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Ecological systems have a high complexity combined with stability and rich biodiversity. The analysis
of their properties uses a concept of mutualistic networks and provides a detailed understanding of
their features being linked to a high nestedness of these networks. Using the United Nations COMTRADE
database we show that a similar ecological analysis gives a valuable description of the world trade:
countries and trade products are analogous to plants and pollinators, and the whole trade network
is characterized by a high nestedness typical for ecological networks. Our approach provides new
mutualistic features of the world trade.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ecological systems are characterized by high complexity and
biodiversity [1] linked to nonlinear dynamics and chaos emerging
in the process of their evolution [2,3]. The interactions between
species form a complex network whose properties can be analyzed
by the modern methods of scale-free networks [4–7]. An important
feature of ecological networks is that they are highly structured,
being very different from randomly interacting species [7,8]. Re-
cently it has been shown that the mutualistic networks between
plants and their pollinators [8–12] are characterized by high nest-
edness [13–16] which minimizes competition and increases bio-
diversity. It is argued [14] that such type of networks appear in
various social contexts such as garment industry [15] and banking
[17,18]. Here we apply a nestedness analysis to the world trade
network using the United Nations COMTRADE database [19] for
the years 1962–2009. Our analysis shows that countries and trade
products have relations similar to those of plants and pollinators
and that the world trade network is characterized by a high nest-
edness typical of ecosystems [14]. This provides new mutualistic
characteristics for the world trade.

2. Results

The mutualistic World Trade Network (WTN) is constructed on
the basis of the UN COMTRADE database [19] from the matrix

* Corresponding author.
E-mail address: ermann@tandar.cnea.gov.ar (L. Ermann).
URLs: http://www.tandar.cnea.gov.ar/~ermann (L. Ermann),

http://www.quantware.ups-tlse.fr/dima (D.L. Shepelyansky).

of trade transactions M p
c′,c expressed in USD for a given product

(commodity) p from country c to country c′ in a given year (from
1962 to 2009). For product classification we use 3-digit Standard
International Trade Classification (SITC) Rev. 1 with the number of
products N p = 182. All these products are described in [19] in the
commodity code document SITC Rev. 1. The number of countries
varies between Nc = 164 in 1962 and Nc = 227 in 2009. The im-
port and export trade matrices are defined as M(i)

p,c = ∑Nc
c′=1 M p

c,c′

and M(e)
p,c = ∑Nc

c′=1 M p
c′,c respectively. We use the dimensionless

matrix elements m(i) = M(i)/Mmax and m(e) = M(e)/Mmax where
for a given year Mmax = max{max[M(i)

p,c],max[M(e)
p,c]}. The distri-

bution of matrix elements m(i) , m(e) in the plane of indexes p
and c, ordered by the total amount of import/export in a de-
creasing order, is shown in Fig. 1 for years 1968 and 2008
(years 1978, 1988, 1998 are shown in Fig. S-1 of Supporting
Information (SI)). These figures show that globally the distribu-
tions of m(i) , m(e) remain stable in time especially in a view of
100 times growth of the total trade volume during the period
1962–2009. The fluctuations of m(e) are visibly larger compared
to m(i) case since certain products, e.g. petroleum, are exported
by only a few countries while it is imported by almost all coun-
tries.

To use the methods of ecological analysis we construct the mu-
tualistic network matrix for import Q (i) and export Q (e) whose
matrix elements take binary value 1 or 0 if corresponding ele-
ments m(i) and m(e) are respectively larger or smaller than a cer-
tain trade threshold value μ. The fraction ϕ of nonzero matrix ele-
ments varies smoothly in the range 10−6 � μ � 10−2 (see Fig. S-2
of SI) and the further analysis is not really sensitive to the ac-
tual μ value inside this broad range. Indeed, the variation of μ in

0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2012.10.056
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Fig. 1. Normalized import/export WTN matrix elements m(i) and m(e) shown on
left/right panels for years 1968 (bottom) and 2008 (top). Each panel represents the
dimensionless trade matrix elements m(i) = M(i)/Mmax and m(e) = M(e)/Mmax on
a thee-dimensional (3D) plot as a function of indexes of countries and products.
Here products/countries (p = 1, . . . , Np and c = 1, . . . , Nc ) are ordered in a decreas-
ing order of product/country total import or export in a given year. The color is
proportional to the amplitude of the matrix element changing from red (for ampli-
tude maximum) to blue (for zero amplitude). Each panel shows the 3D distribution
and its projection on 2D plane of countries–products in which the amplitude of
matrix elements is shown by the same color as in 3D. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of
this Letter.)

the range 10−5 � μ � 10−3 by two orders of magnitude produces
a rather restricted variation of ϕ only by a factor two.

It is important to note that in contrast to ecological sys-
tems [14] the world trade is described by a directed network
and hence we characterize the system by two mutualistic matri-
ces Q (i) and Q (e) corresponding to import and export. Using the
standard nestedness BINMATNEST algorithm [20] we determine
the nestedness parameter η of the WTN and the related nested-
ness temperature T = 100(1 −η). The algorithm reorders lines and
columns of a mutualistic matrix concentrating nonzero elements
as much as possible in the top-left corner and thus providing
information about the role of immigration and extinction in an
ecological system. A high level of nestedness and ordering can be
reached only for systems with low T . It is argued that the nested
architecture of real mutualistic networks increases their biodiver-
sity.

The nestedness matrices generated by the BINMATNEST al-
gorithm [20] are shown in Fig. 2 for ecology networks ARR1
(Npl = 84, Nanim = 101, ϕ = 0.043, T = 2.4) and WES (Npl = 207,
Nanim = 110, ϕ = 0.049, T = 3.2) from [12,21]. Using the same al-
gorithm we generate the nestedness matrices of WTN using the
mutualistic matrices for import Q (i) and export Q (e) for the WTN
in years 1968 and 2008 using a fixed typical threshold μ = 10−3

(see Fig. 2; the distributions for other μ values have a similar form
and are shown in Fig. S-3 of SI). As for ecological systems, for
the WTN data we also obtain rather small nestedness temperature
(T ≈ 6/8 for import/export in 1968 and T ≈ 4/8 in 2008 respec-
tively). These values are by a factor 9/4 of times smaller than the
corresponding T values for import/export from random generated
networks with the corresponding values of ϕ .

The detailed data for T in all years are shown in Fig. 3 and
the comparison with the data for random networks is given in
Figs. S-4–S-6 in SI. The data of Fig. 3 show that the value of T
changes by about 30–40% with variation of μ by a factor 1000. We
think that this is relatively small variation of T compared to enor-
mous variation of μ that confirms the stability and relevance of
ecological analysis and nestedness ordering. The nestedness tem-
perature T remains rather stable in time: in average there is 40%
drop of T from 1962 to 2000 and 20% growth from 2000 to 2009.
We attribute the growth in last decade to the globalization of
trade. Even if the nestedness temperature T may be sensitive to

Fig. 2. Nestedness matrices for the plant–animal mutualistic networks on top panels,
and for the WTN of countries–products on middle and bottom panels. Top-left and
top-right panels represent data of ARR1 and WES networks from [12,21]. The WTN
matrices are computed with the threshold μ = 10−3 and corresponding ϕ ≈ 0.2 for
years 1968 (bottom) and 2008 (middle) for import (left panels) and export (right
panels). Red and blue represent unit and zero elements respectively; only lines and
columns with nonzero elements are shown. The order of plants–animals, countries–
products is given by the nestedness algorithm [20], the perfect nestedness is shown
by green curves for the corresponding values of ϕ . (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

Fig. 3. Nestedness temperature T as a function of years for the WTN for μ = 10−3

(curves), 10−4 (circles), 10−6 (squares); import and export data are shown in red
and blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this Letter.)
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Fig. 4. Top 20 EcoloRank countries as a function of years for the WTN import/export
on top/bottom panels. The ranking is given by the nestedness algorithm [20] for the
trade threshold μ = 10−3; each country is represented by its corresponding flag.
As an example, dashed lines show time evolution of the following countries: USA,
UK, Japan, China, Spain. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)

variation of ϕ the data of Figs. S-2 and S-6 show that in the main
range of 10−5 � μ � 10−3 the variation of ϕ and T remains rather
small. The comparison with the randomly generated networks also
shows that they have significantly larger T values compared to
the values found for the WTN (see also discussion of Figs. S-4–S-6
in SI).

The small value of nestedness temperature obtained for the
WTN confirms the validity of the ecological analysis of WTN
structure: trade products play the role of pollinators which pro-
duce exchange between world countries, which play the role of
plants. Like in ecology the WTN evolves to the state with very
low nestedness temperature that satisfies the ecological concept
of system stability appearing as a result of high network nested-
ness [14].

The nestedness algorithm [20] creates effective ecological rank-
ing (EcoloRanking) of all UN countries. The evolution of 20 top
ranks throughout the years is shown in Fig. 4 for import and
export. This ranking is quite different from the more commonly
applied ranking of countries by their total import/export monetary
trade volume [22] (see corresponding data in Fig. 5) or recently
proposed democratic ranking of WTN based on the Google matrix
analysis [23]. Indeed, in 2008 China is at the top rank for total
export volume but it is only at 5th position in EcoloRanking (see
Figs. 4, 5 and Table 1 in SI). In a similar way Japan moves down
from 4th to 17th position while the USA raises up from 3rd to 1st
rank.

The same nestedness algorithm generates not only the rank-
ing of countries but also the ranking of trade products for import
and export which is presented in Fig. 6. For comparison we also

Fig. 5. Top 20 countries as a function of years ranked by the total monetary trade
volume of the WTN in import/export on top/bottom panels respectively; each coun-
try is represented by its corresponding flag. Dashed lines show time evolution of
the same countries as in Fig. 4.

show there the standard ranking of products by their trade volume.
In Fig. 6 the color of symbol marks the 1st SITC digit described
in [19] and in Table 2 in SI.

3. Discussion

The origin of such a difference between EcoloRanking and trade
volume ranking of countries is related to the main idea of mu-
tualistic ranking in ecological systems: the nestedness ordering
stresses the importance of mutualistic pollinators (products for
WTN) which generate links and exchange between plants (coun-
tries for WTN). In this way generic products, which participate
in the trade between many countries, become of primary im-
portance even if their trade volume is not at the top lines of
import or export. In fact such mutualistic products glue the skele-
ton of the world trade while the nestedness concept allows to
rank them in order of their importance. The time evolution of
this EcoloRanking of products of WTN is shown in Fig. 6 for im-
port/export in comparison with the product ranking by the mon-
etary trade volume (since the trade matrix is diagonal in product
index the ranking of products in the latter case is the same for
import/export). The top and middle panels have dominate col-
ors corresponding to machinery (SITC 7; blue) and mineral fuels
(3; black) with a moderate contribution of chemicals (5; yellow)
and manufactured articles (8; cyan) and a small fraction of goods
classified by material (6; green). Even if the global structure of
product ranking by trade volume has certain similarities with
import EcoloRanking there are also important new elements. In-
deed, in 2008 the mutualistic significance of petroleum products
(SITC 332), machindus (machines for special industries 718) and
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Fig. 6. Top 10 ranks of trade products as a function of years for the WTN. Top panel:
ranking of products by monetary trade volume; middle/bottom panels: ranking is
given by the nestedness algorithm [20] for import/export with the trade threshold
μ = 10−3. Each product is shown by its own symbol with short name written for
years 1968, 2008; symbol color marks 1st SITC digit; SITC codes of products and
their names are given in Table 2 of SI. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this Letter.)

medpharm (medical–pharmaceutic products 541) is much higher
compared to their volume ranking, while petroleum crude (331)
and office machines (714) have smaller mutualistic significance
compared to their volume ranking.

The new element of EcoloRanking is that it differentiates be-
tween import and export products while for trade volume they are
ranked in the same way. Indeed, the dominant colors for export
(Fig. 6, bottom panel) correspond to food (SITC 0; red) with con-
tribution of black (present in import) and crude materials (2; vi-
olet), followed by cyan (present in import) and more pronounced
presence of finnotclass (commodities/transactions not classified 9;
brown). EcoloRanking of export shows a clear decrease tendency of
dominance of SITC 0 and SITC 2 with time and increase of impor-
tance of SITC 3, 7. It is interesting to note that petroleum products
SITC 332 is very vulnerable in volume ranking due to significant
variations of petroleum prices but in EcoloRanking this product
keeps the stable top positions in all years showing its mutualistic
structural importance for the world trade. EcoloRanking of export
shows also importance of fish (SITC 031), clothing (SITC 841) and
fruits (SITC 051) which are placed on higher positions compared
to their volume ranking. At the same time roadvehic (SITC 732),
which are at top volume ranking, have relatively low ranking in
export since only a few countries dominate the production of road
vehicles.

It is interesting to note that in Fig. 6 petroleum crude is at the
top of trade volume ranking e.g. in 2008 (top panel) but it is ab-
sent in import EcoloRanking (middle panel) and it is only on 6th
position in export EcoloRanking (bottom panel). A similar feature
is visible for years 1968, 1978. On a first glance this looks surpris-
ing but in fact for mutualistic EcoloRanking it is important that

Fig. S-1. Same type of WTN matrix data as in Fig. 1 shown for years 1978, 1988,
1998 in panels from bottom to top respectively.

a given product is imported from top EcoloRank countries: this is
definitely not the case for petroleum crude which practically is not
produced inside top 10 import EcoloRank countries (the only ex-
ception is the USA, which however also does not export much).
Due to that reason this product has low mutualistic significance.

The mutualistic concept of product importance is at the origin
of significant difference of EcoloRanking of countries compared to
the usual trade volume ranking (see Figs. 4, 5). Indeed, in the latter
case China and Japan are at the dominant positions but their trade
is concentrated in specific products which mutualistic role is rela-
tively low. In contrast the USA, Germany and France keep top three
EcoloRank positions during almost 40 years clearly demonstrating
their mutualistic power and importance for the world trade.

In conclusion, our results show the universal features of eco-
logic ranking of complex networks with promising future applica-
tions to trade, finance and other areas.
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Appendix A. Supporting information

Here we present the Supporting Information (SI) for the main
part of the Letter, it includes Figs. S-1–S-6, Table 1, Table 2.

In Fig. S-1, in a complement to Fig. 1, we show the normal-
ized WTN matrix for import m(i) and export m(e) at additional
years 1978, 1988, 1998. As in Fig. 1 all products and countries are
ordered in a decreasing order of product (p = 1, . . . , N − p) and
country (c = 1, . . . , Nc) import (left panels) and export (right pan-
els) in a given year. These data show that the global distribution
remains stable in time: indeed, the global monetary trade volume
was increased by a factor 100 from year 1962 to 2008 (see e.g.
Fig. 5 in [20]) but the shape of the distribution remained essen-
tially the same.

The dependence of the fraction ϕ of nonzero elements of the
mutualistic matrices of import Q (i) and export Q (e) on the cutoff
threshold μ is shown in Fig. S-2. In the range of 10−6 � μ � 10−2

there is a smooth relatively weak variation of ϕ with μ.
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Fig. S-2. The fraction ϕ of nonzero matrix elements for the mutualistic network ma-
trices of import Q (i) and export Q (e) as a function of the cutoff trade threshold μ
for the normalized WTN matrices m(i) and m(e) for the year 2008; the red curve
shows the case of import while the blue curve shows the case of export network.
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this Letter.)

Fig. S-3. Same as in Fig. 2: nestedness matrix for the WTN data in 2008 shown
for the threshold values μ = 10−6,10−4,10−2 (from top to bottom); the perfect
nestedness is shown by green curves for the corresponding values of ϕ taken from
Fig. S-2. (For interpretation of the reference to color in this figure legend, the reader
is referred to the web version of this Letter.)

In Fig. S-3, in addition to Fig. 2, we show the nestedness ma-
trices of WTN at various values of the cutoff threshold μ. The
data at various μ values show that in all cases the nestedness
algorithm [17] correctly generates a matrix with nestedness struc-
ture.

The variation of the nestedness temperature T with time is
shown in Fig. 3 at several values of the trade threshold μ. These
data show that in average the value of T for export is higher than
for import. We attribute this to stronger fluctuations of matrix el-
ements of m(e) compared to those of m(i) that is well visible in
Figs. 1, S-1. As it is pointed in the main part, we attribute this

Fig. S-4. Nestedness temperature T for the model given by random generated net-
works; here T is computed with 500 random realizations of network for each year
using Np , Nc and ϕ of the corresponding WTN data in this year at μ = 10−3; im-
port/export data are shown by red/blue curves respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the web ver-
sion of this Letter.)

Fig. S-5. Histogram of temperatures for 500 random generated networks per year
(from 1962 to 2009). Top (bottom) panel represents import (export) data; here the
parameter values of Np , Nc and ϕ are as for the corresponding WTN years at μ =
10−3.

Fig. S-6. Nestedness temperature in the WTN for the year 2008 as a function of
threshold μ; import/export networks are shown by red/blue curves respectively.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)

to the fact that e.g. only a few countries export petroleum crude
while the great majority of countries import this product.

In Fig. S-4 we show the nestedness temperature dependence
on time for the case of random generated networks which have
the same fraction of nonzero matrix elements ϕ as the WTN in
the given year and μ = 10−3. These data, compared with those
of Fig. 3, really demonstrate that the real WTN has values of T
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Table 1
Top 20 ranks of countries for import and export with ranking by the monetary trade volume and by the nestedness algorithm at two threshold values μ (year 2008).

Rank Import Export

Money μ = 10−3 μ = 10−2 Money μ = 10−3 μ = 10−2

1 USA USA USA China USA USA
2 Germany Germany Germany Germany Germany Germany
3 China Italy France USA France China
4 France France UK Japan Netherlands France
5 Japan Spain Italy France China Italy
6 UK Belgium Netherlands Netherlands Italy Netherlands
7 Netherlands Japan Belgium Italy UK Belgium
8 Italy UK Japan Russian Federation Belgium UK
9 Belgium Netherlands China UK Spain Japan

10 Canada China Spain Belgium Canada Spain
11 Spain Canada Canada Canada India Canada
12 Republic of Korea Mexico Russian Federation Republic of Korea Poland Switzerland
13 Russian Federation Republic of Korea Republic of Korea Mexico Sweden India
14 Mexico Russian Federation Switzerland Saudi Arabia Austria Republic of Korea
15 Singapore Poland Austria Singapore Brazil Poland
16 India Austria Poland Spain Australia Turkey
17 Poland Switzerland Sweden Malaysia Japan Czech Republic
18 Switzerland Turkey Mexico Brazil Russian Federation Austria
19 Turkey United Arab Emirates India India Denmark Thailand
20 Brazil Denmark Singapore Switzerland Thailand Denmark

Table 2
Product names for SITC Rev. 1 3-digit code used in Fig. 6.

Symbol Code Abbreviation Name

001 animals Live animals
031 fish Fish, fresh and simply preserved

051 fruits Fruit, fresh, and nuts excl. oil nuts

054 vegetables Vegetables, roots and tubers, fresh or dried
061 sugarhon Sugar and honey
071 coffee Coffee
081 feedanim Feed. stuff for animals excl. unmilled cereals
221 oilseeds Oil seeds, oil nuts and oil kernels
263 cotton Cotton

283 ores Ores and concentrates of non-ferrous base metals
331 petrolcrude Petroleum, crude and partly refined
332 petrolprod Petroleum products

341 gas Gas, natural and manufactured
512 orgchem Organic chemicals
541 medpharm Medicinal and pharmaceutical products

581 plasticmat Plastic materials, regenerated cellulose and resins

599 chemmat Chemical materials and products, n.e.s.
652 cottwoven Cotton fabrics, woven ex. narrow or spec. fabrics
653 ncottwov Textile fabrics, woven ex. narrow, spec., not cotton

667 pearlsprec Pearls and precious and semi precious stones

674 iron Universals, plates and sheets of iron or steel
682 copper Copper
711 nelecmach Power generating machinery, other than electric
714 offmach Office machines

718 machindus Machines for special industries

719 mapplpart Machinery and appliances non-electrical parts
722 elecmach Electric power machinery and switchgear
724 telecomm Telecommunications apparatus
729 oelecmach Other electrical machinery and apparatus
732 roadvehicles Road motor vehicles
735 ships Ships and boats
841 clothing Clothing except fur clothing
931 finnotclass Special transactions not class. accord. to kind

by a factor 5 (export) to 10 (import) smaller comparing to the
random networks. This confirms the nestedness structure of WTN
being similar to the case of ecology networks discussed in [12].
It is interesting to note that for random generated networks the
values of T for import are larger than for export while to the WTN
we have the opposite relation. The histogram of distribution of T
for random generated networks for all years 1962–2009 is shown

in Fig. S-5. Even minimal values of T remain several times larger
than the WTN values of T .

In Fig. S-6 we show the dependence of T on the trade thresh-
old μ for the WTN data in year 2008. We see that there is only
about 10–20% of variation of T for the range 10−5 � μ � 10−3.
Even for a much larger range 10−6 � μ � 10−2 the variation of T
remains smooth and remains in the bounds of 100%. This confirms
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the stability of nestedness temperature in respect to broad range
variations of μ. We present the majority of our data for μ = 10−3

which is approximately located in the flat range of T variation in
year 2008. The data of Table 1 for EcoloRanking of countries at
two different values of μ in year 2008 confirm the stability of this
nestedness ordering. At the same time larger values of μ stress the
importance of countries with a large trade volume, e.g. the position
of China in export goes up from rank 5 at μ = 10−3 to rank 3 at
μ = 10−2.

In Table 1 we present trade volume ranking and EcoloRanking
of top 20 countries for import/export of WTN in year 2008.

In Table 2 we give the notations and symbols for Fig. 6 with
corresponding SITC Rev. 1 codes and names. The list of all SITC
Rev. 1 codes is available at [16] (see file http://unstats.un.org/unsd/
tradekb/Attachment193.aspx). The colors of symbols in Fig. 4 mark
the first digit of SITC Rev. 1 code: 0 – red (Food and live animals);
1 – does not appear in Fig. 4 (Beverages and tobacco); 2 – vi-
olet (Crude materials, inedible, except fuels); 3 – black (Mineral
fuels, lubricants and related materials); 4 – does not appear in
Fig. 4 (Animal and vegetable oils and fats); 5 – yellow (Chemicals);
6 – green (Manufactured goods classified chiefly by material); 7 –
blue (Machinery and transport equipment); 8 – cyan (Miscella-
neous manufactured articles); 9 – brown (Commod. and transacts.
not class. accord. to kind).
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We study the structural properties of the neural network of the C.elegans (worm) from a directed graph
point of view. The Google matrix analysis is used to characterize the neuron connectivity structure and
node classifications are discussed and compared with physiological properties of the cells. Our results are
obtained by a proper definition of neural directed network and subsequent eigenvector analysis which
recovers some results of previous studies. Our analysis highlights particular sets of important neurons
constituting the core of the neural system. The applications of PageRank, CheiRank and ImpactRank to
characterization of interdependency of neurons are discussed.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The human brain neural network has an enormous complexity
containing about 1011 neurons and 1014 synapses linking various
neurons [1]. Such a complex network can only be compared with
the World Wide Web (WWW) which indexed size is estimated to
be of about 1010 pages [2]. This comparison gives an idea that
the methods of computer science, developed for WWW analysis,
can be suitable for the investigations of neural networks. Among
these methods the PageRank algorithm of the Google matrix of
WWW [3] clearly demonstrated its efficiency being at the heart of
Google search engine [4]. Thus we can expect that the Google ma-
trix analysis can find useful applications for the neural networks.
This approach has been tested in [5] on a reduced brain model
of mammalian thalamocortical systems studied in [6]. However, it
is more interesting to perform the Google matrix analysis for real
neural networks. In this Letter we apply this analysis to character-
ize the properties of neural network of C.elegans (worm). The full
connectivity of this directed network is known and documented
at [7]. The number of linked neurons (nodes) is N = 279 with the
number of synaptic connections and gap junctions (links) between
them being N� = 2990. This network is significantly smaller com-
pared to the one studied in [5] but now we are working not with
a model network but with the real worm network. Also, we use
several new rank-based methods of network analysis comparing to
those used in [5].

* Corresponding author.
E-mail addresses: kandiah@irsamc.ups-tlse.fr (V. Kandiah),

dima@irsamc.ups-tlse.fr (D.L. Shepelyansky).
URL: http://www.quantware.ups-tlse.fr/dima (D.L. Shepelyansky).

Recently, there is a growing interest to the complex network
approach for investigation of brain neural networks [8–12]. Gener-
ally these networks are directional but it is difficult to determine
directionality of links by physical and physiological measurements.
Thus, at present, the worm network is practically the only example
of neural network where the directionality of all links is estab-
lished [7]. The analysis of certain properties this directed network
has been reported recently in [11,12], however, the approach based
on the Google matrix has not been used yet.

In the last years there is a clear trend to apply various advanced
methods of network science to understand in a deeper way the
connectivity properties of brain. Thus the properties of network
centrality were used to characterize the human brain functional
graphs [13]. A study of the whole connectivity matrix of the mouse
brain has been reported recently [14]. Thus we think that our
study will allow to highlight the features of worm network using
recent advancements of computer science and push forward such
methods for investigation of more complex brain networks.

2. Google matrix construction

The Google matrix G of C.elegans is constructed using the con-
nectivity matrix elements Sij = Ssyn,i j + Sgap,i j , where Ssyn is an
asymmetric matrix of synaptic links whose elements are 1 if neu-
ron j connects to neuron i through a chemical synaptic connection
and 0 otherwise. The matrix part Sgap is a symmetric matrix de-
scribing gap junctions between pairs of cells, Sgap,i j = Sgap, ji = 1 if
neurons i and j are connected through a gap junction and 0 oth-
erwise. Following the standard rule [3,4], the matrix elements Sij

are renormalized (Sij = Sij/
∑

i Si j) for each column with non-
zero elements; the columns with all zero elements are replaced by

http://dx.doi.org/10.1016/j.physleta.2014.04.045
0375-9601/© 2014 Elsevier B.V. All rights reserved.
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Fig. 1. (Color on-line.) Google matrix G (left) and G∗ (right) for the neural network of C.elegans for N = 279 connected neurons. Matrix elements G K K ′ are shown in the
basis of PageRank index K (and K ′) and elements G∗

K ∗,K ∗ ′ are shown in the basis of CheiRank index K ∗ (and K ∗ ′) at α = 0.85. Here, x and y axes show 1 � K , K ′ � N and
1 � K ∗, K ∗ ′ � N; the elements G11, G∗

11 are placed at the top left corner; color is proportional to the square root of matrix elements which are changing from black at
minimum value (1 − α)/N to light yellow at maximum.

columns with all elements 1/N . Thus the sum of elements in each
column is equal to unity and the Google matrix takes the form

Gij = αSij + (1 − α)/N. (1)

Here α is the damping factor introduced in [3]. In the context
of the WWW, the last term of the equation describes a probabil-
ity for a random surfer to jump on any node of the network [4].
Below we use the usual value α = 0.85 [4]. All matrix elements
Ssyn,i j, Sgap,i j, Sij are given at [15].

The eigenspectrum λi and right eigenvectors ψi( j) of G satisfy
the equation
∑

j′
G jj′ψi

(
j′
) = λiψi( j). (2)

The eigenvector at λ = 1 is known as the PageRank vector. Accord-
ing to the Perron–Frobenius theorem [4] its elements P ( j) ∼ ψ1( j)
are positive and their sum is normalized to unity. Thus P ( j) gives
a probability to find a random surfer on a node j. All nodes can
be ordered in a decreasing order of probability P (K j) with high-
est probability at top values of PageRank index K j = 1,2, . . . . For
large matrices P ( j) can be found numerically by the iteration
method [4] but for C.elegans case it can be obtained by a direct
matrix diagonalization. We note that it is well established and ver-
ified for various complex networks that the PageRank distribution
is stable in respect to variation of damping factor α in a range
0.5 � α < 0.95 [4]. We also checked that it is the case for our net-
work and thus we used the usual value α = 0.85.

It is also useful to consider the Google matrix obtained from
the network with inverted directions of links (see e.g. [16–18]).
The matrix G∗ for this network with inverted direction of links
is constructed following the same definition (1). The PageRank
vector of this matrix G∗ is called the CheiRank vector with prob-
ability P∗(K ∗

j ) and CheiRank index K ∗ . According to the known
results [3,4] the top nodes of PageRank are the most popular pages,
while the top nodes of CheiRank are the most communicative
nodes [17,18].

The structure of the matrix elements of G , presented in the
PageRank ordering of nodes, and G∗ , presented in the CheiRank
ordering of nodes, is shown in Fig. 1. The number of nonzero el-
ements NG with indexes less than K is determined for various
values of K = 10,100. We find the values of ratio NG/K ≈ 1.2,10
at K = 10,100. These values correspond approximately to those
of WWW networks of Universities of Cambridge and Oxford being

Fig. 2. (Color on-line.) Top panel: spectrum of eigenvalues λ for the Google matrices
G and G∗ at α = 0.85 (black and red symbols). Bottom panel: IPR ξ of eigenvectors
as a function of corresponding Reλ (same colors).

significantly smaller than the values of Twitter network character-
ized by a strong connectivity between top PageRank nodes with
Ng/K ≈ 100 for K = 100 (see Fig. 2 in [20]). We note that the
average number of links per neuron is η = N�/N = 10.71 being
approximately the same as for WWW of Universities of Cambridge
and Oxford in 2006 [18].

The global matrix structure is asymmetric. This leads to a com-
plex spectrum of eigenvalues of G and G∗ as shown in top panel of
Fig. 2. The imaginary part of eigenvalues is distributed in a range
−0.2 < Imλ < 0.2 which is more narrow than for the networks of
Wikipedia and UK universities [19]. This is related to a significant
number of symmetric links. On the other side the networks of Le
Monde or Python have comparable width for Im λ [19]. We find
that the second by modulus eigenvalues are λ2 = 0.8214 for G and
λ2 = 0.8608 for G∗ . Thus the network relaxation time τ = 1/| ln λ2|
is approximately 5,6.7 iterations of G, G∗ .

The properties of eigenstates ψi can be characterized by the
Inverse Participation Ratio (IPR) ξi = (

∑
j |ψi( j)|2)2/

∑
j |ψi( j)|4,

which is broadly used in analysis of electron conductivity in dis-
ordered systems (see e.g. [19,20]). This quantity effectively deter-
mines the number of nodes on which is located an eigenstate ψi .
We see that some eigenstates have rather large ξ ≈ N/3 while oth-
ers have ξ located only on about ten nodes. We will return to the
discussion of properties of eigenstates later.
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Fig. 3. (Color on-line.) Left panel: dependence of PageRank (CheiRank) probabil-
ity P (K ) (P∗(K ∗)) on its index K (K ∗) shown by black (red) curve. Right panel:
dependence of ImpactRank probability P (P∗) on its index K (K ∗), obtained via
propagator of G (G∗) at α = 0.85 and γ = 0.7 for the initial probability located on
neuron RMGL (see text).

3. CheiRank versus PageRank

The dependence of probabilities of PageRank and CheiRank vec-
tors on their indexes K and K ∗ is shown in Fig. 3. A formal
fit for a power law dependence P ∝ 1/K ν, P∗ ∝ 1/K ∗ν in the
range 1 � K , K ∗ � 200 gives ν = 0.33 ± 0.03 for PageRank and
ν = 0.50 ± 0.03 for CheiRank. Of course, the number of nodes is
small compared to the WWW or Wikipedia networks but on aver-
age we can say that a power law provides a satisfactory description
of data. We note that the values of ν are notably smaller than the
usual exponent value ν ≈ 0.9 (in K ), 0.6 (in K ∗) found for the
WWW or Wikipedia networks (see e.g. [4,17]). Also, in our neu-
ral network we find that the exponent in K is smaller then in K ∗
while usually one finds the opposite situation. At the same time
due to a small size of the network we do not claim that the exact
value of ν is so important. It is better to say that its values give an
indication of tendency. We think that for large size brain network
this exponent can be determined with a better precision.

We also find that IPR ξ ≈ 85 for P and ξ ≈ 23 for P∗ so that
PageRank is distributed over a larger number of neurons. It is pos-
sible that such an inversion is related to a significant importance of
outgoing links in neural systems: in a sense such links transfer or-
ders, while ingoing links bring instructions to a given neuron from
other neurons. We note that somewhat similar situation appears
for networks of Business Process Management (BMP) where Prin-
cipals of a company are located at the top CheiRank position while
the top PageRank positions belong to company Contacts [21].

We note that our network is a directional network and as a re-
sult we have a significant asymmetry between ingoing and outgo-
ing links. As a result the ranking nodes of PageRank and CheiRank
have different probabilities and thus the top nodes have different
functions. This fact is well known for directed networks (see e.g.
[4,18,20,21]).

The correlations between PageRank and CheiRank vectors is
convenient to characterize by the correlator κ = N

∑
i P (i)P∗(i)−1

= 0.125. For C.elegans network the value of correlator is relatively
small compared to those found for Wikipedia (κ ≈ 4) and WWW
of UK universities (κ ∼ 3) [18]. In a sense for C.elegans neural net-
work the situation if more similar to the networks of Linux Kernel
(κ ≈ 0) [16] and BMP (κ = 0.164) [21]. Thus, the C.elegans network
has practically no correlations between ingoing and outgoing links.
It is argued in [16,18] that such a network structure allows to per-
form a control of information flow in a more efficient way. Namely,
it allows to reduce the propagation of errors in software codes. It
seems that the neural networks also adopt such a structure.

Each neuron i belongs to two ranks Ki and K ∗
i and it is conve-

nient to represent the distribution of neurons on the two-dimen-
sional plane (2D) of PageRank–CheiRank indexes (K , K ∗) shown
in Fig. 4. The plot confirms that there are little correlations be-

Fig. 4. (Color on-line.) PageRank–CheiRank plane (K , K ∗) showing distribution of
neurons according to their ranking. Left panel: soma region coloration – head (red),
middle (green), tail (blue). Right panel: neuron type coloration – sensory (red), motor
(green), interneuron (blue), polymodal (purple) and unknown (black). The classifi-
cations and colors are given according to WormAtlas [7].

Table 1
Top twenty neurons of PageRank (PR), CheiRank (CR); ImpactRank of G (IMPR) and
G∗ (IMCR) at initial state RMGL at γ = 0.7; following [7], the colors mark: in-
terneurons (blue bu), motor neurons (green gn), sensory neurons (red rd), polymodal
neurons (purple pu).

PR CR IMPR IMCR

1 AVAR (bu) AVAL (bu) RMGL (bu) RMGL (bu)
2 AVAL (bu) AVAR (bu) URXL (bu) AVAL (bu)
3 PVCR (bu) AVBR (bu) ADEL (rd) ASHL (rd)
4 RIH (bu) AVBL (bu) AIAL (bu) AVBR (bu)
5 AIAL (bu) DD02 (gn) IL2L (rd) URXL (bu)
6 PHAL (rd) VD02 (gn) ADLL (rd) AVEL (bu)
7 PHAR (rd) DD01 (gn) PVQL (bu) RIBL (bu)
8 ADEL (rd) RIBL (bu) ALML (rd) RMDR (pu)
9 HSNR (gn) RIBR (bu) ASKL (rd) RMDL (pu)

10 RMGR (bu) VD04 (gn) CEPDL (rd) RMDVL (pu)
11 VC03 (gn) VD03 (gn) ASHL (rd) AVAR (bu)
12 AIAR (bu) VD01 (gn) AWBL (rd) SIBVR (bu)
13 AVBL (bu) AVER (bu) SAADR (bu) AIBR (bu)
14 PVPL (bu) RMEV (gn) RMHR (gn) ADAL (bu)
15 AVM (rd) RMDVR (pu) RMHL (gn) RMHL (gn)
16 AVKL (bu) AVEL (bu) RIH (bu) AVBL (bu)
17 HSNL (gn) VD05 (gn) OLQVL (pu) SIBVL (bu)
18 RMGL (bu) SMDDR (pu) AIML (bu) ASKL (rd)
19 AVHR (bu) DD03 (gn) HSNL (gn) RID (bu)
20 AVFL (bu) VA02 (gn) SDQR (bu) SMBVL (pu)

tween both ranks since the points are scattered over the whole
plane. Neurons ranked at top K positions of PageRank have their
soma located mainly in both extremities of the worm (head and
tail) showing that neurons in those regions have important con-
nections coming from many other neurons which control head and
tail movements. This tendency is even more visible for neurons at
top K ∗ positions of CheiRank but with a preference for head and
middle regions. In general, neurons, that have their soma in the
middle region of the worm, are quite highly ranked in CheiRank
but not in PageRank. The neurons located at the head region have
top positions in CheiRank and also PageRank, while the middle re-
gion has some top CheiRank indexes but rather large indexes of
PageRank (Fig. 4 left panel). The neuron type coloration (Fig. 4
right panel) also reveals that sensory neurons are at top PageRank
positions but at rather large CheiRank indexes, whereas in general
motor neurons are in the opposite situation.

The top 20 neurons of PageRank and CheiRank vectors are given
in the first two columns of Table 1. We note that both rankings fa-
vor important signal relaying neurons such as AVA and AVB that
integrate signals from crucial nodes and in turn pilot other crucial
nodes. Neurons AVAL,AVAR, AVBL,AVBR and AVEL,AVER are consid-
ered to belong to the rich club analyzed in [12]. The right panel
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Table 2
Top ten neurons of the eigenvectors of G (left panel) and G∗ (right panel) corresponding to the 10th largest eigen-
values |λ|; IPR are respectively ξ ≈ 5 and ξ ≈ 4.

λ10 = −0.49446 |ψi |
1 AIAR 0.11986
2 AIAL 0.11159
3 ASIL 0.096475
4 ASIR 0.096236
5 AWAR 0.024228
6 ASHR 0.022241
7 RMGR 0.018502
8 AIMR 0.018387
9 ADLL 0.01837

10 PVQL 0.017547

λ10 = −0.45784 |ψ∗
i |

1 AVAL 0.10651
2 AVAR 0.079403
3 AVBR 0.036779
4 VD05 0.025086
5 VA09 0.02438
6 VD06 0.020977
7 VA08 0.020242
8 AVBL 0.019225
9 DD02 0.018684

10 PDB 0.016485

Table 3
Same as in Table 2 for 48th largest eigenvalue modulus |λ|; IPR are respectively ξ ≈ 54 and ξ ≈ 47.

λ48 = −0.30615 − 0.07037i |ψi |
1 RIH 0.017854
2 BDUR 0.017737
3 OLLR 0.016701
4 CEPDR 0.016463
5 RMGR 0.016357
6 AIAL 0.016072
7 ASHR 0.015585
8 VC04 0.015265
9 ASKR 0.014

10 IL2R 0.013978

λ48 = 0.26353 − 0.095716i |ψ∗
i |

1 RMEV 0.026461
2 RIBR 0.013343
3 OLQDR 0.013145
4 IL1DL 0.012932
5 IL1DR 0.012911
6 RIAR 0.012896
7 RICR 0.012728
8 OLQDL 0.012586
9 RIGR 0.012256

10 SMDDR 0.011958

Fig. 5. (Color on-line.) Distribution of neurons in the plane (K , K ∗) of equal oppor-
tunity ranks (see text); colors are the same as in Fig. 4.

in Fig. 3 and second two columns of Table 1 represent ImpactRank
which is discussed below.

We can also use 2DRank index K2, discussed in [17], which
counts nodes in order of their appearance on ribs of squares in
(K , K ∗) plane with the square size growing from K = 1 to K = N .
The top neurons in K2 are AVAL, AVAR, AVBL, AVBR, PVCR. Thus
at the top K2 values we find dominance of interneurons. More de-
tailed listings are available at [15].

It may be also useful to consider renormalized equal opportu-
nity rank recently discussed in [22]. In this approach PageRank
probability of node i is replaced by P (i)/d(i) where d(i) is in-
degree of node i. For the Google matrix this recipe should be
replaced by P (i) → P (i)/

∑
j Gi j and respectively for CheiRank by

P∗(i) → P∗(i)/
∑

j G∗
i j . The corresponding rank indexes K , K ∗ rank

the neurons in the decreasing order of these renormalized prob-
abilities. The distribution of nodes in the plane (K , K ∗) is shown
in Fig. 5. In this ranking the top K nodes correspond to important
sensory neurons rather than information relaying centers, whereas
the top nodes of K ∗ are composed mainly by motor neurons. Thus
such an approach allows to highlight additional features of C.el-
egans network being complementary to PageRank and CheiRank
properties discussed above. Tables for neuron renormalized rank-
ing are available at [15].

4. ImpactRank

In certain cases it is useful to determine an influence or im-
pact of a given neuron on other neurons. A recent proposal of
ImpactRank, described in [20], is based on the probability distri-
bution of a vector v f = (1 − γ )(1 − γ G)−1 v0, v∗

f = (1 − γ )(1 −
γ G∗)−1 v0, where v0 is initially populated neuron. The vector v f
can be viewed as a Green function propagator. The computation of
v f is obtained numerically by a summation of geometrical expan-
sion series which are convergent within approximately first 200
terms at γ ∼ 0.7 (see also [20]). The distributions of probabili-
ties of ImpactRank P (i) = v f (i), P∗(i) = v∗

f (i) versus the corre-
sponding ImpactRank indexes K , K ∗ are shown in Fig. 3 (right
panel) for the initial state neuron RMGL. The corresponding top
20 ImpactRank neurons influenced by RMGL are given in columns
IMPR, IMCR of Table 1. The analysis of neurons linked to RMGL
shows that indeed, ImpactRank correctly selects neurons influ-
enced by RMGL. The neurons in the top list of P (i) are those
pointed by outgoing links of RMGL while those in the top list of
P∗(i) are those that have ingoing links to RMGL. Such a method
can be easily applied to other initial neuron states of interest
showing a contamination propagation over the neural network
starting from initial neuron RMGL.

