U_{\text {free }}(T) \times U_{\text {kick }}(k)=e^{-i \frac{T}{2} \hat{\hbar}^{2}} e^{i k \cos \hat{\theta}}$

Dynamical localization:
ter a time t_{H} the diffusion process stop. The eigenstates of $U(T)$ in the momentum repre-
sentation are localized $\psi_{n} \sim e^{n-n_{0} / \ell} \ell \sim D / 2$ is the localization length

Mapping to a solid state model

Measurement

Quantum measurement oi
neasuruement operators satisfy: completeness equation $\sum_{m} M_{m} M_{m}^{\dagger}=$
Probability of outcome $m: p(m)=\langle\psi| M_{m} M_{m}^{\dagger} \mid \psi$.
completeness equation $\longleftrightarrow \sum_{m} p(m)=1$

POVM measurement

Positive Operator-Valued Measurement E
 $p(m)=\langle\psi| E_{m}|\psi\rangle \geq 0 ;\left|\psi_{m}\right\rangle=\frac{E_{m}|\psi\rangle}{\sqrt{(m)}} \quad p(m)=\langle\psi| P_{m}|\psi\rangle ;\left|\psi_{m}\right\rangle=\frac{P_{m}|\psi|}{\sqrt{m}}$

Measurement-induced quantum diffusion
Kaulakys,Gontis, Phys.Rev.A 56, 1997, Facchi, Pascazio, Scardicchio, Phys. Rev.Lett.83, 1999 Kicked rotator: periodicity in $\theta \rightarrow$ discrete momentum states $|n\rangle ;$ eigenvalues $I_{n}=n(\hbar=1)$; $|\theta| n\rangle=e^{i n \theta} / \sqrt{2 \pi}$ Measurements in the momentum basis $P_{m}=|m\rangle\langle m|$
Kaulakys and Gontis- simulations:
heasurement in the momentum basis after
ach S kicks: Diffusion
$\left.\left(n_{t}-n_{0}\right)^{2}\right\rangle=\frac{k^{2}}{22} t($ if $S=1)$
$\left.\left(n_{t}-n_{0}\right)^{2}\right\rangle=\frac{R}{2 T} t$
a) no measurements
c) $\mathrm{S}=200$
d) $\mathrm{S}=1$

Facchi et al.: Density Matrix formalism. Measurement at each step, $P_{n}(t)=\operatorname{Tr}\left(|n\rangle\langle n| \rho_{t}\right)$
robability of outcome n for the momentum, after t steps. Analytical calculations for the
volution in time of $\langle n\rangle$ and $\langle n\rangle$.
Results: $\langle n\rangle_{t}=\langle n\rangle_{0}$-no drift

The Density Matrix is diagonal in the momentum basis after each measuremen (no quantum coherence). $\frac{k^{2}}{2 T}$ is not the exact classical diffusion coefficie
Classical analog

After a measurement in the momentum basis, for the Heisenberg principle θ is fully ndetermined and can be replaced by a random variable. A corresponding classical map (ξ_{t} $\left\{\begin{array}{cc}\theta_{t}= & \xi_{t} \\ I_{t+1}= & I_{t}+k \sin \theta_{t}\end{array}\right.$

This gives rise to a diffusive dynamics and the Same scaling $\left\langle I^{2}\right\rangle=\frac{k^{2}}{2 T}$

Quantum computer

Quantum bit (qubit): 2 level system, logical states $|0\rangle,|1\rangle ; \alpha|0\rangle+\beta \mid 1$
Quantum register: set of n_{q} qubits, Hilbert space \mathbb{H} of size $N=2^{n_{q}}$

- $|j\rangle \in \mathbb{H},|j\rangle=\left|a_{1}(j), a_{2}(j), \ldots, a_{n_{q}}(j)\right\rangle, j=0, \ldots, N-1$
$a_{1}(j), \ldots, a_{n_{q}}(j)$ binary representation of j
$j=2^{n_{q}-1} a_{1}(j)+2^{n_{q}-2} a_{2}(j)+\ldots+a_{n_{q}}(j)$
- Quantum register described by $|\psi\rangle=\sum_{j \in H 刂} \psi_{j}|j\rangle$