5. Properties of eigenstates

The Google matrix analysis of the Wikipedia hyperlink network
[19] demonstrated that the eigenstates with large values of |λ|
select well defined communities. Thus we can expect that other
eigenstates of matrices G and G∗ with |λ| < 1 correspond to cer-
tain physiological functions of worm neural network. It is conve-
nient to order index of eigenstates in a decreasing order of |λi |
with λ1 = 1.

The top ten neurons in eigenfunction amplitude for four specific
eigenstates of G and G∗ are given in Table 2, Table 3. In Table 2 we
have eigenstates with low value of IPR so that the corresponding
wavefunctions are localized essentially on only about 4 neurons
being AIAR, AIAL, ASISL, ASIR and AVAL, AVAR, AVBR for λ10 of G
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Fig. 6. (Color on-line.) Dependence of amplitude of eigenstates |ψi(K )| of G and |ψ∗
i (K ∗)| of G∗ on PageRank index K (left panel) and CheiRank index K ∗ (right panel); here

x-axis shows values of K and K ∗ , while y-axis shows index i of eigenstates being ordered in a decreasing order of |λi | (see text). The whole index range 1 � K , K ∗ � 279 is
shown with PageRank (CheiRank) vector being at the bottom line of each panel. The color is proportional to |ψi( j)| changing from minimum blue value to maximum value
in red.

and G∗ respectively. In Table 3 the values of IPR are rather large
and these eigenstates are spread over many neurons.

To determine if some eigenvectors are localized on a certain
group of neurons, we plot in Fig. 6 the amplitude of each eigen-
state horizontally in the basis of neurons ordered by indexes of K
and K ∗ of PageRank and CheiRank vectors. The eigenstates of
G matrix show four distinct vertical stripes at K = 149, K = 165,
K = 185, K = 261 which correspond respectively to neurons PVDR,
IL2DR, IL2DL, PLNR. The same plot for G∗ matrix shows a larger
number of stripes which have less pronounced amplitudes. These
stripes of G∗ are located on the following neurons K ∗ = 116 (RIPL),
K ∗ = 123 (RIPR), K ∗ = 120 (AS07), K ∗ = 122 (AS10), K ∗ = 135
(DB06), K ∗ = 137 (DB05), K ∗ = 215 (DA07), K ∗ = 162 (VA10), K ∗ =
172 (SIADL), K ∗ = 181 (SIAVL), K ∗ = 199 (SIAVR), K ∗ = 221 (SIADR).

We think that an identification of eigenstates with certain phys-
iological functions of worm can be an interesting task which how-
ever requires further more detailed studies in collaboration with
physiologists. The tables of top 20 nodes of eigenstates with 50
largest |λi | values are available at [15].

6. Discussion

In this Letter, we analyzed the neural network of C.elegans using
Google matrix approach to directed networks which proved its ef-
ficiency for the WWW. We classify worm neurons using PageRank
and CheiRank probabilities corresponding to the principal vectors
of the Google matrix with direct and inverted links. Thus neu-
rons in the head region take top positions in PageRank, CheiRank
and combined 2DRank. Also, interneurons occupy top ranking po-
sitions. We show that influences and interdependency between
neurons can be studied using the ImpactRank propagator. We ar-
gue that the eigenvectors with large modulus of eigenvalues of the
Google matrix may select specific physiological functions. This con-
jecture still need to be investigated in more detailed studies. Our
research shows that the Google matrix analysis represents a useful
and powerful method of neural network analysis.
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Abstract. We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical
fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are
given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding
procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the
Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and
three networks of Wikipedia editions in English, French and German. We argue that due to absence of
level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law
implies that the nearby PageRank probabilities fluctuate as random independent variables.

1 Introduction

The PageRank vector P (K) of the Google matrix Gij had
been proposed by Brin and Page for ranking of nodes
of the World Wide Web (WWW) [1]. At present the
PageRank algorithm became a fundamental element of
various search engines including Google search [2]. This
ranking works reliably also for other networks like the
Physical Review citation network [3,4], Wikipedia [5–7]
and other networks including even the world trade net-
work [8]. Thus it is important to understand the statistical
properties of the PageRank vector.

To study the properties of PageRank probabilities we
use the standard approach [1,2] following the notation
used in reference [6]. The directed network is constructed
in a usual way: a directed link is formed from a node j
to a node i when j quotes i and an element Aij of the
adjacency matrix is taken to be unity when there is such
a link and zero in absence of link. Then the matrix Sij

of Markov transitions is constructed by normalizing ele-
ments of each column to unity (

∑
i Sij = 1) and replacing

columns with only zero elements (dangling nodes) by 1/N ,
with N being the matrix size. Then the Google matrix of
the network takes the form [1,2]:

Gij = αSij + (1 − α)/N. (1)

The damping parameter α in the WWW context describes
the probability (1 − α) to jump to any node for a ran-
dom surfer. For WWW the Google search engine uses
α ≈ 0.85 [2]. The matrix G belongs to the class of Perron-
Frobenius operators [2], its largest eigenvalue is λ = 1
and other eigenvalues have |λ| ≤ α. The right eigenvector

a e-mail: dima@irsamc.ups-tlse.fr

at λ = 1, which is called the PageRank, has real non-
negative elements P (i) and gives a probability P (i) to
find a random surfer at site i. Thus we can rank all nodes
in a decreasing order of PageRank probability P (K(i)) so
that the PageRank index K(i) counts all N nodes i ac-
cording to their ranking, placing the most popular nodes
at the top values K = 1, 2, 3 . . . In numerical simulations
the vector P (Ki) can be obtained by the power iteration
method [2]. The Arnoldi method allows to compute effi-
ciently a significant number of eigenvalues and eigenvec-
tors corresponding to large values of |λ| (see e.g. [9–11]).

From a physical viewpoint we can make a conjecture
that the PageRank probabilities are described by a steady-
state quantum Gibbs distribution [12] over certain quan-
tum levels with energies Ei. In the frame of this conjecture
the PageRank probabilities on nodes i are given by:

P (i) = exp(−Ei/T )/Z, Z =
∑

i

exp(−Ei/T ) (2)

and inversely the effective energies Ei are given by:

Ei = −T ln P (i) − T ln Z. (3)

Here Z is the statistical sum and T is a certain effective
temperature. In some sense the above conjecture assumes
that the operator matrix G can be represented as a sum
of two operators GH and GNH where GH describes a her-
mitian system while GNH represents a non-Hermitian op-
erator which creates a system thermalization at a certain
effective temperature T with the quantum Gibbs distribu-
tion over energy levels Ei of operator GH . The last term
in (3) is independent of i and gives a global energy shift
which is not important. We note that PageRank probabil-
ities describe a stationary state of G and its probability

http://www.epj.org
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can be always presented in the form (3). Thus our method
can be used for any directed network. However, implicitly
it is assumed that the relaxation dynamics is a complex
process and that a considered network has many nodes
and many complex links between nodes.

The statistical properties of fluctuations of levels have
been extensively studied in the fields of Random Matrix
Theory (RMT) [13] and quantum chaos [14]. The most
direct characteristics is the probability distribution p(s)
of level spacings s statistics. Here s = (Ei+1 − Ei)/ΔE
is a spacing between nearest levels measured in the units
of average local energy spacing ΔE. Thus the probabil-
ity distribution p(s) is obtained via the unfolding proce-
dure which takes into account the variation of energy level
density with energy E [14]. We note that the value of T
in (3) does not influence the statistics p(s) due to spectrum
unfolding and definition of s in units of local level spacing.

In the field of quantum chaos it is well established
that p(s) is a powerful tool to characterize the spectral
properties of quantum systems. For quantum systems,
which have a chaotic dynamics in the classical limit (e.g.
Sinai or Bunimovich billiards [15]), it is known that in
generic cases the statistics p(s) is the same as for the
RMT, invented by Wigner to describe the spectra of com-
plex nuclei [13,16,17]. This statement is known as the
Bohigas-Giannoni-Schmit conjecture [16]. In such cases
the distribution is well described by the so-called Wigner
surmise p(s) = (πs/2) exp(−πs2/4) [14,17]. For integrable
quantum systems (e.g. circular or elliptic billiards) one
finds a Poisson distribution p(s) = exp(−s) correspond-
ing to the fluctuations of random independent variables.
Such a Poisson distribution is drastically different from
the RMT results characterized by the level repulsion at
small s values.

The strong feature of p(s) statistics is that it describes
the universal statistical fluctuations. Thus its use for de-
scription of PageRank fluctuations is very relevant, it pro-
vides a new statistical information about PageRank prop-
erties. We describe the results obtained within such an
approach in next sections.

2 Statistical properties of PageRank
probabilities

For our studies we use the network of entire Twitter 2009
studied in [11] with number of nodes N = 41 652 230
and number of links N� = 1 468 365 182; network of En-
glish Wikipedia (Aug 2009; noted below as Wikipedia)
articles from [5] with N = 3 282 257, N� = 71 012 307;
German Wikipedia (dated November 2013, noted below as
Wikipedia-DE) with N = 1 532 977, N� = 36 781 077 and
French Wikipedia (dated November 2013; noted below as
Wikipedia-FR) with N = 1 352 825, N� = 34 431 943. For
the last two cases we use the network data collected by
Vigna [18].

For a given network the PageRank is computed as
usually by the power or iteration method for a typical
value of the damping factor α = 0.85. The probabilities Pi
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Fig. 1. Dependence of top PageRank levels Ei = − ln(Pi) on
the damping factor α for Twitter (left panel) and Wikipedia
(right panel). Data points on curves with the same color symbol
correspond to the same node i. The lower panels are obtained
by a zoom in an energy range from the top panels. About 150
(for Twitter) or 50 (for Wikipedia) lowest levels are shown in
top panels.

are computed with a relative precision better than 10−12.
For each node i its PageRank value Pi is associated to a
pseudo-energy Ei by the relation Ei = − ln(Pi). Obviously
the energy spectrum is ordered if the index is given in the
rank index K, i.e. EK+1 ≥ EK . Therefore the number n
of levels below a given pseudo-energy E is given by n = K
if EK < E < EK+1 (we also use index i for Ei).

The evolution of energy levels Ei with the variation of
the damping factor α is shown in Figure 1 for Twitter and
Wikipedia networks. The results show many level cross-
ings which are typical of Poisson statistics. We note that
here each level has its own index so that it is rather easy
to see if there is a real or avoided level crossing. In this
respect the situation is simpler compared to energy levels
in quantum systems.

In the following we fix the damping factor to the
standard value α = 0.85. To obtain the unfolded spec-
trum with an average uniform level spacing of unity (see
e.g. [14]) one has to replace the function Ei by a smooth
function. As shown in Figure 2, one can very well approx-
imate EK by a polynomial Q(x) of modest degree in the
variable x = ln(K). In this procedure it is better to ex-
clude the first ten nodes with K ≤ 10 which do not affect
the global statistics. For a fit range 10 < K ≤ 104 a poly-
nomial of degree 2 is already sufficient. However, for larger
intervals, e.g. 10 < K ≤ 107 for Twitter or 10 < K ≤ 106

for Wikipedia it is better to increase the polynomial de-
gree up to 20. Once the polynomial fit is known one ob-
tains the unfolded energy eigenvalues Si by solving the
equation Ei = Q(ln(Si)) using the Newton method. For
each energy the obtained value of Si ≈ i is rather close to
K = i index with an average spacing of unity. In certain
cases this equation does not provide a solution for energies

http://www.epj.org
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Fig. 2. The thick red curve shows − ln(P ) = E versus K
for the PageRank probability P of Twitter (Wikipedia) in the
left (right) panel. The thin green curve corresponds to the
fit − ln(P ) = Q(ln(K)) where Q(x) is a polynomial of de-
gree q = 2. The thin blue curve corresponds to the fit with a
polynomial of degree q = 20 (q = 10). The fits are obtained
for the range 10 < K ≤ 107 (10 < K ≤ 106) with weights
∼1/K attributed to each data point. Here and in next figures
α = 0.85.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

p(
s)

s

Twitter

original data
pPois(s)
pWig(s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

p(
s)

s

Wikipedia

original data
pPois(s)
pWig(s)

Fig. 3. Histogram of unfolded level spacing statistics using
pseudo-energies Ei = − ln(Pi) of Twitter (Wikipedia) shown
in the left (right) panel. The unfolding is done with the fit
shown in Figure 2 using a polynomial of degree 2 and a fit range
10 < K ≤ 104. The Poisson distribution pPois(s) = exp(−s)
and the Wigner surmise pWig(s) = π

2
s exp(−π

4
s2) are also

shown for comparison.

close to the boundary of the fit range. In these cases the
unfolded spectrum is slightly reduced with respect to the
initial fit range.

In Figure 3 only a polynomial of degree 2 is used since
the fit range 10 < K ≤ 104 is rather small and the his-
togram fluctuations, compared with the Poisson distribu-
tion, are still quite considerable due to the limited number
of Ns ∼ 104 data points. The obtained data show a good
agreement of results with the Poisson statistics.

In Figure 4 we show the integrated probability to find
a level spacing larger than s:

Ip(s) =
∫ ∞

s

ds̃ p(s̃). (4)

This quantity is numerically more stable since no his-
togram is required. One simply orders the spacings si =
Si+1−Si and draws the ratio 1− i/Ns versus si where i is
the ordering index of the spacings and Ns is the number
of spacings in the numerical data.

The data shown in Figure 4 clearly demonstrate
that Ip(s) follows the Poisson expression Ip(s) = exp(−s)
for a quite large range of level spacings. Of course, for the
largest values of s there are deviations which are either
due to the lack of statistics (especially for modest values
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Fig. 4. The color curves show the integrated probability
Ip(s) =

∫ ∞
s

ds̃ p(s̃), given in semi-logarithmic representa-
tion, for the PageRank probabilities for networks of Twitter,
Wikipedia, Wikipedia-DE and Wikipedia-FR. The unfolding is
done as in Figure 2 using a fit polynomial of degree 20 and a fit
range 10 < K ≤ Kmax with three different values of Kmax given
in the panels. The black line corresponds to Ip(s) = exp(−s)
obtained for the case of Poisson distributed levels.

of Kmax) or due to the fact that the number of levels is
close to the total network size.

We also note that for large values of K ≥ 106 there
are Nd degenerate nodes with identical P (i) values with
at least one more another node or a few nodes. Such an
effect has been pointed in reference [11]. These artificial
degeneracies provide an additional delta function contri-
bution w0 δ(s) in the Poisson statistics p(s) where w0 is
the probability to find such a degeneracy. There are about
Nd ≈ 102 (Nd ≈ 105) degeneracies for Twitter nodes for
K < 106 (K < 107) which gives w0 ≈ 10−4 (w0 ≈ 10−2).
In a histogram of bin-width Δs = 0.1 this gives a rel-
ative change of the height of the first bin at s = 0 of
10 w0 ≈ 10−3 (≈10−1) and unless we use too large K
value the statistical contribution of such degenerate nodes
is indeed very small.

We note that if we use all nodes of Twitter up to
K < 4.2 × 107 we have Nd ≈ 1.1 × 107 with w0 ≈ 0.26
which is indeed considerable. In this particular case also
the distribution of close degeneracies (0 < s � 1) is
quite different from the (rescaled) Poisson distribution
(1 − w0) exp[−(1 − w0) s] for the non-degenerate levels.
Apparently a particular network structure, which is re-
sponsible for the degeneracies, also enhances the number
of close degeneracies. We attribute the appearance of such
degeneracies to weak interconnections between nodes at
the tail of PageRank probability where the fluctuations
are not stabilized being sensible to the finite network size.

Our data show that the Poisson statistics gives a good
description of fluctuations of PageRank probabilities. It
may be interesting to determine what are the nodes which
have very large spacings s from nearest levels on both
sides. It is natural to expect that those nodes will be rather

http://www.epj.org
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Table 1. List of nodes with unfolded neighbor level spacings
si = Si − Si−1 > 4 for Wikipedia network.

K Si − Si−1 Si+1 − Si Title
996 8.43535 6.57294 Henry VIII of England
2966 4.07317 4.09474 The Age
3398 4.21163 4.65018 Debt
3982 4.30229 4.01818 GREEN
6098 4.42446 4.78164 Vomiting
6632 4.22776 4.38045 Mary I of Scotland
9388 4.42904 4.94249 Simulation

stable in respect to modifications of network or damping
factor variations. Such nodes for Wikipedia network are
shown in Table 1 for s > 4 and K < 104. Such a selection
captures two important figures of English history but the
reasons for appearing of other nodes still need to be clar-
ified. We think that a further study of nodes with large
statistical deviations of spacing values can provide a new
interesting information about robust nodes of a given net-
work. Even if such events are due to random fluctuations
still it is interesting to analyze the properties of such ex-
treme events. The validity of the Poisson statistics means
that the ranking order can be easily interchanged between
nodes with nearby values of PageRank index K.

We also analyzed the statistics of PageRank proba-
bilities for a random triangular matrix model (triangu-
lar RPFM) introduced in reference [19]. We find here the
Poisson statistics. We also consider CheiRank probability
vector of Wikipedia (it is given by the PageRank proba-
bility for the Wikipedia network with inverted direction
of links) [5] and also find here the Poisson distribution.

3 Discussion

We use the methods of quantum chaos to study the sta-
tistical fluctuations of PageRank probabilities in four net-
works of Twitter, Wikipedia English, German and French.
We associated the effective pseudo-energy levels Ei to
PageRank probabilities via the relation Ei = − lnPi and
use the unfolding level density procedure to have homo-
geneous spacings between levels. This procedure is com-
monly used in the field of quantum chaos (see e.g. [14,17]).
Our studies show that the level spacing statistics is well
described by the Poisson distribution p(s) = exp(−s).
Thus there is any sign of level repulsion typical of the
quantum chaotic billiards [16] and RMT [13]. Such a re-
sult can be considered as a natural one for nodes with large
values of PageRank index K where nodes can be assumed
as independent. However, the Poisson distribution remains
valid even for relatively low values K ≤ 104 where a sig-
nificant number of links exist between the users of Twitter
as discussed in reference [11]. Thus even a large number
of links between top nodes does not lead to their interde-
pendence so that nearby PageRank probabilities behave
themselves as random independent variables. In all exam-
ples of large directed networks considered we found the
Poisson statistics. We can make a conjecture that this is

a generic situation. However, it may happen that some
networks can have a repulsion of nodes and, who knows,
may the Wigner-Dyson statistics.

We should note that the relation Ei = − lnPi, used in
our studies to have a correspondence with level spacing
statistics, is not really so important since after that we
apply the unfolding procedure. Due to this our method
simply gives us the fluctuations of nearby PageRank prob-
abilities in a correctly weighted dimensionless representa-
tion where the validity of Poisson distribution becomes
directly visible. We think that the investigation of nodes
with large spacings with nearby nodes in K can provide a
new useful information for network analysis.

This research is supported in part by the EC FET Open project
“New tools and algorithms for directed network analysis”
(NADINE No. 288956). We thank Sebastiano Vigna for pro-
viding us the network data for German and French Wikipedia,
collected in the frame of NADINE project; these data sets can
be obtained from the web page of Vigna [18].
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In past ten years, modern societies developed enormous communication and social networks. Their
classification and information retrieval processing become a formidable task for the society. Due
to the rapid growth of World Wide Web, social and communication networks, new mathematical
methods have been invented to characterize the properties of these networks on a more detailed
and precise level. Various search engines are essentially using such methods. It is highly im-
portant to develop new tools to classify and rank enormous amount of network information in a
way adapted to internal network structures and characteristics. This review describes the Google
matrix analysis of directed complex networks demonstrating its efficiency on various examples
including World Wide Web, Wikipedia, software architecture, world trade, social and citation
networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numer-
ical matrix methods used in this analysis originate from the fields of Markov chains, quantum
chaos and Random Matrix theory.

Keywords: Markov chains, World Wide Web, search engines, complex networks, PageRank, 2DRank, CheiRank

“The Library exists ab aeterno.”
Jorge Luis Borges The Library of Babel
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I. INTRODUCTION

On a scale of ten years, modern societies developed
enormous communication and social networks. The
World Wide Web (WWW) alone has about 50 billion in-
dexed web pages, so that their classification and informa-
tion retrieval processing become a formidable task which
the society has to face every day. Various search en-
gines have been developed by private companies such as
Google, Yahoo! and others which are extensively used by
Internet users. In addition, social networks (Facebook,
LiveJournal, Twitter, etc) gained enormous popularity in
the last few years. Active use of social networks spreads
beyond their initial purposes making them important for
political or social events.

To handle such enormous databases, fundamental
mathematical tools and algorithms related to centrality
measures and network matrix properties are actively be-
ing developed. Indeed, the PageRank algorithm, which
was initially at the basis of the development of the
Google search engine (Brin and Page , 1998; Langville
and Meyer, 2006), is directly linked to the mathematical
properties of Markov chains (Markov , 1906) and Perron-
Frobenius operators (Brin and Stuck, 2002; Langville and
Meyer, 2006). Due to its mathematical foundation, this
algorithm determines a ranking order of nodes that can
be applied to various types of directed networks. How-
ever, the recent enormous development of WWW and
communication networks requires the creation of new
tools and algorithms to characterize the properties of
these networks on a more detailed and precise level. For
example, such networks contain weakly coupled or secret
communities which may correspond to very small values
of the PageRank and are hard to detect. It is therefore
highly important to have new methods to classify and
rank enormous amount of network information in a way
adapted to internal network structures and characteris-
tics.

This review describes matrix tools and algorithms
which facilitate classification and information retrieval
from large networks recently created by human activity.
The Google matrix formed by links of the network has
typically a huge size. Thus, the analysis of its spectral
properties including complex eigenvalues and eigenvec-
tors represents a challenge for analytical and numerical
methods. It is rather surprising, but the class of such
matrices, belonging to the class of Markov chains and
Perron-Frobenius operators, was practically not inves-
tigated in physics. Indeed, usually the physical prob-
lems belong to the class of Hermitian or unitary ma-
trices. Their properties had been actively studied in
the frame of Random Matrix Theory (RMT) (Akemann
et al., 2011; Guhr et al., 1998; Mehta, 2004) and quantum
chaos (Haake, 2010). The analytical and numerical tools

developed in these research fields allowed to understand
many universal and peculiar features of such matrices in
the limit of large matrix size corresponding to many-body
quantum systems (Guhr et al., 1998), quantum comput-
ers (Shepelyansky , 2001) and a semiclassical limit of
large quantum numbers in the regime of quantum chaos
(Haake, 2010). In contrast to the Hermitian problem,
the Google matrices of directed networks have complex
eigenvalues. The only physical systems where similar ma-
trices had been studied analytically and numerically cor-
respond to models of quantum chaotic scattering whose
spectrum is known to have such unusual properties as
the fractal Weyl law (Gaspard, 2014; Nonnenmacher and
Zworski , 2007; Shepelyansky , 2008; Sjöstrand , 1990;
Zworski , 1999).

FIG. 1 (Color online) Google matrix of the network
Wikipedia English articles for Aug 2009 in the basis of PageR-
ank index K (and K′). Matrix GKK′ corresponds to x
(and y) axis with 1 ≤ K,K′ ≤ 200 on panel (a), and with
1 ≤ K,K′ ≤ N on panel (b); all nodes are ordered by PageR-
ank index K of matrix G and thus we have two matrix indexes
K,K′ for matrix elements in this basis. Panel (a) shows the
first 200 × 200 matrix elements of G matrix (see Sec. III).
Panel (b) shows density of all matrix elements coarse-grained
on 500×500 cells where its elements, GK,K′ , are written in the
PageRank basis K(i) with indexes i → K(i) (in x-axis) and
j → K′(j) (in a usual matrix representation with K = K′ = 1
on the top-left corner). Color shows the density of matrix ele-
ments changing from black for minimum value ((1−α)/N) to
white for maximum value via green (gray) and yellow (light
gray); here the damping factor is α = 0.85 After (Ermann
et al., 2012a).

In this review we present extensive analysis of a va-
riety of Google matrices emerging from real networks
in various sciences including WWW of UK universities,
Wikipedia, Physical Review citation network, Linux Ker-
nel network, world trade network from the UN COM-
TRADE database, brain neural networks, networks of
DNA sequences and many others. As an example, the
Google matrix of Wikipedia network of English articles
(2009) is shown in Fig. 1. We demonstrate that the anal-
ysis of the spectrum and eigenstates of a Google matrix of
a given network provides a detailed understanding about
the information flow and ranking. We also show that such
type of matrices naturally appear for Ulam networks of
dynamical maps (Frahm and Shepelyansky , 2012b; She-
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pelyansky and Zhirov , 2010a) in the framework of the
Ulam method (Ulam, 1960).

At present, Wikipedia, a free online encyclopaedia,
stores more and more information becoming the largest
database of human knowledge. In this respect it is sim-
ilar to the Library of Babel, described by Jorge Luis
Borges (Borges, 1962). The understanding of hidden re-
lations between various areas of knowledge on the basis of
Wikipedia can be improved with the help of Google ma-
trix analysis of directed hyperlink network of Wikipedia
articles as described in this review.

The RMT and quantum chaos tools, combined with
the efficient numerical methods for large matrix diago-
nalization like the Arnoldi method (Stewart, 2001), al-
low to analyze the spectral properties of such large ma-
trices as an entire Twitter network of 41 millions users
(Frahm and Shepelyansky , 2012b). In 1998 Brin and
Page pointed out that “despite the importance of large-
scale search engines on the web, very little academic re-
search has been done on them” (Brin and Page , 1998).
We hope that this review provides solid mathematical ba-
sis of matrix methods of efficient analysis of directed net-
works emerging in various sciences. The described meth-
ods will find broad interdisciplinary applications in math-
ematics, physics and computer science with the cross-
fertilization of different research fields.

An interested reader can find a general information
about complex networks (see also Sec. II) in well estab-
lished papers, reviews and books (Watts and Strogatz
, 1998), (Albert and Barabási , 2002; Caldarelli, 2003;
Newman , 2003), (Castellano et al., 2009; Dorogovtsev
et al., 2008), (Dorogovtsev, 2010; Fortunato , 2010; New-
man, 2010). Descriptions of Markov chains and Perron-
Frobenius operators are given in (Brin and Page , 1998;
Langville and Meyer, 2006) while properties of Random
Matrix Theory (RMT) and quantum chaos are described
in (Akemann et al., 2011; Guhr et al., 1998; Haake, 2010;
Mehta, 2004).

The data sets of the main part of networks considered
here are available at (FETNADINE database, 2014) from
Quantware group.

II. SCALE-FREE PROPERTIES OF DIRECTED
NETWORKS

The distributions of the number of ingoing or outgoing
links per node for directed networks with N nodes and N`
links are well known as indegree and outdegree distribu-
tions in the community of computer science (Caldarelli,
2003; Donato et al., 2004; Pandurangan et al., 2005). A
network is described by an adjacency matrix Aij of size
N × N with Aij = 1 when there is a link from a node
j to a node i in the network, i. e. “j points to i”, and
Aij = 0 otherwise. Real networks are often characterized
by power law distributions for the number of ingoing and
outgoing links per node win,out(k) ∝ 1/kµin,out with typ-
ical exponents µin ≈ 2.1 and µout ≈ 2.7 for the WWW.

For example, for the Wikipedia network of Fig. 1 one
finds µin = 2.09 ± 0.04, µout = 2.76 ± 0.06 as shown in
Fig. 2 (Zhirov et al., 2010).

FIG. 2 (Color online) Distribution win,out(k) of number of in-
going (a) and outgoing (b) links k for N = 3282257 Wikipedia
English articles (Aug 2009) of Fig. 1 with total number of links
N` = 71012307. The straight dashed fit line shows the slope
with µin = 2.09 ± 0.04 (a) and µout = 2.76 ± 0.06 (b). After
(Zhirov et al., 2010).

Statistical preferential attachment models were ini-
tially developed for undirected networks (Albert and
Barabási , 2000). Their generalization to directed net-
works (Giraud et al., 2009) generates a power law distri-
bution for ingoing links with µin ≈ 2 but the distribution
of outgoing links is more close to an exponential decay.
We will see below that these models are not able to re-
produce the spectral properties of G in real networks.

The most recent studies of WWW, crawled by the
Common Crawl Foundation in 2012 (Meusel et al., 2014)
for N ≈ 3.5× 109 nodes and N` ≈ 1.29× 1011 links, pro-
vide the exponents µin ≈ 2.24, µout ≈ 2.77, even if the
authors stress that these distributions describe probabil-
ities at the tails which capture only about one percent
of nodes. Thus, at present the existing statistical models
of networks capture only in an approximate manner the
real situation in large networks.

III. CONSTRUCTION OF GOOGLE MATRIX AND ITS
PROPERTIES

A. Construction rules

The matrix Sij of Markov transitions (Markov , 1906)
is constructed from the adjacency matrix Aij → Sij by
normalizing elements of each column so that their sum is
equal to unity (

∑
i Sij = 1) and replacing columns with

only zero elements (dangling nodes) by 1/N . Such ma-
trices with columns sum normalized to unity and Sij ≥ 0
belong to the class of Perron-Frobenius operators with
a possibly degenerate unit eigenvalue λ = 1 and other
eigenvalues obeying |λ| ≤ 1 (see Sec. III.B). Then the
Google matrix of the network is introduced as: (Brin
and Page , 1998)

Gij = αSij + (1− α)/N . (1)
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The damping factor α in the WWW context describes
the probability (1−α) to jump to any node for a random
surfer. For WWW the Google search engine uses α ≈
0.85 (Langville and Meyer, 2006). For 0 ≤ α ≤ 1 the
matrix G also belongs to the class of Perron-Frobenius
operators as S and with its columns sum normalized.
However, for α < 1 its largest eigenvalue λ = 1 is not
degenerate and the other eigenvalues lie inside a smaller
circle of radius α, i.e. |λ| ≤ α (Brin and Stuck, 2002;
Langville and Meyer, 2006).

FIG. 3 (Color online) (a) Example of simple network with di-
rected links between 5 nodes. (b) Distribution of 5 nodes from
(a) on the PageRank-CheiRank plane (K,K∗), where the size
of node is proportional to PageRank probability P (K) and
color of node is proportional to CheiRank probability P ∗(K∗),
with maximum at red/gray and minimum at blue/black; the
location of nodes of panel (a) on (Ki,Ki

∗) plane is: (2, 4),
(1, 3), (3, 1), (4, 2), (5, 5) for original nodes i = 1, 2, 3, 4, 5
respectively; PageRank and CheiRank vectors are computed
from the Google matrices G and G∗ shown in Fig. 4 at a
damping factor α = 0.85.

The right eigenvector at λ = 1, which is called the
PageRank, has real nonnegative elements P (i) and gives
the probability P (i) to find a random surfer at site i. The
PageRank can be efficiently determined by the power it-
eration method which consists of repeatedly multiplying
G to an iteration vector which is initially chosen as a
given random or uniform initial vector. Developing the
initial vector in a basis of eigenvectors of G one finds
that the other eigenvector coefficients decay as ∼ λn and
only the PageRank component, with λ = 1, survives in
the limit n → ∞. The finite gap 1 − α ≈ 0.15 between
the largest eigenvalue and other eigenvalues ensures, af-
ter several tens of iterations, the fast exponential con-
vergence of the method also called the “PageRank algo-
rithm”. A multiplication of G to a vector requires only
O(N`) multiplications due to the links and the additional
contributions due to dangling nodes and damping factor
can be efficiently performed with O(N) operations. Since
often the average number of links per node is of the or-
der of a few tens for WWW and many other networks
one has effectively N` and N of the same order of magni-
tude. At α = 1 the matrix G coincides with the matrix
S and we will see below in Sec. VIII that for this case
the largest eigenvalue λ = 1 is usually highly degenerate
due to many invariant subspaces which define many in-

dependent Perron-Frobenius operators with at least one
eigenvalue λ = 1 for each of them.

Once the PageRank is found, e.g. at α = 0.85, all
nodes can be sorted by decreasing probabilities P (i). The
node rank is then given by the index K(i) which reflects
the relevance of the node i. The top PageRank nodes,
with largest probabilities, are located at small values of
K(i) = 1, 2, ....

It is known that the PageRank probability is propor-
tional to the number of ingoing links (Langville and
Meyer, 2006; Litvak et al., 2008), characterizing how
popular or known a given node is. Assuming that the

PageRank probability decays algebraically as Pi ∼ 1/Kβ
i

we obtain that the number of nodes NP with Page-
Rank probability P scales as NP ∼ 1/Pµin with µin =
1 + 1/β so that β ≈ 0.9 for µin ≈ 2.1 being in a agree-
ment with the numerical data for WWW (Donato et al.,
2004; Meusel et al., 2014; Pandurangan et al., 2005) and
Wikipedia network (Zhirov et al., 2010).

In addition to a given directed network with adjacency
matrix A it is useful to analyze an inverse network where
links are inverted and whose adjacency matrix A∗ is the
transpose of A, i.e. A∗ij = Aji. The matrices S∗ and the
Google matrix G∗ of the inverse network are then con-
structed in the same way from A∗ as described above and
according to the relation (1) using the same value of α as
for the G matrix. The right eigenvector of G∗ at eigen-
value λ = 1 is called CheiRank giving a complementary
rank index K∗(i) of network nodes (Chepelianskii, 2010;
Ermann et al., 2012a; Zhirov et al., 2010). The CheiRank
probability P ∗(K∗) is proportional to the number of out-
going links highlighting node communicativity (see e.g.
(Ermann et al., 2012a; Zhirov et al., 2010)). In analogy

with the PageRank we obtain that P ∗ ∼ 1/K∗β with
β = 1/(µout− 1) ≈ 0.6 for typical µout ≈ 2.7. The statis-
tical properties of distribution of nodes on the PageRank-
CheiRank plane are described in (Ermann et al., 2012a)
for various directed networks. We will discuss them be-
low.

FIG. 4 (a) Adjacency matrix A of network of Fig. 3(a) with
indexes used there, (b) adjacency matrix A∗ for the network
with inverted links; matrices S (c) and S∗ (d) corresponding
to the matrices A, A∗; the Google matrices G (e) and G∗

(f) corresponding to matrices S and S∗ for α = 0.85 (only 3
digits of matrix elements are shown).
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For an illustration we consider an example of a simple
network of five nodes shown in Fig. 3(a). The corre-
sponding adjacency matrices A, A∗ are shown in Fig. 4
for the indexes given in Fig. 3(a). The matrices of Markov
transitions S, S∗ and Google matrices are computed as
described above and from Eq. (1). The distribution of
nodes on (K,K∗) plane is shown in Fig. 3(b). After per-
mutations the matrix G can be rewritten in the basis of
PageRank index K as it is done in Fig. 1.

B. Markov chains and Perron-Frobenius operators

Matrices with real non-negative elements and column
sums normalized to unity belong to the class of Markov
chains (Markov , 1906) and Perron-Frobenius operators
(Brin and Stuck, 2002), which have been used in a math-
ematical analysis of dynamical systems. A numerical
analysis of finite size approximants of such operators is
closely linked with the Ulam method (Ulam, 1960) which
naturally generates such matrices for dynamical maps
(Ermann and Shepelyansky , 2010a,b; Shepelyansky and
Zhirov , 2010a). The Ulam method generates Ulam net-
works whose properties are discussed in Sec.VI.

Matrices G of this type have at least (one) unit eigen-
value λ = 1 since the vector eT = (1, . . . , 1) is obvi-
ously a left eigenvector for this eigenvalue. Furthermore
one verifies easily that for any vector v the inequality
‖Gv‖1 ≤ ‖v‖1 holds where the norm is the standard
1-norm. From this inequality one obtains immediately
that all eigenvalues λ of G lie in a circle of radius unity:
|λ| ≤ 1. For the Google matrix G as given in (1) one can
furthermore show for α < 1 that the unity eigenvalue
is not degenerate and the other eigenvalues obey even
|λ| ≤ α (Langville and Meyer, 2006).

It should be pointed out that due to the asymmetry of
links on directed networks such matrices have in general
a complex eigenvalue spectrum and sometimes they are
not even diagonalizable, i.e. there may also be general-
ized eigenvectors associated to non-trivial Jordan blocks.
Matrices of this type rarely appear in physical problems
which are usually characterized by Hermitian or unitary
matrices with real eigenvalues or located on the unitary
circle. The universal spectral properties of such hermi-
tian or unitary matrices are well described by RMT (Ake-
mann et al., 2011; Guhr et al., 1998; Haake, 2010). In
contrast to this non-trivial complex spectra appear in
physical systems only in problems of quantum chaotic
scattering and systems with absorption. In such cases it
may happen that the number of states Nγ , with finite
values 0 < λmin ≤ |λ| ≤ 1 (γ = −2 ln |λ|), can grow alge-
braically Nγ ∝ Nν with increasing matrix size N , with
an exponent ν < 1 corresponding to a fractal Weyl law
proposed first in mathematics (Sjöstrand , 1990). There-
fore most of eigenvalues drop to λ = 0 with N →∞. We
discuss this unusual property in Sec.V.

C. Invariant subspaces

For typical networks the set of nodes can be decom-
posed in invariant subspace nodes and fully connected
core space nodes leading to a block structure of the ma-
trix S in (1) which can be represented as (Frahm et al.,
2011):

S =

(
Sss Ssc
0 Scc

)
. (2)

The core space block Scc contains the links between core
space nodes and the coupling block Ssc may contain links
from certain core space nodes to certain invariant sub-
space nodes. By construction there are no links from
nodes of invariant subspaces to the nodes of core space.
Thus the subspace-subspace block Sss is actually com-
posed of many diagonal blocks for many invariant sub-
spaces whose number can generally be rather large. Each
of these blocks corresponds to a column sum normalized
matrix with positive elements of the same type as G and
has therefore at least one unit eigenvalue. This leads to
a high degeneracy N1 of the eigenvalue λ = 1 of S, for
example N1 ∼ 103 as for the case of UK universities (see
Sec. VIII).

In order to obtain the invariant subspaces, we deter-
mine iteratively for each node the set of nodes that can
be reached by a chain of non-zero matrix elements of
S. If this set contains all nodes (or at least a macro-
scopic fraction) of the network, the initial node belongs
to the core space Vc. Otherwise, the limit set defines a
subspace which is invariant with respect to applications
of the matrix S. At a second step all subspaces with
common members are merged resulting in a sequence of
disjoint subspaces Vj of dimension dj and which are in-
variant by applications of S. This scheme, which can be
efficiently implemented in a computer program, provides
a subdivision over Nc core space nodes (70-80% of N
for UK university networks) and Ns = N −Nc subspace
nodes belonging to at least one of the invariant subspaces
Vj . This procedure generates the block triangular struc-
ture (2). One may note that since a dangling node is
connected by construction to all other nodes it belongs
obviously to the core space as well as all nodes which are
linked (directly or indirectly) to a dangling node. As a
consequence the invariant subspaces do not contain dan-
gling nodes nor nodes linked to dangling nodes.

The detailed algorithm for an efficient computation of
the invariant subspaces is described in (Frahm et al.,
2011). As a result the total number of all subspace nodes
Ns, the number of independent subspaces Nd, the max-
imal subspace dimension dmax etc. can be determined.
The statistical properties for the distribution of subspace
dimensions are discussed in Sec. VIII for UK universities
and Wikipedia networks. Furthermore it is possible to
determine numerically with a very low effort the eigen-
values of S associated to each subspace by separate di-
agonalization of the corresponding diagonal blocks in the
matrix Sss. For this, either exact diagonalization or, in
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rare cases of quite large subspaces, the Arnoldi method
(see the next subsection) can be used.

After the subspace eigenvalues are determined one can
use the Arnoldi method to the projected core space ma-
trix block Scc to determine the leading core space eigen-
values. In this way one obtains accurate eigenvalues
because the Arnoldi method does not need to compute
the numerically very problematic highly degenerate unit
eigenvalues of S since the latter are already obtained from
the separate and cheap subspace diagonalization. Actu-
ally the alternative and naive application of the Arnoldi
method on the full matrix S, without computing the sub-
spaces first, does not provide the correct number N1 of
degenerate unit eigenvalues and also the obtained clus-
tered eigenvalues, close to unity, are not very accurate.
Similar problems hold for the full matrix G (with damp-
ing factor α < 1) since here only the first eigenvector,
the PageRank, can be determined accurately but there
are still many degenerate (or clustered) eigenvalues at (or
close to) λ = α.

Since the columns sums of Scc are less than unity, due
to non-zero matrix elements in the block Ssc, the leading

core space eigenvalue of Scc is also below unity |λ(core)1 | <
1 even though in certain cases the gap to unity may be
very small (see Sec. VIII).

We consider concrete examples of such decompositions
in Sec. VIII and show in this review spectra with sub-
space and core space eigenvalues of matrices S for several
network examples. The mathematical results for proper-
ties of the matrix S are discussed in (Serra-Capizzano ,
2005).

D. Arnoldi method for numerical diagonalization

The most adapted numerical method to determine the
largest eigenvalues of large sparse matrices is the Arnoldi
method (Arnoldi , 1951; Frahm and Shepelyansky , 2010;
Golub and Greif , 2006; Stewart, 2001). Indeed, usually
the matrix S in Eq. (1) is very sparse with only a few tens
of links per node ζ = N`/N ∼ 10. Thus, a multiplication
of a vector by G or S is numerically cheap. The Arnoldi
method is similar in spirit to the Lanzcos method, but
is adapted to non-Hermitian or non-symmetric matrices.
Its main idea is to determine recursively an orthonor-
mal set of vectors ξ0, . . . ξnA−1, which define a Krylov
space, by orthogonalizing Sξk on the previous vectors
ξ0, . . . ξk by the Gram-Schmidt procedure to obtain ξk+1

and where ξ0 is some normalized initial vector. The di-
mension nA of the Krylov space (in the following called
the Arnoldi-dimension) should be “modest” but not too
small. During the Gram-Schmidt procedure one obtains

furthermore the explicit expression: Sξk =
∑k+1
j=0 hjk ξj

with matrix elements hjk, of the Arnoldi representation
matrix of S on the Krylov space, given by the scalar prod-
ucts or inverse normalization constants calculated during
the orthogonalization. In order to obtain a closed repre-
sentation matrix one needs to replace the last coupling

element hnA,nA−1 → 0 which introduces a mathematical
approximation. The eigenvalues of the nA×nA matrix h
are called the Ritz eigenvalues and represent often very
accurate approximations of the exact eigenvalues of S, at
least for a considerable fraction of the Ritz eigenvalues
with largest modulus.

In certain particular cases, when ξ0 belongs to an S in-
variant subspace of small dimension d, the element hd,d−1
vanishes automatically (if d ≤ nA and assuming that
numerical rounding errors are not important) and the
Arnoldi iteration stops at k = d and provides d exact
eigenvalues of S for the invariant subspace. One can
mention that there are more sophisticated variants of the
Arnoldi method (Stewart, 2001) where one applies (im-
plicit) modifications on the initial vector ξ0 in order to
force this vector to be in some small dimensional invari-
ant subspace which results in such a vanishing coupling
matrix element. These variants known as (implicitly)
restarted Arnoldi methods allow to concentrate on cer-
tain regions on the complex plane to determine a few
but very accurate eigenvalues in these regions. However,
for the cases of Google matrices, where one is typically
interested in the largest eigenvalues close to the unit cir-
cle, only the basic variant described above was used but
choosing larger values of nA as would have been possi-
ble with the restarted variants. The initial vector was
typically chosen to be random or as the vector with unit
entries.

Concerning the numerical resources the Arnoldi
method requires ζN double precision registers to store
the non-zero matrix elements of S, nAN registers to
store the vectors ξk and const.×n2A registers to store h
(and various copies of h). The computational time scales
as ζ nANd for the computation of S ξk, with Nd n

2
A for

the Gram-Schmidt orthogonalization procedure (which
is typically dominant) and with const.×n3A for the diag-
onalization of h.

The details of the Arnoldi method are described in
Refs. given above. This method has problems with de-
generate or strongly clustered eigenvalues and therefore
for typical examples of Google matrices it is applied to
the core space block Scc where the effects of the invari-
ant subspaces, being responsible for most of the degen-
eracies, are exactly taken out according to the discussion
of the previous subsection. In typical examples it is pos-
sible to find about nA ≈ 640 eigenvalues with largest |λ|
for the entire Twitter network with N ≈ 4.1 × 107 (see
Sec. X) and about nA ≈ 6000 eigenvalues for Wikipedia
networks with N ≈ 3.2 × 106 (see Sec. IX). For the two
university networks of Cambridge and Oxford 2006 with
N ≈ 2× 105 it is possible to compute nA ≈ 20000 eigen-
values (see Sec. VIII). For the case of the Citation net-
work of Physical Review (see Sec. XII) with N ≈ 4.6×105

it is even possible and necessary to use high precision
computations (with up to 768 binary digits) to deter-
mine accurately the Arnoldi matrix h with nA ≈ 2000
(Frahm et al., 2014b).
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E. General properties of eigenvalues and eigenstates

According to the Perron-Frobenius theorem all eigen-
values λi of G are distributed inside the unitary circle
|λ| ≤ 1. It can be shown that at α < 1 there is only one
eigenvalue λ0 = 1 and all other |λi| ≤ α having a sim-
ple dependence on α: λi → αλi (see e.g. (Langville and
Meyer, 2006)). The right eigenvectors ψi(j) are defined
by the equation

∑
j′

Gjj′ψi(j
′) = λiψi(j) . (3)

Only the PageRank vector is affected by α while other
eigenstates are independent of α due to their orthogonal-
ity to the left unit eigenvector at λ = 1. Left eigenvec-
tors are orthonormal to right eigenvectors (Langville and
Meyer, 2006).

It is useful to characterize the eigenvec-
tors by their Inverse Participation Ratio (IPR)
ξi = (

∑
j |ψi(j)|2)2/

∑
j |ψi(j)|4 which gives an ef-

fective number of nodes populated by an eigenvector
ψi. This characteristics is broadly used for description
of localized or delocalized eigenstates of electrons in a
disordered potential with Anderson transition (see e.g.
(Evers and Mirlin , 2008; Guhr et al., 1998)). We discuss
the specific properties of eigenvectors in next Secs.

FIG. 5 (Color online) Dependence of probabilities of PageR-
ank P (red/gray curve) and CheiRank P ∗ (blue/black curve)
vectors on the corresponding rank indexes K and K∗ for net-
works of Wikipedia Aug 2009 (top curves) and University of
Cambridge (bottom curves, moved down by a factor 100).
The straight dashed lines show the power law fits for PageR-
ank and CheiRank with the slopes β = 0.92; 0.58 respectively,
corresponding to β = 1/(µin,out−1) for Wikipedia (see Fig. 2),
and β = 0.75, 0.61 for Cambridge. After (Zhirov et al., 2010)
and (Frahm et al., 2011).

IV. CHEIRANK VERSUS PAGERANK

It is established that ranking of network nodes based
on PageRank order works reliably not only for WWW
but also for other directed networks. As an example it is
possible to quote the citation network of Physical Review
(Radicchi et al., 2009; Redner , 1998, 2005), Wikipedia
network (Aragón et al., 2012; Eom and Shepelyansky ,
2013a; Skiena and Ward, 2014; Zhirov et al., 2010) and
even the network of world commercial trade (Ermann
and Shepelyansky , 2011b). Here we describe the main
properties of PageRank and CheiRank probabilities us-
ing a few real networks. More detailed presentation for
concrete networks follows in next Secs.

A. Probability decay of PageRank and CheiRank

Wikipedia is a useful example of a scale-free network.
An article quotes other Wikipedia articles that generates
a network of directed links. For Wikipedia of English
articles dated by Aug 2009 we have N = 3282257, N` =
71012307 ((Zhirov et al., 2010)). The dependencies of
PageRank P (K) and CheiRank P ∗(K∗) probabilities on
indexes K and K∗ are shown in Fig. 5. In a large range
the decay can be satisfactory described by an algebraic
law with an exponent β. The obtained β values are in
a reasonable agreement with the expected relation β =
1/(µin,out−1) with the exponents of distribution of links
given above. However, the decay is algebraic only on a
tail, showing certain nonlinear variations well visible for
P ∗(K∗) at large values of P ∗.

Similar data for network of University of Cambridge
(2006) with N = 212710, N` = 2015265 (Frahm et al.,
2011) are shown in the same Fig. 5. Here, the exponents
β have different values with approximately the same sta-
tistical accuracy of β.

Thus we come to the same conclusion as (Meusel et al.,
2014): the probability decay of PageRank and CheiRank
is only approximately algebraic, the relation between ex-
ponents β and µ also works only approximately.

B. Correlator between PageRank and CheiRank

Each network node i has both PageRank K(i) and
CheiRank K(i)∗ indexes so that it is interesting to know
what is a correlation between the corresponding vectors
of PageRank and CheiRank. It is convenient to charac-
terized this by a correlator introduced in (Chepelianskii,
2010)

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i))− 1 . (4)
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FIG. 6 (Color online) Correlator κ as a function of the num-
ber of nodes N for different networks: Wikipedia networks,
Phys Rev network, 17 UK universities, 10 versions of Ker-
nel Linux Kernel PCN, Escherichia Coli and Yeast Transcrip-
tion Gene networks, Brain Model Network, C.elegans neural
network and Business Process Management Network. After
(Ermann et al., 2012a) with additional data from (Abel and
Shepelyansky , 2011), (Eom and Shepelyansky , 2013a), (Kan-
diah and Shepelyansky , 2014a), (Frahm et al., 2014b).

FIG. 7 (Color online) Density distribution of network nodes
W (K,K∗) = dNi/dKdK

∗ shown on the plane of PageRank
and CheiRank indexes in logscale (logN K, logN K

∗) for all
1 ≤ K,K∗ ≤ N , density is computed over equidistant grid
in plane (logN K, logN K

∗) with 100 × 100 cells; color shows
average value of W in each cell, the normalization condition
is

∑
K,K∗W (K,K∗) = 1. Density W (K,K∗) is shown by

color with blue (dark gray) for minimum in (a),(b) and white
(a) and yellow (white) (b) for maximum (black for zero).
Panel (a): data for Wikipedia Aug (2009), N = 3282257,
green/red (light gray/dark gray) points show top 100 per-
sons from PageRank/CheiRank, yellow (white) pluses show
top 100 persons from (Hart, 1992); after (Zhirov et al., 2010).
Panel (b): Density distribution W (K,K∗) = dNi/dKdK

∗ for
Linux Kernel V2.4 network with N = 85757, after (Ermann
et al., 2012a).

Even if all the networks from Fig. 6 have similar alge-
braic decay of PageRank probability with K and similar
β ∼ 1 exponents we see that the correlations between

PageRank and CheiRank vectors are drastically different
in these networks. Thus the networks of UK universi-
ties and 9 different language editions of Wikipedia have
the correlator κ ∼ 1 − 8 while all other networks have
κ ∼ 0. This means that there are significant differences
hidden in the network architecture which are no visible
from PageRank analysis. We will discuss the possible ori-
gins of such a difference for the above networks in next
Secs.

C. PageRank-CheiRank plane

A more detailed characterization of correlations be-
tween PageRank and CheiRank vectors can be ob-
tained from a distribution of network nodes on the two-
dimensional plane (2D) of indexes (K,K∗). Two ex-
amples for Wikipedia and Linux networks are shown in
Fig. 7. A qualitative difference between two networks is
obvious. For Wikipedia we have a maximum of density
along the line lnK∗ ≈ 5 + (lnK)/3 that results from
a strong correlation between PageRank and CheiRank
with κ = 4.08. In contrast to that for the Linux net-
work V2.4 we have a homogeneous density distribution
of nodes along lines lnK∗ = lnK + const corresponding
to uncorrelated probabilities P (K) and P ∗(K∗) and even
slightly negative value of κ = −0.034. We note that if
for Wikipedia we generate nodes with independent prob-
abilities distributions P and P ∗, obtained from this net-
work at the corresponding value of N , then we obtain
a homogeneous node distribution in (K,K∗) plane (in
(logK, logK∗) plane it takes a triangular form, see Fig.4
at (Zhirov et al., 2010)).

In Fig. 7(a) we also show the distribution of top 100
persons from PageRank and CheiRank compared with
the top 100 persons from (Hart, 1992). There is a sig-
nificant overlap between PageRank and Hart ranking of
persons while CheiRank generates mainly another listing
of people. We discuss the Wikipedia ranking of historical
figures in Sec. IX.

D. 2DRank

PageRank and CheiRank indexes KiKi
∗ order all net-

work nodes according to a monotonous decrease of cor-
responding probabilities P (Ki) and P ∗(Ki

∗). While top
K nodes are most popular or known in the network, top
K∗ nodes are most communicative nodes with many out-
going links. It is useful to consider an additional ranking
K2, called 2DRank, which combines properties of both
ranks K and K∗ (Zhirov et al., 2010).

The ranking list K2(i) is constructed by increasing
K → K + 1 and increasing 2DRank index K2(i) by one
if a new entry is present in the list of first K∗ < K en-
tries of CheiRank, then the one unit step is done in K∗

and K2 is increased by one if the new entry is present
in the list of first K < K∗ entries of CheiRank. More
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formally, 2DRank K2(i) gives the ordering of the se-
quence of sites, that appear inside the squares
[1, 1; K = k,K∗ = k; ...] when one runs progressively
from k = 1 to N . In fact, at each step k → k + 1
there are tree possibilities: (i) no new sites on two edges
of square, (ii) only one site is on these two edges and it is
added in the listing of K2(i) and (iii) two sites are on the
edges and both are added in the listing K2(i), first with
K > K∗ and second with K < K∗. For (iii) the choice
of order of addition in the list K2(i) affects only some
pairs of neighboring sites and does not change the main
structure of ordering. An illustration example of 2DRank
algorithm is given in Fig.7 at (Zhirov et al., 2010). For
Wikipedia 2DRanking of persons is discussed in Sec. IX.

E. Historical notes on spectral ranking

Starting from the work of Markov (Markov , 1906)
many scientists contributed to the development of spec-
tral ranking of Markov chains. Research of Perron (1907)
and Frobenius (1912) led to the Perron-Frobenius theo-
rem for square matrices with positive entries (see e.g.
(Brin and Stuck, 2002)). Important steps have been
done by researchers in psychology, sociology and math-
ematics including J.R.Seeley (1949), T.-H.Wei (1952),
L.Katz (1953), C.H.Hubbell (1965). The detailed histor-
ical description of spectral ranking research is reviewed
by (Franceschet , 2011) and (Vigna, 2013). In the WWW
context, the Google matrix in the form (1), with regu-
larization of dangling nodes and damping factor α, was
introduced by (Brin and Page , 1998).

A PageRank vector of a Google matrix G∗ with in-
verted directions of links has been considered by (Fogaras
, 2003) and (Hrisitidis et al., 2008), but no systematic sta-
tistical analysis of 2DRanking was presented there. An
important step was done by (Chepelianskii, 2010) who
analyzed λ = 1 eigenvectors of G for directed network
and of G∗ for network with inverted links. The com-
parative analysis of Linux Kernel network and WWW
of University of Cambridge demonstrated a significant
differences in correlator κ values on these networks and
different functions of top nodes in K and K∗. The term
CheiRank was coined in (Zhirov et al., 2010) to have a
clear distinction between eigenvectors of G and G∗. We
note that top PageRank and CheiRank nodes have cer-
tain similarities with authorities and hubs appearing in
the HITS algorithm (Kleinberg , 1999). However, the
HITS is query dependent while the rank probabilities
P (Ki) and P ∗(Ki

∗) classify all nodes of the network.

V. COMPLEX SPECTRUM AND FRACTAL WEYL LAW

The Weyl law (Weyl , 1912) gives a fundamental link
between the properties of quantum eigenvalues in closed
Hamiltonian systems, the Planck constant ~ and the clas-
sical phase space volume. The number of states in this

case is determined by the phase volume of a system
with dimension d. The case of Hermitian operators is
now well understood both on mathematical and physi-
cal grounds (Dimassi and Sjöstrand, 1999; Landau and
Lifshitz, 1989). Surprisingly, only recently it has been
realized that the case of nonunitary operators describing
open systems in the semiclassical limit has a number of
new interesting properties and the concept of the frac-
tal Weyl law (Sjöstrand , 1990; Zworski , 1999) has been
introduced to describe the dependence of number of res-
onant Gamow eigenvalues (Gamow , 1928) on ~.

The Gamow eigenstates find important applications
for decay of radioactive nuclei, quantum chemistry reac-
tions, chaotic scattering and microlasers with chaotic res-
onators, open quantum maps (see (Gaspard, 1998, 2014;
Shepelyansky , 2008) and Refs. therein). The spectrum
of corresponding operators has a complex spectrum λ.
The spread width γ = −2 ln |λ| of eigenvalues λ deter-
mines the life time of a corresponding eigenstate. The
understanding of the spectral properties of related oper-
ators in the semiclassical limit represents an important
challenge.

According to the fractal Weyl law (Lu et al., 2003;
Sjöstrand , 1990) the number of Gamow eigenvalues Nγ ,
which have escape rates γ in a finite band width 0 ≤ γ ≤
γb, scales as

Nγ ∝ ~−d/2 ∝ Nd/2 (5)

where d is a fractal dimension of a classical strange re-
peller formed by classical orbits nonescaping in future
and past times. In the context of eigenvalues λ of the
Google matrix we have γ = −2 ln |λ|. By numerical sim-
ulations it has been shown that the law (5) works for a
scattering problem in 3-disk system (Lu et al., 2003) and
quantum chaos maps with absorption when the fractal
dimension d is changed in a broad range 0 < d < 2 (Er-
mann and Shepelyansky , 2010b; Shepelyansky , 2008).

The fractal Weyl law (5) of open systems with a frac-
tal dimension d < 2 leads to a striking consequence:
only a relatively small fraction of eigenvalues µW ∼
Nγ/N ∝ ~(2−d)/2 ∝ N (d−2)/2 � 1 has finite values of
|λ| while almost all eigenstates of the matrix operator of
size N ∝ 1/~ have λ → 0. The eigenstates with finite
|λ| > 0 are related to the classical fractal sets of orbits
non-escaping neither in the future neither in the past. A
fractal structure of these quantum fractal eigenstates has
been investigated in (Shepelyansky , 2008). There it was
conjectured that the eigenstates of a Google matrix with
finite |λ| > 0 will select interesting specific communities
of a network. We will see below that the fractal Weyl law
can indeed be observed in certain directed networks and
in particular we show in the next section that it naturally
appears for Perron-Frobenius operators of dynamical sys-
tems and Ulam networks.

It is interesting to note that nontrivial complex spec-
tra also naturally appear in systems of quantum chaos in
presence of a contact with a measurement device (Bruzda
et al., 2010). The properties of complex spectra of small
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size orthostochastic (unistochastic) matrices are analyzed
in (Zyczkowski et al., 2003). In such matrices the ele-
ments can be presented in a form Sij = O2

ij (Sij = |Uij |2)
where O is an orthogonal matrix ( U is a unitary matrix).
We will see certain similarities of their spectra with the
spectra of directed networks discussed in Sec. VIII.

Recent mathematical results for the fractal Weyl law
are presented in (Nonnenmacher and Zworski , 2007;
Nonnenmacher et al., 2014).

FIG. 8 Illustration of operation of the Ulam method: the
phase space (x, y) is divided in N = Nx × Ny cells, Nc tra-
jectories start from cell j and the number of trajectories Nij
arrived to a cell i from a cell j is collected after a map iter-
ation. Then the matrix of Markov transitions is defined as
Sij = Nij/Nc, by construction

∑N
i=1 Sij = 1.

VI. ULAM NETWORKS

By construction the Google matrix belongs to the class
of Perron-Frobenius operators which naturally appear in
ergodic theory (Cornfeldet al., 1982) and dynamical sys-
tems with Hamiltonian or dissipative dynamics (Brin and
Stuck, 2002). In 1960 Ulam (Ulam, 1960) proposed a
method, now known as the Ulam method, for a construc-
tion of finite size approximants for the Perron-Frobenius
operators of dynamical maps. The method is based on
discretization of the phase space and construction of a
Markov chain based on probability transitions between
such discrete cells given by the dynamics. Using as an
example a simple chaotic map Ulam made a conjecture
that the finite size approximation converges to the contin-
uous limit when the cell size goes to zero. Indeed, it has
been proven that for hyperbolic maps in one and higher
dimensions the Ulam method converges to the spectrum
of continuous system (Blank et al., 2002; Li , 1976). The
probability flows in dynamical systems have rich and non-
trivial features of general importance, like simple and
strange attractors with localized and delocalized dynam-
ics governed by simple dynamical rules (Lichtenberg and
Lieberman, 1992). Such objects are generic for nonlinear
dissipative dynamics and hence can have relevance for
actual WWW structure. The analysis of Ulam networks,
generated by the Ulam method, allows to obtain a better
intuition about the spectral properties of Google matrix.
The term Ulam networks was introduced in (Shepelyan-

sky and Zhirov , 2010a).

A. Ulam method for dynamical maps

In Fig. 8 we show how the Ulam method works. The
phase space of a dynamical map is divided in equal cells
and a number of trajectories Nc is propagated by a map
iteration. Thus a number of trajectories Nij arrived from
cell j to cell i is determined. Then the matrix of Markov
transition is defined as Sij = Nij/Nc. By construction
this matrix belongs to the class of Perron-Frobenius op-
erators which includes the Google matrix.

The physical meaning of the coarse grain description
by a finite number of cells is that it introduces in the sys-
tem a noise of cell size amplitude. Due to that an exact
time reversibility of dynamical equations of chaotic maps
is destroyed due to exponential instability of chaotic dy-
namics. This time reversibility breaking is illustrated by
an example of the Arnold cat map by (Ermann and Shep-
elyansky , 2012b). For the Arnold cat map on a long torus
it is shown that the spectrum of the Ulam approximate
of the Perron-Frobenius (UPFO) is composed of a large
group of complex eigenvalues with γ ∼ 2h ≈ 2, and real
eigenvalues with |1−λ| � 1 corresponding to a statistical
relaxation to the ergodic state at λ = 1 described by the
Fokker-Planck equation (here h is the Kolmogorov-Sinai
entropy of the map being here equal to the Lyapunov
exponent, see e.g. (Chirikov , 1979)).

For fully chaotic maps the finite cell size, corresponding
to added noise, does not significantly affect the dynam-
ics and the discrete UPFO converges to the limiting case
of continuous Perron-Frobenius operator (Blank et al.,
2002; Li , 1976). The Ulam method finds useful applica-
tions in studies of dynamics of molecular systems and co-
herent structures in dynamical flows (Froyland and Pad-
berg , 2009). Additional Refs. can be found in (Frahm
and Shepelyansky , 2010).

B. Chirikov standard map

However, for symplectic maps with a divided phase
space, a noise present in the Ulam method significantly
affects the original dynamics leading to a destruction of
islands of stable motion and Kolmogorov-Arnold-Moser
(KAM) curves. A famous example of such a map is the
Chirikov standard map which describes the dynamics of
many physical systems (Chirikov , 1979; Chirikov and
Shepelyansky , 2008):

ȳ = ηy +
Ks

2π
sin(2πx) , x̄ = x+ ȳ (mod 1) . (6)

Here bars mark the variables after one map iteration and
we consider the dynamics to be periodic on a torus so
that 0 ≤ x ≤ 1, −1/2 ≤ y ≤ 1/2; Ks is a dimensionless
parameter of chaos. At η = 1 we have area-preserving
symplectic map, considered in this SubSec., for 0 < η < 1
we have a dissipative dynamics analyzed in next SubSec.
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FIG. 9 (Color online) Complex spectrum of eigenvalues λj ,
shown by red/gray dots, for the UPFO of two variants of
the Chirikov standard map (6); the unit circle |λ| = 1 is
shown by a green (light gray) curve, the unit eigenvalue at
λ = 1 is shown as larger red/gray dot. Panel (a) corresponds
to the Chirikov standard map at dissipation η = 0.3 and
Ks = 7; the phase space is covered by 110 × 110 cells and
the UPFO is constructed by many trajectories with random
initial conditions generating transitions from one cell into an-
other (after (Ermann and Shepelyansky , 2010b)). Panel (b)
corresponds to the Chirikov standard map without dissipa-
tion at Ks = 0.971635406 with an UPFO constructed from
a single trajectory of length 1012 in the chaotic domain and
280× 280/2 cells to cover the phase space (after (Frahm and
Shepelyansky , 2010)).

FIG. 10 (Color online) Density plots of absolute values of
the eigenvectors of the UPFO obtained by the generalized
Ulam method with a single trajectory of 1012 iterations of
the Chirikov standard map at Ks = 0.971635406. The phase
space is shown in the area 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2; the
UPFO is obtained from M ×M/2 cells placed in this area.
Panels represent: (a) eigenvector ψ0 with eigenvalue λ0 = 1;
(b) eigenvector ψ2 with real eigenvalue λ2 = 0.99878108; (c)
eigenvector ψ6 with complex eigenvalue λ6 = −0.49699831 +
i 0.86089756 ≈ |λ6| ei 2π/3; (d) eigenvector ψ13 with complex

eigenvalue λ13 = 0.30580631 + i 0.94120900 ≈ |λ13| ei 2π/5.
Panel (a) corresponds to M = 25 while (b), (c) and (d)
have M = 800. Color is proportional to amplitude with
blue (black) for zero and red (gray) for maximal value. After
(Frahm and Shepelyansky , 2010).

Since the finite cell size generates noise and destroys
the KAM curves in the map (6) at η = 1, one should use
the generalized Ulam method (Frahm and Shepelyansky

, 2010), where the transition probabilities Nij/Nc are col-
lected along one chaotic trajectory. In this construction
a trajectory visits only those cells which belong to one
connected chaotic component. Therefore the noise in-
duced by the discretization of the phase space does not
lead to a destruction of invariant curves, in contrast to
the original Ulam method (Ulam, 1960), which uses all
cells in the available phase space. Since a trajectory is
generated by a continuous map it cannot penetrate inside
the stability islands and on a physical level of rigor one
can expect that, due to ergodicity of dynamics on one
connected chaotic component, the UPFO constructed in
such a way should converge to the Perron-Frobenius oper-
ator of the continuous map on a given subspace of chaotic
component. The numerical confirmations of this conver-
gence are presented in (Frahm and Shepelyansky , 2010).

We consider the map (6) at Ks = 0.971635406 when
the golden KAM curve is critical. Due to the symmetry
of the map with respect to x→ 1−x and y → −y we can
use only the upper part of the phase space with y ≥ 0
dividing it in M ×M/2 cells. At that Ks we find that
the number of cells visited by the trajectory in this half
square scales as Nd ≈ CdM

2/2 with Cd ≈ 0.42. This
means that the chaotic component contains about 40%
of the total area which is in good agreement with the
known result of (Chirikov , 1979).

The spectrum of the UPFO matrix S for the phase
space division by 280× 208/2 cells is shown in Fig. 9(b).
In a first approximation the spectrum λ of S is more
or less homogeneously distributed in the polar angle ϕ
defined as λj = |λj | exp(iϕj). With the increase of ma-
trix size Nd the two-dimensional density of states ρ(λ)
converges to a limiting distribution (Frahm and Shep-
elyansky , 2010). With the help of the Arnoldi method
it is possible to compute a few thousands of eigenvalues
with largest absolute values |λ| for maximal M = 1600
with the total matrix size N = Nd ≈ 5.3× 105.

The eigenstate at λ = 1 is homogeneously distributed
over the chaotic component at M = 25 (Fig. 10) and
higher M values (Frahm and Shepelyansky , 2010). This
results from the ergodicity of motion and the fact that
for symplectic maps the measure is proportional to the
phase space area (Chirikov , 1979; Cornfeldet al., 1982).
Examples of other right eigenvalues of S at real and com-
plex eigenvalues λ with |λ| < 1 are also shown in Fig. 10.
For λ2 the eigenstate corresponds to some diffusive mode
with two nodal lines, while other two eigenstates are lo-
calized around certain resonant structures in phase space.
This shows that eigenstates of the matrix G (and S) are
related to specific communities of a network.

With the increase of number of cells M2/2 there are
eigenvalues which become more and more close to the
unit eigenvalue. This is shown to be related to an al-
gebraic statistics of Poincaré recurrences and long time
sticking of trajectories in a vicinity of critical KAM
curves. At the same time for symplectic maps the mea-
sure is proportional to area so that we have dimension
d = 2 and hence we have a usual Weyl law with Nγ ∝ N .



12

More details can be found at (Frahm and Shepelyansky
, 2010, 2013).

FIG. 11 (Color online) Phase space representation of eigen-
states of the UFPO S for N = 110 × 110 cells (color is pro-
portional to absolute value |ψi| with red/gray for maximum
and blue/black for zero). Panel (a) shows an eigenstate with
maximum eigenvalue λ1 = 0.756 of the UFPO of map (6)
with absorption at Ks = 7, a = 2, η = 1, the space re-
gion is (−aKs/4π ≤ y ≤ aKs/4π, 0 ≤ x ≤ 1), the fractal
dimension of the strange repeller set nonescaping in future
is de = 1 + d/2 = 1.769. Panel (b) shows an eigenstate
at λ = 1 of the UFPO of map (6) without absorption at
Ks = 7, η = 0.3, the shown space region is (−1/π ≤ y ≤ 1/π,
0 ≤ x ≤ 1) and the fractal dimension of the strange attractor
is d = 1.532. After (Ermann and Shepelyansky , 2010b).

C. Dynamical maps with strange attractors

The fractal Weyl law (5) has initially been proposed for
quantum systems with chaotic scattering. However, it is
natural to assume that it should also work for Perron-
Frobenius operators of dynamical systems. Indeed, the
mathematical results for the Selberg zeta function in-
dicated that the law (5) should remain valid for the
UFPO (see Refs. at (Nonnenmacher et al., 2014)). A
detailed test of this conjecture (Ermann and Shepelyan-
sky , 2010b) has been performed for the map (6) with
dissipation at 0 < η < 1, when at large Ks the dy-
namics converges to a strange attractor in the range
−2 < y < 2, and for the nondissipative case η = 1
with absorption where all orbits leaving the interval
−aKs/4π ≤ y ≤ aKs/4π are absorbed after one itera-
tion (in both cases there is no modulus in y).

An example of the spectrum of UPFO for the model
with dissipation is shown in Fig. 9(a). We see that now,
in contrast to the symplectic case of Fig. 9(b), the spec-
trum has a significant gap which separates the eigenvalue
λ = 1 from the other eigenvalues with |λ| < 0.7. For the
case with absorption the spectrum has a similar struc-
ture but now with |λ| < 1 for the leading eigenvalue λ
since the total number of initial trajectories decreases
with the number of map iterations due to absorption im-
plying that for this case

∑
i Sij < 1 with S being the

UPFO.
It is established that the distribution of density of

states dW/dγ (or dW/d|λ|) converges to a fixed distri-
bution in the limit of large N or cell size going to zero
(Ermann and Shepelyansky , 2010b) (see Fig.4 there).
This demonstrates the validity of the Ulam conjecture
for considered systems.

Examples of two eigenstates of the UFPO for these
two models are shown in Fig. 11. The fractal struc-
ture of eigenstates is well visible. For the dissipative case
without absorption we have eigenstates localized on the
strange attractor. For the case with absorption eigen-
states are located on a strange repeller corresponding to
an invariant set of nonescaping orbits. The fractal dimen-
sion d of these classical invariant sets can be computed by
the usual box-counting method for dynamical systems. It
is important to note that for the case with absorption it
is more natural to measure the dimension de of the set
of orbits nonescaping in future. Due to the time reversal
symmetry of the continuous map the dimension of the
set of orbits nonescaping in the past is also de. Thus the
phase space dimension 2 is composed of 2 = de + de − d
and de = 1+d/2 where d is the dimension of the invariant
set of orbits nonescaping neither in the future neither in
the past. For the case with dissipation without absorp-
tion all orbits drop on a strange attractor and we have
the dimension of invariant set de = d.

D. Fractal Weyl law for Perron-Frobenius operators

FIG. 12 (Color online) Panel (a) shows the dependence of
the integrated number of states Nγ with decay rates 0 ≤
γ ≤ γb = 16 on the size N of the UFPO matrix S for the
map (6) at Ks = 7. The fits of numerical data, shown by
dashed straight lines, give ν = 0.590, de = 1 + d/2 = 1.643
(at a = 1); ν = 0.772, de = 1 + d/2 = 1.769 (at a = 2);
ν = 0.716, d = 1.532 (at η = 0.3); ν = 0.827, d = 1.723 (at
η = 0.6). Panel (b) shows the fractal Weyl exponent ν as
a function of fractal dimension d of the invariant fractal set
for the map (6) with a strange attractor (η < 1) at Ks =
15 (green/gray crosses), Ks = 12 (red/gray squares), Ks =
10 (orange/gray stars), Ks = 7 blue/black triangles; for a
strange repeller (η = 1) at Ks = 7 (black points) and for a
strange attractor for the Hénon map at standard parameters
a = 1.2; 1.4, b = 0.3 (green diamonds). The straight dashed
line shows the fractal Weyl law dependence ν = d/2. After
(Ermann and Shepelyansky , 2010b).
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The direct verification of the validity of the fractal
Weyl law (5) is presented in Fig. 12. The number of
eigenvalues Nγ in a range with 0 ≤ γ ≤ γb (γ = −2 ln |λ|)
is numerically computed as a function of matrix size
N . The fit of the dependence Nγ(N), as shown in
Fig. 12(a), allows to determine the exponent ν in the
relation Nγ ∝ Nν . The dependence of ν on the fractal
dimension d, computed from the invariant fractal set by
the box-counted method, is shown in Fig. 12(b). The nu-
merical data are in good agreement with the theoretical
fractal Weyl law dependence ν = d/2. This law works
for a variety of parameters for the system (6) with ab-
sorption and dissipation, and also for a strange attractor
in the Hénon map (x̄ = y + 1 − ax2, ȳ = bx). We at-
tribute certain deviations, visible in Fig. 12 especially
for Ks = 7, to the fact that at Ks = 7 there is a small
island of stability at η = 1, which can produce certain
influence on the dynamics.

The physical origin of the law (5) can be understood in
a simple way: the number of states Nγ with finite values

of γ is proportional to the number of cells Nf ∝ Nd/2 on
the fractal set of strange attractor. Indeed, the results
for the overlap measure show that the eigenstates Nγ
have a strong overlap with the steady state while the
states with λ→ 0 have very small overlap. Thus almost
all N states have eigenvalues λ → 0 and only a small
fraction of states on a strange attractor/repeller Nγ ∝
Nf ∝ Nd/2 � N has finite values of λ. We also checked
that the participation ratio ξ of the eigenstate at λ = 1,
grows as ξ ∼ Nf ∝ Nd/2 in agreement with the fractal
Weyl law (Ermann and Shepelyansky , 2010b).

E. Intermittency maps

The properties of the Google matrix generated by one-
dimensional intermittency maps are analyzed in (Ermann
and Shepelyansky , 2010a). It is found that for such Ulam
networks there are many eigenstates with eigenvalues |λ|
being very close to unity. The PageRank of such networks
at α = 1 is characterized by a power law decay with an
exponent determined by the parameters of the map. It is
interesting to note that usually for WWW the PageRank
probability is proportional to a number of ingoing links
distribution (see e.g. (Litvak et al., 2008)). For the case
of intermittency maps the decay of PageRank is indepen-
dent of number of ingoing links. In addition, for α close
to unity a decay of the PageRank has an exponent β ≈ 1
but at smaller values α ≤ 0.9 the PageRank becomes
completely delocalized. It is shown that the delocaliza-
tion depends on the intermittency exponent of the map.
This indicates that a rather dangerous phenomenon of
PageRank delocalization can appear for certain directed
networks. At the same time the one-dimensional inter-
mittency map still generates a relatively simple structure
of links with a typical number of links per node being
close to unity. Such a case is probably not very typical
for real networks. Therefore it is useful to analyze richer

Ulam networks with a larger number of links per node.

FIG. 13 (Color online) PageRank probability Pj for the
Google matrix generated by the Chirikov typical map at
T = 10, ks = 0.22, η = 0.99 with α = 1 (a), α = 0.95
(b), and α = 0.85 (c). The probability Pj is shown in the
phase space region 0 ≤ x < 2π;−π ≤ y < π which is divided
in N = 3.6 · 105 cells; Pj is zero for blue/black and maximal
for red/gray. After (Shepelyansky and Zhirov , 2010a).

F. Chirikov typical map

With this aim we consider the Ulam networks gener-
ated by the Chirikov typical map with dissipation studied
by (Shepelyansky and Zhirov , 2010a). The map intro-
duced, by Chirikov in 1969 for description of continuous
chaotic flows, has the form:

yt+1 = ηyt + ks sin(xt + θt) , xt+1 = xt + yt+1 . (7)

Here the dynamical variables x, y are taken at integer mo-
ments of time t. Also x has a meaning of phase variable
and y is a conjugated momentum or action. The phases
θt = θt+T are T random phases periodically repeated
along time t. We stress that their T values are chosen and
fixed once and they are not changed during the dynami-
cal evolution of x, y. We consider the map in the region
of Fig. 13 (0 ≤ x < 2π,−π ≤ y < π) with the 2π-periodic
boundary conditions. The parameter 0 < η < 1 gives a
global dissipation. The properties of the symplectic map
at η = 1 have been studied in detail in (Frahm and She-
pelyansky , 2009). The dynamics is globally chaotic for
ks > kc ≈ 2.5/T 3/2 and the Kolmogorov-Sinai entropy is

h ≈ 0.29ks
2/3 (more details about the Kolmogorov-Sinai

entropy can be found in (Brin and Stuck, 2002; Chirikov
, 1979; Cornfeldet al., 1982)). A bifurcation diagram at
η < 1 shows a series of transitions between fixed points,
simple and strange attractors. Here we present results
for T = 10, ks = 0.22, η = 0.99 and a specific random
set of θt given in (Shepelyansky and Zhirov , 2010a).
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FIG. 14 (Color online) Dependence of PageRank probability
Pj on PageRank index j for number of cells in the UFPO
being N = 104, 9 × 104, 3.6 × 105 and 1.44 × 106 (larger
N have more dark and more long curves in (b), (c); in (a)
this order of N is for curves from bottom to top (curves for
N = 3.6×105 and 1.44×106 practically coincide in this panel;
for online version we note that the above order of N values
corresponds to red, magenta, green, blue curves respectively).
Dashed line in (a) shows an exponential Boltzmann decay (see
text, line is shifted in j for clarity). The dashed straight line in
(b) shows the fit Pj ∼ 1/jβ with β = 0.48. Other parameters,
including the values of α, and panel order are as in Fig. 13.
After (Shepelyansky and Zhirov , 2010a).

Due to exponential instability of motion one cell in
the Ulam method gives transitions approximately to
kcl ≈ exp(hT ) other cells. According to this relation
a large number of cells kcl can be coupled at large T
and h. For parameters of Fig. 13 one finds an approxi-
mate power law distribution of ingoing and outgoing links
in the corresponding Ulam network with the exponents
µin ≈ µout ≈ 1.9. The variation of the PageRank vec-
tor with the damping factor α is shown in Fig. 13 on
the phase plane (x, y). For α = 1 the PageRank is con-
centrated in a vicinity of a simple attractor composed of
several fixed points on the phase plane. Thus the dynam-
ical attractors are the most popular nodes from the net-
work view point. With a decrease of α down to 0.95, 0.85
values we find a stronger and stronger delocalization of
PageRank over the whole phase space.

The delocalization with a decrease of α is also well seen
in Fig. 14 where we show Pj dependence on PageRank
index j with a monotonic decreasing probability Pj . At
α = 1 we have an exponential decay of Pj with j that
corresponds to a Boltzmann type distribution where a
noise produced by a finite cell size in the Ulam method
is compensated by dissipation. For α = 0.95 the random
jumps of a network surfer, induced by the term (1 −
α)/N in (1), produce an approximate power law decay
of Pj ∝ 1/jβ with β ≈ 0.48. For α = 0.85 the PageRank
probability is flat and completely delocalized over the
whole phase space.

The analysis of the spectrum of S for the map (7) for
the parameters of Fig. 14 shows the existence of eigenval-
ues being very close to λ = 1, however, there is no exact
degeneracy as it is the case for UK universities which we
will discuss below. The spectrum is characterized by the
fractal Weyl law with the exponent ν ≈ 0.85. For eigen-
states with |λ| < 1 the values of IPR ξ are less than 300
for a matrix size N ≈ 1.4× 104 showing that eigenstates

are localized. However, for the PageRank the compu-
tations can be done with larger matrix sizes reaching a
maximal value of N = 6.4 × 105. The dependence of
ξ on α shows that a delocalization transition of PageR-
ank vector takes place for α < αc ≈ 0.95. Indeed, at
α = 0.98 we have ξ ≈ 30 while at α ≈ 0.8 the IPR
value of PageRank becomes comparable with the whole
system size ξ ≈ 5 × 105 ∼ N = 6.4 × 105 (see Fig.9 at
(Shepelyansky and Zhirov , 2010a)).

The example of Ulam networks considered here shows
that a dangerous phenomenon of PageRank delocaliza-
tion can take place under certain conditions. This delo-
calization may represent a serious danger for efficiency of
search engines since for a delocalized flat PageRank the
ranking of nodes becomes very sensitive to small pertur-
bations and fluctuations.

VII. LINUX KERNEL NETWORKS

Modern software codes represent now complex large
scale structures and analysis and optimization of their ar-
chitecture become a challenge. An interesting approach
to this problem, based on a directed network construc-
tion, has been proposed by (Chepelianskii, 2010). Here
we present results obtained for such networks.

A. Ranking of software architecture

Following (Chepelianskii, 2010) we consider the Pro-
cedure Call Networks (PCN) for open source programs
with emphasis on the code of Linux Kernel (Linux, 2010)
written in the C programming language (Kernighan and
Ritchie, 1978). In this language the code is structured
as a sequence of procedures calling each other. Due to
that feature the organization of a code can be naturally
represented as a PCN, where each node represents a pro-
cedure and each directed link corresponds to a procedure
call. For the Linux source code such a directed network
is built by its lexical scanning with the identification of
all the defined procedures. For each of them a list keeps
track of the procedures calls inside their definition.