Unitary Evolution - Unitary elementary operations $=$ Quantum Gate
Kicked Rotator simulated on a Quantum computer
Initial state $\left.\left|\psi_{0}\right\rangle=\sum_{j} \psi_{j}^{0} j\right\rangle$ in the momentum representation
$j<N / 2$: negative momenta; typical initial condition $\psi_{j}^{0}=\delta_{j, N / 2}$
Classical Algorithm
Free rotation $U_{\text {free }}(T)$ diagonal in the
momentum basis $\sim N$ operations
Fast Fourier Transfon(FFT)

- Fast Furrier $\left.\begin{array}{l}\text { Transform } \\ N \log N \text { (FFT) } \\ \text { operations } \rightarrow \text { position basis }\end{array}\right)$
- Kick $U_{k i c k}(k)$ diagonal in position ba
sis, $\sim N$ operations
sis, $\sim N$ operations
$\underset{\text { Fion back to momentum representa- }}{\text { tion }}$

Measurements on a quantum compute
Measuring the momentum $\left\{P_{m}=|m\rangle\langle m|\right\} \Longleftrightarrow$ Measuring ALL the qubits.
Partial measurements are possible. We measure only a part of the quantum register
The density matrix is not diagonal after such a measurement: Quantum Correlations - Quan-
tum Effects are still present
Localization is a quantum effect due to interference: are there cases in which localization is
preserve?
Measuring qubit $n_{m}: 2$ projectors $P_{0}\left(n_{m}\right), P_{1}\left(n_{m}\right)$, onto the states where qubit n_{m} is 0 or 1 .
$P_{0,1}\left(n_{m}\right)=\sum_{k \in S_{0,1}\left(n_{m}\right)}|k\rangle\langle k| \quad S_{0,1}\left(n_{m}\right):\left\{k \in[0, N-1] ; a_{n_{m}}(k)=0,1\right\}$.
Measuring the most significant qubit: selecting positive $/$ negative momenta

$$
P_{0}(1)=\sum_{k=0, N / 2-1}|k\rangle\langle k| P_{1}(1)=\sum_{k=N / 2, N}|k\rangle\langle k|
$$

Measurement of a qubit: example

\underline{k} dependence - localization/delocalization transition

\underline{k} dependence - localization/delocalization transition

$\underline{\text { Summary and perspectives }}$
Measurement of a single qubit in the Kicked Rotator in a localized regime $1 n_{m}=n_{q}$ least significant qubit: measurement induces diffusion $2 n_{m}-n_{q}>9$ for small k localization is still present 3 transition localized / extended states in k for fixed
role of the free localization length in the transition 4 Random Phase Method and Sampling Method give qualitatively the same results 5 good agreement for $\left\langle n^{2}\right\rangle$, differences in ξ
There exist measurements which preserve quantum localization Such measuren
Role of the localization lenoth of the unperturbed system in the transition - Experimental set-ups

- Detailed study of the measurement process with a density matrix formalism

$\operatorname{IPR} \xi$ of $\left|\psi_{n}^{a v}\right|^{2}$ as a function of time t. PaIPR ξ of $\left|\psi_{a v}^{a v}\right|^{2}$ as a function of time t. Pa
rameters are $T=2, k$. Violet curve
evolution without measurements, the dif rameters are $T=2, k=2$. Molet curve
evolution without measurents, the dif
fusion is frozen by localization effects. Up fusion is frozen by localization effects. UP
per urves: we measure the least significan per curves: we measure the least significant
qubit $\left(n_{m}=n_{q}\right)$, thus obtaining a difu
sive behavior $\xi \sim N$. Colors are black for $n_{q}=9$, red for $n_{q}=10$, green for $n_{q}=11$
blue for $n_{q}=12$. lower curves thin black blue for $n_{q}=12$. lower curves (thin blach
and yellow $\left.n_{q}=9,12\right): n_{m}=n_{q}-8$, Th behavior is typical of a localize
does not depend on $N=2^{n_{q}}$