An example of the obtained network for a toy code
with two procedures start kernel and printk is shown in
Fig. 15. The in/out-degrees of this model, noted as k and
k̄, are shown in Fig. 15. These numbers correspond to
the number of out/in-going calls for each procedure. The
obtained in/out-degree probability distributions P in(k),
P out(k̄) are shown Fig. 15 for different Linux Kernel re-
leases. These distributions are well described by power
law dependencies P in(k) ∝ 1/kµin and P out(k̄) ∝ 1/k̄µout

with µin = 2.0± 0.02, and µout = 3.0± 0.1. These values
of exponents are close to those found for the WWW (Do-
nato et al., 2004; Pandurangan et al., 2005). If only calls
to distinct functions are counted in the outdegree distri-
bution then the exponent drops to µout ≈ 5 whereas µin

remains unchanged. It is important that the distribu-
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tions for the different kernel releases remain stable even
if the network size increases from N = 2751 for version
V1.0 to N = 285509 for the latest version V2.6.32 taken
into account in this study. This confirms the free-scale
structure of software architecture of Linux Kernel net-
work.

The probability distributions of PageRank and
CheiRank vectors are also well described by power laws
with exponents βin ≈ 1 and βout ≈ 0.5 being in good
agreement with the usual relation β = 1/(µ − 1) (see
Fig.2 in (Chepelianskii, 2010)). For V2.6.32 the top
three procedures of PageRank at α = 0.85 are printk,
memset, kfree with probabilities 0.024, 0.012, 0.011 re-
spectively, while at the top of CheiRank we have
start kernel, btrfs ioctl, menu finalize with respectively
0.000280, 0.000255, 0.000250. These procedures perform
rather different tasks with printk reporting messages and
start kernel initializing the Kernel and managing the
repartition of tasks. This gives an idea that both Page-
Rank and CheiRank order can be useful to highlight en
different aspects of directed and inverted flows on our net-
work. Of course, in the context of WWW ingoing links
related to PageRank are less vulnerable as compared to
outgoing links related to CheiRank, which can be modi-
fied by a user rather easily. However, in other type of net-
works both directions of links appear in a natural manner
and thus both vectors of PageRank and CheiRank play
an important and useful role.

FIG. 15 (Color online) The diagram in the center represents
the PCN of a toy kernel with two procedures written in C-
programming language. The data on panels (a) and (b) show
outdegree and indegree probability distributions P out(k̄) and
P in(k) respectively. The colors correspond to different Kernel
releases. The most recent version 2.6.32, with N = 285509
and an average 3.18 calls per procedure, is represented in
red/gray. Older versions (2.4.37.6, 2.2.26, 2.0.40, 1.2.12, 1.0)
with N respectively equal to (85756, 38766, 14079, 4358,
2751) follow the same behavior. The dashed curve in (a)
shows the outdegree probability distribution if only calls to
distinct destination procedures are kept. After (Chepelian-
skii, 2010).

For the Linux Kernel network the correlator κ (4) be-
tween PageRank and CheiRank vectors is close to zero

(see Fig. 6). This confirms the independence of two vec-
tors. The density distribution of nodes of the Linux Ker-
nel network, shown in Fig. 7(b), has a homogeneous dis-
tribution along lnK+lnK∗ = const lines demonstrating
once more absence of correlations between P (Ki) and
P ∗(Ki

∗). Indeed, such homogeneous distributions ap-
pear if nodes are generated randomly with factorized
probabilities PiPi

∗ (Chepelianskii, 2010; Zhirov et al.,
2010). Such a situation seems to be rather generic
for software architecture. Indeed, other open software
codes also have a small values of correlator, e.g. Open-
Source software including Gimp 2.6.8 has κ = −0.068
at N = 17540 and X Windows server R7.1-1.1.0 has
κ = −0.027 at N = 14887. In contrast to these soft-
ware codes the Wikipedia networks have large values of
κ and inhomogeneous distributions in (K,K∗) plane (see
Figs. 6,7).

The physical reasons for absence of correlations be-
tween P (K) and P ∗(K∗) have been explained in (Chep-
elianskii, 2010) on the basis of the concept of “separation
of concerns” in software architecture (Dijkstra, 1982). It
is argued that a good code should decrease the number
of procedures that have high values of both PageRank
and CheiRank since such procedures will play a critical
role in error propagation since they are both popular and
highly communicative at the same time. For example in
the Linux Kernel, do fork, that creates new processes,
belongs to this class. Such critical procedures may intro-
duce subtle errors because they entangle otherwise inde-
pendent segments of code. The above observations sug-
gest that the independence between popular procedures,
which have high P (Ki) and fulfill important but well de-
fined tasks, and communicative procedures, which have
high P ∗(Ki

∗) and organize and assign tasks in the code,
is an important ingredient of well structured software.

B. Fractal dimension of Linux Kernel Networks

The spectral properties the Linux Kernel network are
analyzed in (Ermann et al., 2011a). At large N the spec-
trum is obtained with the help of Arnoldi method from
ARPACK library. This allows to find eigenvalues with
|λ| > 0.1 for the maximal N at V2.6.32. An exam-
ple of complex spectrum λ of G is shown in Fig. 16(a).
There are clearly visible lines at real axis and polar an-
gles ϕ = π/2, 2π/3, 4π/3, 3π/2. The later are related to
certain cycles in procedure calls, e.g. an eigenstate at
λi = 0.85 exp(i2π/3) is located only on 6 nodes. The
spectrum of G∗ has a similar structure.

The network size N grows with the version number
of Linux Kernel corresponding to its evolution in time.
We determine the total number of states Nλ with 0.1 <
|λ| ≤ 1 and 0.25 < |λ| ≤ 1. The dependence of Nλ on
N , shown in Fig. 16(b), clearly demonstrates the validity
of the fractal Weyl law with the exponent ν ≈ 0.63 for
G (we find ν∗ ≈ 0.65 for G∗). We take the values of ν
for λ = 0.1 where the number of eigenvalues Nλ gives a
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better statistics. Within statistical errors the value of ν is
not sensitive to the cutoff value at small λ. The matrix
G∗ has slightly higher values of ν. These results show
that the PCN of Linux Kernel has a fractal dimension
d = 2ν ≈ 1.26 for G and d = 2ν ≈ 1.3 for G∗.

FIG. 16 (Color online) Panel (a) shows distribution of eigen-
values λ in the complex plane for the Google matrix G of the
Linux Kernel version 2.6.32 with N = 285509 and α = 0.85;
the solid curves represent the unit circle and the lowest limit of
computed eigenvalues. Panel (b) shows dependence of the in-
tegrated number of eigenvalues Nλ with |λ| > 0.25 (red/gray
squares) and |λ| > 0.1 (black circles) as a function of the total
number of processes N for versions of Linux Kernels. The val-
ues of N correspond (in increasing order) to Linux Kernel ver-
sions 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3, 2.4 and 2.6. The power
law Nλ ∝ Nν has fitted values ν|λ|>0.25 = 0.622 ± 0.010 and
ν|λ|>0.1 = 0.630± 0.015. Inset shows data for the Google ma-
trix G∗ with inverse link directions, the corresponding expo-
nents are ν∗|λ|>0.25 = 0.696±0.010 and ν∗|λ|>0.1 = 0.652±0.007.
After (Ermann et al., 2011a).

To check that the fractal dimension of the PCN indeed
has this value the dimension of the network is computed
by another direct method known as the cluster growing
method (see e.g. (Song et al., 2005)). In this method the
average mass or number of nodes 〈Mc〉 is computed as a
function of the network distance l counted from an initial
seed node with further averaging over all seed nodes. For
a dimension d the mass 〈Mc〉 should grow as 〈Mc〉 ∝ ld

that allows to determine the value of d for a given net-
work. It should be noted that the above method should
be generalized for the case of directed networks. For that
the network distance l is computed following only outgo-
ing links. The average of 〈Mc(l)〉 is done over all nodes.
Due to global averaging the method gives the same result
for the matrix with inverted link direction (indeed, the
total number of outgoing links is equal to the number of
ingoing links). However, as established in (Ermann et al.,
2011a), the fractal dimension obtained by this general-
ized method is very different from the case of converted
undirected network, when each directed link is replaced
by an undirected one. The average dimension obtained
with this method for PCN is d = 1.4 even if a certain
20% increase of d appears for the latest Linux versions
V2.6. We attribute this deviation for the version V2.6
to the well known fact that significant rearrangements
in the Linux Kernel have been done after version V2.4

(Linux, 2010).
Thus in view of the above restrictions we consider that

there is a rather good agreement of the fractal dimen-
sion obtained from the fractal Weyl law with d ≈ 1.3
and the value obtained with the cluster growing method
which gives an average d ≈ 1.4. The fact that d is ap-
proximately the same for all versions up to V2.4 means
that the Linux Kernel is characterized by a self-similar
fractal growth in time. The closeness of d to unity signi-
fies that procedure calls are almost linearly ordered that
corresponds to a good code organization. Of course, the
fractal Weyl law gives the dimension d obtained during
time evolution of the network. This dimension is not
necessary the same as for a given version of the network
of fixed size. However, one can expect that the growth
goes in a self-similar way (Dorogovtsev et al., 2008) and
that the static dimension is close to the dimension value
emerging during the time evolution. This can be viewed
as a some kind of ergodicity conjecture. Our data show
that this conjecture works with a good accuracy up to
the Linux Kernel V.2.6.

Thus the results obtained in (Ermann et al., 2011a)
and described here confirm the validity of the fractal
Weyl law for the Linux Kernel network with the expo-
nent ν ≈ 0.65 and the fractal dimension d ≈ 1.3. It is
important to note that the fractal Weyl exponent ν is
not sensitive to the exponent β characterizing the decay
of the PageRank. Indeed, the exponent β remains prac-
tically the same for the WWW (Donato et al., 2004) and
the PCN of Linux Kernel (Chepelianskii, 2010) while the
values of fractal dimension are different with d ≈ 4 for
WWW and d ≈ 1.3 for PCN (see (Ermann et al., 2011a)
and Refs. therein).

The analysis of the eigenstates of G and G∗ shows that
their IPR values remain small (ξ < 70) compared to the
matrix size N ≈ 2.8 × 105 showing that they are well
localized on certain selected nodes.

VIII. WWW NETWORKS OF UK UNIVERSITIES

The WWW networks of certain UK universities for
years between 2002 and 2006 are publicly available at
(UK universities, 2011). Due to their modest size, these
networks are well suitable for a detail study of PageRank,
CheiRank, complex eigenvalue spectra and eigenvectors
(Frahm et al., 2011).

A. Cambridge and Oxford University networks

We start our analysis of WWW university networks
from those of Cambridge and Oxford 2006. For ex-
ample, in Fig. 5 we show the dependence of PageRank
(CheiRank) probabilities P (P ∗) on rank index K (K∗)
for the WWW of Cambridge 2006 at α = 0.85. The
decay is satisfactory described by a power law with the
exponent β = 0.75 (β = 0.61).
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The complex eigenvalue spectrum and the invariant
subspace structure (see section III.C) have been stud-
ied in great detail for the cases of Cambridge 2006 and
Oxford 2006. For Cambridge 2006 (Oxford 2006) the
network size is N = 212710 (200823) and the num-
ber of links is N` = 2015265 (1831542). There are
ninv = 1543(1889) invariant subspaces, with maximal
dimension dmax = 4656(1545), together they contain
Ns = 48239 (30579) subspace nodes leading to 3508
(3275) eigenvalues (of the matrix S) with |λj | = 1 of
which n1 = 1832(2360) are at λj = 1 (about 1% of N).
The last number n1 is larger than the number of invariant
subspaces ninv since each of the subspaces has at least
one unit eigenvalue because each subspace is described
by a full representation matrix of the Perron-Frobenius
type. To determine the complex eigenvalue spectrum one
can apply exact diagonalization on each subspace and the
Arnoldi method on the remaining core space.

FIG. 17 (Color online) Panels (a) and (b) show the com-
plex eigenvalue spectrum λ of matrix S for the University
of Cambridge 2006 and Oxford 2006 respectively. The spec-
trum λ of matrix S∗ for Cambridge 2006 and Oxford 2006
are shown in panels (c) and (d). Eigenvalues λ of the core
space are shown by red/gray points, eigenvalues of isolated
subspaces are shown by blue/black points and the green/gray
curve (when shown) is the unit circle. Panels (e) and (f) show
the fraction j/N of eigenvalues with |λ| > |λj | for the core
space eigenvalues (red/gray bottom curve) and all eigenval-
ues (blue/black top curve) from top row data for Cambridge
2006 and Oxford 2006. After (Frahm et al., 2011).

The spectra of all subspace eigenvalues and nA =

20000 core space eigenvalues of the matrices S and S∗

are shown in Fig. 17. Even if the decay of PageRank and
CheiRank probabilities with rank index is rather similar
for both universities (see Fig.1 in (Frahm et al., 2011))
the spectra of two networks are very different. Thus the
spectrum contains much more detailed information about
the network features compared to the rank vectors.

At the same time the spectra of two universities have
certain similar features. Indeed, one can identify cross
and triple-star structures. These structures are very simi-
lar to those seen in the spectra of random orthostochastic
matrices of small size N = 3, 4 shown in Fig. 18 from (Zy-
czkowski et al., 2003) (spectra of unistochastic matrices
have a similar structure). The spectrum borders, deter-
mined analytically in (Zyczkowski et al., 2003) for these
N values, are also shown. The similarity is more visi-
ble for the spectrum of S∗ case ((c) and (d) of Fig. 17).
We attribute this to a larger randomness in outgoing
links which have more fluctuations compared to ingoing
links, as discussed in (Eom et al. , 2013b). The similar-
ity of spectra of Fig. 17 with those of random matrices
in Fig. 18 indicates that there are dominant triple and
quadruple structures of nodes present in the University
networks which are relatively weakly connected to other
nodes.

FIG. 18 Spectra λ of 800 random orthostochastic matrices of
size N = 3 (a) and N = 4 (b) (Reλ = x, Imλ = y). Thin lines
denote 3- and 4-hypocycloids, while the thick lines represent
the 3-4 interpolation arc. After (Zyczkowski et al., 2003).

The core space submatrix Scc of Eq. (2) does not obey
to the column sum normalization due to non-vanishing el-
ements in the block Ssc which allow for a small but finite
escape probability from core space to subspace nodes.
Therefore the maximum eigenvalue of the core space (of
the matrix Scc) is below unity. For Cambridge 2006

(Oxford 2006) it is given by λ
(core)
1 = 0.999874353718

(0.999982435081) with a quite clear gap 1−λ(core)1 ∼ 10−4

(∼ 10−5).

B. Universal emergence of PageRank

For α = 1 the leading eigenvalue λ = 1 is highly de-
generate due to the subspace structure. This degeneracy
is lifted for α < 1 with a unique eigenvector, the Page-
Rank, for the leading eigenvalue. The question arises how
the PageRank emerges if 1 − α � 1. Following (Frahm
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et al., 2011), an answer is obtained from a formal matrix
expression:

P = (1− α) (I − αS)−1 e/N, (8)

where the vector e has unit entries on each node and I
is the unit matrix. Then, assuming that S is diagonal-
izable (with no nontrivial Jordan blocks) we can use the
expansion:

P =
∑
λj=1

cj ψj +
∑
λj 6=1

1− α
(1− α) + α(1− λj)

cj ψj . (9)

where ψj are the eigenvectors of S and cj coefficients
determined by the expansion e/N =

∑
j cjψj . Thus

Eq. (9) indicates that in the limit α → 1 the Page-
Rank converges to a particular linear combination of the
eigenvectors with λj = 1, which are all localized in one
of the subspaces. For a finite but very small value of

1− α � 1− λ(core)1 the corrections for the contributions

of the core space nodes are ∼ (1− α)/(1− λ(core)1 ). This
behavior is indeed confirmed by Fig. 19 (a) showing the
evolution of the PageRank for different values of 1 − α
for the case of Cambridge 2006 and using a particular
method, based on an alternate combination of the power
iteration method and the Arnoldi method (Frahm et al.,
2011), to determine numerically the PageRank for very
small values of 1− α ∼ 10−8.

However, for certain of the university networks the core

space gap 1 − λ
(core)
1 is particularly small, for example

1−λ(core)1 ∼ 10−17, such that in standard double precision
arithmetic the Arnoldi method, applied on the matrix
Scc, does not allow to determine this small gap. For these
particular cases it is possible to determine rather accu-
rately the core space gap and the corresponding eigen-
vector by another numerical approach called “projected
power method” (Frahm et al., 2011). These eigenvectors,
shown in Fig. 19 (b), are strongly localized on a modest
number of nodes ∼ 102 and with very small but non-
vanishing values on the other nodes. Technically these
vectors extend to the whole core space but practically
they define small quasi-subspaces (in the core space do-
main) where the escape probability is extremely small
(Frahm et al., 2011) and in the range 1− α ∼ 10−8 they
still contribute to the PageRank according to Eq. (9).

FIG. 19 (Color online) (a) PageRank P (K) of Cambridge
2006 for 1 − α = 0.1, 10−3, 10−5, 10−7. (b) First core space

eigenvector ψ
(core)
1 versus its rank index K(core) for the UK

university networks with a small core space gap 1− λ(core)
1 <

10−8. After (Frahm et al., 2011).

FIG. 20 (Color online) (a) Fraction of invariant subspaces F
with dimensions larger than d as a function of the rescaled
variable x = d/〈d〉. Upper curves correspond to Cambridge
(green/gray) and Oxford (blue/black) for years 2002 to 2006
and middle curves (shifted down by a factor of 10) correspond
to the university networks of Glasgow, Cambridge, Oxford,
Edinburgh, UCL, Manchester, Leeds, Bristol and Birkbeck for
year 2006 with 〈d〉 between 14 and 31. Lower curve (shifted
down by a factor of 100) corresponds to the matrix S∗ of
Wikipedia with 〈d〉 = 4. The thick black line is F (x) =
(1 + 2x)−1.5. (b) Rescaled PageRank P Ns versus rescaled
rank index K/Ns for 1 − α = 10−8 and 3974 ≤ Ns ≤ 48239
for the same university networks as in (a) (upper and middle
curves, the latter shifted down and left by a factor of 10). The
lower curve (shifted down and left by a factor of 100) shows
the rescaled CheiRank of Wikipedia P ∗Ns versusK∗/Ns with
Ns = 21198. The thick black line corresponds to a power law
with exponent −2/3. After (Frahm et al., 2011).

In Fig. 20(b) we show that for several of the univer-
sity networks the PageRank at 1 − α = 10−8 has ac-
tually a universal form when using the rescaled vari-
ables P Ns versus K/Ns with a power law behavior close
to P ∝ K−2/3 for K/Ns < 1. The rescaled data of
Fig. 20 (a) show that the fraction of subspaces with di-
mensions larger than d is well described by the power
law F (x) ≈ (1 + 2x)−1.5 with the dimensionless variable
x = d/〈d〉 where 〈d〉 is an average subspace dimension
computed for WWW of a given university. The tables
of all considered UK universities with the parameters of
their WWW are given in (Frahm et al., 2011). We note
that the CheiRank of S∗ of Wikipedia 2009 also approx-
imately follows the above universal distributions. How-
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ever, for S matrix of Wikipedia the number of subspaces
is small and statistical analysis cannot be performed for
this case.

The origin of the universal distribution F (x) still re-
mains a puzzle. Possible links with a percolation on di-
rected networks (see e.g. (Dorogovtsev et al., 2008)) are
still to be elucidated. It also remains unclear how stable
this distribution really is. It works well for UK university
networks 2002-2006. However, for the Twitter network
(Frahm and Shepelyansky , 2012b) such a distribution
becomes rather approximate. Also for the network of
Cambridge in 2011, analyzed in (Ermann et al., 2012a,
2013b) with N ≈ 8.9 × 105, N` ≈ 1.5 × 107, the num-
ber of subspaces is significantly reduced and a statistical
analysis of their size distribution becomes not relevant.
It is possible that an increase of number of links per node
N`/N from a typical value of 10 for UK universities to
35 for Twitter affects this distribution. For Cambridge
2011 the network entered in a regime when many links
are generated by robots that apparently leads to a change
of its statistical properties.

C. Two-dimensional ranking for University networks

Two-dimensional ranking of network nodes provides
a new characterization of directed networks. Here we
consider a density distribution of nodes (see Sec. IV.C)
in the PageRank-CheiRank plane for examples of two
WWW networks of Cambridge 2006 and ENS Paris 2011
shown in Fig. 21 from (Ermann et al., 2012a).

The density distribution for Cambridge 2006 clearly
shows that nodes with high PageRank have low
CheiRank that corresponds to zero density at low K, K∗

values. At large K, K∗ values there is a maximum line of
density which is located not very far from the diagonal
K ≈ K∗. The presence of correlations between P (Ki)
and P ∗(Ki

∗) leads to a probability distribution with one
main maximum along a diagonal at lnK+lnK∗ = const.
This is similar to the properties of the density distribu-
tion for the Wikipedia network shown in Fig. 7(a).

The 2DRanking might give new possibilities for infor-
mation retrieval from large databases which are growing
rapidly with time. Indeed, for example the size of the
Cambridge network increased by a factor 4 from 2006
to 2011. At present, web robots start automatically to
generate new web pages. These features can be responsi-
ble for the appearance of gaps in the density distribution
in (K,K∗) plane at large K,K∗ ∼ N values visible for
large scale university networks such as ENS Paris in 2011
(see Fig. 21). Such an automatic generation of links can
change the scale-free properties of networks. Indeed, for
ENS Paris a large step in the PageRank distribution ap-
pears (Ermann et al., 2012a) possibly indicating a delo-
calization transition tendency of the PageRank that can
destroy the efficiency of information retrieval from the
WWW.

FIG. 21 (Color online) Density distribution W (K,K∗) =
dNi/dKdK

∗ for networks of Universities in the plane
of PageRank K and CheiRank K∗ indexes in log-scale
(logN K, logN K

∗). The density is shown for 100×100 equidis-
tant grid in logN K, logN K

∗ ∈ [0, 1], the density is averaged
over all nodes inside each cell of the grid, the normalization
condition is

∑
K,K∗W (K,K∗) = 1. Color varies from black

for zero to yellow/gray for maximum density value WM with

a saturation value of W
1/4
s = 0.5W

1/4
M so that the same color

is fixed for 0.5W
1/4
M ≤ W 1/4 ≤ W

1/4
M to show in a better

way low densities. The panels show networks of University of
Cambridge 2006 with N = 212710 (a) and ENS Paris 2011
for crawling level 7 with N = 1820015 (b). After (Ermann
et al., 2012a).

IX. WIKIPEDIA NETWORKS

The free online encyclopedia Wikipedia is a huge repos-
itory of human knowledge. Its size is growing perma-
nently accumulating enormous amount of information
and becoming a modern version of Library of Babel, de-
scribed by Jorge Luis Borges (Borges, 1962). The hyper-
link citations between Wikipedia articles provides an im-
portant example of directed networks evolving in time for
many different languages. In particular, the English edi-
tion of August 2009 has been studied in detail (Ermann
et al., 2012a, 2013b; Zhirov et al., 2010). The effects of
time evolution (Eom et al. , 2013b) and entanglement
of cultures in multilingual Wikipedia editions have been
investigated in (Aragón et al., 2012; Eom and Shepelyan-
sky , 2013a; Eom et al. , 2014).

A. Two-dimensional ranking of Wikipedia articles

The statistical distribution of links in Wikipedia net-
works has been found to follow a power law with the
exponents µin, µout (see e.g. (Capocci et al., 2006; Much-
nik et al., 2007; Zhirov et al., 2010; Zlatic et al., 2006)).
The probabilities of PageRank and CheiRank are shown
in Fig. 5. They are satisfactory described by a power law
decay with exponents βPR,CR = 1/(µin,out − 1) (Zhirov
et al., 2010).

The density distribution of articles over PageRank-
CheiRank plane (logN K, logN K

∗) is shown in Fig. 7(a)
for English Wikipedia Aug 2009. We stress that the den-
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sity is very different from those generated by the product
of independent probabilities of P and P ∗ given in Fig. 5.
In the latter case we obtain a density homogeneous along
lines lnK∗ = − lnK + const being rather similar to the
distribution for Linux network also shown in Fig. 7. This
result is in good agreement with a fact that the correla-
tor κ between PageRank and CheiRank vectors is rather
large for Wikipedia κ = 4.08 while it is close to zero for
Linux network κ ≈ −0.05.

The difference between PageRank and CheiRank is
clearly seen from the names of articles with highest
ranks (ranks of all articles are given in (Zhirov et al.,
2010)). At the top of PageRank we have 1. United
States, 2. United Kingdom, 3. France while for
CheiRank we find 1. Portal:Contents/Outline of knowl-
edge/Geography and places, 2. List of state leaders by
year, 3. Portal:Contents/Index/Geography and places.
Clearly PageRank selects first articles on a broadly
known subject with a large number of ingoing links while
CheiRank selects first highly communicative articles with
many outgoing links. The 2DRank combines these two
characteristics of information flow on directed network.
At the top of 2DRank K2 we find 1. India, 2. Sin-
gapore, 3. Pakistan. Thus, these articles are most
known/popular and most communicative at the same
time.

The top 100 articles in K,K2,K
∗ are determined for

several categories including countries, universities, peo-
ple, physicists. It is shown in (Zhirov et al., 2010) that
PageRank recovers about 80% of top 100 countries from
SJR data base (SJR , 2007), about 75% of top 100 univer-
sities of Shanghai university ranking (Shanghai ranking ,
2010), and, among physicists, about 50% of top 100 No-
bel winners in physics. This overlap is lower for 2DRank
and even lower for CheiRank. However, as we will see
below in more detail, 2DRank and CheiRank highlight
other properties being complementary to PageRank.

Let us give an example of top three physicists among
those of 754 registered in Wikipedia in 2010: 1. Aris-
totle, 2. Albert Einstein, 3. Isaac Newton from PageR-
ank; 1. Albert Einstein, 2. Nikola Tesla, 3. Benjamin
Franklin from 2DRank; 1. Hubert Reeves, 2. Shen Kuo,
3. Stephen Hawking from CheiRank. It is clear that
PageRank gives most known, 2DRank gives most known
and active in other areas, CheiRank gives those who are
known and contribute to popularization of science. In-
deed, e.g. Hubert Reeves and Stephen Hawking are very
well known for their popularization of physics that in-
creases their communicative power and place them at the
top of CheiRank. Shen Kuo obtained recognized results
in an enormous variety of fields of science that leads to
the second top position in CheiRank even if his activity
was about thousand years ago.

According to Wikipedia ranking the top universities
are 1. Harvard University, 2. University of Oxford, 3. Uni-
versity of Cambridge in PageRank; 1. Columbia Univer-
sity, 2. University of Florida, 3. Florida State Univer-
sity in 2DRank and CheiRank. CheiRank and 2DRank

highlight connectivity degree of universities that leads to
appearance of significant number of arts, religious and
military specialized colleges (12% and 13% respectively
for CheiRank and 2DRank) while PageRank has only 1%
of them. CheiRank and 2DRank introduce also a larger
number of relatively small universities who are keeping
links to their alumni in a significantly better way that
gives an increase of their ranks. It is established (Eom
et al. , 2013b) that top 10 PageRank universities from
English Wikipedia in years 2003, 2005, 2007, 2009, 2011
recover correspondingly 9, 9, 8, 7, 7 from top 10 of (Shang-
hai ranking , 2010).

The time evolution of probability distributions of
PageRank, CheiRank and two-dimensional ranking is an-
alyzed in (Eom et al. , 2013b) showing that they become
stabilized for the period 2007-2011.

On the basis of these results we can conclude that the
above algorithms provide correct and important rank-
ing of huge information and knowledge accumulated at
Wikipedia. It is interesting that even Dow-Jones compa-
nies are ranked via Wikipedia networks in a good manner
(Zhirov et al., 2010). We discuss ranking of top people
of Wikipedia a bit later.

B. Spectral properties of Wikipedia network

The complex spectrum of eigenvalues of G for English
Wikipedia network of Aug 2009 is shown in Fig. 22. As
for university networks, the spectrum also has some in-
variant subspaces resulting in degeneracies of the lead-
ing eigenvalue λ = 1 of S (or S∗). However, due to
the stronger connectivity of the Wikipedia network these
subspaces are significantly smaller compared to univer-
sity networks (Eom et al. , 2013b; Ermann et al., 2013b).
For example of Aug 2009 edition in Fig. 22 there are 255
invariant subspaces (of the matrix S) covering 515 nodes
with 255 unit eigenvalues λj = 1 and 381 eigenvalues
on the complex unit circle with |λj | = 1. For the ma-
trix S∗ of Wikipedia there are 5355 invariant subspaces
with 21198 nodes, 5365 unit eigenvalues and 8968 eigen-
values on the unit circle (Ermann et al., 2013b). The
complex spectra of all subspace eigenvalues and the first
nA = 6000 core space eigenvalues of S and S∗ are shown
in Fig. 22. As in the university cases, in the spectrum
we can identify cross and triple-star structures similar
to those of orthostochastic matrices shown in Fig. 18.
However, for Wikipedia (especially for S) the largest
complex eigenvalues outside the real axis are more far
away from the unit circle. For S of Wikipedia the two

largest core space eigenvalues are λ
(core)
1 = 0.999987 and

λ
(core)
2 = 0.977237 indicating that the core space gap

|1 − λ(core)1 | ∼ 10−5 is much smaller than the secondary

gap |λ(core)1 − λ
(core)
2 | ∼ 10−2. As a consequence the

PageRank of Wikipedia (at α = 0.85) is strongly influ-
enced by the leading core space eigenvector and actually
both vectors select the same 5 top nodes.
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The time evolution of spectra of G and G∗ for English
Wikipedia is studied in (Eom et al. , 2013b). It is shown
that the spectral structure remains stable for years 2007
- 2011.

FIG. 22 (Color online) Complex eigenvalue spectra λ of S
(a) and S∗ (b) for English Wikipedia of Aug 2009 with
N = 3282257 articles and N` = 71012307 links. Red/gray
dots are core space eigenvalues, blue/black dots are subspace
eigenvalues and the full green/gray curve shows the unit cir-
cle. The core space eigenvalues are computed by the projected
Arnoldi method with Arnoldi dimension nA = 6000. After
(Eom et al. , 2013b).

FIG. 23 (Color online) Complex eigenvalue spectrum of the
matrices S for English Wikipedia Aug 2009. Highlighted
eigenvalues represent different communities of Wikipedia and
are labeled by the most repeated and important words follow-
ing word counting of first 1000 nodes. Panel (a) shows com-
plex plane for positive imaginary part of eigenvalues, while
panels (b) and (c) zoom in the negative and positive real
parts. After (Ermann et al., 2013b).

C. Communities and eigenstates of Google matrix

The properties of eigenstates of Gogle matrix of
Wikipedia Aug 2009 are analyzed in (Ermann et al.,
2013b). The global idea is that the eigenstates with large

values of |λ| select certain specific communities. If |λ| is
close to unity then a relaxation of probability from such
nodes is rather slow and we can expect that such eigen-
states highlight some new interesting information even if
these nodes are located on a tail of PageRank. The im-
portant advantage of the Wikipedia network is that its
nodes are Wikipedia articles with a relatively clear mean-
ing allowing to understand the origins of appearance of
certain nodes in one community.

The localization properties of eigenvectors ψi of the
Google matrix can be analyzed with the help of IPR ξ
(see Sec. III.E). Another possibility is to fit a decay of
an eigenstate amplitude by a power law |ψi(Ki)| ∼ Kb

i

where Ki is the index ordering |ψi(j)| by monotonically
decreasing amplitude (similar to P (K) for PageRank).
The exponents b on the tails of |ψi(j)| are found to be
typically in the range −2 < b < −1 (Ermann et al.,
2013b). At the same time the eigenvectors with large
complex eigenvalues or real eigenvalues close to ±1 are
quite well localized on ξi ≈ 102− 103 nodes that is much
smaller than the whole network size N ≈ 3× 106.

To understand the meaning of other eigenstates in the
core space we order selected eigenstates by their decreas-
ing value |ψi(j)| and apply word frequency analysis for
the first 1000 articles with Ki ≤ 1000. The mostly
frequent word of a given eigenvector is used to label
the eigenvector name. These labels with corresponding
eigenvalues are shown in Fig. 23. There are four main
categories for the selected eigenvectors belonging to coun-
tries (red/gray), biology and medicine (orange/very light
gray), mathematics (blue/black) and others (green/light
gray). The category of others contains rather diverse ar-
ticles about poetry, Bible, football, music, American TV
series (e.g. Quantum Leap), small geographical places
(e.g. Gaafru Alif Atoll). Clearly these eigenstates select
certain specific communities which are relatively weakly
coupled with the main bulk part of Wikipedia that gen-
erates relatively large modulus of |λi|.

For example, for the article Gaafu Alif Atoll the eigen-
vector is mainly localized on names of small atolls form-
ing Gaafu Alif Atoll. Clearly this case represents well
localized community of articles mainly linked between
themselves that gives slow relaxation rate of this eigen-
mode with λ = 0.9772 being rather close to unity. An-
other eigenvector has a complex eigenvalue with |λ| =
0.3733 and the top article Portal:Bible. Another two
articles are Portal:Bible/Featured chapter/archives, Por-
tal:Bible/Featured article. These top 3 articles have very
close values of |ψi(j)| that seems to be the reason why
we have ϕ = arg(λi) = 0.3496π being very close to π/3.
Examples of other eigenvectors are discussed in (Ermann
et al., 2013b) in detail.

The analysis performed in (Ermann et al., 2013b)
for Wikipedia Aug 2009 shows that the eigenvectors of
the Google matrix of Wikipedia clearly identify certain
communities which are relatively weakly connected with
the Wikipedia core when the modulus of corresponding
eigenvalue is close to unity. For moderate values of |λ|
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we still have well defined communities which are how-
ever have stronger links with some popular articles (e.g.
countries) that leads to a more rapid decay of such eigen-
modes. Thus the eigenvectors highlight interesting fea-
tures of communities and network structure. However,
a priori, it is not evident what is a correspondence be-
tween the numerically obtained eigenvectors and the spe-
cific community features in which someone has a specific
interest. In fact, practically each eigenvector with a mod-
erate value |λ| ∼ 0.5 selects a certain community and
there are many of them. So it remains difficult to target
and select from eigenvalues λ a specific community one
is interested.

The spectra and eigenstates of other networks like
WWW of Cambridge 2011, Le Monde, BBC and PCN
of Python are discussed in (Ermann et al., 2013b). It is
found that IPR values of eigenstates with large |λ| are
well localized with ξ � N . The spectra of each network
have significant differences from one another.

D. Top people of Wikipedia

There is always a significant public interest to know
who are most significant historical figures, or persons, of
humanity. The Hart list of the top 100 people who, ac-
cording to him, most influenced human history, is avail-
able at (Hart, 1992). Hart “ranked these 100 persons
in order of importance: that is, according to the total
amount of influence that each of them had on human his-
tory and on the everyday lives of other human beings”
(Hart, 1992). Of course, a human ranking can be always
objected arguing that an investigator has its own prefer-
ences. Also investigators from different cultures can have
different view points on a same historical figure. Thus it
is important to perform ranking of historical figures on
purely mathematical and statistical grounds which ex-
clude any cultural and personal preferences of investiga-
tors.

A detailed two-dimensional ranking of persons of En-
glish Wikipedia Aug 2009 has been done in (Zhirov et al.,
2010). Earlier studies had been done in a non-systematic
way without any comparison with established top 100
lists (see these Refs. in (Wikipedia Top 100, 2014; Zhi-
rov et al., 2010)). Also at those times Wikipedia did not
yet entered in its stabilized phase of development.

The top people of Wikipedia Aug 2009 are found to be
1. Napoleon I of France, 2. George W. Bush, 3. Eliza-
beth II of the United Kingdom for PageRank; 1.Michael
Jackson, 2. Frank Lloyd Wright, 3. David Bowie for
2DRank; 1. Kasey S. Pipes, 2. Roger Calmel, 3. Yury
G. Chernavsky for CheiRank (Zhirov et al., 2010). For
the PageRank list of 100 the overlap with the Hart list is
at 35% (PageRank), 10% (2DRank) and almost zero for
CheiRank. This is attributed to a very broad distribution
of historical figures on 2D plane, as shown in Fig. 7, and
a large variety of human activities. These activities are
classified by 5 main categories: politics, religion, arts, sci-

ence, sport. For the top 100 PageRank persons we have
the following distribution over these categories: 58, 10,
17, 15, 0 respectively. Clearly PageRank overestimates
the significance of politicians which list is dominated by
USA presidents not always much known to a broad pub-
lic. For 2DRank we find respectively 24, 5, 62, 7, 2. Thus
this rank highlights artistic sides of human activity. For
CheiRank we have 15, 1, 52, 16, 16 so that the dominant
contribution comes from arts, science and sport. The
interesting property of this rank is that it selects many
composers, singers, writers, actors. As an interesting fea-
ture of CheiRank we note that among scientists it selects
those who are not so much known to a broad public but
who discovered new objects, e.g. George Lyell who dis-
covered many Australian butterflies or Nikolai Chernykh
who discovered many asteroids. CheiRank also selects
persons active in several categories of human activity.

For English Wikipedia Aug 2009 the distribution of
top 100 PageRank, CheiRank and Hart’s persons on
PageRank-CheiRank plane is shown in Fig. 7 (a).

The distribution of Hart’s top 100 persons on (K,K∗)
plane for English Wikipedia in years 2003, 2005, 2007,
Aug 2009, Dec 2009, 2011 is found to be stable for the pe-
riod 2007-2011 even if certain persons change their ranks
(Eom et al. , 2013b). The distribution of top 100 persons
of Wikipedia Aug 2009 remains stable and compact for
PageRank and 2DRank for the period 2007-2011 while for
CheiRank the fluctuations of positions are large. This is
due to the fact that outgoing links are easily modified
and fluctuating.

The time evolution of distribution of top persons over
fields of human activity is established in (Eom et al. ,
2013b). PageRank persons are dominated by politicians
whose percentage increases with time, while the percent
of arts decreases. For 2DRank the arts are dominant but
their percentage decreases with time. We also see the
appearance of sport which is absent in PageRank. The
mechanism of the qualitative ranking differences between
two ranks is related to the fact that 2DRank takes into
account via CheiRank a contribution of outgoing links.
Due to that singers, actors, sportsmen improve their
CheiRank and 2DRrank positions since articles about
them contain various music albums, movies and sport
competitions with many outgoing links. Due to that the
component of arts gets higher positions in 2DRank in
contrast to dominance of politics in PageRank.

The interest to ranking of people via Wikipedia net-
work is growing, as shows the recent study of English
edition (Skiena and Ward, 2014).

E. Multilingual Wikipedia editions

The English edition allows to obtain ranking of histor-
ical people but as we saw the PageRank list is dominated
by USA presidents that probably does not correspond to
the global world view point. Hence, it is important to
study multilingual Wikipedia editions which have now



23

287 languages and represent broader cultural views of
the world.

One of the first cross-cultural study was done for 15
largest language editions constructing a network of links
between set of articles of people biographies for each edi-
tion. However, the number of nodes and links in such
a biographical network is significantly smaller compared
to the whole network of Wikipedia articles and thus the
fluctuations become rather large. For example, from the
biographical network of the Russian edition one finds
as the top person Napoleon III (and even not Napoleon
I) (Aragón et al., 2012), who has a rather low importance
for Russia.

Another approach was used in (Eom and Shepelyansky
, 2013a) ranking top 30 persons by PageRank, 2DRank
and CheiRank algorithms for all articles of each of 9 edi-
tions and attributing each person to her/his native lan-
guage. The selected editions are English (EN), French
(FR), German (DE), Italian (IT), Spanish (ES), Dutch
(NL), Russian (RU), Hungarian (HU) and Korean (KO).
The aim here is to understand how different cultures eval-
uate a person? Is an important person in one culture is
also important in the other culture? It is found that lo-
cal heroes are dominant but also global heroes exist and
create an effective network representing entanglement of
cultures.

The top article of PageRank is usually USA or the
name of country of a given language (FR, RU, KO). For
NL we have at the top beetle, species, France. The top
articles of CheiRank are various listings.

The distributions of articles density and top 30 persons
for each rank algorithm are shown in Fig. 24 for four edi-
tions EN, FR, DE, RU. We see that in global the distri-
butions have a similar shape that can be attributed to a
fact that all editions describe the same world. However,
local features of distributions are different corresponding
to different cultural views on the same world (other 5
editions are shown in Fig.2 in (Eom and Shepelyansky ,
2013a)). The top 30 persons for each edition are selected
manually that represents a weak point of this study.

From the lists of top persons, the ”fields” of activ-
ity are identified for each top 30 rank persons in which
he/she is active on. The six activity fields are: politics,
art, science, religion, sport and etc (here “etc” includes
all other activities). As shown in Fig. 25, for PageRank,
politics is dominant and science is secondarily dominant.
The only exception is Dutch where science is the almost
dominant activity field (politics has the same number of
points). In case of 2DRank in Fig. 25, art becomes dom-
inant and politics is secondarily dominant. In case of
CheiRank, art and sport are dominant fields (see Fig.3
in (Eom and Shepelyansky , 2013a)). Thus for exam-
ple, in CheiRank top 30 list we find astronomers who
discovered a lot of asteroids, e.g. Karl Wilhelm Rein-
muth (4th position in RU and 7th in DE), who was a
prolific discoverer of about 400 of them. As a result, his
article contains a long listing of asteroids discovered by
him and giving him a high CheiRank. The distributions

of persons over activity fields are shown in Fig. 25 for 9
languages editions (marked by standard two letters used
by Wikipedia).

FIG. 24 (Color online) Density of Wikipedia articles in the
PageRank-CheiRank plane (K,K∗) for four different lan-
guage Wikipedia editions. The red (gray) points are top
PageRank articles of persons, the green (light gray) squares
are top 2DRank articles of persons and the cyan (dark gray)
triangles are top CheiRank articles of persons. Wikipedia
language editions are English EN (a), French FR (b), Ger-
man DE (c), and Russian RU (d). Color bars show natural
logarithm of density, changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black.
After (Eom and Shepelyansky , 2013a).

The change of activity priority for different ranks is
due to the different balance between incoming and out-
going links there. Usually the politicians are well known
for a broad public, hence, the articles about politicians
are pointed by many articles. However, the articles about
politicians are not very communicative since they rarely
point to other articles. In contrast, articles about persons
in other fields like science, art and sport are more com-
municative because of listings of insects, planets, aster-
oids they discovered, or listings of song albums or sport
competitions they gain.

On the basis of this approach one obtains local ranks
of each of 30 persons 1 ≤ KP,E,A ≤ 30 for each edition
E and algorithm A. Then an average ranking score of
a person P is determined as ΘP,A =

∑
E(31 − KP,E,A)

for each algorithm. This method determines the global
historical figures. The top global persons are 1.Napoleon,
2.Jesus, 3.Carl Linnaeus for PageRank; 1.Micheal Jack-
son , 2.Adolf Hitler, 3.Julius Caesar for 2DRank. For
CheiRank the lists of different editions have rather low
overlap and such an averaging is not efficient. The first
positions reproduce top persons from English edition dis-
cussed in Sec. IX.D, however, the next ones are different.
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FIG. 25 (Color online) Distribution of top 30 persons over
activity fields for PageRank (a) and 2DRank (b) for each of 9
Wikipedia editions. The color bar shows the values in percent.
After (Eom and Shepelyansky , 2013a).

FIG. 26 Number of appearances of historical figures of a
given country, obtained from 24 lists of top 100 persons of
PageRank (a) and 2DRank (b), shown on the world map.
Color changes from zero (white) to maximum (black), it corre-
sponds to average number of person appearances per country.
After (Eom et al. , 2014).

Since each person is attributed to her/his native lan-
guage it is also possible for each edition to obtain top
local heroes who have native language of the edition. For
example, we find for PageRank for EN George W. Bush,
Barack Obama, Elizabeth II; for FR Napoleon, Louis XIV
of France, Charles de Gaulle; for DE Adolf Hitler, Martin
Luther, Immanuel Kant; for RU Peter the Great, Joseph
Stalin, Alexander Pushkin. For 2DRank we have for EN
Frank Sinatra, Paul McCartney, Michael Jackson; for FR
Francois Mitterrand, Jacques Chirac, Honore de Balzac;
for DE Adolf Hitler, Otto von Bismarck, Ludwig van
Beethoven; for RU Dmitri Mendeleev, Peter the Great,

Yaroslav the Wise. These ranking results are rather rea-
sonable for each language. Results for other editions and
CheiRank are given in (Eom and Shepelyansky , 2013a).

A weak point of above study is a manual selection of
persons and a not very large number of editions. A sig-
nificant improvement has been reached in a recent study
(Eom et al. , 2014) where 24 editions have been analyzed.
These 24 languages cover 59 percent of world population,
and these 24 editions covers 68 percent of the total num-
ber of Wikipedia articles in all 287 available languages.
Also the selection of people from the rank list of each edi-
tion is now done in an automatic computerized way. For
that a list of about 1.1 million biographical articles about
people with their English names is generated. From this
list of persons, with their biographical article title in the
English Wikipedia, the corresponding titles in other lan-
guage editions are determined using the inter-language
links provided by Wikipedia.

Using the corresponding articles, identified by the
inter-languages links in different language editions, the
top 100 persons are obtained from the rankings of all
Wikipedia articles of each edition. A birth place, birth
date, and gender of each top 100 ranked person are iden-
tified, based on DBpedia or a manual inspection of the
corresponding Wikipedia biographical article, when for
the considered person no DBpedia data were available.
In this way 24 lists of top 100 persons for each edition
are obtained in PageRank with 1045 unique names and
in 2DRank with 1616 unique names. Each of the 100 his-
torical figures is attributed to a birth place at the country
level, to a birth date in year, to a gender, and to a cultural
language group. The birth place is assigned according to
the current country borders. The cultural group of his-
torical figures is assigned by the most spoken language
of their birth place at the current country level. The
considered editions are: English EN, Dutch NL, German
DE, French FR, Spanish, ES, Italian IT, Potuguese PT,
Greek, EL, Danish DA, Swedish SV, Polish PL, Hun-
garian HU, Russian RU, Hebrew HE, Turkish TR, Ara-
bic AR, Persian FA, Hindi HI, Malaysian MS, Thai TH,
Vietnamese VI, Chinese ZH, Korean KO, Japanese JA
(dated by February 2013). The size of network changes
from maximal value N = 4212493 for EN to minimal one
N = 78953 for TH.

All persons are ranked by their average rank score
ΘP,A =

∑
E(101−KP,E,A) with 1 ≤ KP,E,A ≤ 100 simi-

lar to the study of 9 editions described above. For PageR-
ank the top global historical figures are Carl Linnaeus,
Jesus, Aristotle and for 2DRank we obtain Adolf Hitler,
Michael Jackson, Madonna (entertainer). Thus the av-
eraging over 24 editions modifies the top ranking. The
list of top 100 PageRank global persons has overlap of 43
persons with the Hart list (Hart, 1992). Thus the averag-
ing over 24 editions gives a significant improvement com-
pared to 35 persons overlap for the case of English edition
only (Zhirov et al., 2010). For comparison we note that
the top 100 list of historical figures has been also deter-
mined recently by (Pantheon MIT project, 2014) having
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overlap of 42 persons with the Hart list. This Pantheon
MIT list is established on the basis of number of edi-
tions and number of clicks on an article of a given person
without using rank algorithms discussed here. The over-
lap between top 100 PageRank list and top 100 Pantheon
list is 44 percent. More data are available in (Eom et al.
, 2014).

The fact that Carl Linnaeus is the top historical fig-
ure of Wikipedia PageRank list came out as a surprise for
media and broad public (see (Wikipedia Top 100, 2014)).
This ranking is due to the fact that Carl Linnaeus cre-
ated a classification of world species including, animals,
insects, herbs, trees etc. Thus all articles of these species
point to the article Carl Linnaeus in various languages.
As a result Carl Linnaeus appears on almost top posi-
tions in all 24 languages. Hence, even if a politician, like
Barak Obama, takes the second position in his country
language EN (Napoleon is at the first position in EN) he
is usually placed at low ranking in other language edi-
tions. As a result Carl Linnaeus takes the first global
PageRank position.

The number of appearances of historical persons in 24
lists of top 100 for each edition can be distributed over
present world countries according to the birth place of
each person. This geographical distribution is shown in
Fig. 26 for PageRank and 2DRank. In PageRank the top
countries are DE, USA, IT and in 2DRank US, DE, UK.
The appearance of many UK and US singers improves
the positions of English speaking countries in 2DRank.

FIG. 27 (Color online) Birth date distributions over 35 cen-
turies of top historical figures from each Wikipedia edition
marked by two letters standard notation of Wikipedia. Pan-
els: (a) column normalized birth date distributions of PageR-
ank historical figures; (b) same as (a) for 2DRank historical
figures. After (Eom et al. , 2014).

The distributions of the top PageRank and 2DRank
historical figures over 24 Wikipedia editions for each cen-
tury are shown in Fig. 27. Each person is attributed to
a century according to the birth date covering the range
of 35 centuries from BC 15th to AD 20th centuries. For
each century the number of persons for each century is
normalized to unity to see more clearly relative contribu-
tion of each language for each century.

The Greek edition has more historical figures in BC
5th century because of Greek philosophers. Also most
of western-southern European language editions, includ-
ing English, Dutch, German, French, Spanish, Italian,
Portuguese, and Greek, have more top historical fig-
ures because they have Augustine the Hippo and Jus-

tinian I in common. The Persian (FA) and the Arabic
(AR) Wikipedia have more historical figures comparing
to other language editions (in particular European lan-
guage editions) from the 6th to the 12th century that is
due to Islamic leaders and scholars. The data of Fig. 27
clearly show well pronounced patterns, corresponding to
strong interactions between cultures: from BC 5th cen-
tury to AD 15th century for JA, KO, ZH, VI; from AD
6th century to AD 12th century for FA, AR; and a com-
mon birth pattern in EN,EL,PT,IT,ES,DE,NL (Western
European languages) from BC 5th century to AD 6th
century. A detailed analysis shows that even in BC 20th
century each edition has a significant fraction of persons
of its own language so that even with on going globaliza-
tion there is a significant dominance of local historical fig-
ures for certain cultures. More data on the above points
and gender distributions are available in (Eom et al. ,
2014).

F. Networks and entanglement of cultures

We now know how a person of a given language is
ranked by editions of other languages. Therefore, if a
top person from a language edition A appears in another
edition B, we can consider this as a ’cultural’ influence
from culture A to B. This generates entanglement in a
network of cultures. Here we associate a language edi-
tion with its corresponding culture considering that a
language is a first element of culture, even if a culture is
not reduced only to a language. In (Eom and Shepelyan-
sky , 2013a) a person is attributed to a given language,
or culture, according to her/his native language fixed via
corresponding Wikipedia article. In (Eom et al. , 2014)
the attribution to a culture is done via a birth place of
a person, each language is considered as a proxy for a
cultural group and a person is assigned to one of these
cultural groups based on the most spoken language of
her/his birth place at the country level. If a person does
not belong to any of studied editions then he/she is at-
tributed to an additional cultural group world WR.

After such an attributions of all persons the two net-
works of cultures are constructed based on the top
PageRank historical figures and top 2DRank historical
figures respectively. Each culture (i.e. language) is rep-
resented as a node of the network, and the weight of a
directed link from culture A to culture B is given by the
number of historical figures belonging to culture B (e.g.
French) appearing in the list of top 100 historical figures
for a given culture A (e.g. English).

For example, according to (Eom et al. , 2014), there
are 5 French historical figures among the top 100 PageR-
ank historical figures of the English Wikipedia, so we
can assign weight 5 to the link from English to French.
Thus, Fig. 28(a) and Fig. 28(b) represent the constructed
networks of cultures defined by appearances of the top
PageRank historical figures and top 2DRank historical
figures, respectively.
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In total we have two networks with 25 nodes which in-
clude our 24 editions and an additional node WR for all
other world cultures. Persons of a given culture are not
taken into account in the rank list of language edition of
this culture. Then following the standard rules (1) the
Google matrix of network of cultures is constructed by
normalization of sum of all elements in each column to
unity. The matrix GKK′ , written in the PageRank in-
dexes K,K ′ is shown in Fig. 29 for persons from PageR-
ank (a) and 2DRank (b) lists. The matrix G∗ is con-
structed in the same way as G for the network with in-
verted directions of links.

FIG. 28 (Color online) Network of cultures, obtained from 24
Wikipedia languages and the remaining world (WR), consid-
ering (a) top 100 PageRank historical figures and (b) top 100
2DRank historical figures. The link width and darkness are
proportional to a number of foreign historical figures quoted
in top 100 of a given culture, the link direction goes from a
given culture to cultures of quoted foreign historical figures,
quotations inside cultures are not considered. The size of
nodes is proportional to their PageRank. After (Eom et al. ,
2014).

FIG. 29 (Color online) Google matrix of network of cultures
shown in Fig 28 (a) and (b) respectively. The matrix elements
Gij are shown by color with damping factor α = 0.85. After
(Eom et al. , 2014).

From the obtained matrix G and G∗ we deter-
mine PageRank and CheiRank vectors and then the
PageRank-CheiRank plane (K,K∗), shown in Fig. 30,
for networks of cultures from Fig. 28. Here K indicates
the ranking of a given culture ordered by how many of
its own top historical figures appear in other Wikipedia
editions, and K∗ indicates the ranking of a given cul-
ture according to how many of the top historical figures
in the considered culture are from other cultures. It is
important to note that for 24 editions the world node
WR appears on positions K = 3 or K = 4, for panels
(a), (b) in Fig. 30, signifying that the 24 editions capture

the main part of historical figures born in these cultures.
We note that for 9 editions in (Eom and Shepelyansky ,
2013a) the node WR was at the top position for PageR-
ank so that a significant fraction of historical figures was
attributed to other cultures.

FIG. 30 (Color online) PageRank-CheiRank plane of cultures
with corresponding indexes K and K∗ obtained from the net-
work of cultures based on (a) top 100 PageRank historical
figures, (b) top 100 2DRank historical figures. After (Eom
et al. , 2014).

From the data of Fig. 30 we obtain at the top positions
of K cultures EN, DE, IT showing that other cultures
strongly point to them. However, we can argue that for
cultures it is also important to have strong communica-
tive property and hence it is important to have 2DRank
of cultures at top positions. On the top 2DRank position
we have Greek, Turkish and Arabic (for PageRank per-
sons) in Fig. 30(a) and French, Russian and Arabic (for
2DRank persons) in Fig. 30(b). This demonstrates the
important historical influence of these cultures both via
importance (incoming links) and communicative (outgo-
ing links) properties present in a balanced manner.

Thus the described research across Wikipedia language
editions suggests a rigorous mathematical way, based on
Markov chains and Google matrix, for recognition of im-
portant historical figures and analysis of interactions of
cultures at different historical periods and in different
world regions. Such an approach recovers 43 percent of
persons from the well established Hart historical study
(Hart, 1992), that demonstrates the reliability of this
method. We think that a further extension of this ap-
proach to a larger number of Wikipedia editions will pro-
vide a more detailed and balanced analysis of interactions
of world cultures.

X. GOOGLE MATRIX OF SOCIAL NETWORKS

Social networks like Facebook, LiveJournal, Twitter,
Vkontakte start to play a more and more important role
in modern society. The Twitter network is a directed
one and here we consider its spectral properties following
mainly the analysis reported in (Frahm and Shepelyansky
, 2012b).
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A. Twitter network

Twitter is a rapidly growing online directed social
network. For July 2009 a data set of this entire net-
work is available with N = 41652230 nodes and N` =
1468365182 links (for data sets see Refs. in (Frahm
and Shepelyansky , 2012b)). For this case the spectrum
and eigenstate properties of the corresponding Google
matrix have been analyzed in detail using the Arnoldi
method and standard PageRank and CheiRank com-
putations (Frahm and Shepelyansky , 2012b). For the
Twitter network the average number of links per node
ζ = N`/N ≈ 35 and the general inter-connectivity be-
tween top PageRank nodes are considerably larger than
for other networks such as Wikipedia (Sec. IX) or UK
universities (Sec. VIII) as can be seen in Figs. 31 and 32.

FIG. 31 (Color online) Panel (a): Google matrix of Twitter,
matrix elements of G are shown in the basis of PageRank in-

dex K of matrix GKK′ . Here, x (and y) axis show K (and K
′
)

with the range 1 ≤ K,K′ ≤ 200. Panel (b) shows the density
of nodes W (K,K∗) of Twitter on PageRank-CheiRank plane
(K,K∗), averaged over 100× 100 logarithmically equidistant
grids for 0 ≤ lnK, lnK∗ ≤ lnN with the normalization condi-
tion

∑
K,K∗W (K,K∗) = 1. The x-axis corresponds to lnK

and the y-axis to lnK∗. In both panels color varies from
blue/black at minimal value to red/gray at maximal value;
here α = 0.85. After (Frahm and Shepelyansky , 2012b).

The decay of PageRank probability can be approxi-
mately described by an algebraic decay with the expo-
nent β ≈ 0.54 while for CheiRank we have a larger value
β ≈ 0.86 (Frahm and Shepelyansky , 2012b) that is op-
posite to the usual situation. The image of top matrix
elements of GKK′ with 1 ≤ K,K;≤ 200 is shown in
Fig. 31. The density distribution of nodes on (K,K∗)
plane is also shown there. It is somewhat similar to those
of Wikipedia case in Fig. 24, may be with a larger density
concentration along the line K ≈ K∗.

However, the most striking feature of G matrix el-
ements is a very strong inteconnectivity between top
PageRank nodes. Thus for Twitter the top K ≤ 1000
elements fill about 70% of the matrix and about 20% for
size K ≤ 104 . For Wikipedia the filling factor is smaller
by a factor 10−20. In particular the number NG of links
between K top PageRank nodes behaves for K ≤ 103

as NG ∼ K1.993 while for Wikipedia NG ∼ K1.469. The
exponent for NG, being close to 2 for Twitter, indicates
that for the top PageRank nodes the Google matrix is
macroscopically filled with a fraction 0.6 − 0.8 of non-
vanishing matrix elements (see also Figs. 31 and 32) and
the very well connected top PageRank nodes can be con-
sidered as the Twitter elite (Kandiah and Shepelyansky
, 2012). For Wikipedia the interconnectivity among top
PageRank nodes has an exponent 1.5 being somewhat re-
duced but still stronger as compared to certain university
networks where typical exponents are close to unity (for
the range 102 ≤ K ≤ 104). The strong interconnectivity
of Twitter is also visible in its global logarithmic density
distribution of nodes in the PageRank-CheiRank plane
(K,K∗) (Fig. 31 (b)) which shows a maximal density
along a certain ridge along a line lnK∗ = lnK+ const.
with a significant large number of nodes at small values
K,K∗ < 1000.

FIG. 32 (Color online) (a) Dependence of the area density
gK = NG/K

2 of nonzero elements of the adjacency matrix
among top PageRank nodes on the PageRank index K for
Twitter (blue/black curve) and Wikipedia (red/gray curve)
networks, data are shown in linear scale. (b) Linear density
NG/K of the same matrix elements shown for the whole range
of K in log-log scale for Twitter (blue curve), Wikipedia (red
curve), Oxford University 2006 (magenta curve) and Cam-
bridge University 2006 (green curve) (curves from top to bot-
tom at K = 100). After (Frahm and Shepelyansky , 2012b).

The decay exponent of the PageRank is for Twit-
ter β = 0.540 (for 1 ≤ K ≤ 106), which indicates a
precursor of a delocalization transition as compared to
Wikipedia (β = 0.767) or WWW (β ≈ 0.9), caused
by the strong interconnectivity (Frahm and Shepelyan-
sky , 2012b). The Twitter network is also character-
ized by a large value of PageRank-CheiRank correlator
κ = 112.6 that is by a factor 30 − 60 larger than this
value for Wikipedia and University networks. Such a
larger value of κ results from certain individual large val-
ues κi = NP (K(i))P ∗(K∗(i)) ∼ 1. It is argued that this
is related to a very strong inter-connectivity between top
K PageRank users of the Twitter network (Frahm and
Shepelyansky , 2012b).
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FIG. 33 (Color online) Spectrum of the Twitter matrix S
(a) and (c), and S∗ (b) and (d). Panels (a) and (b) show
subspace eigenvalues (blue/black dots) and core space eigen-
values (red/gray dots) in λ-plane (green/gray curve shows
unit circle); there are 17504 (66316) invariant subspaces, with
maximal dimension 44 (2959) and the sum of all subspace di-
mensions is Ns = 40307 (180414). The core space eigenvalues
are obtained from the Arnoldi method applied to the core
space subblock Scc of S with Arnoldi dimension nA = 640.
Panels (c) and (d) show the fraction j/N of eigenvalues with
|λ| > |λj | for the core space eigenvalues (red/gray bottom
curve) and all eigenvalues (blue/black top curve) from raw
data ((a) and (b) respectively). The number of eigenvalues
with |λj | = 1 is 34135 (129185) of which 17505 (66357) are
at λj = 1; this number is (slightly) larger than the number of
invariant subspaces which have each at least one unit eigen-
value. Note that in panels (c) and (d) the number of eigen-
values with |λj | = 1 is artificially reduced to 200 in order to
have a better scale on the vertical axis. The correct numbers
of those eigenvalues correspond to j/N = 8.195 × 10−4 (c)
and 3.102 × 10−3 (d) which are strongly outside the vertical
panel scale. After (Frahm and Shepelyansky , 2012b).

The spectra of matrices S and S∗ are obtained with
the help of the Arnoldi method for a relatively modest
Arnoldi dimension due to a very large matrix size. The
largest nA modulus eigenvalues |λ| are shown in Fig. 33.
The invariant subspaces (see Sec. III.C) for the Twitter
network cover about Ns = 4 × 104 (1.8 × 105) nodes for
S (S∗) leading to 1.7 × 104 (6.6 × 104) eigenvalues with
λj = 1 or even 3.4×104 (1.3×105) eigenvalues with |λj | =
1. However, for Twitter the fraction of subspace nodes
g1 = Ns/N ≈ 10−3 is smaller than the fraction g1 ≈ 0.2
for the university networks of Cambridge or Oxford (with
N ≈ 2×105) since the size of the whole Twitter network
is significantly larger. The complex spectra of S and S∗

also show the cross and triple-star structures, as in the
cases of Cambridge and Oxford 2006 (see Fig. 17), even
though for the Twitter network they are significantly less
pronounced.

B. Poisson statistics of PageRank probabilities

From a physical viewpoint one can conjecture that
the PageRank probabilities are described by a steady-
state quantum Gibbs distribution over certain quantum
levels with energies Ei by the identification P (i) =
exp(−Ei/T )/Z with Z =

∑
i exp(−Ei/T ) (Frahm and

Shepelyansky , 2014a). In some sense this conjecture as-
sumes that the operator matrix G can be represented as a
sum of two operators GH and GNH where GH describes a
Hermitian system while GNH represents a non-Hermitian
operator which creates a system thermalization at a cer-
tain effective temperature T with the quantum Gibbs
distribution over energy levels Ei of the operator GH .

FIG. 34 (Color online) Panel (a) shows the dependence of cer-
tain top PageRank levels Ei = − ln(Pi) on the damping factor
α for Twitter network. Data points on curves with one color
corresponds to the same node i; about 150 levels are shown
close to the minimal energy E ≈ 7.5. Panel (b) represents the
histogram of unfolded level spacing statistics for Twitter at
10 < K ≤ 104. The Poisson distribution pPois(s) = exp(−s)
and the Wigner surmise pWig(s) = π

2
s exp(−π

4
s2) are also

shown for comparison. After (Frahm and Shepelyansky ,
2014a).

The identification of PageRank with an energy spec-
trum allows to study the corresponding level statistics
which represents a well known concept in the framework
of Random Matrix Theory (Guhr et al., 1998; Mehta,
2004). The most direct characteristic is the probabil-
ity distribution p(s) of unfolded level spacings s. Here
s = (Ei+1 − Ei)/∆E is a spacing between nearest lev-
els measured in the units of average local energy spac-
ing ∆E. The unfolding procedure (Guhr et al., 1998;
Mehta, 2004) requires the smoothed dependence of Ei
on the index K which is obtained from a polynomial fit
of Ei ∼ ln(Pi) with ln(K) as argument (Frahm and She-
pelyansky , 2014a).

The statistical properties of fluctuations of levels have
been extensively studied in the fields of RMT (Mehta,
2004), quantum chaos (Haake, 2010) and disordered solid
state systems (Evers and Mirlin , 2008). It is known that
integrable quantum systems have p(s) well described by
the Poisson distribution pPois(s) = exp(−s). In con-
trast the quantum systems, which are chaotic in the
classical limit (e.g. Sinai billiard), have p(s) given by
the RMT being close to the Wigner surmise pWig(s) =
π
2 s exp(−π4 s

2) (Bohigas et al., 1984). Also the Ander-
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son localized phase is characterized by pPois(s) while in
the delocalized regime one has pWig(s) (Evers and Mirlin
, 2008).

The results for the Twitter PageRank level statistics
(Frahm and Shepelyansky , 2014a) are shown in Fig. 34.
We find that p(s) is well described by the Poisson distri-
bution. Furthermore, the evolution of energy levels Ei
with the variation of the damping factor α shows many
level crossings which are typical for Poisson statistics.
We may note that here each level has its own index so
that it is rather easy to see if there is a real or avoided
level crossing.

The validity of the Poisson statistics for PageR-
ank probabilities is confirmed also for the networks of
Wikipedia editions in English, French and German from
Fig. 24 (Frahm and Shepelyansky , 2014a). We argue
that due to absence of level repulsion the PageRank or-
der of nearby nodes can be easily interchanged. The ob-
tained Poisson law implies that the nearby PageRank
probabilities fluctuate as random independent variables.

XI. GOOGLE MATRIX ANALYSIS OF WORLD TRADE

During the last decades the trade between countries
has been developed in an extraordinary way. Usually
countries are ranked in the world trade network (WTN)
taking into account their exports and imports measured
in USD (CIA, 2009). However, the use of these quanti-
ties, which are local in the sense that countries know their
total imports and exports, could hide the information of
the centrality role that a country plays in this complex
network. In this section we present the two-dimensional
Google matrix analysis of the WTN introduced in (Er-
mann and Shepelyansky , 2011b). Some previous studies
of global network characteristics were considered in (Gar-
laschelli and Loffredo , 2005; Serrano et al., 2007), degree
centrality measures were analyzed in (De Benedictis and
Tajoli , 2011) and a time evolution of network global char-
acteristics was studied in (He and Deem , 2010). Topo-
logical and clustering properties of multiplex network of
various commodities were discussed in (Barigozzi et al.,
2010), and an ecological ranking based on the nestedness
of countries and products was presented in (Ermann and
Shepelyansky , 2013a).

The money exchange between countries defines a di-
rected network. Therefore Google matrix analysis can be
introduced in a natural way. PageRank and CheiRank
algorithms can be easily applied to this network with
a straightforward correspondence with imports and ex-
ports. Two-dimensional ranking, introduced in Sec. IV,
gives an illustrative representation of global importance
of countries in the WTN. The important element of
Google ranking of WTN is its democratic treatment of
all world countries, independently of their richness, that
follows the main principle of the United Nations (UN).

A. Democratic ranking of countries

The WTN is a directed network that can be con-
structed considering countries as nodes and money ex-
change as links. We follow the definition of the WTN
of (Ermann and Shepelyansky , 2011b) where trade in-
formation comes from (UN COMTRADE, 2011). These
data include all trades between countries for different
products (using Standard International Trade Classifi-
cation of goods, SITC1) from 1962 to 2009.

All useful information of the WTN is expressed via
the money matrix M , which definition, in terms of its
matrix elements Mij , is defined as the money transfer
(in USD) from country j to country i in a given year.
This definition can be applied to a given specific product
or to all commodities, which represent the sum over all
products.

In contrast to the binary adjacency matrix Aij of
WWW (as the ones analyzed in SVIII and SX for ex-
ample) M has weighted elements. This corresponds to
a case when there are in principle multiple number of
links from j to i and this number is proportional to USD
amount transfer. Such a situation appears in Sec. VI
for Ulam networks and Sec. VII for Linux PCN with a
main difference that for the WTN case there is a very
large variation of mass matrix elements Mij , related to
the fact that there is a very strong variation of richness
of various countries.

Google matrices G and G∗ are constructed accord-
ing to the usual rules and relation (1) with Mij and its
transposed: Sij = Mij/mj and Sij = Mji/m

∗
j where

Sij = 1/N and S∗ij = 1/N , if for a given j all elements
Mij = 0 and Mji = 0 respectively. Here mj =

∑
iMij

and m∗j =
∑
iMji are the total export and import mass

for country j. Thus the sum in each column of G or G∗

is equal to unity. In this way Google matrices G and G∗

of WTN allow to treat all countries on equal grounds in-
dependently of the fact if a given country is rich or poor.
This kind of analysis treats in a democratic way all world
countries in consonance with the standards of the UN.

The probability distributions of ordered PageRank
P (K) and CheiRank P ∗(K∗) depend on their indexes in
a rather similar way with a power law decay given by β.
For the fit of top 100 countries and all commodities the
average exponent value is close to β = 1 corresponding
to the Zipf law (Zipf, 1949).

The distribution of countries on PageRank-CheiRank
plane for trade in all commodities in year 2008 is shown
in panels (a) and (b) of Fig. 35 at α = 0.5. Even if
the Google matrix approach is based on a democratic
ranking of international trade, being independent of to-
tal amount of export-import and PIB for a given country,
the top ranks K and K∗ belong to the group of industri-
ally developed countries. This means that these countries
have efficient trade networks with optimally distributed
trade flows. Another striking feature of global distribu-
tion is that it is concentrated along the main diagonal
K = K∗. This feature is not present in other networks
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FIG. 35 (Color online) Country positions in PageRank-
CheiRank plane (K,K∗) for world trade in various commodi-
ties in 2008. Each country is shown by circle with its own flag
(for a better visibility the circle center is slightly displaced
from its integer position (K,K∗) along direction angle π/4).
The panels show the ranking for trade in the following com-
modities: all commodities (a) and (b); and crude petroleum
(c) and (d). Panels (a) and (c) show a global scale with all
227 countries, while (b) and (d) give a zoom in the region of
40×40 top ranks. After (Ermann and Shepelyansky , 2011b).

studied before. The origin of this density concentration
is related to a simple economy reason: for each country
the total import is approximately equal to export since
each country should keep in average an economic balance.
This balance does not imply a symmetric money matrix,
used in gravity model of trade (see e.g. (De Benedictis
and Tajoli , 2011; Krugman et al., 2011)), as can be seen
in the significant broadening of distribution of Fig. 35
(especially at middle values of K ∼ 100).

For a given country its trade is doing well if its K∗ < K
so that the country exports more than it imports. The
opposite relation K∗ > K corresponds to a bad trade
situation (e.g. Greece being significantly above the diag-
onal). We also can say that local minima in the curve
of (K∗ − K) vs. K correspond to a successful trade
while maxima mark bad traders. In 2008 most successful
were China, R of Korea, Russia, Singapore, Brazil, South
Africa, Venezuela (in order ofK forK ≤ 50) while among
bad traders we note UK, Spain, Nigeria, Poland, Czech
Rep, Greece, Sudan with especially strong export drop
for two last cases.

A comparison between local and global rankings of
countries for both imports and exports gives a new tool
to analyze countries economy. For example, in 2008 the
most significant differences between CheiRank and the
rank given by total exports are for Canada and Mexico

with corresponding money export ranks K̃∗ = 11 and 13
and with K∗ = 16 and K∗ = 23 respectively. These vari-
ations can be explained in the context that the export of
these two countries is too strongly oriented on USA. In
contrast Singapore moves up from K̃∗ = 15 export posi-
tion to K∗ = 11 that shows the stability and broadness
of its export trade, a similar situation appears for India
moving up from K̃∗ = 19 to K∗ = 12 (see (Ermann and
Shepelyansky , 2011b) for more detailed analysis).

B. Ranking of countries by trade in products

If we focus on the two-dimensional distribution of
countries in a specific product we obtain a very differ-
ent information. The symmetry approximately visible
for all commodities is absolutely absent: the points are
scattered practically over the whole square N × N (see
Fig. 35). The reason of such a strong scattering is clear:
e.g. for crude petroleum some countries export this prod-
uct while other countries import it. Even if there is some
flow from exporters to exporters it remains relatively low.
This makes the Google matrix to be very asymmetric. In-
deed, the asymmetry of trade flow is well visible in panels
(c) and (d) of Fig. 35.

FIG. 36 (Color online) Spindle distribution for WTN of all
commodities for all countries in the period 1962 - 2009 shown
in the plane of ((K∗ −K)/N, (K∗ + K)/N) (coarse-graining
inside each of 76×152 cells); data from the UN COMTRADE
database. After (Ermann and Shepelyansky , 2011b).

The same comparison of global and local rankings done
before for all commodities can be applied to specific prod-
ucts obtaining even more strong differences. For example
for crude petroleum Russia moves up from K̃∗ = 2 export
position to K∗ = 1 showing that its trade network in this
product is better and broader than the one of Saudi Ara-
bia which is at the first export position K̃∗ = 1 in money
volume. Iran moves in opposite direction from K̃∗ = 5
money position down to K∗ = 14 showing that its trade
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network is restricted to a small number of nearby coun-
tries. A significant improvement of ranking takes place
for Kazakhstan moving up from K̃∗ = 12 to K∗ = 2.
The direct analysis shows that this happens due to an un-
usual fact that Kazakhstan is practically the only coun-
try which sells crude petroleum to the CheiRank leader
in this product Russia. This puts Kazakhstan on the sec-
ond position. It is clear that such direction of trade is
more of political or geographical origin and is not based
on economic reasons.

The same detailed analysis can be applied to all specific
products given by SITC1. For example for trade of cars
France goes up from K̃∗ = 7 position in exports to K∗ =
3 due to its broad export network.

C. Ranking time evolution and crises

The WTN has evolved during the period 1962 - 2009.
The number of countries is increased by 38%, while the
number of links per country for all commodities is in-
creased in total by 140% with a significant increase from
50% to 140% during the period 1993 - 2009 corresponding
to economy globalization. At the same time for a specific
commodity the average number of links per country re-
mains on a level of 3-5 links being by a factor 30 smaller
compared to all commodities trade. During the whole
period the total amount MT of trade in USD shows an
average exponential growth by 2 orders of magnitude.

A statistical density distribution of countries in the
plane (K∗ − K,K∗ + K) in the period 1962 - 2009 for
all commodities is shown in Fig. 36. The distribution has
a form of spindle with maximum density at the vertical
axis K∗ − K = 0. We remind that good exporters are
on the lower side of this axis at K∗ −K < 0, while the
good importers (bad exporters) are on the upper side at
K∗ −K > 0.

The evolution of the ranking of countries for all com-
modities reflects their economical changes. The countries
that occupy top positions tend to move very little in their
ranks and can be associated to a solid phase. On the
other hand, the countries in the middle region of K∗+K
have a gas like phase with strong rank fluctuations.

Examples of ranking evolution K and K∗ for Japan,
France, Fed R of Germany and Germany, Great Britain,
USA, and for Argentina, India, China, USSR and Rus-
sian Fed are shown in Fig. 37. It is interesting to note
that sharp increases in K mark crises in 1991, 1998 for
Russia and in 2001 for Argentina (import is reduced in
period of crises). It is also visible that in recent years the
solid phase is perturbed by entrance of new countries like
China and India. Other regional or global crisis could be
highlighted due to the big fluctuations in the evolution
of ranks. For example, in the range 81 ≤ K +K∗ ≤ 120,
during the period of 1992 - 1998 some financial crises as
Black Wednesday, Mexico crisis, Asian crisis and Russian
crisis are appreciated with this ranking evolution.

FIG. 37 (Color online) Time evolution of CheiRank and
PageRank indexes K, K∗ for some selected countries for all
commodities. The countries shown panels (a) and (b) are:
Japan (jp-black), France (fr-red), Fed R of Germany and Ger-
many (de - both in blue), Great Britain (gb - green), USA
(us - orange) [curves from top to bottom in 1962 in (a)]. The
countries shown panels (c) and (d) are: Argentina (ar - vi-
olet), India (in - dark green), China (cn - cyan), USSR and
Russian Fed (ru - both in gray) [curves from top to bottom
in 1975 in (c)]. After (Ermann and Shepelyansky , 2011b).

D. Ecological ranking of world trade

Interesting parallels between multi-product world
trade and interactions between species in ecological sys-
tems has been traced in (Ermann and Shepelyansky ,
2013a). This approach is based on analysis of strength
of transitions forming the Google matrix for the multi-
product world trade network.

Ecological systems are characterized by high complex-
ity and biodiversity (May, 2001) linked to nonlinear dy-
namics and chaos emerging in the process of their evo-
lution (Lichtenberg and Lieberman, 1992). The inter-
actions between species form a complex network whose
properties can be analyzed by the modern methods of
scale-free networks. The analysis of their properties uses
a concept of mutualistic networks and provides a detailed
understanding of their features being linked to a high
nestedness of these networks (Bastolla et al., 2009; Bur-
gos et al., 2007, 2008; Saverda et al., 2011). Using the UN
COMTRADE database we show that a similar ecological
analysis gives a valuable description of the world trade:
countries and trade products are analogous to plants and
pollinators, and the whole trade network is characterized
by a high nestedness typical for ecological networks.

An important feature of ecological networks is that
they are highly structured, being very different from ran-
domly interacting species (Bascompte et al., 2003). Re-
cently is has been shown that the mutualistic networks
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between plants and their pollinators (Bascompte et al.,
2003; Memmott et al., 2004; Olesen et al., 2007; Rezende
et al., 2007; Vázquez and Aizen , 2004) are characterized
by high nestedness which minimizes competition and in-
creases biodiversity (Bastolla et al., 2009; Burgos et al.,
2007, 2008; Saverda et al., 2011).

FIG. 38 (Color online) Nestedness matrices for the plant-
animal mutualistic networks on top panels, and for the WTN
of countries-products on middle and bottom panels. Panels
(a) and (b) represent data of ARR1 and WES networks from
(Rezende et al., 2007). The WTN matrices are computed with
the threshold µ = 10−3 and corresponding ϕ ≈ 0.2 for years
2008 (c,d) and 1968 (e,f) and 2008 for import (c,e) and export
(d,f) panels. Red/gray and blue/black represent unit and zero
elements respectively; only lines and columns with nonzero
elements are shown. The order of plants-animals, countries-
products is given by the nestedness algorithm (Rodŕıguez-
Gironés et al., 2006), the perfect nestedness is shown by
green/gray curves for the corresponding values of ϕ. After
(Ermann and Shepelyansky , 2013a).

The mutualistic WTN is constructed on the basis of
the UN COMTRADE database from the matrix of trade
transactions Mp

c′,c expressed in USD for a given prod-

uct (commodity) p from country c to country c′ in a
given year (from 1962 to 2009). For product classifica-
tion we use 3–digits SITC Rev.1 discussed above with the
number of products Np = 182. All these products are
described in (UN COMTRADE, 2011) in the commod-
ity code document SITC Rev1. The number of coun-
tries varies between Nc = 164 in 1962 and Nc = 227
in 2009. The import and export trade matrices are de-

fined as M
(i)
p,c =

∑Nc

c′=1M
p
c,c′ and M

(e)
p,c =

∑Nc

c′=1M
p
c′,c

respectively. We use the dimensionless matrix elements
m(i) = M (i)/Mmax and m(e) = M (e)/Mmax where for a

given year Mmax = max{max[M
(i)
p,c],max[M

(e)
p,c ]}. The

distribution of matrix elements m(i), m(e) in the plane
of indexes p and c, ordered by the total amount of im-
port/export in a decreasing order, are shown and dis-
cussed in (Ermann and Shepelyansky , 2013a). In global,
the distributions of m(i), m(e) remain stable in time es-
pecially in a view of 100 times growth of the total trade
volume during the period 1962-2009. The fluctuations of
m(e) are larger compared to m(i) case since certain prod-
ucts, e.g. petroleum, are exported by only a few countries
while it is imported by almost all countries.

To use the methods of ecological analysis we construct
the mutualistic network matrix for import Q(i) and ex-
port Q(e) whose matrix elements take binary value 1 or
0 if corresponding elements m(i) and m(e) are respec-
tively larger or smaller than a certain trade threshold
value µ. The fraction ϕ of nonzero matrix elements varies
smoothly in the range 10−6 ≤ µ ≤ 10−2 and the further
analysis is not really sensitive to the actual µ value inside
this broad range.

In contrast to ecological systems (Bastolla et al., 2009)
the world trade is described by a directed network and
hence we characterize the system by two mutualistic ma-
trices Q(i) and Q(e) corresponding to import and export.
Using the standard nestedness BINMATNEST algorithm
(Rodŕıguez-Gironés et al., 2006) we determine the nest-
edness parameter η of the WTN and the related nest-
edness temperature T = 100(1 − η). The algorithm re-
orders lines and columns of a mutualistic matrix concen-
trating nonzero elements as much as possible in the top
left corner and thus providing information about the role
of immigration and extinction in an ecological system.
A high level of nestedness and ordering can be reached
only for systems with low T . It is argued that the nested
architecture of real mutualistic networks increases their
biodiversity.

The nestedness matrices generated by the BIN-
MATNEST algorithm (Rodŕıguez-Gironés et al., 2006)
are shown in Fig. 38 for ecology networks ARR1 (Npl =
84, Nanim = 101, ϕ = 0.043, T = 2.4) and WES
(Npl = 207, Nanim = 110, ϕ = 0.049, T = 3.2) from
(Rezende et al., 2007). Using the same algorithm we
generate the nestedness matrices of WTN using the mu-
tualistic matrices for import Q(i) and export Q(i) for the
WTN in years 1968 and 2008 using a fixed typical thresh-
old µ = 10−3 (see Fig. 38). As for ecological systems, for
the WTN data we also obtain rather small nestedness
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FIG. 39 (Color online) Top 20 EcoloRank countries as a func-
tion of years for the WTN import (a) and export (b) panels.
The ranking is given by the nestedness algorithm for the trade
threshold µ = 10−3; each country is represented by its corre-
sponding flag. As an example, dashed lines show time evo-
lution of the following countries: USA, UK, Japan, China,
Spain. After (Ermann and Shepelyansky , 2013a).

temperature (T ≈ 6/8 for import/export in 1968 and
T ≈ 4/8 in 2008 respectively). These values are by a fac-
tor 9/4 of times smaller than the corresponding T values
for import/export from random generated networks with
the corresponding values of ϕ.

The small value of nestedness temperature obtained
for the WTN confirms the validity of the ecological anal-
ysis of WTN structure: trade products play the role of
pollinators which produce exchange between world coun-
tries, which play the role of plants. Like in ecology the
WTN evolves to the state with very low nestedness tem-
perature that satisfies the ecological concept of system

FIG. 40 (Color online) Top 20 countries as a function of years
ranked by the total monetary trade volume of the WTN in
import (a) and export (b) panels respectively; each country is
represented by its corresponding flag. Dashed lines show time
evolution of the same countries as in Fig. 39. After (Ermann
and Shepelyansky , 2013a).

stability appearing as a result of high network nested-
ness (Bastolla et al., 2009).

The nestedness algorithm creates effective ecological
ranking (EcoloRanking) of all UN countries. The evo-
lution of 20 top ranks throughout the years is shown in
Fig. 39 for import and export. This ranking is quite dif-
ferent from the more commonly applied ranking of coun-
tries by their total import/export monetary trade volume
(CIA, 2009) (see corresponding data in Fig. 40) or the
democratic ranking of WTN based on the Google matrix
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FIG. 41 (Color online) Top 10 ranks of trade products as a
function of years for the WTN. Panel (a): ranking of prod-
ucts by monetary trade volume. Panels (b), (c): ranking
is given by the nestedness algorithm for import (b) and ex-
port (c) with the trade threshold µ = 10−3. Each product is
shown by its own symbol with short name written at years
1968, 2008; symbol color marks 1st SITC digit; SITC codes
of products and their names are given in (UN COMTRADE,
2011) and Table 2 in (Ermann and Shepelyansky , 2013a).
After (Ermann and Shepelyansky , 2013a).

analysis discussed above. Indeed, in 2008 China is at the
top rank for total export volume but it is only at 5th
position in EcoloRank (see Fig. 39, Fig. 40). In a similar
way Japan moves down from 4th to 17th position while
USA raises up from 3rd to 1st rank.

The same nestedness algorithm generates not only the
ranking of countries but also the ranking of trade prod-
ucts for import and export which is presented in Fig. 41.
For comparison we also show there the standard ranking
of products by their trade volume. In Fig. 41 the color
of symbol marks the 1st SITC digit described in figure,
(UN COMTRADE, 2011) and Table 2 in (Ermann and

Shepelyansky , 2013a).

The origin of such a difference between EcoloRanking
and trade volume ranking of countries is related to the
main idea of mutualistic ranking in ecological systems:
the nestedness ordering stresses the importance of mu-
tualistic pollinators (products for WTN) which generate
links and exchange between plants (countries for WTN).
In this way generic products, which participate in the
trade between many countries, become of primary impor-
tance even if their trade volume is not at the top lines
of import or export. In fact such mutualistic products
glue the skeleton of the world trade while the nestedness
concept allows to rank them in order of their importance.
The time evolution of this EcoloRanking of products of
WTN is shown in Fig. 41 for import/export in compari-
son with the product ranking by the monetary trade vol-
ume (since the trade matrix is diagonal in product index
the ranking of products in the latter case is the same for
import/export). The top and middle panels have dom-
inate colors corresponding to machinery (SITC Rev. 1
code 7; blue) and mineral fuels (3; black) with a moderate
contribution of chemicals (5; yellow) and manufactured
articles (8; cyan) and a small fraction of goods classified
by material (6; green). Even if the global structure of
product ranking by trade volume has certain similarities
with import EcoloRanking there are also important new
elements. Indeed, in 2008 the mutualistic significance
of petroleum products (code 332), machindus (machines
for special industries code 718) and medpharm (medical-
pharmaceutic products code 541) is much higher com-
pared to their volume ranking, while petroleum crude
(code 331) and office machines (code 714) have smaller
mutualistic significance compared to their volume rank-
ing.

The new element of EcoloRanking is that it differenti-
ates between import and export products while for trade
volume they are ranked in the same way. Indeed, the
dominant colors for export (Fig. 41 bottom panel) cor-
respond to food (SITC Rev. 1 code 0; red) with contri-
bution of black (present in import) and crude materials
(code 2; violet); followed by cyan (present in import)
and more pronounced presence of finnotclass (commodi-
ties/transactions not classified code 9; brown). Ecol-
oRanking of export shows a clear decrease tendency of
dominance of SITC codes 0 and 2 with time and increase
of importance of codes 3,7. It is interesting to note that
the code 332 of petroleum products is vary vulnerable in
volume ranking due to significant variations of petroleum
prices but in EcoloRanking this product keeps the stable
top positions in all years showing its mutualistic struc-
tural importance for the world trade. EcoloRanking of
export shows also importance of fish (code 031), cloth-
ing (code 841) and fruits (code 051) which are placed on
higher positions compared to their volume ranking. At
the same time roadvehic (code 732), which are at top vol-
ume ranking, have relatively low ranking in export since
only a few countries dominate the production of road
vehicles.
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It is interesting to note that in Fig. 41 petroleum crude
is at the top of trade volume ranking e.g. in 2008 (top
panel) but it is absent in import EcoloRanking (middle
panel) and it is only on 6th position in export EcoloRank-
ing (bottom panel). A similar feature is visible for years
1968, 1978. On a first glance this looks surprising but
in fact for mutualistic EcoloRanking it is important that
a given product is imported from top EcoloRank coun-
tries: this is definitely not the case for petroleum crude
which practically is not produced inside top 10 import
EcoloRank countries (the only exception is USA, which
however also does not export much). Due to that reason
this product has low mutualistic significance.

The mutualistic concept of product importance is at
the origin of significant difference of EcoloRanking of
countries compared to the usual trade volume ranking
(see Fig. 39, Fig. 40). Indeed, in the latter case China
and Japan are at the dominant positions but their trade is
concentrated in specific products which mutualistic role
is relatively low. In contrast USA, Germany and France
keep top three EcoloRank positions during almost 40
years clearly demonstrating their mutualistic power and
importance for the world trade.

Thus our results show the universal features of eco-
logic ranking of complex networks with promising future
applications to trade, finance and other areas.

E. Remarks on world trade and banking networks

The new approach to the world trade, based on the
Google matrix analysis, gives a democratic type of rank-
ing being independent of the trade amount of a given
country. In this way rich and poor countries are treated
on equal democratic grounds. In a certain sense PageR-
ank probability for a given country is proportional to its
rescaled import flows while CheiRank is proportional to
its rescaled export flows inside of the WTN.

The global characteristics of the world trade are ana-
lyzed on the basis of this new type of ranking. Even if all
countries are treated now on equal democratic grounds
still we find at the top rank the group of industrially de-
veloped countries approximately corresponding to G-20
and recover 74% of countries listed in G-20. The Google
matrix analysis demonstrates an existence of two solid
state domains of rich and poor countries which remain
stable during the years of consideration. Other countries
correspond to a gas phase with ranking strongly fluc-
tuating in time. We propose a simple random matrix
model which well describes the statistical properties of
rank distribution for the WTN (Ermann and Shepelyan-
sky , 2011b).

The comparison between usual ImportRank–Export-
Rank (see e.g. (CIA, 2009)) and our PageRank–
CheiRank approach shows that the later highlights the
trade flows in a new useful manner which is comple-
mentary to the usual analysis. The important differ-
ence between these two approaches is due to the fact

that ImportRank–ExportRank method takes into ac-
count only global amount of money exchange between
a country and the rest of the world while PageRank–
CheiRank approach takes into account all links and
money flows between all countries.

The future developments should consider a matrix with
all countries and all products which size becomes signif-
icantly larger (N ∼ 220 × 104 ∼ 2 × 106) comparing to
a modest size N ≈ 227 considered here. However, some
new problems of this multiplex network analysis should
be resolved combining a democracy in countries with vol-
ume importance of products which role is not democratic.
It is quite possible that such an improved analysis will
generate an asymmetric ranking of products in contrast
to their symmetric ranking by volume in export and im-
port. The ecological ranking of the WTN discussed in the
previous SubSec. indicates preferences and asymmetry of
trade in multiple products (Ermann and Shepelyansky ,
2013a).

It is also important to note that usually in economy re-
searchers analyze time evolution of various indexes study-
ing their correlations. The results presented above for the
WTN show that in addition to time evolution there is also
evolution in space of the network. Like for waves in an
ocean time and space are both important and we think
that time and space study of trade captures important
geographical factors which will play a dominant role for
analysis of contamination propagation over the WTN in
case of crisis. We think that the WTN data capture many
essential elements which will play a rather similar role for
financial flows in the interbank payment networks. We
expect that the analysis of financial flows between bank
units would prevent important financial crisis shaking the
world in last years. Unfortunately, in contrast to WWW
and UN COMTRADE, the banks keep hidden their fi-
nancial flows. Due to this secrecy of banks the society
is still suffering from financial crises. And all this for a
network of very small size estimated on a level of 50 thou-
sands bank units for the whole world being by a factor
million smaller than the present size of WWW (e.g. Fed-
wire interbank payment network of USA contains only
6600 nodes (Soramaki et al., 2007)). In a drastic contrast
with bank networks the WWW provided a public access
to its nodes changing the world on a scale of 20 years. A
creation of the World Bank Web (WBW) with informa-
tion accessible for authorized investigators would allow
to understand and control financial flows in an efficient
manner preventing the society from bank crises. We note
that the methods of network analysis and ranking start
to attract interest of researchers in various banks (see e.g.
(Craig and von Peter, 2010; Garratt et al., 2011)).
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XII. NETWORKS WITH NILPOTENT ADJACENCY
MATRIX

A. General properties

In certain networks (Frahm et al., 2012a, 2014b) it is
possible to identify an ordering scheme for the nodes such
that the adjacency matrix has non-vanishing elements
Amn only for nodes m < n providing a triangular ma-
trix structure. In these cases it is possible to provide a
semi-analytical theory (Frahm et al., 2012a, 2014b) which
allows to simplify the numerical calculation of the non-
vanishing eigenvalues of the matrix S introduced in Sec.
III.A. It is useful to write this matrix in the form

S = S0 + (1/N) e dT (10)

where the vector e has unit entries for all nodes and the
dangling vector d has unit entries for dangling nodes and
zero entries for the other nodes. The extra contribution
e dT /N just replaces the empty columns (of S0) with
1/N entries at each element. For a triangular network
structure the matrix S0 is nilpotent, i.e. Sl0 = 0 for some

integer l > 0 and Sl−10 6= 0. Furthermore for the network
examples studied previously (Frahm et al., 2012a, 2014b)
we have l� N which has important consequences for the
eigenvalue spectrum of S.

There are two groups of (right) eigenvectors ψ of S
with eigenvalue λ. For the first group the quantity
C = dT ψ vanishes and ψ is also an eigenvector of S0

and if S0 is nilpotent we have λ = 0 (there are also
many higher order generalized eigenvectors associated to
λ = 0). For the second group we have C 6= 0, λ 6= 0
and the eigenvector is given by ψ = (λ11− S0)−1 C e/N .
Expanding the matrix inverse in a finite geometric series
(for nilpotent S0) and applying the condition C = dT ψ
on this expression one finds that the eigenvalue must be
a zero of the reduced polynomial of degree l:

Pr(λ) = λl −
l−1∑
j=0

λl−1−j cj = 0 , cj = dT Sj0 e/N .

(11)
This shows that there are at most l non-vanishing eigen-

values of S with eigenvectors ψ ∝
∑l−1
j=0 λ

−j−1 v(j) where

v(j) = Sj0 e/N for j = 0, . . . , l − 1. Actually, the vectors

v(j) generate an S-invariant l-dimensional subspace and
from S v(j) = cj v

(0) + v(j+1) (using the identification

v(l) = 0) one obtains directly the l × l representation
matrix S̄ of S with respect to v(j) (Frahm et al., 2012a).
Furthermore, the characteristic polynomial of S̄ is indeed
given by the reduced polynomial (11) and the sum rule∑l−1
j=0 cj = 1 ensures that λ = 1 is indeed a zero of Pr(λ)

(Frahm et al., 2012a). The corresponding eigenvector

(PageRank P at α = 1) is given by P ∝
∑l−1
j=0 v

(j). The

remaining N − l (generalized) eigenvectors of S are as-
sociated to many different Jordan blocks of S0 for the
eigenvalue λ = 0.

These l non-vanishing complex eigenvalues can be nu-
merically computed as the zeros of the reduced polyno-
mial by the Newton-Maehly method, by a numerical di-
agonalization of the “small” representation matrix S̄ (or
better a more stable transformed matrix with identical
eigenvalues) or by the Arnoldi method using the uniform
vector e as initial vector. In the latter case the Arnoldi
method should theoretically (in absence of rounding er-
rors) exactly explore the l-dimensional subspace of the
vectors v(j) and break off after l iterations with l exact
eigenvalues.

However, numerical rounding errors may have a strong
effect due to the Jordan blocks for the zero eigenvalue
(Frahm et al., 2012a). Indeed, an error ε appearing in a
left bottom corner of a Jordan matrix of size D with zero
eigenvalue leads to numerically induced eigenvalues on a
complex circle of radius

|λε| = ε1/D . (12)

Such an error can become significant with |λ| > 0.1 even
for ε ∼ 10−15 as soon as D > 15. We call this phe-
nomenon the Jordan error enhancement. Furthermore,
also the numerical determination of the zeros of Pr(λ)
for large values of l ∼ 102 can be numerically rather
difficult. Thus, it may be necessary to use a high preci-
sion library such as the GNU GMP library either for the
determination of the zeros of Pr(λ) or for the Arnoldi
method (Frahm et al., 2014b).

B. PageRank of integers

A network for integer numbers (Frahm et al., 2012a)
can be constructed by linking an integer number n ∈
{1, . . . , N} to its divisors m different from 1 and n it-
self by an adjacency matrix Amn = M(n,m) where the
multiplicity M(n,m) is the number of times we can di-
vide n by m, i.e. the largest integer such that mM(n,m)

is a divisor of n, and Amn = 0 for all other cases. The
number 1 and the prime numbers are not linked to any
other number and correspond to dangling nodes. The
total size N of the matrix is fixed by the maximal con-
sidered integer. According to numerical data the num-
ber of links N` =

∑
mnAmn is approximately given

by N` = N (a` + b` lnN) with a` = −0.901 ± 0.018,
b` = 1.003± 0.001.

The matrix elements Amn are different from zero only
for n ≥ 2m and the associated matrix S0 is therefore
nilpotent with Sl0 = 0 and l = [log2(N)] � N . This tri-
angular matrix structure can be seen in Fig. 42(a) which
shows the amplitudes of S. The vertical green/gray lines
correspond to the extra contribution due to the dangling
nodes. These l non-vanishing eigenvalues of S can be effi-
ciently calculated as the zeros of the reduced polynomial
(11) up to N = 109 with l = 29. For N = 109 the largest
eigenvalues are λ1 = 1, λ2,3 ≈ −0.27178 ± i 0.42736,
λ4 ≈ −0.17734 and |λj | < 0.1 for j ≥ 5. The de-
pendence of the eigenvalues on N seems to scale with
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the parameter 1/ ln(N) for N → ∞ and in particular
γ2(N) = −2 ln |λ2(N)| ≈ 1.020+7.14/ lnN (Frahm et al.,
2012a). Therefore the first eigenvalue is clearly separated
from the second eigenvalue and one can chose the damp-
ing factor α = 1 without any problems to define a unique
PageRank.

FIG. 42 (Color online) Panel (a): the Google matrix of in-
tegers, the amplitudes of matrix elements Smn are shown by
color with blue/black for minimal zero elements and red/gray
for maximal unity elements, with 1 ≤ n ≤ 31 correspond-
ing to x−axis (with n = 1 corresponding to the left column)
and 1 ≤ m ≤ 31 for y−axis (with m = 1 corresponding to
the upper row). Panel (b): the full lines correspond to the
dependence of PageRank probability P (K) on index K for
the matrix sizes N = 107, 108, 109 with the PageRank evalu-
ated by the exact expression P ∝

∑l−1
j=0 v

(j). The green/gray
crosses correspond to the PageRank obtained by the power
method for N = 107; the dashed straight line shows the Zipf
law dependence P ∼ 1/K. After (Frahm et al., 2012a).

FIG. 43 (Color online) Panel (a): comparison of the first

three PageRank approximations P (i) ∝
∑i−1
j=0 v

(j) for i =

1, 2, 3 and the exact PageRank dependence P (K). Panel (b):
comparison of the dependence of the rescaled probabilities nP
and nP (3) on n. Both panels correspond to the case N = 107.
After (Frahm et al., 2012a).

The large values of N are possible because the vector
iteration v(j+1) = S0 v

(j) can actually be computed with-
out storing the N` ∼ N lnN non-vanishing elements of
S0 by using the relation:

v(j+1)
n =

[N/n]∑
m=2

M(mn,m)

Q(mn)
v(j)mn , if n ≥ 2 (13)

and v
(j+1)
1 = 0 (Frahm et al., 2012a). The initial vec-

tor is given by v(0) = e/N and Q(n) =
∑n−1
m=2M(n,m)

is the number of divisors of n (taking into account the
multiplicity). The multiplicity M(mn, n) can be recalcu-
lated during each iteration and one needs only to store
N(� N`) integer numbers Q(n). It is also possible to re-
formulate (13) in a different way without using M(mn, n)
(Frahm et al., 2012a). The vectors v(j) allow to compute
the coefficients cj = dT v(j) in the reduced polynomial

and the PageRank P ∝
∑l−1
j=0 v

(j). Fig. 42(b) shows the

PageRank for N ∈ {107, 108, 109} obtained in this way
and for comparison also the result of the power method
for N = 107.

Actually Fig. 43 shows that in the sum P ∝
∑l−1
j=0 v

(j)

already the first three terms give a quite satisfactory ap-
proximation to the PageRank allowing a further analyt-
ical simplified evaluation (Frahm et al., 2012a) with the
result P (n) ≈ CN/(bn n) for n � N , where CN is the
normalization constant and bn = 2 for prime numbers
n and bn = 6 − δp1,p2 for numbers n = p1 p2 being a
product of two prime numbers p1 and p2. The behavior
P (n)n ≈ CN/bn, which takes approximately constant
values on several branches, is also visible in Fig. 43 with
CN/bn decreasing if n is a product of many prime num-
bers. The numerical results up to N = 109 show that
the numbers n, corresponding to the leading PageRank
values for K = 1, 2, . . . , 32, are n = 2, 3, 5, 7, 4, 11,
13, 17, 6, 19, 9, 23, 29, 8, 31, 10, 37, 41, 43, 14, 47, 15,
53, 59, 61, 25, 67, 12, 71, 73, 22, 21 with about 30% of
non-primes among these values (Frahm et al., 2012a).

A simplified model for the network for integer numbers
with M(n,m) = 1 if m is divisor of n and 1 < m < n
has also been studied with similar results (Frahm et al.,
2012a).

C. Citation network of Physical Review

Citation networks for Physical Review and other scien-
tific journals can be defined by taking published articles
as nodes and linking an article A to another article B if A
cites B. PageRank and similar analysis of such networks
are efficient to determine influential articles (Newman ,
2001; Radicchi et al., 2009; Redner , 1998, 2005).

In citation network links go mostly from newer to older
articles and therefore such networks have, apart from the
dangling node contributions, typically also a (nearly) tri-
angular structure as can be seen in Fig. 44 which shows a
coarse-grained density of the corresponding Google ma-
trix for the citation network of Physical Review from the
very beginning until 2009 (Frahm et al., 2014b). How-
ever, due to the delay of the publication process in certain
rare instances a published paper may cite another paper
that is actually published a little later and sometimes
two papers may even cite mutually each other. There-
fore the matrix structure is not exactly triangular but
in the coarse-grained density in Fig. 44 the rare “future
citations” are not well visible.

The nearly triangular matrix structure implies large
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dimensional Jordan blocks associated to the eigenvalue
λ = 0. This creates the Jordan error enhancement (12)
with severe numerical problems for accurate computa-
tion of eigenvalues in the range |λ| < 0.3− 0.4 when us-
ing the Arnoldi method with standard double-precision
arithmetic (Frahm et al., 2014b).

FIG. 44 (Color online) Different representations of the Google
matrix structure for the Physical Review network until 2009.
(a) Density of matrix elements Gtt′ in the basis of the publi-
cation time index t (and t′). (b) Density of matrix elements in
the basis of journal ordering according to: Phys. Rev. Series I,
Phys. Rev., Phys. Rev. Lett., Rev. Mod. Phys., Phys. Rev. A,
B, C, D, E, Phys. Rev. STAB and Phys. Rev. STPER.
and with time index ordering inside each journal. Note
that the journals Phys. Rev. Series I, Phys. Rev. STAB and
Phys. Rev. STPER are not clearly visible due to a small num-
ber of published papers. Also Rev. Mod. Phys. appears only
as a thick line with 2-3 pixels (out of 500) due to a limited
number of published papers. The different blocks with tri-
angular structure correspond to clearly visible seven journals
with considerable numbers of published papers. Both pan-
els show the coarse-grained density of matrix elements on
500 × 500 square cells for the entire network. Color shows
the density of matrix elements (of G at α = 1) changing from
blue/black for minimum zero value to red/gray at maximum
value. After (Frahm et al., 2014b).

One can eliminate the small number of future cita-
tions (12126 which is 0.26 % of the total number of links
N` = 4691015) and determine the complex eigenvalue
spectrum of a triangular reduced citation network using
the semi-analytical theory presented in previous subsec-
tion. It turns out that in this case the matrix S0 is nilpo-
tent Sl0 = 0 with l = 352 which is much smaller than the
total network size N = 463348. The 352 non-vanishing
eigenvalues can be determined numerically as the zeros
of the polynomial (11) but due to an alternate sign prob-
lem with a strong loss of significance it is necessary to
use the high precision library GMP with 256 binary dig-
its (Frahm et al., 2014b).

The semi-analytical theory can also be generalized to
the case of nearly triangular networks, i.e. the full cita-
tion network including the future citations. In this case
the matrix S0 is no longer nilpotent but one can still gen-
eralize the arguments of previous subsection and discuss
the two cases where the quantity C = dT ψ either van-

ishes (eigenvectors of first group) or is different from zero
(eigenvectors of second group). The eigenvalues λ for the
first group, which may now be different from zero, can be
determined by a quite complicated but numerically very
efficient procedure using the subspace eigenvalues of S
and degenerate subspace eigenvalues of S0 (due to ab-
sence of dangling node contributions the matrix S0 pro-
duces much larger invariant subspaces than S) (Frahm
et al., 2014b). The eigenvalues of the second group are
given as the complex zeros of the rational function:

R(λ) = 1− dT 11

λ11− S0
e/N = 1−

∞∑
j=0

cjλ
−1−j (14)

with cj given as in (11) and now the series is not finite
since S0 is not nilpotent. For the citation network of
Physical Review the coefficients cj behave as cj ∝ ρj1
where ρ1 ≈ 0.902 is the largest eigenvalue of the ma-
trix S0 with an eigenvector non-orthogonal to d. There-
fore the series in (14) converges well for |λ| > ρ1 but
in order to determine the spectrum the rational func-
tion R(λ) needs to be evaluated for smaller values of
|λ|. This problem can be solved by interpolating R(λ)
with (another) rational function using a certain number
of support points on the complex unit circle, where (14)
converges very well, and determining the complex zeros,
well inside the unit circle, of the numerator polynomial
using again the high precision library GMP (Frahm et al.,
2014b). In this way using 16384 binary digits one may
obtain 2500 reliable eigenvalues of the second group.

FIG. 45 (Color online) (a) Most accurate spectrum of eigen-
values for the full Physical Review network; red/gray dots rep-
resent the core space eigenvalues obtained by the rational in-
terpolation method with the numerical precision of p = 16384
binary digits, nR = 2500 eigenvalues; green (light gray) dots
show the degenerate subspace eigenvalues of the matrix S0

which are also eigenvalues of S with a degeneracy reduced by
one (eigenvalues of the first group); blue/black dots show the
direct subspace eigenvalues of S. (b) Spectrum of numerically
accurate 352 non-vanishing eigenvalues of the Google matrix
for the triangular reduced Physical Review network deter-
mined by the Newton-Maehly method applied to the reduced
polynomial (11) with a high-precision calculation of 256 bi-
nary digits; note the absence of subspace eigenvalues for this
case. In both panels the green/gray curve represents the unit
circle. After (Frahm et al., 2014b).
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The numerical high precision spectra obtained by the
semi-analytic methods for both cases, triangular reduced
and full citation network, are shown in Fig. 45. One
may mention that it is also possible to implement the
Arnoldi method using the high precision library GMP
for both cases and the resulting eigenvalues coincide very
accurately with the semi-analytic spectra for both cases
(Frahm et al., 2014b).

When the spectrum of G is determined with a good
accuracy we can test the validity of the fractal Weyl law
(5) changing the matrix size Nt by considering articles
published from the beginning to a certain time moment
t measured in years. The data presented in Fig. 46 show
that the network size grows approximately exponentially
as Nt = 2(t−t0)/τ with the fit parameters t0 = 1791,
τ = 11.4. The time interval considered in Fig. 46 is
1913 ≤ t ≤ 2009 since the first data point corresponds to
t = 1913 with Nt = 1500 papers published between 1893
and 1913. The results, for the number Nλ of eigenvalues
with |λi| > λ, show that its growth is well described
by the relation Nλ = a (Nt)

ν for the range when the
number of articles becomes sufficiently large 3 × 104 ≤
Nt < 5× 105. This range is not very large and probably
due to that there is a certain dependence of the exponent
ν on the range parameter λc. At the same time we note
that the maximal matrix size N studied here is probably
the largest one used in numerical studies of the fractal
Weyl law. We have 0.47 < ν < 0.6 for all λc ≥ 0.4
that is definitely smaller than unity and thus the fractal
Weyl law is well applicable to the Phys. Rev. network.
The value of ν increases up to 0.7 for the data points
with λc < 0.4 but this is due to the fact here Nλ also
includes some numerically incorrect eigenvalues related
to the numerical instability of the Arnoldi method at
standard double-precision (52 binary digits) as discussed
above.

We conclude that the most appropriate choice for the
description of the data is obtained at λc = 0.4 which from
one side excludes small, partly numerically incorrect, val-
ues of λ and on the other side gives sufficiently large val-
ues of Nλ. Here we have ν = 0.49± 02 corresponding to
the fractal dimension d = 0.98 ± 0.04. Furthermore, for
0.4 ≤ λc ≤ 0.7 we have a rather constant value ν ≈ 0.5
with df ≈ 1.0. Of course, it would be interesting to ex-
tend this analysis to a larger size N of citation networks
of various type and not only for Phys. Rev. We expect
that the fractal Weyl law is a generic feature of citation
networks.

Further studies of the citation network of Physical
Review concern the properties of eigenvectors (different
from the PageRank) associated to relatively large com-
plex eigenvalues, the fractal Weyl law, the correlations
between PageRank and CheiRank (see also subsection
IV.C) and the notion of “ImpactRank” (Frahm et al.,
2014b). To define the ImpactRank one may ask the ques-
tion how a paper influences or has been influenced by
other papers. For this one considers an initial vector v0,
localized on a one node/paper. Then the modified Google

matrix G̃ = γ G + (1 − γ) v0 e
T (with a damping factor

γ ∼ 0.5−0.9) produces a “PageRank” vf by the propaga-
tor vf = (1−γ)/(1−γG) v0. In the vector vf the leading
nodes/papers have strongly influenced the initial paper
represented in v0. Doing the same for G∗ one obtains a
vector v∗f where the leading papers have been influenced
by the initial paper represented in v0. This procedure
has been applied to certain historically important papers
(Frahm et al., 2014b).

FIG. 46 (Color online) Data for the whole CNPR at differ-
ent moments of time. Panel (a) (or (c)): shows the num-
ber Nλ of eigenvalues with λc ≤ λ ≤ 1 for λc = 0.50 (or
λc = 0.65) versus the effective network size Nt where the
nodes with publication times after a cut time t are removed
from the network. The green/gray line shows the fractal
Weyl law Nλ = a (Nt)

ν with parameters a = 0.32 ± 0.08
(a = 0.24 ± 0.11) and ν = 0.51 ± 0.02 (b = 0.47 ± 0.04) ob-
tained from a fit in the range 3 × 104 ≤ Nt < 5 × 105. The
number Nλ includes both exactly determined invariant sub-
space eigenvalues and core space eigenvalues obtained from
the Arnoldi method with double-precision (52 binary digits)
for nA = 4000 (red/gray crosses) and nA = 2000 (blue/black
squares). Panel (b): exponent b with error bars obtained from
the fit Nλ = a (Nt)

ν in the range 3× 104 ≤ Nt < 5× 105 ver-
sus cut value λc. Panel (d): effective network size Nt versus
cut time t (in years). The green/gray line shows the expo-

nential fit 2(t−t0)/τ with t0 = 1791 ± 3 and τ = 11.4 ± 0.2
representing the number of years after which the size of the
network (number of papers published in all Physical Review
journals) is effectively doubled. After (Frahm et al., 2014b).

In summary, the results of this section show that the
phenomenon of the Jordan error enhancement (12), in-
duced by finite accuracy of computations with a finite
number of digits, can be resolved by advanced numerical
methods described above. Thus the accurate eigenvalues
λ can be obtained even for the most difficult case of quasi-
triangular matrices. We note that for other networks like
WWW of UK universities, Wikipedia and Twitter the
triangular structure of S is much less pronounced (see
e.g. Fig. 1) that gives a reduction of Jordan blocks so
that the Arnoldi method with double precision computes



40

accurate values of λ.

XIII. RANDOM MATRIX MODELS OF MARKOV
CHAINS

A. Albert-Barabási model of directed networks

There are various preferential attachment models gen-
erating complex scale-free networks (see e.g. (Albert and
Barabási , 2002; Dorogovtsev, 2010)). Such undirected
networks are generated by the Albert-Barabási (AB) pro-
cedure (Albert and Barabási , 2000) which builds net-
works by an iterative process. Such a procedure has
been generalized to generate directed networks in (Gi-
raud et al., 2009) with the aim to study properties of the
Google matrix of such networks. The procedure is work-
ing as follows: starting from m nodes, at each step m
links are added to the existing network with probability
p, orm links are rewired with probability q, or a new node
with m links is added with probability 1− p− q. In each
case the end node of new links is chosen with preferen-
tial attachment, i.e. with probability (ki+1)/

∑
j(kj+1)

where ki is the total number of ingoing and outgoing links
of node i. This mechanism generates directed networks
having the small-world and scale-free properties, depend-
ing on the values of p and q. The results are averaged
over Nr random realizations of the network to improve
the statistics.

The studies (Giraud et al., 2009) are done mainly for
m = 5, p = 0.2 and two values of q corresponding to
scale-free (q = 0.1) and exponential (q = 0.7) regimes
of link distributions (see Fig. 1 in (Albert and Barabási
, 2000) for undirected networks). For the generated di-
rected networks at q = 0.1, one finds properties close to
the behavior for the WWW with the cumulative distri-
bution of ingoing links showing algebraic decay P in

c (k) ∼
1/k and average connectivity 〈k〉 ≈ 6.4. For q = 0.7 one
finds P in

c (k) ∼ exp(−0.03k) and 〈k〉 ≈ 15. For outgoing
links, the numerical data are compatible with an expo-
nential decay in both cases with P out

c (k) ∼ exp(−0.6k)
for q = 0.1 and P out

c (k) ∼ exp(−0.1k) for q = 0.7. It is
found that small variations of parameters m, p, q near the
chosen values do not qualitatively affect the properties of
G matrix.

It is found that the eigenvalues of G for the AB model
have one λ = 1 with all other |λi| < 0.3 at α = 0.85
(see Fig. 1 in (Giraud et al., 2009)). This distribution
shows no significant modification with the growth of ma-
trix size 210 ≤ N ≤ 214. However, the values of IPR ξ
are growing with N for typical values |λ| ∼ 0.2. This
indicates a delocalization of corresponding eigenstates at
large N . At the same time the PageRank probability
is well described by the algebraic dependence P ∼ 1/K
with ξ being practically independent of N .

These results for directed AB model network shows
that it captures certain features of real directed networks,
as e.g. a typical PageRank decay with the exponent

β ≈ 1. However, the spectrum of G in this model is
characterized by a large gap between λ = 1 and other
eigenvalues which have λ ≤ 0.35 at α = 1. This feature
is in a drastic difference with spectra of such typical net-
works at WWW of universities, Wikipedia and Twitter
(see Figs. 17,22,32). In fact the AB model has no sub-
spaces and no isolated or weakly coupled communities.
In this network all sites can be reached from a given site
in a logarithmic number of steps that generates a large
gap in the spectrum of Google matrix and a rapid re-
laxation to PageRank eigenstate. In real networks there
are plenty of isolated or weakly coupled communities and
the introduction of damping factor α < 1 is necessary to
have a single PageRank eigenvalue at λ = 1. Thus the
results obtained in (Giraud et al., 2009) show that the
AB model is not able to capture the important spectral
features of real networks.

Additional studies in (Giraud et al., 2009) analyzed the
model of a real WWW university network with rewiring
procedure of links, which consists in randomizing the
links of the network keeping fixed the number of links
at any given node. Starting from a single network, this
creates an ensemble of randomized networks of same size,
where each node has the same number of ingoing and out-
going links as for the original network. The spectrum of
such randomly rewired networks is also characterized by
a large gap in the spectrum of G showing that rewiring
destroys the communities existing in original networks.
The spectrum and eigenstate properties are studied in
the related work on various real networks of moderate
size N < 2 × 104 which have no spectral gap (Georgeot
et al., 2010).

B. Random matrix models of directed networks

Above we saw that the standard models of scale-free
networks are not able to reproduce the typical properties
of spectrum of Google matrices of real large scale net-
works. At the same time we believe that it is important
to find realistic matrix models of WWW and other net-
works. Here we discuss certain results for certain random
matrix models of G.

Analytical and numerical studies of random unis-
tochastic or orthostochastic matrices of size N = 3 and 4
lead to triplet and cross structures in the complex eigen-
value spectra (Zyczkowski et al., 2003) (see also Fig. 18).
However, the size of such matrices is too small.

Here we consider other examples of random matrix
models of Perron-Frobenius operators characterized by
non-negative matrix elements and column sums normal-
ized to unity. We call these models Random Perron-
Frobenius Matrices (RPFM). A number of RPFM, with
arbitrary size N , can be constructed by drawing N2 in-
dependent matrix elements 0 ≤ Gij ≤ 1 from a given dis-
tribution p(Gij) with finite variance σ2 = 〈G2

ij〉 − 〈Gij〉2
and normalizing the column sums to unity (Frahm et al.,
2014b). The average matrix 〈Gij〉 = 1/N is just a pro-
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jector on the vector e (with unity entries on each node,
see also Sec. XII.A) and has the two eigenvalues λ1 = 1
(of multiplicity 1) and λ2 = 0 (of multiplicity N − 1).
Using an argument of degenerate perturbation theory on
δG = G− 〈G〉 and known results on the eigenvalue den-
sity of non-symmetric random matrices (Akemann et al.,
2011; Guhr et al., 1998; Mehta, 2004) one finds that an ar-
bitrary realization of G has the leading eigenvalue λ1 = 1
and the other eigenvalues are uniformly distributed on
the complex unit circle of radius R =

√
Nσ (see Fig. 47).

FIG. 47 (Color online) Panel (a) shows the spectrum
(red/gray dots) of one realization of a full uniform RPFM
with dimension N = 400 and matrix elements uniformly
distributed in the interval [0, 2/N ]; the blue/black circle
represents the theoretical spectral border with radius R =
1/
√

3N ≈ 0.02887. The unit eigenvalue λ = 1 is not
shown due to the zoomed presentation range. Panel (c)
shows the spectrum of one realization of triangular RPFM
(red/gray crosses) with non-vanishing matrix elements uni-
formly distributed in the interval [0, 2/(j− 1)] and a triangu-
lar matrix with non-vanishing elements 1/(j − 1) (blue/black
squares); here j = 2, 3, . . . , N is the index-number of non-
empty columns and the first column with j = 1 corresponds
to a dangling node with elements 1/N for both triangular
cases. Panels (b), (d) show the complex eigenvalue spectrum
(red/gray dots) of a sparse RPFM with dimension N = 400
andQ = 20 non-vanishing elements per column at random po-
sitions. Panel (b) (or (d)) corresponds to the case of uniformly
distributed non-vanishing elements in the interval [0, 2/Q]
(constant non-vanishing elements being 1/Q); the blue/black
circle represents the theoretical spectral border with radius
R = 2/

√
3Q ≈ 0.2582 (R = 1/

√
Q ≈ 0.2236). In panels

(b), (d) λ = 1 is shown by a larger red dot for better visi-
bility. The unit circle is shown by green/gray curve (panels
(b), (c), (d)). After (Frahm et al., 2014b).

Choosing different distributions p(Gij) one obtains dif-
ferent variants of the model (Frahm et al., 2014b), for

example R = 1/
√

3N using a full matrix with uniform

Gij ∈ [0, 2/N ]. Sparse models with Q � N non-
vanishing elements per column can be modeled by a dis-
tribution where the probability of Gij = 0 is 1 − Q/N
and for non-zero Gij (either uniform in [0, 2/Q] or con-
stant 1/Q) is Q/N leading to R = 2/

√
3Q (for uniform

non-zero elements) or R = 1/
√
Q (for constant non-zero

elements). The circular eigenvalue density with these
values of R is also very well confirmed by numerical
simulations in Fig. 47. Another case is a power law
p(G) = D/(1 + aG)−b (for 0 ≤ G ≤ 1) with D and
a to be determined by normalization and the average
〈Gij〉 = 1/N . For b > 3 this case is similar to a full ma-

trix with R ∼ 1/
√
N . However for 2 < b < 3 one finds

that R ∼ N1−b/2.
The situation changes when one imposes a triangu-

lar structure on G in which case the complex spectrum
of 〈G〉 is already quite complicated and, due to non-
degenerate perturbation theory, close to the spectrum
of G with modest fluctuations, mostly for the smallest
eigenvalues (Frahm et al., 2014b). Following the above
discussion about triangular networks (with Gij = 0 for
i ≥ j) we also study numerically a triangular RPFM
where for j ≥ 2 and i < j the matrix elements Gij are
uniformly distributed in the interval [0, 2/(j−1)] and for
i ≥ j we have Gij = 0. Then the first column is empty,
that means it corresponds to a dangling node and it needs
to be replaced by 1/N entries. For the triangular RPFM
the situation changes completely since here the average
matrix 〈Gij〉 = 1/(j − 1) (for i < j and j ≥ 2) has
already a nontrivial structure and eigenvalue spectrum.
Therefore the argument of degenerate perturbation the-
ory which allowed to apply the results of standard full
non-symmetric random matrices does not apply here. In
Fig. 47 one clearly sees that for N = 400 the spectra
for one realization of a triangular RPFM and its average
are very similar for the eigenvalues with large modulus
but both do not have at all a uniform circular density
in contrast to the RPRM models without the triangu-
lar constraint discussed above. For the triangular RPFM
the PageRank behaves as P (K) ∼ 1/K with the rank-
ing index K being close to the natural order of nodes
{1, 2, 3, . . .} that reflects the fact that the node 1 has the
maximum of N − 1 incoming links etc.

The above results show that it is not so simple to pro-
pose a good random matrix model which captures the
generic spectral features of real directed networks. We
think that investigations in this direction should be con-
tinued.

C. Anderson delocalization of PageRank?

The phenomenon of Anderson localization of electron
transport in disordered materials (Anderson , 1958) is
now a well-known effect studied in detail in physics (see
e.g. (Evers and Mirlin , 2008)). In one and two dimen-
sions even a small disorder leads to an exponential local-
ization of electron diffusion that corresponds to an insu-
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lating phase. Thus, even if a classical electron dynam-
ics is diffusive and delocalized over the whole space, the
effects of quantum interference generates a localization
of all eigenstates of the Schödinger equation. In higher
dimensions a localization is preserved at a sufficiently
strong disorder, while a delocalized metallic phase ap-
pears for a disorder strength being smaller a certain crit-
ical value dependent on the Fermi energy of electrons.
This phenomenon is rather generic and we can expect
that a somewhat similar delocalization transition can ap-
pear in the small-world networks.

FIG. 48 (Color online) (a) The red/gray and blue/black
curves represent the Poisson and Wigner surmise distribu-
tions. Diamonds, triangles, circles and black disks repre-
sent respectively the level spacing statistics p(s) at W/V =
4, 3, 2, 1; p` = 0.02, L = 32000; averaging is done over 60 net-
work realizations. (b) Stars give dependence of p` on a disor-
der strength W/V at the critical point when η`(W, p`) = 0.8,
and p` = 0.005, 0.01, 0.02, 0.04 at fixed L = 8000; the straight
line corresponds to p` = pc = 1/4`1 ≈ (W/V )2/400; the
dashed curve is drown to adapt an eye. After (Chepelianskii
and Shepelyansky , 2001).

Indeed, it is useful to consider the 1D Anderson model
on a ring with a certain number of shortcut links, de-
scribed by the Schödinger equation

εnψn + V (ψn+1 + ψn−1) + V
∑
S

(ψn+S + ψn−S) = Eψn ,

(15)
where εn are random on site energies homogeneously dis-
tributed within the interval −W/2 ≤ εn ≤ W/2, and
V is the hopping matrix element. The sum over S is
taken over randomly established shortcuts from a site
n to any other random site of the network. The num-
ber of such shortcuts is Stot = p`L, where L is the
total number of sites on a ring and p` is the density
of shortcut links. This model had been introduced in
(Chepelianskii and Shepelyansky , 2001). The numeri-
cal study, reported there, showed that the level-spacing
statistics p(s) for this model has a transition from the
Poisson distribution pPois(s) = exp(−s), typical for the
Anderson localization phase, to the Wigner surmise dis-
tribution pWig(s) = πs/2 exp(−πs2/4), typical for the
Anderson metallic phase (Evers and Mirlin , 2008; Guhr
et al., 1998). The numerical diagonalization was done
via the Lanczos algorithm for the sizes up to L = 32000
and the typical parameter range 0.005 ≤ p` < 0.1 and

1 ≤ W/V ≤ 4. An example, of the variation of p`(s)
with a decrease of W/V is shown in Fig. 48(a). We see
that the Wigner surmise provides a good description of
the numerical data at W/V = 1, when the maximal local-
ization length `1 ≈ 96(V/W )2 ≈ 96 in the 1D Anderson
model (see e.g. (Evers and Mirlin , 2008)) is much smaller
than the system size L.

To identify a transition from one limiting case pPois(s)
to another pWig(s) it is convenient to introduce the
parameter ηs =

∫ s0
0

(p(s) − pWig(s))ds/
∫ s0
0

(pPois(s) −
pWig(s))ds, where s0 = 0.4729... is the intersection point
of pPois(s) and pWig(s). In this way ηs varies from 1 (for
p(s) = pPois(s)) to 0 (for p(s) = pWig(s) ) (see e.g. (She-
pelyansky , 2001)). From the variation of ηs with system
parameters and size L, the critical density p` = pc can be
determined by the condition ηs(pc,W/V ) = ηc = 0.8 =
const. being independent of L. The obtained dependence
of pc on W/V obtained at a fixed critical point ηc = 0.8 is
shown in Fig. 48(b). The Anderson delocalization tran-
sition takes place when the density of shortcuts becomes
larger than a critical density p` > pc ≈ 1/(4`1) where
`1 ≈ 96(V/W )2 is the length of Anderson localization
in 1D. A simple physical interpretation of this result is
that the delocalization takes place when the localization
length `1 becomes larger than a typical distance 1/(4p`)
between shortcuts. The further studies of time evolution
of wave function ψn(t) and IPR ξ variation also confirmed
the existence of quantum delocalization transition on this
quantum small-world network (Giraud et al., 2005).

Thus the results obtained for the quantum small-world
networks (Chepelianskii and Shepelyansky , 2001; Giraud
et al., 2005) show that the Anderson transition can take
place in such systems. However, the above model repre-
sents an undirected network corresponding to a symmet-
ric matrix with a real spectrum while the typical directed
networks are characterized by asymmetric matrix G and
complex spectrum. The possibility of existence of local-
ized states of G for WWW networks was also discussed
by (Perra et al., 2009) but the fact that in a typical case
the spectrum of G is complex has not been analyzed in
detail.

Above we saw certain indications on a possibility of
Anderson type delocalization transition for eigenstates
of the G matrix. Our results clearly show that certain
eigenstates in the core space are exponentially localized
(see e.g. Fig 19(b)). Such states are localized only on
a few nodes touching other nodes of network only by an
exponentially small tail. A similar situation would ap-
pear in the 1D Anderson model if an absorption would
be introduced on one end of the chain. Then the eigen-
states located far away from this place would feel this
absorption only by exponentially small tails so that the
imaginary part of the eigenenergy would have for such
far away states only an exponentially small imaginary
part. It is natural to expect that such localization can
be destroyed by some parameter variation. Indeed, cer-
tain eigenstates with |λ| < 1 for the directed network
of the AB model have IPR ξ growing with the matrix
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size N (see Sec. XIII.A and (Giraud et al., 2009)) even if
for the PageRank the values of ξ remain independent of
N . The results for the Ulam network from Figs. 13, 14
provide an example of directed network where the PageR-
ank vector becomes delocalized when the damping factor
is decreased from α = 0.95 to 0.85 (Zhirov et al., 2010).
This example demonstrates a possibility of PageRank de-
localization but a deeper understanding of the conditions
required for such a phenomenon to occur are still lack-
ing. The main difficulty is an absence of well established
random matrix models which have properties similar to
the available examples of real networks.

Indeed, for Hermitian and unitary matrices the theo-
ries of random matrices, mesoscopic systems and quan-
tum chaos allow to capture main universal properties of
spectra and eigenstates (Akemann et al., 2011; Evers and
Mirlin , 2008; Guhr et al., 1998; Haake, 2010; Mehta,
2004). For asymmetric Google matrices the spectrum is
complex and at the moment there are no good random
matrix models which would allow to perform analytical
analysis of various parameter dependencies. It is possi-
ble that non-Hermitian Anderson models in 1D, which
naturally generates a complex spectrum and may have
delocalized eigenstates, will provide new insights in this
direction (Goldsheid and Khoruzhenko , 1998).

XIV. OTHER EXAMPLES OF DIRECTED NETWORKS

In this section we discuss additional examples of real
directed networks.

A. Brain neural networks

In 1958 John von Neumann traced first parallels be-
tween architecture of the computer and the brain (von
Neumann , 1958). Since that time computers became
an unavoidable element of the modern society forming a
computer network connected by the WWW with about
4× 109 indexed web pages spread all over the world (see
e.g. http://www.worldwidewebsize.com/). This number
starts to become comparable with 1010 neurons in a hu-
man brain where each neuron can be viewed as an inde-
pendent processing unit connected with about 104 other
neurons by synaptic links (see e.g. (Sporns , 2007)).
About 20% of these links are unidirectional (Felleman
and van Essen , 1991) and hence the brain can be viewed
as a directed network of neuron links. At present, more
and more experimental information about neurons and
their links becomes available and the investigations of
properties of neuronal networks attract an active inter-
est (see e.g. (Bullmore and Sporns , 2009; Zuo et al.,
2012)). The fact that enormous sizes of WWW and brain
networks are comparable gives an idea that the Google
matrix analysis should find useful application in brain
science as it is the case of WWW.

First applications of methods of Google matrix meth-

ods to brain neural networks was done in (Shepelyan-
sky and Zhirov , 2010b) for a large-scale thalamocor-
tical model (Izhikevich and Edelman , 2008) based on
experimental measures in several mammalian species.
The model spans three anatomic scales. (i) It is based
on global (white-matter) thalamocortical anatomy ob-
tained by means of diffusion tensor imaging of a human
brain. (ii) It includes multiple thalamic nuclei and six-
layered cortical microcircuitry based on in vitro label-
ing and three-dimensional reconstruction of single neu-
rons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their
branching dendritic trees. According to (Izhikevich and
Edelman , 2008) the model exhibits behavioral regimes
of normal brain activity that were not explicitly built-in
but emerged spontaneously as the result of interactions
among anatomical and dynamic processes.

FIG. 49 (Color online) (a) Spectrum of eigenvalues λ for the
Google matrices G and G∗ at α = 0.85 for the neural network
of C.elegans (black and red/gray symbols). (b) Values of IPR
ξi of eigenvectors ψi are shown as a function of correspond-
ing Reλ (same colors). After (Kandiah and Shepelyansky ,
2014a).

The model studied in (Shepelyansky and Zhirov ,
2010b) contains N = 104 neuron with N` = 1960108.
The obtained results show that PageRank and CheiRank
vectors have rather large ξ being comparable with the
whole network size at α = 0.85. The corresponding
probabilities have very flat dependence on their indexes
showing that they are close to a delocalized regime. We
attribute these features to a rather large number of links
per node ζ ≈ 196 being even larger than for the Twitter
network. At the same time the PageRank-CheiRank cor-
relator is rather small κ = −0.065. Thus this network is
structured in such a way that functions related to order
signals (outgoing links of CheiRank) and signals bringing
orders (ingoing links of PageRank) are well separated and
independent of each other as it is the case for the Linux
Kernel software architecture. The spectrum of G has a
gapless structure showing that long living excitations can
exist in this neuronal network.

Of course, model systems of neural networks can pro-
vide a number of interesting insights but it is much more

http://www.worldwidewebsize.com/
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important to study examples of real neural networks. In
(Kandiah and Shepelyansky , 2014a) such an analysis is
performed for the neural network of C.elegans (worm).
The full connectivity of this directed network is known
and well documented at WormAtlas (Altun et al., 2012).
The number of linked neurons (nodes) is N = 279 with
the number of synaptic connections and gap junctions
(links) between them being N` = 2990.

FIG. 50 (Color online) PageRank - CheiRank plane (K,K∗)
showing distribution of neurons according to their rank-
ing. (a): soma region coloration - head (red/gray), mid-
dle (green/light gray), tail (blue/dark gray). (b): neuron
type coloration - sensory (red/gray), motor (green/light gray),
interneuron (blue/dark gray), polymodal (purple/light-dark
gray) and unknown (black). The classifications and colors
are given according to WormAtlas (Altun et al., 2012). After
(Kandiah and Shepelyansky , 2014a).

The Google matrix G of C.elegans is constructed using
the connectivity matrix elements Sij = Ssyn,ij + Sgap,ij ,
where Ssyn is an asymmetric matrix of synaptic links
whose elements are 1 if neuron j connects to neuron i
through a chemical synaptic connection and 0 otherwise.
The matrix part Sgap is a symmetric matrix describing
gap junctions between pairs of cells, Sgap,ij = Sgap,ji = 1
if neurons i and j are connected through a gap junc-
tion and 0 otherwise. Then the matrices G and G∗ are
constructed following the standard rule (1) at α = 0.85.
The connectivity properties of this network are similar to
those of WWW of Cambridge and Oxford with approxi-
mately the same number of links per node.

The spectra of G and G∗ are shown in Fig. 49 with
corresponding IPR values of eigenstates. The imaginary
part of λ is relatively small |Im(λ)| < 0.2 due to a large
fraction of symmetric links. The second by modulus
eigenvalues are λ2 = 0.8214 for G and λ2 = 0.8608 for
G∗. Thus the network relaxation time τ = 1/| lnλ2| is
approximately 5, 6.7 iterations of G,G∗. Certain IPR val-
ues ξi of eigenstates of G,G∗ have rather large ξ ≈ N/3
while others have ξ located only on about ten nodes.

We have a large value ξ ≈ 85 for PageRank and a more
moderate value ξ ≈ 23 for CheiRank vectors. Here we
have the algebraic decay exponents being β ≈ 0.33 for
P (K) and β ≈ 0.50 for P ∗(K∗). Of course, the network
size is not large and these values are only approximate.
However, they indicate an interchange between PageR-
ank and CheiRank showing importance of outgoing links.

It is possible that such an inversion is related to a signifi-
cant importance of outgoing links in neural systems: in a
sense such links transfer orders, while ingoing links bring
instructions to a given neuron from other neurons. The
correlator κ = 0.125 is small and thus, the network struc-
ture allows to perform a control of information flow in a
more efficient way without interference of errors between
orders and executions. We saw already in Sec. VII.A that
such a separation of concerns emerges in software archi-
tecture. It seems that the neural networks also adopt
such a structure.

We note that a somewhat similar situation appears for
networks of Business Process Management where Princi-
pals of a company are located at the top CheiRank posi-
tion while the top PageRank positions belong to company
Contacts (Abel and Shepelyansky , 2011). Indeed, a case
study of a real company structure analyzed in (Abel and
Shepelyansky , 2011) also stress the importance of com-
pany managers who transfer orders to other structural
units. For this network the correlator is also small being
κ = 0.164. We expect that brain neural networks may
have certain similarities with company organization.

Each neuron i belongs to two ranks Ki and K∗i and
it is convenient to represent the distribution of neurons
on PageRank-CheiRank plane (K,K∗) shown in Fig. 50.
The plot confirms that there are little correlations be-
tween both ranks since the points are scattered over
the whole plane. Neurons ranked at top K positions
of PageRank have their soma located mainly in both ex-
tremities of the worm (head and tail) showing that neu-
rons in those regions have important connections coming
from many other neurons which control head and tail
movements. This tendency is even more visible for neu-
rons at top K∗ positions of CheiRank but with a pref-
erence for head and middle regions. In general, neurons,
that have their soma in the middle region of the worm,
are quite highly ranked in CheiRank but not in PageR-
ank. The neurons located at the head region have top po-
sitions in CheiRank and also PageRank, while the middle
region has some top CheiRank indexes but rather large
indexes of PageRank (Fig. 50 (a)). The neuron type col-
oration (Fig. 50 (b)) also reveals that sensory neurons are
at top PageRank positions but at rather large CheiRank
indexes, whereas in general motor neurons are in the op-
posite situation.

Top nodes of PageRank and CheiRank favor important
signal relaying neurons such as AV A and AV B that in-
tegrate signals from crucial nodes and in turn pilot other
crucial nodes. Neurons AV AL,AV AR, AV BL,AV BR
and AV EL,AV ER are considered to belong to the rich
club analyzed in (Towlson et al., 2013). The top neurons
in 2DRank are AVAL, AVAR, AVBL, AVBR, PVCR that
corresponds to a dominance of interneurons. More details
can be found in (Kandiah and Shepelyansky , 2014a).

The technological progress allows to obtain now more
and more detailed information about neural networks
(see e.g. (Bullmore and Sporns , 2009; Towlson et al.,
2013; Zuo et al., 2012)) even if it is not easy to get infor-
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mation about link directions. In view of that we expect
that the methods of directed network analysis described
here will find useful future applications for brain neural
networks.

B. Google matrix of DNA sequences

The approaches of Markov chains and Google matrix
can be also efficiently used for analysis of statistical prop-
erties of DNA sequences. The data sets are publicly avail-
able at (Ensemble Genome database, 2011). The analysis
of Poincaré recurrences in these DNA sequences (Frahm
and Shepelyansky , 2012c) shows their similarities with
the statistical properties of recurrences for dynamical tra-
jectories in the Chirikov standard map and other sym-
plectic maps (Frahm and Shepelyansky , 2010). Indeed,
a DNA sequence can be viewed as a long symbolic tra-
jectory and hence, the Google matrix, constructed from
it, highlights the statistical features of DNA from a new
viewpoint.

An important step in the statistical analysis of DNA
sequences was done in (Mantegna et al., 1995) apply-
ing methods of statistical linguistics and determining
the frequency of various words composed of up to 7 let-
ters. A first order Markovian models have been also pro-
posed and briefly discussed in this work. The Google
matrix analysis provides a natural extension of this ap-
proach. Thus the PageRank eigenvector gives most fre-
quent words of given length. The spectrum and eigen-
states of G characterize the relaxation processes of differ-
ent modes in the Markov process generated by a symbolic
DNA sequence. Thus the comparison of word ranks of
different species allows to identify their proximity.

FIG. 51 (Color online) DNA Google matrix of Homo sapi-
ens (HS) constructed for words of 6-letters length. Matrix
elements GKK′ are shown in the basis of PageRank index K
(and K′). Here, x and y axes show K and K′ within the range
1 ≤ K,K′ ≤ 200 (a) and 1 ≤ K,K′ ≤ 1000 (b). The element
G11 at K = K′ = 1 is placed at top left corner. Color marks
the amplitude of matrix elements changing from blue/black
for minimum zero value to red/gray at maximum value. After
(Kandiah and Shepelyansky , 2013).

The statistical analysis is done for DNA sequences of
the species: Homo sapiens (HS, human), Canis familiaris

(CF, dog), Loxodonta africana (LA, elephant), Bos Tau-
rus (bull, BT), Danio rerio (DR, zebrafish) (Kandiah and
Shepelyansky , 2013). For HS DNA sequences are rep-
resented as a single string of length L ≈ 1.5 · 1010 base
pairs (bp) corresponding to 5 individuals. Similar data
are obtained for BT (2.9 · 109 bp), CF (2.5 · 109 bp), LA
(3.1 ·109 bp), DR (1.4 ·109 bp). All strings are composed
of 4 letters A,G,G, T and undetermined letter Nl . The
strings can be found from (Kandiah and Shepelyansky ,
2013).

For a given sequence we fix the words Wk of m letters
length corresponding to the number of states N = 4m.
We consider that there is a transition from a state j to
state i inside this basis N when we move along the string
from left to right going from a word Wk to a next word
Wk+1. This transition adds one unit in the transition
matrix element Tij → Tij + 1. The words with letter
Nl are omitted, the transitions are counted only between
nearby words not separated by words with Nl. There are
approximately Nt ≈ L/m such transitions for the whole
length L since the fraction of undetermined letters Nl is

small. Thus we have Nt =
∑N
i,j=1 Tij . The Markov ma-

trix of transitions Sij is obtained by normalizing matrix
elements in such a way that their sum in each column is
equal to unity: Sij = Tij/

∑
i Tij . If there are columns

with all zero elements (dangling nodes) then zeros of such
columns are replaced by 1/N . Then the Google matrix
G is constructed from S by the standard rule (1). It is
found that the spectrum of G has a significant gap and
a variation of α in a range (0.5, 1) does not affect signif-
icantly the PageRank probability. Thus all DNA results
are shown at α = 1.

FIG. 52 (Color online) Integrated fraction Ng/N
2 of Google

matrix elements with Gij > g as a function of g. (a) Vari-
ous species with 6-letters word length: elephant LA (green),
zebrafish DR(black), dog CF (red), bull BT (magenta), and
Homo sapiens HS (blue) (from left to right at y = −5.5). (b)
Data for HS sequence with words of length m = 5 (brown), 6
(blue), 7 (red) (from right to left at y = −2); for comparison
black dashed and dotted curves show the same distribution
for the WWW networks of Universities of Cambridge and Ox-
ford in 2006 respectively. After (Kandiah and Shepelyansky ,
2013).
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FIG. 53 (Color online) Integrated fraction Ns/N of sum of

ingoing matrix elements with
∑N
j=1Gi,j ≥ gs. Panels (a) and

(b) show the same cases as in Fig. 52 in same colors. The
dashed and dotted curves are shifted in x-axis by one unit
left to fit the figure scale. After (Kandiah and Shepelyansky
, 2013).

FIG. 54 (Color online) Dependence of PageRank probability
P (K) on PageRank index K. (a) Data for different species
for word length of 6-letters: zebrafish DR (black), dog CF
(red), Homo sapiens HS (blue), elephant LA (green) and bull
BT (magenta) (from top to bottom at x = 1). (b) Data
for HS (full curve) and LA (dashed curve) for word length
m = 5 (brown), 6 (blue/green), 7 (red) (from top to bottom
at x = 1). After (Kandiah and Shepelyansky , 2013).

The image of matrix elements GKK′ is shown in Fig. 51
for HS with m = 6. We see that almost all matrix is full
that is drastically different from the WWW and other
networks considered above. The analysis of statistical
properties of matrix elements Gij shows that their in-
tegrated distribution follows a power law as it is seen
in Fig. 52. Here Ng is the number of matrix elements
of the matrix G with values Gij > g. The data show
that the number of nonzero matrix elements Gij is very
close to N2. The main fraction of elements has values
Gij ≤ 1/N (some elements Gij < 1/N since for cer-
tain j there are many transitions to some node i′ with
Ti′j � N and e.g. only one transition to other i′′ with
Ti′′j = 1). At the same time there are also transition
elements Gij with large values whose fraction decays in
an algebraic law Ng ≈ AN/gν−1 with some constant A
and an exponent ν. The fit of numerical data in the

range −5.5 < log10 g < −0.5 of algebraic decay gives
for m = 6: ν = 2.46 ± 0.025 (BT), 2.57 ± 0.025 (CF),
2.67 ± 0.022 (LA), 2.48 ± 0.024 (HS), 2.22 ± 0.04 (DR).
For HS case we find ν = 2.68 ± 0.038 at m = 5 and
ν = 2.43± 0.02 at m = 7 with the average A ≈ 0.003 for
m = 5, 6, 7. There are visible oscillations in the algebraic
decay of Ng with g but in global we see that on average
all species are well described by a universal decay law
with the exponent ν ≈ 2.5. For comparison we also show
the distribution Ng for the WWW networks of Univer-
sity of Cambridge and Oxford in year 2006. We see that
in these cases the distribution Ng has a very short range
in which the decay is at least approximately algebraic
(−5.5 < log10(Ng/N

2) < −6). In contrast to that for
the DNA sequences we have a large range of algebraic
decay.

Since in each column we have the sum of all elements
equal to unity we can say that the differential fraction
dNg/dg ∝ 1/gν gives the distribution of outgoing matrix
elements which is similar to the distribution of outgoing
links extensively studied for the WWW networks. In-
deed, for the WWW networks all links in a column are
considered to have the same weight so that these ma-
trix elements are given by an inverse number of outgo-
ing links with the decay exponent ν ≈ 2.7. Thus, the
obtained data show that the distribution of DNA ma-
trix elements is similar to the distribution of outgoing
links in the WWW networks. Indeed, for outgoing links
of Cambridge and Oxford networks the fit of numerical
data gives the exponents ν = 2.80 ± 0.06 (Cambridge)
and 2.51± 0.04 (Oxford).

As discussed above, on average the probability of
PageRank vector is proportional to the number of ingoing
links that works satisfactory for sparse G matrices. For
DNA we have a situation where the Google matrix is al-
most full and zero matrix elements are practically absent.
In such a case an analogue of number of ingoing links is

the sum of ingoing matrix elements gs =
∑N
j=1Gij . The

integrated distribution of ingoing matrix elements with
the dependence of Ns on gs is shown in Fig. 53. Here Ns
is defined as the number of nodes with the sum of ingoing
matrix elements being larger than gs. A significant part
of this dependence, corresponding to large values of gs
and determining the PageRank probability decay, is well
described by a power law Ns ≈ BN/gµ−1s . The fit of data
at m = 6 gives µ = 5.59 ± 0.15 (BT), 4.90 ± 0.08 (CF),
5.37± 0.07 (LA), 5.11± 0.12 (HS), 4.04± 0.06 (DR). For
HS case at m = 5, 7 we find respectively µ = 5.86± 0.14
and 4.48 ± 0.08. For HS and other species we have an
average B ≈ 1.

For WWW one usually have µ ≈ 2.1. Indeed, for the
ingoing matrix elements of Cambridge and Oxford net-
works we find respectively the exponents µ = 2.12± 0.03
and 2.06± 0.02 (see curves in Fig. 53). For ingoing links
distribution of Cambridge and Oxford networks we ob-
tain respectively µ = 2.29 ± 0.02 and µ = 2.27 ± 0.02
which are close to the usual WWW value µ ≈ 2.1. In
contrast the exponent µ for DNA Google matrix elements
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gets significantly larger value µ ≈ 5. This feature marks
a significant difference between DNA and WWW net-
works.

The PageRank vector can be obtained by a direct di-
agonalization. The dependence of probability P on in-
dex K is shown in Fig. 54 for various species and dif-
ferent word length m. The probability P (K) describes
the steady state of random walks on the Markov chain
and thus it gives the frequency of appearance of various
words of length m in the whole sequence L. The frequen-
cies or probabilities of words appearance in the sequences
have been obtained in (Mantegna et al., 1995) by a direct
counting of words along the sequence (the available se-
quences L were shorted at that times). Both methods are
mathematically equivalent and indeed our distributions
P (K) are in good agreement with those found in (Man-
tegna et al., 1995) even if now we have a significantly
better statistics.

FIG. 55 (Color online) PageRank proximity K − K plane
diagrams for different species in comparison with Homo sapi-
ens: (a) x-axis shows PageRank index Khs(i) of a word i
and y-axis shows PageRank index of the same word i with
Kbt(i) of bull, (b) Kcf (i) of dog, (c) Kla(i) of elephant and
(d) Kdr(i) of zebrafish; here the word length is m = 6. The
colors of symbols marks the purine content in a word i (frac-
tions of letters A or G in any order); the color varies from
red/gray at maximal content, via brown, yellow, green, light
blue, to blue/black at minimal zero content. After (Kandiah
and Shepelyansky , 2013).

The decay of P with K can be approximately described
by a power law P ∼ 1/Kβ . Thus for example for HS
sequence at m = 7 we find β = 0.357 ± 0.003 for the fit
range 1.5 ≤ log10K ≤ 3.7 that is rather close to the
exponent found in (Mantegna et al., 1995). Since on
average the PageRank probability is proportional to the
number of ingoing links, or the sum of ingoing matrix

elements of G, one has the relation between the exponent
of PageRank β and exponent of ingoing links (or matrix
elements): β = 1/(µ− 1). Indeed, for the HS DNA case
at m = 7 we have µ = 4.48 that gives β = 0.29 being
close to the above value of β = 0.357 obtained from the
direct fit of P (K) dependence. The agreement is not so
perfect since there is a visible curvature in the log-log
plot of Ns vs gs and also since a small value of β gives
a moderate variation of P that produces a reduction of
accuracy of numerical fit procedure. In spite of this only
approximate agreement we conclude that in global the
relation between β and µ works correctly.

It is interesting to plot a PageRank index Ks(i) of a
given species s versus the index Khs(i) of HS for the same
word i. For identical sequences one should have all points
on diagonal, while the deviations from diagonal charac-
terize the differences between species. The examples of
such PageRank proximity K − K diagrams are shown
in Fig. 55 for words at m = 6. A visual impression is
that CF case has less deviations from HS rank compared
to BT and LA. The non-mammalian DR case has most
strong deviations from HS rank.

The fraction of purine letters A or G in a word of
m = 6 letters is shown by color in Fig. 55 for all words
ranked by PageRank index K. We see that these letters
are approximately homogeneously distributed over the
whole range of K values. To determine the proximity
between different species or different HS individuals we
compute the average dispersion

σ(s1, s2) =

√√√√ 1

N

N∑
i=1

(
Ks1(i)−Ks2(i)

)2
(16)

between two species (individuals) s1 and s2. Comparing
the words with length m = 5, 6, 7 we find that the scaling
σ ∝ N works with a good accuracy (about 10% when N
is increased by a factor 16). To represent the result in a
form independent of m we compare the values of σ with
the corresponding random model value σrnd. This value
is computed assuming a random distribution of N points
in a square N ×N when only one point appears in each
column and each line (e.g. at m = 6 we have σrnd ≈ 1673
and σrnd ∝ N). The dimensionless dispersion is then
given by ζ(s1, s2) = σ(s1, s2)/σrnd. From the ranking of
different species we obtain the following values at m = 6:
ζ(CF,BT ) = 0.308; ζ(LA,BT ) = 0.324, ζ(LA,CF ) =
0.303; ζ(HS,BT ) = 0.246, ζ(HS,CF ) = 0.206,
ζ(HS,LA) = 0.238; ζ(DR,BT ) = 0.425, ζ(DR,CF ) =
0.414, ζ(DR,LA) = 0.422, ζ(DR,HS) = 0.375 (other m
have similar values). According to this statistical analy-
sis of PageRank proximity between species we find that ζ
value is minimal between CF and HS showing that these
are two most similar species among those considered here.
The comparison of two HS individuals gives the value
ζ(HS1, HS2) = 0.031 being significantly smaller then
the proximity correlator between different species (Kan-
diah and Shepelyansky , 2012).

The spectrum of G is analyzed in detail in (Kandiah
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and Shepelyansky , 2012). It is shown that it has a rel-
atively large gap due to which there is a relatively rapid
relaxation of probability of a random surfer to the PageR-
ank values.

FIG. 56 (Color online) Distribution of nodes in the
PageRank-CheiRank plane (K,K∗) for Escherichia Coli v1.1
(a), and Yeast (b) gene transcription networks on (network
data are taken from (Milo et al., 2002; Shen-Orr et al., 2002)
and (Alon, 2014)). The nodes with five top probability values
of PageRank, CheiRank and 2DRank are labeled by their cor-
responding operon (node) names; they correspond to 5 lowest
values of indexes K,K2,K

∗. After (Ermann et al., 2012a).

C. Gene regulation networks

At present the analysis of gene transcription regula-
tion networks and recovery of their control biological
functions becomes an active research field of bioinfor-
matics (see e.g. (Milo et al., 2002)). Here, following
(Ermann et al., 2012a), we provide two simple examples
of 2DRanking analysis for gene transcriptional regulation
networks of Escherichia Coli (N = 423, N` = 519 (Shen-
Orr et al., 2002)) and Yeast (N = 690, N` = 1079 (Milo
et al., 2002)). In the construction of G matrix the outgo-
ing links to all nodes in each column are taken with the
same weight, α = 0.85.

The distribution of nodes in PageRank-CheiRank
plane is shown in Fig. 56. The top 5 nodes, with their
operon names, are given there for indexes of PageRank
K, CheiRank K∗ and 2DRank K2. This ranking se-
lects operons with most high functionality in commu-
nication (K∗), popularity (K) and those that combines
these both features (K2). For these networks the corre-
lator κ is close to zero (κ = −0.0645 for Escherichia Coli
and κ = −0.0497 for Yeast, see Fig. 6)) that indicates
the statistical independence between outgoing and ingo-
ing links being quite similarly to the case of the PCN for
the Linux Kernel. This may indicate that a slightly neg-
ative correlator κ is a generic property for the data flow
network of control and regulation systems. A similar sit-
uation appears for networks of business process manage-
ment and brain neural networks. Thus it is possible that
the networks performing control functions are character-
ized in general by small correlator κ values. We expect
that 2DRanking will find further useful applications for
large scale gene regulation networks.

D. Networks of game go

The complexity of the well-known game go is such
that no computer program has been able to beat a good
player, in contrast with chess where world champions
have been bested by game simulators. It is partly due
to the fact that the total number of possible allowed po-
sitions in go is about 10171, compared to e.g. only 1050

for chess (Tromp and Farnebäck , 2007).

It has been argued that the complex network analysis
can give useful insights for a better understanding of this
game. With this aim a network, modeling the game of
go, has been defined by a statistical analysis of the data
bases of several important historical professional and am-
ateur Japanese go tournaments (Georgeot and Giraud ,
2012). In this approach moves/nodes are defined as all
possible patterns in 3 × 3 plaquettes on a go board of
19×19 intersections. Taking into account all possible ob-
vious symmetry operations the number of non-equivalent
moves is reduced to N = 1107. Moves which are close in
space (typically a maximal distance of 4 intersections) are
assumed to belong to the same tactical fight generating
transitions on the network.

Using the historical data of many games, the tran-
sition probabilities between the nodes may be deter-
mined leading to a directed network with a finite size
Perron-Frobenius operator which can be analyzed by
tools of PageRank, CheiRank, complex eigenvalue spec-
trum, properties of certain selected eigenvectors and also
certain other quantities (Georgeot and Giraud , 2012;
Kandiah et al., 2014b). The studies are done for plaque-
ttes of different sizes with the corresponding network size
changing from N = 1107 for plaquettes squares with 3×3
intersections up to maximal N = 193995 for diamond-
shape plaquettes with 3×3 intersections plus the four at
distance two from the center in the four directions left,
right, top, down. It is shown that the PageRank leads
to a frequency distribution of moves which obeys a Zipf
law with exponents close to unity but this exponent may
slightly vary if the network is constructed with shorter
or longer sequences of successive moves. The important
nodes in certain eigenvectors may correspond to certain
strategies, such as protecting a stone and eigenvectors are
also different between amateur and professional games.
It is also found that the different phases of the game go
are characterized by a different spectrum of the G ma-
trix. The obtained results show that with the help of the
Google matrix analysis it is possible to extract commu-
nities of moves which share some common properties.

The authors of these studies (Georgeot and Giraud ,
2012; Kandiah et al., 2014b) argue that the Google ma-
trix analysis can find a number of interesting applications
in the theory of games and the human decision-making
processes.
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E. Opinion formation on directed networks

Understanding the nature and origins of mass opin-
ion formation is an outstanding challenge of democratic
societies (Zaller, 1999). In the last few years the enor-
mous development of such social networks as LiveJour-
nal, Facebook, Twitter, and VKONTAKTE, with up to
hundreds of millions of users, has demonstrated the grow-
ing influence of these networks on social and political
life. The small-world scale-free structure of the social
networks, combined with their rapid communication fa-
cilities, leads to a very fast information propagation over
networks of electors, consumers, and citizens, making
them very active on instantaneous social events. This
invokes the need for new theoretical models which would
allow one to understand the opinion formation process in
modern society in the 21st century.

The important steps in the analysis of opinion for-
mation have been done with the development of vari-
ous voter models, described in great detail in (Castel-
lano et al., 2009; Krapivsky et al., 2010). This research
field became known as sociophysics (Galam , 1986, 2008).
Here, following (Kandiah and Shepelyansky , 2012), we
analyze the opinion formation process introducing sev-
eral new aspects which take into account the generic fea-
tures of social networks. First, we analyze the opinion
formation on real directed networks such as WWW of
Universities of Cambridge and Oxford (2006), Twitter
(2009) and LiveJournal. This allows us to incorporate the
correct scale-free network structure instead of unrealistic
regular lattice networks, often considered in voter mod-
els. Second, we assume that the opinion at a given node
is formed by the opinions of its linked neighbors weighted
with the PageRank probability of these network nodes.
The introduction of such a weight represents the reality
of social networks where network nodes are characterized
by the PageRank vector which provides a natural rank-
ing of node importance, or elector or society member
importance. In a certain sense, the top nodes of PageR-
ank correspond to a political elite of the social network
whose opinion influences the opinions of other members
of the society (Zaller, 1999). Thus the proposed PageR-
ank opinion formation (PROF) model takes into account
the situation in which an opinion of an influential friend
from high ranks of the society counts more than an opin-
ion of a friend from a lower society level. We argue that
the PageRank probability is the most natural form of
ranking of society members. Indeed, the efficiency of
PageRank rating had been well demonstrated for various
types of scale-free networks.

The PROF model is defined in the following way. In
agreement with the standard PageRank algorithm we de-
termine the probability P (Ki) for each node ordered by
PageRank index Ki (using α = 0.85). In addition, a net-
work node i is characterized by an Ising spin variable σi
which can take values +1 or 1, coded also by red or blue
color, respectively. The sign of a node i is determined by
its direct neighbors j, which have PageRank probabilities

Pj . For that we compute the sum Σi over all directly
linked neighbors j of node i:

Σi = a
∑
j(P

+
j,in − P−j,in)+

b
∑
j(P

+
j,out − P−j,out) , a+ b = 1 ,

(17)

where Pj,in and Pj,out denote the PageRank probability
Pj of a node j pointing to node i (ingoing link) and a
node j to which node i points to (outgoing link), respec-
tively. Here, the two parameters a and b are used to
tune the importance of ingoing and outgoing links with
the imposed relation a+ b = 1 (0 ≤ a, b ≤ 1). The values
P+ and P− correspond to red and blue nodes, and the
spin σi takes the value 1 or −1, respectively, for Σi > 0
or Σi < 0. In a certain sense we can say that a large
value of parameter b corresponds to a conformist society
in which an elector i takes an opinion of other electors
to which he/she points. In contrast, a large value of a
corresponds to a tenacious society in which an elector i
takes mainly the opinion of those electors who point to
him/her. A standard random number generator is used
to create an initial random distribution of spins σi on a
given network. The time evolution then is determined by
the relation (17) applied to each spin one by one. When
all N spins are turned following (17) a time unit t is
changed to t → t + 1. Up to Nr = 104 random initial
generations of spins are used to obtain statistically stable
results. We present results for the number of red nodes
since other nodes are blue.

FIG. 57 (Color online) Density plot of probability Wf to find
a final red fraction ff , shown in y−axis, in dependence on an
initial red fraction fi, shown in x− axis; data are shown inside
the unit square 0 ≤ fi, ff ≤ 1. The values of Wf are defined
as a relative number of realisations found inside each of 20×20
cells which cover the whole unit square. Here Nr = 104 real-
izations of randomly distributed colors are used to obtained
Wf values; for each realization the time evolution is followed
up the convergence time with up to t = 20 iterations; (a)
Cambridge network; (b) Oxford network at a = 0.1. The
probability Wf is proportional to color changing from zero
(blue/black) to unity (red/gray). After (Kandiah and Shep-
elyansky , 2012).

The main part of studies is done for the WWW of
Cambridge and Oxford discussed above. We start with
a random realization of a given fraction of red nodes
fi = f(t = 0) which evolution in time converges to a
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steady state with a final fraction of red nodes ff approx-
imated after time tc ≈ 10. However, different initial re-
alisations with the same fi value evolve to different final
fractions ff clearly showing a bistability phenomenon.
To analyze how the final fraction of red nodes ff depends
on its initial fraction fi, we study the time evolution f(t)
for a large number Nr of initial random realizations of
colors following it up to the convergence time for each
realization. We find that the final red nodes are homoge-
neously distributed in PageRank index K. Thus there is
no specific preference for top society levels for an initial
random distribution. The probability distribution Wf of
final fractions ff is shown in Fig. 57 as a function of ini-
tial fraction fi at a = 0.1. The results show two main
features of the model: a small fraction of red opinion is
completely suppressed if fi < fc and its larger fraction
dominates completely for fi > 1− fc; there is a bistabil-
ity phase for the initial opinion range fb ≤ fi ≤ 1 − fb.
Of course, there is a symmetry in respect to exchange of
red and blue colors. For the small value a = 0.1 we have
fb ≈ fc with fc ≈ 0.25. For the larger value a = 0.9 we
have fc ≈ 0.35, fb ≈ 0.45 (Kandiah and Shepelyansky ,
2012).

FIG. 58 (Color online) PROF-Sznajd model, option 1: den-
sity plot of probability Wf to find a final red fraction ff ,
shown in y−axis, in dependence on an initial red fraction
fi, shown in x− axis; data are shown inside the unit square
0 ≤ fi, ff ≤ 1. The values of Wf are defined as a relative
number of realizations found inside each of 100 × 100 cells
which cover the whole unit square. Here Nr = 104 realiza-
tions of randomly distributed colors are used to obtained Wf

values; for each realization the time evolution is followed up
the convergence time with up to τ = 107 steps. (a) Cambridge
network; (b) Oxford network; here Ng = 8. The probability
Wf is proportional to color changing from zero (blue/black) to
unity (red/gray). After (Kandiah and Shepelyansky , 2012).

Our interpretation of these results is the following. For
small values of a� 1 the opinion of a given society mem-
ber is determined mainly by the PageRank of neighbors
to whom he/she points (outgoing links). The PageR-
ank probability P of nodes to which many nodes point
is usually high, since P is proportional to the number of
ingoing links. Thus at a � 1 the society is composed of
members who form their opinion by listening to an elite
opinion. In such a society its elite with one color opinion
can impose this opinion on a large fraction of the soci-

ety. Indeed, the direct analysis of the case, where the top
Ntop = 2000 nodes of PageRank index have the same red
color, shows that this 1% of the society elite can impose
its opinion to about 50% of the whole society at small a
values (conformist society) while at large a values (tena-
cious society) this fraction drops significantly (see Fig.4
in (Kandiah and Shepelyansky , 2012)). We attribute
this to the fact that in Fig. 57 we start with a randomly
distributed opinion, since the opinion of the elite has two
fractions of two colors this creates a bistable situation
when the two fractions of society follow the opinions of
this divided elite, which makes the situation bistable on
a larger interval of fi compared to the case of a tenacious
society at a → 1. When we replace in (17) P by 1 then
the bistability disappears.

However, the detailed understanding of the opinion for-
mation on directed networks still waits it development.
Indeed, the results of PROF model for the LiveJournal
and Twitted networks show that the bistability in these
networks practically disappears. Also e.g. for the Twit-
ter network studied in Sec. X.A, the elite of Ntop = 35000
(about 0.1% of the whole society) can impose its opinion
to 80% of the society at small a < 0.15 and to about
30% for a > 0.15 (Kandiah and Shepelyansky , 2012).
It is possible that a large number of links between top
PageRank nodes in Twitter creates a stronger tendency
to a totalitarian opinion formation comparing to the case
of University networks. At the same time the studies of
opinion formation with the PROF model on the Ulam
networks (Chakhmakhchyan and Shepelyansky , 2013),
which have not very large number of links, show practi-
cally no bistability in opinion formation. It is expected
that a small number of loops is at the origin of such a
difference in respect to university networks.

Finally we discuss a more generic version of opinion
formation called the PROF-Sznajd model (Kandiah and
Shepelyansky , 2012). Indeed, we see that in the PROF
model on university network opinions of small groups of
red nodes with fi < fc are completely suppressed that
seems to be not very realistic. In fact, the Sznajd model
(Sznajd-Weron and Sznajd , 2000) features the idea of
resistant groups of a society and thus incorporates a well-
known trade union principle “United we stand, divided
we fall”. Usually the Sznajd model is studied on regular
lattices. Its generalization for directed networks is done
on the basis of the notion of group of nodes Ng at each
discrete time step τ .

The evolution of group is defined by the following rules:
(a) we pick in the network by random a node i and

consider the polarization of Ng − 1 highest PageRank
nodes pointing to it;

(b) if node i and all other Ng − 1 nodes have the same
color (same polarization), then these Ng nodes form a
group whose effective PageRank value is the sum of all

the member values Pg =
∑Ng

j=1 Pj ;

(c) consider all the nodes pointing to any member of
the group and check all these nodes n directly linked to
the group: if an individual node PageRank value Pn is
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less than the defined above Pg , the node joins the group
by taking the same color (polarization) as the group
nodes and increase Pg by the value of Pn; if it is not
the case, a node is left unchanged.

The above time step is repeated many times during
time τ , counting the number of steps and choosing a ran-
dom node i on each next step.

The time evolution of this PROF-Sznajd model con-
verges to a steady state approximately after τ ≈ 10N
steps. This is compatible with the results obtained for
the PROF model. However, the statistical fluctuations
in the steady-state regime are present keeping the color
distribution only on average. The dependence of the final
fraction of red nodes ff on its initial value fi is shown by
the density plot of probability Wf in Fig. 58 for the uni-
versity networks. The probability Wf is obtained from
many initial random realizations in a similar way to the
case of Fig. 57. We see that there is a significant differ-
ence compared to the PROF model: now even at small
values of fi we find small but finite values of ff , while
in the PROF model the red color disappears at fi < fc.
This feature is related to the essence of the Sznajd model:
here, even small groups can resist against the totalitar-
ian opinion. Other features of Fig. 58 are similar to those
found for the PROF model: we again observe bistability
of opinion formation. The number of nodes Ng, which
form the group, does not significantly affect the distribu-
tion Wf (for studied 3 ≤ Ng ≤ 13).

The above studies of opinion formation models on
scale-free networks show that the society elite, corre-
sponding to the top PageRank nodes, can impose its
opinion on a significant fraction of the society. However,
for a homogeneous distribution of two opinions, there
exists a bistability range of opinions which depends on a
conformist parameter characterizing the opinion forma-
tion. The proposed PROF-Sznajd model shows that to-
talitarian opinions can be escaped from by small subcom-
munities. The enormous development of social networks
in the last few years definitely shows that the analysis
of opinion formation on such networks requires further
investigations.

XV. DISCUSSION

Above we considered many examples of real directed
networks where the Google matrix analysis finds useful
applications. The examples belong to various sciences
varying from WWW, social and Wikipedia networks,
software architecture to world trade, games, DNA se-
quences and Ulam networks. It is clear that the concept
of Markov chains and Google matrix represents now the
mathematical foundation of directed network analysis.

For Hermitian and unitary matrices there are now
many universal concepts, developed in theoretical
physics, so that the main properties of such matrices
are well understood. Indeed, such characteristics as level
spacing statistics, localization and delocalization prop-

erties of eigenstates, Anderson transition (Anderson ,
1958), quantum chaos features can be now well han-
dled by various theoretical methods (see e.g. (Akemann
et al., 2011; Evers and Mirlin , 2008; Guhr et al., 1998;
Haake, 2010; Mehta, 2004)). A number of generic models
has been developed in this area allowing to understand
the main effects via numerical simulations and analytical
tools.

In contrast to the above case of Hermitian or unitary
matrices, the studies of matrices of Markov chains of di-
rected networks are now only at their initial stage. In
this review, on examples of real networks we illustrated
certain typical properties of such matrices. Among them
there is the fractal Weyl law, which has certain traces
in the field of quantum chaotic scattering, but the main
part of features are new ones. In fact, the spectral prop-
erties of Markov chains had not been investigated on a
large scale. We try here to provide an introduction to the
properties of such matrices which contain all information
about large scale directed networks. The Google matrix
is like The Library of Babel (Borges, 1962), which con-
tains everything. Unfortunately, we are still not able to
find generic Markov matrix models which reproduce the
main features of the real networks. Among them there
is the possible spectral degeneracy at damping α = 1,
absence of spectral gap, algebraic decay of eigenvectors.
Due to absence of such generic models it is still difficult to
capture the main properties of real directed networks and
to understand or predict their variations with a change
of network parameters. At the moment the main part
of real networks have an algebraic decay of PageRank
vector with an exponent β ≈ 0.5 − 1. However, certain
examples of Ulam networks (see Figs. 13, 14) show that
a delocalization of PageRank probability over the whole
network can take place. Such a phenomenon looks to be
similar to the Anderson transition for electrons in disor-
dered solids. It is clear that if an Anderson delocalization
of PageRank would took place, as a result of further de-
velopments of the WWW, the search engines based on
the PageRank would loose their efficiency since the rank-
ing would become very sensitive to various fluctuations.
In a sense the whole world would go blind the day such
a delocalization takes place. Due to that a better under-
standing of the fundamental properties of Google matri-
ces and their dependencies on various system parameters
have a high practical significance. We believe that the
theoretical research in this direction should be actively
continued. In many respects, as the Library of Babel, the
Google matrix still keeps its secrets to be discovered by
researchers from various fields of science. We hope that a
further research will allow “to formulate a general theory
of the Library and solve satisfactorily the problem which
no conjecture had deciphered: the formless and chaotic
nature of almost all the books.” (Borges, 1962)
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The friendship paradox states that your friends have on average more friends than you have. Does the
paradox ‘‘hold’’ for other individual characteristics like income or happiness? To address this question, we
generalize the friendship paradox for arbitrary node characteristics in complex networks. By analyzing two
coauthorship networks of Physical Review journals and Google Scholar profiles, we find that the generalized
friendship paradox (GFP) holds at the individual and network levels for various characteristics, including
the number of coauthors, the number of citations, and the number of publications. The origin of the GFP is
shown to be rooted in positive correlations between degree and characteristics. As a fruitful application of
the GFP, we suggest effective and efficient sampling methods for identifying high characteristic nodes in
large-scale networks. Our study on the GFP can shed lights on understanding the interplay between network
structure and node characteristics in complex networks.

P
eople live in social networks. Various behaviors of individuals are significantly influenced by their positions
in such networks, whether they are offline or online1–3. Through the interaction and communication among
individuals, information, behaviors, and diseases spread4–10. Thus understanding the structure of social

networks could enable us to understand, predict, and even control social collective behaviors taking place on or
via those networks. Social networks have been known to be heterogeneous, characterized by broad distributions of
the number of neighbors or degree11, assortative mixing12, and community structure13 to name a few.

One of interesting phenomena due to the structural heterogeneity in social networks is the friendship para-
dox14. The friendship paradox (FP) can be formulated at individual and network levels, respectively. At the
individual level, the paradox holds for a node if the node has smaller degree than the average degree of its
neighbors. It has been shown that the paradox holds for most of nodes in both offline and online social net-
works14–16. However, most people believe that they have more friends than their friends have17. The paradox holds
for a network if the average degree of nodes in the network is smaller than the average degree of their neighbors14.
The paradox can be understood as a sampling bias in which individuals having more friends are more likely to be
observed by their friends. This bias has important implications for the dynamical processes on social networks,
especially when it is crucial for the process to identify individuals having many neighbors, or high degree nodes.
For example, let us consider the spreading process on networks. It turns out that sampling neighbors of random
individuals is more effective and efficient than sampling random individuals for the early detection of epidemic
spreading in large-scale social networks18,19, and for developing efficient immunization strategies in computer
networks20. Recently, the information overwhelming or spam in social networking services like Twitter16 has been
also explained in terms of the friendship paradox.

The friendship paradox has been considered only as the topological structure of social networks, mainly by
focusing on the number of neighbors, among many other node characteristics. Each individual could be described
by his/her cultural background, gender, age, job, personal interests, and genetic information21,22. This is also the
case for other kinds of networks: Web pages have their own fitness in World Wide Web23, and scientific papers
have intrinsic attractiveness in a citation network24. These characteristics play significant roles in dynamical
processes on complex networks21–25. Hence, one can ask the question: Can the friendship paradox be applied to
node characteristics other than degree?

To address this question, we generalize the friendship paradox for arbitrary node characteristics including
degree. Similarly to the FP, our generalized friendship paradox (GFP) can be formulated at individual and
network levels. The GFP holds for a node if the node has lower characteristic than the average characteristic
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of its neighbors. The GFP holds for a network if the average char-
acteristic of nodes in the network is smaller than the average char-
acteristic of their neighbors. When the degree is considered as the
node characteristic, the GFP reduces to the FP. In this paper, by
analyzing two coauthorship networks of physicists and of network
scientists, we show that your coauthors have more coauthors, more
citations, and more publications than you have. This indicates that
the friendship paradox holds not only for degree but also for other
node characteristics. We also provide a simple analysis to show that
the origin of the GFP is rooted in the positive correlation between
degree and node characteristics. As applications of the GFP, two
sampling methods are suggested for sampling nodes with high char-
acteristics. We show that these methods are simple yet effective and
efficient in large-scale social networks.

Results
Generalized friendship paradox in complex networks. We consi-
der two coauthorship networks constructed from the bibliographic
information of Physical Review (PR) journals and Google Scholar
(GS) profile dataset of network scientists (See Method Section). Each
node of a network denotes an author of papers and a link is
established between two authors if they wrote a paper together.
The number of nodes, denoted by N, is 242592 for the PR network
and 29968 for the GS network. For the node characteristics in the PR
network, we consider the number of coauthors, the number of
citations, the number of publications, and the average number of ci-
tations per publication. As for the GS network, the number of
coauthors and the number of citations are considered. The charac-
teristic of node i will be denoted by xi, and for the degree we denote it
by ki.

The generalized friendship paradox (GFP) can be studied at two
different levels: (i) Individual level and (ii) network level.

(i) Individual level. The GFP holds for a node i if the following
condition is satisfied:

xiv

P
j[Li

xj

ki
, ð1Þ

where Li denotes the set of neighbors of node i. Note that setting
xi 5 ki reduces the GFP to the FP. We define the paradox holding
probability h(k, x) that a node with degree k and characteristic x
satisfies the condition in Eq. (1). Figure 1 shows the empirical
results of h(k, x) for PR and GS networks. It is found that for
fixed degree k, h(k, x) decreases with increasing x for any char-
acteristic x other than k (Fig. 1 (b–d,f)). The same decreasing
tendency has been observed for x 5 k (Fig. 1 (a,e)). In Eq. (1),
the larger value of xi is expected to lower the probability h(k, x) if
the characteristics of node i’s neighbors remain the same. As a
limiting case, the node with minimum value of x, i.e., xmin, is most
likely to have friends with higher values of x, leading to h(k, xmin)
5 1. On the other hand, for the node with maximum value of x,
we get h(k, xmax) 5 0.

Next, the dependence of h(k, x) on the degree k can be classified as
either increasing or being constant. Here the case of x denoting the
degree is disregarded for both networks. The increasing behavior is
observed mainly for the number of citations and the number of
publications in the PR network in Fig. 1 (b,c), while the constant
behavior is observed for the average number of citations per publica-
tion in the PR network and for the number of citations in the GS
network, shown in Fig. 1 (d,f), respectively. In order to understand
such difference, we calculate the Pearson correlation coefficient
between k and x as

rkx~
1
N

XN

i~1

ki{ kh ið Þ xi{ xh ið Þ
sksx

, ð2Þ

where Æxæ and sx denote the average and standard deviation of x. We
also obtain the characteristic assortativity for each characteristic x,
adopted from12:

rxx~
L
P

l xlx0l{
P

l
1
2 xlzx0l
� �� �2

L
P

l
1
2 x2

l zx0l
2

� �
{
P

l
1
2 xlzx0l
� �� �2 , ð3Þ

where xl and x0l denote characteristics of nodes of the lth link, with
l~1, � � � , L and L is the total number of links in the network. The
value of rxx ranges from 21 to 1, and it increases according to the
tendency of high characteristic nodes to be connected to other high
characteristic nodes. The values of these quantities are summarized
in Table I. From now on, we denote the degree assortativity as rkk.

The k-dependent behavior of h(k, x) can be understood mainly as
the combined effect of rkk and rkx. Since rkk < 0.47 in the PR network,
for a node i with fixed xi, the larger ki implies the larger kj of its friend
j. This may lead to the higher xj, e.g., due to rkx < 0.79 for the number
of publications, leading to the increasing behavior of h(k, x).
However, for the average number of citations per publication show-
ing rkx < 0.07, the larger kj does not imply the higher xj, which leads
to the constant behavior of h(k, x). For the number of citations in the
GS network, the almost neutral degree correlation by rkk < 20.02
inhibits any correlated behavior between characteristics, thus we
again observe the constant behavior of h(k, x). We note that the
neutral degree correlation in the GS network is unlike many other
coauthorship networks, mainly due to incomplete information avail-
able from GS profiles, and due to the snowball sampling method we
employed26.

Now we define the average paradox holding probability as

H~
X

k

ð
dxh k,xð ÞP k,xð Þ, where P(k, x) denotes the probability

distribution function of node with degree k and characteristic x. As
shown in Table I, the value of H is larger than 0.7 for every considered
characteristic, implying that the GFP holds at the individual level to a
large extent.

(ii) Network level. In order to investigate the GFP at the network level,
we define the average characteristic of neighbors Æxænn for comparing
it to the average characteristic Æxæ:

xh inn~

PN
i~1 kixiPN

i~1 ki

: ð4Þ

Here a node i with degree ki has been considered as a neighbor ki

times. The GFP holds at the network level if the following condition
is satisfied:

xh iv xh inn: ð5Þ

Note that setting xi 5 ki reduces the GFP to the FP. As shown in
Table I, the GFP holds for all characteristics considered. In other
words, your coauthors have on average more coauthors, more cita-
tions, and more publications than you have.

In summary, our results indicate that the generalized friendship
paradox holds at both individual and network levels for many node
characteristics of networks.

Origin of the GFP. The prevalence of the GFP for most nodes in
networks regardless of node characteristics implies that there
might be a universal origin of the GFP. For the original friend-
ship paradox, the existence of hub nodes and the variance of
degree have been suggested for the origin of the paradox14. In
order to investigate the origin of the GFP at the network level,
we define a function F 5 Æxænn 2 Æxæ, and straightforwardly obtain
the following equation:

F~ xh inn{ xh i~ rkxsksx

kh i : ð6Þ
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x 5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probability H, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0
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One can say that the GFP holds if F . 0. Since standard deviations
sk and sx are positive in any non-trivial cases, the GFP holds if rkx

. 0. Thus the degree-characteristic correlation rkx is the key
element for the generalized friendship paradox. Note that in case
when xi 5 ki, i.e., rkk 5 1, the FP holds in any non-trivial cases.

The origin of the GFP can help us to better understand the dynam-
ical processes on networks when the characteristic x is considered to
be a node activity such as communication frequency or traffic. The
positive correlation between degree and node activity has been
observed in mobile phone call patterns27 and the air-transportation
network28, enabling the application of the GFP to those phenomena.
In case of protein interaction networks, the degrees of proteins are
positively correlated with their lethality29,30, while they are negatively
correlated with their rates of evolution31. The negative degree-char-
acteristic correlations, i.e., rkx , 0, can lead to the opposite behavior
of the GFP, which can be called anti-GFP.

Sampling high characteristic nodes using GFP in complex
networks. Identifying important or central nodes in a network is
crucial for understanding the structure of complex networks and
dynamical processes on those networks. The recent advance of
information-communication technology (ICT) has opened up
access to the data on large-scale social networks. However,
complete mapping of social networks is not feasible, partially due
to privacy issues. Thus it is still important to devise proper sampling
methods that exploit local network structure. In this sense, the
original friendship paradox has been used to sample high degree
nodes in empirical networks. It was found that the set of neighbors
of randomly chosen nodes can have the predictive power of epidemic
spreading on both offline social networks18 and online social
networks19.

We suggest two simple sampling methods using the GFP to
identify high characteristic nodes in a network: (i) Friend sampling

and (ii) biased sampling. These methods are then compared to the
random sampling method to test whether our methods are more
efficient to sample high characteristic nodes. We first choose random
nodes to make a control group. For each node in the control group,
one of its neighbors is randomly chosen. These chosen nodes com-
pose a friend group. Finally, for each node in the control group, we
choose its neighbor having the highest characteristic to make a biased
group. For the biased sampling, we have assumed that each node has
the full information about characteristics of its neighbors.

Figure 2 shows the characteristic distributions of sampled nodes
from PR and GS networks by different sampling methods. Heavier
tails of distributions imply better sampling for identifying high char-
acteristic nodes. The performance of biased sampling is the best in all
cases because this sampling utilizes more information about neigh-
bors than the friend sampling. The friend sampling shows better
performance than the random sampling (control group) for most
characteristics as it is expected by large values of rkx. One exceptional
case is for the average number of citations per publication in the PR
network, shown in Fig. 2 (d). Here the friend sampling does not
better than the random sampling due to the very small degree-char-
acteristic correlation, rkx < 0.07, while the result by biased sampling
is still better than those by other sampling methods.

Next, in order to investigate the effect of degree-characteristic
correlation on the performance of sampling methods, we consider
an auxiliary characteristic X based on the method of Cholesky
decomposition32. To each node i with degree ki in the PR network,
we assign a characteristic Xi given by

Xi~rkiz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
yi, ð7Þ

where yi denotes the ith element of the shuffled set of {ki}. Since r 5

rkX (See Method Section), the correlation can be easily controlled by
r. Then we apply the same sampling methods to identify nodes with

Figure 2 | Characteristic distributions for control group, friend group, and biased group, for each of which 5000 nodes are sampled. The original full

distributions are also plotted for comparison. We use (a) the number of coauthors (PR), (b) the number of citations (PR), (c) the number of publications

(PR), (d) the average number of citations per publication (PR), (e) the number of coauthors (GS), and (f) the number of citations (GS).
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high X, and compare their performances for different values of rkX.
Figure 3 shows that the biased sampling performs significantly better
than any other sampling methods, independent of rkX. The friend
sampling performs better than the random sampling, while the dif-
ference in performance increases with the value of rkX.

The sampling results suggest that the biased sampling can be very
efficient and effective to detect a group of high characteristic nodes
when the information about characteristics of neighbors is available.
Otherwise the friend sampling still performs better than the random
sampling.

Discussion
Node characteristics have profound influence on the evolution of
networks23,24 and dynamical processes on such networks like spread-
ing18,19,25. By taking into account various node characteristics, we
have generalized the friendship paradox in complex networks. The
generalized friendship paradox (GFP) states that your friends have
on average higher characteristics than you have. By analyzing two
coauthorship networks of Physical Review (PR) journals and of
Google Scholar (GS) profiles, we have found that the GFP holds
at both individual and network levels for various node character-
istics, such as the number of coauthors, the number of citations,
the number of publications, and the average number of citations
per publication. It is also shown that the origin of the GFP at the
network level is rooted in the positive correlation between degree
and characteristic. Thus the GFP is expected to hold for any char-
acteristic showing the positive correlation with degree. Here the
characteristic can be also purely topological like various node cen-
tralities as they show significant positive correlations with degree,
such as PageRank33.

Despite the access to the data on large-scale social networks, com-
plete mapping of social networks is not feasible. Thus it is still
important to devise effective and efficient sampling methods that
exploit local network structure. We have suggested two simple sam-
pling methods for identifying high characteristic nodes using the

GFP. It is empirically found that a control group of randomly chosen
nodes has the smaller number of high characteristic nodes than a
friend group that consists of random neighbors of nodes in the
control group. Moreover, provided that nodes have full information
about characteristics of their neighbors, a biased group of the highest
characteristic neighbors of nodes in the control group has the largest
number of high characteristic nodes than other groups. This turns
out to be the case even when the degree-characteristic correlation is
negligible.

Our sampling methods propose an explanation about how our
perception can be affected by our friends. People’s perception of
the world and themselves depends on the status of their friends,
colleagues, and peers17. When we compare our characteristics like
popularity, income, reputation, or happiness to those of our friends,
our perception of ourselves might be distorted as expected by the
GFP. Comparing to the average friend, i.e., the friend sampling, is
biased due to the positive degree-characteristic correlation.
Furthermore, comparing to the ‘‘better’’ friend, i.e., the biased sam-
pling, is much more biased towards the ‘‘worse’’ perception of our-
selves. This might be the reason why active online social networking
service users are not happy34, in which it is much easier to compare to
other people in online social media.

Another interesting application of the GFP can be found in multi-
plex networks35,36. If degrees of one layer are positively correlated
with those of other layers, our sampling methods can be used to
identify high degree nodes in other layers. Indeed, the degrees of
each node are positively correlated across layers in a player network
of an online game37 and in a multiplex transportation network38.

Nodes are not only embedded in the topological structure, but they
also have many other characteristics relevant to the structure and
evolution of complex networks. However, the role of these non-
topological characteristics is far from being fully understood. Our
work on the generalized friendship paradox will help us consider the
interplay between network structure and node characteristics for
deeper understanding of complex networks.

Figure 3 | Performance comparison of control group, friend group, and biased group for auxiliary characteristics X with various values of correlation
with degree: rkX~0:1, � � � ,0:9. For each value of rkX, 1000 random configurations are generated, for each of which 5000 nodes are sampled as in Fig. 2.
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Methods
Data description. We describe how the data for coauthorship networks have been
collected and prepared. For the Physical Review (PR) network, the bibliographic data
containing all papers published in Physical Review journals from 1893 to 2009 was
downloaded from American Physical Society. The number of papers is 463348, and
each paper has the title, the list of authors, the date of publication, and citation
information. By using author identification algorithm proposed by39, we identified
each author by his/her last name and initials of first and middle names if available.
The number of identified authors is 242592. Combined with the numbers of citations
and the list of authors of papers, we obtained for each author the number of
coauthors, the number of citations, the number of publications, and the average
number of citations per publication.

Google Scholar (GS) service (scholar.google.com) provides profiles of academic
authors. Each profile of the author contains information of the total number of
citations and coauthor list of the author. Using snowball sampling26 starting from
‘‘Albert-László Barabási’’ (one of the leading network scientists), the coauthor rela-
tions and their citation information are collected. The number of authors in the
dataset is 29968. Here we note that not all scientists have profile in the GS and not all
coauthor relations are accessible.

Generating random node characteristics of arbitrary correlation with degree.
Consider two independent random variables Y 5 (y1, y2, …, yN) and Z 5 (z1, z2, …,
zN) with the same standard deviation, i.e., sY 5 sZ. We generate a random sequence X
5 (x1, x2, …, xN) from the following equation:

X~rYz
ffiffiffiffiffiffiffiffiffiffiffiffi
1{r2

p
Z: ð8Þ

The correlation rXY between X and Y is given by

rXY ~
E XYð Þ{E Xð ÞE Yð Þ

sX sY
, ð9Þ

where E(X) denotes the expectation of X. Using the independence of Y and Z, i.e.,
E(YZ) 5 E(Y)E(Z), we get

rXY~r
sY

sX
: ð10Þ

Then, from s2
X~E X2

� �
{E Xð Þ2, we obtain sX 5 sY, leading to

rXY ~r: ð11Þ
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One of the interesting phenomena due to topological heterogeneities in complex networks is the friendship
paradox: Your friends have on average more friends than you do. Recently, this paradox has been generalized
for arbitrary node attributes, called the generalized friendship paradox (GFP). The origin of GFP at the network
level has been shown to be rooted in positive correlations between degrees and attributes. However, how the GFP
holds for individual nodes needs to be understood in more detail. For this, we first analyze a solvable model
to characterize the paradox holding probability of nodes for the uncorrelated case. Then we numerically study
the correlated model of networks with tunable degree-degree and degree-attribute correlations. In contrast to the
network level, we find at the individual level that the relevance of degree-attribute correlation to the paradox
holding probability may depend on whether the network is assortative or dissortative. These findings help us to
understand the interplay between topological structure and node attributes in complex networks.

DOI: 10.1103/PhysRevE.90.022809 PACS number(s): 89.75.−k, 89.65.−s

I. INTRODUCTION

Human societies have been successfully described within
the framework of complex networks, where nodes and links
denote individuals and their dyadic relationships, respec-
tively [1–5]. As individuals are embedded in social networks,
their positions in such networks strongly influence their
behaviors [3] as well as self-evaluations [6] and subjective well
being [7]. In particular, the comparison to friends, colleagues,
and peers enables individuals to adopt and transmit opinion,
information, and technologies [2,8,9], e.g., for competitive-
ness [10]. Thus understanding positional differences between
individuals is crucial to understanding the emergent collective
dynamics at the community or societal level [11].

Topological structures of social networks have been known
to be heterogeneous, characterized by broad distributions of the
number of neighbors or degree [12], assortative mixing [13],
and community structure [14]. One of the interesting phe-
nomena due to topological heterogeneities is the friendship
paradox (FP). The FP states that your friends have on average
more friends than you do [15]. The paradox has been shown
to hold in both offline and online social networks [15–20].
Examples include friendship networks of middle and high
school students [15,20] and of university students [6], scientific
collaboration networks [18], and Facebook and Twitter user
networks [16,17,19]. The paradox can be understood as
a sampling bias in which individuals having more friends
are more likely to be observed by their friends. This bias
has important implications for the dynamical processes on
social networks, e.g., for efficient immunization [21] and for
early detection of contagious outbreaks [22,23] or of natural
disasters [24]. The paradox implies that your friends and
neighbors tend to occupy more important or central positions
in social networks than you do.

*Present address: BK21plus Physics Division and Department of
Physics, Pohang University of Science and Technology, Pohang 790-
784, Republic of Korea.

The importance or centrality of individuals is not deter-
mined only by their topological positions in networks, but is
also influenced by their attributes. Individuals can be described
by various attributes like gender, age, cultural preferences,
and genetic information [25,26]. This requires us to study the
interplay between topological structure and node attributes
of social networks. The friendship paradox has been also
considered for arbitrary node attributes [17–19], which is
called the generalized friendship paradox (GFP) [18]. Note
that if the degree of node is considered as the attribute, the
GFP reduces to the FP.

The GFP can be formulated at the individual and network
levels. The GFP holds for a network if the average attribute
of nodes in the network is smaller than the average attribute
of their neighbors. The GFP holds for a node if the node has
a lower attribute than the average attribute of its neighbors.
The GFP at both levels has been observed in the coauthorship
networks [18]. While the GFP at the network level accounts for
the average behavior of the network, the GFP at the individual
level can provide more detailed understanding of the centrality
of individuals, and of their subjective evaluations of attributes.
For example, consider a star network, where one hub node is
connected to all other nodes. The network level analysis cannot
tell the positional and attribute-related difference between
the hub node and all other nodes. Thus it is obvious that
these individual properties cannot be fully revealed in the
network level analysis, especially when the individuals are
heterogeneous in terms of broad distributions of degree and
attribute.

The origin of the GFP at the network level has been
clearly shown to be rooted in positive degree-attribute cor-
relations [18]. In other words, high-attribute individuals are
more likely to be observed by their friends as high-attribute
individuals have more friends. However, the role of degree-
attribute correlations at the individual level is far from being
fully understood. In order to investigate the role of various
correlations for the GFP at the individual level, we first
analyze a solvable model to characterize the paradox holding
probability of nodes for the uncorrelated case. Then we
numerically study the correlated model of networks with
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tunable degree-degree and degree-attribute correlations. By
calculating the paradox holding probabilities for the entire
range of correlations, we show that the relevance of degree-
attribute correlation to the paradox holding probability may
depend on whether the network is assortative or dissortative.
This result is compared to the GFP at the network level. Finally,
we conclude the paper by summarizing the results.

II. GENERALIZED FRIENDSHIP PARADOX

A. Network level

The generalized friendship paradox (GFP) holds for a net-
work if the average attribute of nodes in the network is smaller
than the average attribute of their neighbors. For a network of
N nodes, let us denote a degree and an attribute of node i as ki

and xi , respectively. The average degree and average attribute
are 〈k〉 = N−1 ∑N

i=1 ki and 〈x〉 = N−1 ∑N
i=1 xi . The average

attribute of neighbors 〈x〉nn is obtained as

〈x〉nn =
∑N

i=1 kixi∑N
i=1 ki

, (1)

where a node i with degree ki has been counted ki times by its
neighbors. Then the GFP holds for a network if the following
condition is satisfied:

〈x〉 < 〈x〉nn. (2)

By the straightforward calculation, one gets

〈x〉nn − 〈x〉 = ρkxσkσx

〈k〉 , (3)

where the degree-attribute correlation is given by

ρkx = 1

N

N∑
i=1

(ki − 〈k〉)(xi − 〈x〉)
σkσx

. (4)

Since standard deviations of degree and attribute, i.e., σk and
σx , are positive in any nontrivial cases, the positive ρkx leads
to the GFP at the network level. Thus, the origin of GFP at
the network level is rooted in positive correlation between
degree and attribute [18]. The GFP at the network level
has been observed in the coauthorship networks of Physical
Review journals (PR) and of Google Scholar profiles (GS)
for several attributes such as the number of publications by
each author [18]. In addition, the negative ρkx can lead to the
opposite tendency, implying that your friends have on average
a lower attribute than you do. This can be called anti-GFP.

B. Individual level: Uncorrelated solvable model

In order to investigate the GFP at the individual level, we
study an uncorrelated solvable model. The GFP holds for
a node i if the node has a lower attribute than the average
attribute of its neighbors, precisely if the following condition
is satisfied:

xi <
1

ki

∑
j∈�i

xj , (5)

where �i denotes the set of i’s neighbors. The probability
of satisfying Eq. (5) or paradox holding probability may be
interpreted as the degree of self-evaluation of the node when

compared to its neighbors. We assume no correlation between
attributes of neighboring nodes, implying that the degrees of
neighbors are entirely irrelevant to the probability. Then one
gets the paradox holding probability of a node with degree k

and attribute x as

hk(x) ≡ Pr

⎛
⎝1

k

k∑
j=1

xj > x

⎞
⎠ (6)

=
k∏

j=1

∫ ∞

0
dxjP (xj )θ

⎛
⎝1

k

k∑
j=1

xj − x

⎞
⎠ , (7)

where θ (·) is a Heaviside step function. The distribution of
x has been denoted by P (x) with x � 0. In general x can
have negative values, which will be considered in Sec. II C.
By taking the Laplace transform with respect to x, we get

h̃k(s) = 1

s

[
1 − P̃

( s

k

)k
]

, (8)

where P̃ (s) is the Laplace transform of P (x). Then, the para-
dox holding probability hk(x) can be obtained by taking the
inverse Laplace transform of h̃k(s) analytically or numerically
if necessary.

For the solvable yet broadly distributed case, we consider
the Gamma distribution for x, i.e.,

P (x) = xα−1e−x/β

βα�(α)
, (9)

where α,β > 0 and the mean of x is 〈x〉 = αβ. Since P̃ (s) =
(βs + 1)−α , one gets

hk(x) =
�

(
αk,αk x

〈x〉
)

�(αk)
. (10)

Here �(s,z) = ∫ ∞
z

t s−1e−t dt denotes the upper incomplete
Gamma function. The heat map of hk(x) as a function of αk

and x/〈x〉 is depicted in Fig. 1(a).
For any given k, it is obvious that hk(0) = 1 and hk(∞) = 0,

and that hk(x) is a decreasing function of x. For a given x, one
can study the k-dependent behavior of hk(x). In case of k = 1,
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FIG. 1. (Color online) Analytic results of the uncorrelated model
with Gamma distributions for x and k in Eq. (9). (a) Heat map of the
paradox holding probability hk(x) in Eq. (10) as a function of αk and
x/〈x〉. (b) hk(x) as a function of αk for values of x/〈x〉 = 0.9, 1, and
1.1 (curves), which are compared to the numerical results (circles)
from the uncorrelated network of size N = 105 and of 〈x〉 = 50 using
the same Gamma distribution in Eq. (9).
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h1(x) is the probability of drawing one number larger than x

from P (x), which we denote fx ≡ ∫ ∞
x

P (x ′)dx ′. The value
of h2(x) is upper bounded by the probability that when two
numbers are drawn from P (x), both numbers are not smaller
than x, i.e., h2(x) � 1 − (1 − fx)2. Even when one neighbor
has an attribute less than x and the other has an attribute more
than x, it is likely that the average of them exceeds x due to the
broadness of P (x). Thus, we approximate as h2(x) ≈ 1 − (1 −
fx)2, which is then generalized to hk(x) ≈ 1 − (1 − fx)k . This
argument accounts for the k-dependent increasing behavior
for small αk in the solution of Eq. (10). It could imply that
having more friends may lead to the lower self-evaluation to
some extent. However, for sufficiently large k, the average
of attributes of neighbors converges to 〈x〉. Hence, when the
given x is smaller (larger) than 〈x〉, hk(x) approaches 1 (0)
as k increases. In case of x = 〈x〉, hk(x) approaches 1/2 as
k increases. Note that only when x > 〈x〉, hk(x) increases
and then decreases according to k. Such nontrivial behavior
emerges even in the uncorrelated case.

Next, in order to study the FP in the uncorrelated setup, one
needs to solve the following equation:

hFP
k ≡ Pr

⎛
⎝1

k

k∑
j=1

kj > k

⎞
⎠ (11)

=
∑
{kj }

k∏
j=1

P (kj )θ

⎛
⎝1

k

k∑
j=1

kj − k

⎞
⎠ , (12)

where P (k) denotes the degree distribution. As there is no
general solution to our knowledge, the FP will be numerically
studied in Sec. II C.

C. Individual level: Correlated network model

We numerically study more general cases, including the
uncorrelated model, by generating networks with tunable
degree-degree and degree-attribute correlations. Following the
configuration model [27], we generate the degree sequence,
{ki} for nodes i = 1, . . . ,N , where each degree is indepen-
dently drawn from P (k) with minimum degree as kmin = 1.
Each node has ki stubs or half links. A pair of nodes are
randomly selected and a link is established between them
if both nodes have residual stubs and if there is no link
between them. This process is repeated until when no stubs
remain. In principle, the generated network has no degree-
degree correlations. Degree-degree correlations can be fully
measured in terms of the joint degree distribution P (k,k′) with
k and k′ denoting degrees of neighboring nodes. However,
for tractability of the model, we adopt the assortativity
coefficient [13]

rkk = L
∑

l klk
′
l − [∑

l
1
2 (kl + k′

l)
]2

L
∑

l
1
2

(
kl

2 + k′
l
2) − [∑

l
1
2 (kl + k′

l)
]2 , (13)

where kl and k′
l denote degrees of nodes of the lth link with

l = 1, . . . ,L, and L is the total number of links in the network.
Indeed, rkk is the normalized quantity of the first order moment
of P (k,k′), i.e., 〈kk′P (k,k′)〉. The value of rkk ranges from
−1 to 1, and it quantifies the tendency of large degree nodes
being connected to other large degree nodes. A network with

the maximal rkk can be implemented, e.g., by constructing k

cliques or complete subgraph with k nodes. The minimal rkk

can be found in the starlike network structure, where hubs are
connected to dangling nodes.

For preparing the network with a desired value of rkk ,
we rewire links as following [28]: Two links are randomly
selected, e.g., a link between nodes i and j and a link between
nodes i ′ and j ′. These nodes are rewired to links between
i and i ′ and between j and j ′, only when the value of rkk

gets closer to the desired value. This rewiring is repeated until
the desired value of rkk is reached. In order to investigate if
these generated networks result in the desired degree-degree
correlations, we measure P (k,k′) (not shown here) implying
that the generated networks are fully random to any other
respect than the correlation by the assortativity coefficient.
Thus, rkk will also be used as an indicator for the degree-degree
correlations.

For the tunable degree-attribute correlation, denoted by ρkx ,
we adopt the method used in Ref. [18]. For a given degree
sequence, the attribute of a node i is assigned as

xi = ρki +
√

1 − ρ2kj , (14)

where the node index j is randomly chosen from {1, . . . ,N}.
It is straightforward to prove that ρ = ρkx [18]. ρ can have
a value in [−1,1]. The attribute has the average 〈x〉 = (ρ +√

1 − ρ2)〈k〉, while its standard deviation is the same as that of
degrees, i.e., σx = σk , independent of ρ. From the generated
attribute sequence, one can measure the attribute-attribute
correlation rxx using Eq. (13) but with k replaced by x. rxx

can be interpreted as the degree of attribute homophily [29].
For comparison to the analytic solution in Eq. (10), we assume
the Gamma distribution for the degree as in Eq. (9). Since the
analytic results are not sensitive to the variation of α, we use
α = 1 for simplicity.

Let us first consider the uncorrelated case, i.e., rkk = ρkx =
0. We generate an uncorrelated network of size N = 105 and
of 〈k〉 = 〈x〉 = 50. Then we measure the paradox holding
probability hk(x) to find that the numerical result in Fig. 2(e)
supports our analytic solution of Eq. (10), also depicted in
Fig. 1(a). The values of hk(x) for x/〈x〉 = 0.9, 1, and 1.1
are plotted in Fig. 1(b) for the precise comparison to the
analytic solution. In all cases, hk(x) has been averaged over
100 different assignments of attributes using Eq. (14).

In general, the paradox holding probability is expected to
be affected by the combined effect of two correlations, i.e.,
rkk and ρkx . As shown in Figs. 2(d)–2(f), when ρkx = 0, the
overall behavior of hk(x) is the same as the uncorrelated case
in Fig. 1(a), irrespective of rkk . It is because attributes of
neighboring nodes are fully uncorrelated, supported by the
observation of rxx ≈ 0. By the same argument, the similar
pattern is observed for rkk = 0 and ρkx 	= 0. This is evidenced
by the fact that the border xk , defined by the condition hk(x =
xk) = 1/2, is mostly flat for a wide range of k. However, such
borders show some deviations from x = 〈x〉, depicted by blue
horizontal lines in Fig. 2, possibly due to finite size effects.

When both rkk and ρkx are positive [Fig. 2(c)], the effect of
attribute homophily by rxx > 0 becomes pervasive. The GFP
holds for high-attribute nodes due to their neighbors of even
higher attributes, while low-attribute nodes have lower paradox
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FIG. 2. (Color online) Paradox holding probability hk(x) of the
correlated networks of size N = 105 for values of rkk = −0.2, 0, and
0.4 (from left to right) and of ρkx = −0.5, 0, and 0.5 (from bottom to
top). Degrees k follow the Gamma distribution in Eq. (9) with α = 1
and β = 50, i.e., 〈k〉 = 50, and attributes x are assigned to nodes
using Eq. (14). For comparison to the uncorrelated case, x has been
regularized by 〈k〉 that has the same value as 〈x〉 for ρkx = 0. Blue
horizontal lines correspond to 〈x〉/〈k〉 for each case.

holding probability, compared to the uncorrelated case. The
opposite behavior is observed for the dissortative networks
[Fig. 2(a)]. Hub nodes of high attribute tend to be connected
with dangling nodes of low attribute, leading to smaller hk(x)
for the former and larger hk(x) for the latter. It also means the
negative attribute-attribute correlation (rxx < 0). Let us now
consider when degrees and attributes are negatively correlated
(ρkx < 0). In the assortative networks [Fig. 2(i)], the GFP
holds even for some high attribute nodes but with small
degrees, which is comparable to the case of rkk,ρkx > 0. In the
dissortative networks [Fig. 2(g)], hub nodes of low attribute
tend to be connected to dangling nodes of high attribute,
leading to larger hk(x) for the former and smaller hk(x) for the
latter. This is in contrast to the case of rkk < 0 and ρkx > 0. It
is notable that the results for rxx ≈ 0 and for rkk,ρkx > 0 are
comparable to empirical results for coauthorship networks of
PR and GS in Figs. 1(d), 1(f) and Figs. 1(a), 1(c) of Ref. [18],
respectively.

Now we calculate the average paradox holding probability
H (rkk,ρkx), which is defined as the fraction of nodes satisfying
Eq. (5). The result is shown in Fig. 3(a). As a reference,
we define H0 ≡ H (0,0) ≈ 0.62 for the uncorrelated case. If
rkk � 0.4, it is found that H > H0 (H < H0) for ρkx > 0
(ρkx < 0). Otherwise, if rkk > 0.4, H ≈ H0 is observed for
almost entire range of ρkx . We first note that most nodes in the
network have small degrees from the Gamma distribution, and
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FIG. 3. (Color online) Numerical results for correlated networks
of size N = 105 and of 〈k〉 = 50 with the Gamma distribution for
degrees (a)–(c): (a) Average paradox holding probability H as a
function of rkk and ρkx . (b) Scatter plot showing rxx and rkk|ρkx | for
−0.8 � rkk � 0.8. The solid line corresponds to rxx = rkk|ρkx |. (c)
Paradox holding probability of the FP for various values of degree-
degree correlations. (d) Empirical paradox holding probability of the
FP for coauthorship networks of Physical Review (PR) journals and
Google Scholar (GS) profiles from Ref. [18].

they have low attributes if ρkx � 0 or high attributes but around
0 for ρkx < 0. These nodes dominate the population, hence the
behavior of H . Next, the paradox holding probability of such
dominant nodes needs to be understood. In the dissortative
networks (rkk < 0), large degree nodes tend to be connected
to small degree nodes, leading to a starlike structure. If hub
nodes have high attributes and peripheral nodes have low
attributes (ρkx > 0), the dominant nodes, i.e., peripheral nodes
in this case, have large paradox holding probability, resulting
in H > H0. Otherwise, if ρkx < 0, since the dominant nodes
have high attribute, we find H < H0. Here the attributes
of neighboring nodes are negatively correlated (rxx < 0)
irrespective of the sign of ρkx . In the assortative networks
(rkk > 0), nodes of similar degrees tend to be connected to
each other. The attributes of neighboring nodes are similar
(rxx > 0) whether high (low) degree nodes have high (low)
attributes (ρkx > 0) or vice versa (ρkx < 0). In either case, the
dominant nodes have neighbors of similar attribute, implying
that the behavior of H is robust against the variation and sign
of ρkx . Conclusively, the sign of ρkx is relevant to H in the
dissortative network with rkk < 0, while it is irrelevant to H

in the assortative network with rkk > 0. This can be compared
to the GFP at the network level, which is determined by the
sign of ρkx as shown in Eq. (3). We also numerically find that
rxx ≈ rkk|ρkx | in Fig. 3(b), implying that the behavior of H

cannot be explained only in terms of rxx .
Finally, using the above generated networks, we calculate

the probability of holding the FP, denoted by hFP
k . As shown

in Fig. 3(c), for rkk � 0, hFP
k stays close to 1 until k reaches

≈100, and decays quickly to 0. It is because small-degree
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nodes tend to be connected to large-degree nodes. However, in
the assortative networks with rkk > 0, hFP

k begins with small
values, increases according to k, and eventually decays to 0. It
implies that the FP holds most strongly for nodes of average
degree, or so-called middle class, not for nodes of the smallest
degree. These variations at the individual level are observed
only due to different effects of assortativity coefficient, rkk .
In contrast, the FP at the network level is influenced only
by the shape of degree distribution, irrespective of rkk . These
results enable us to understand the empirical finding of hFP

k

from coauthorship networks [18], replotted in Fig. 3(d). The
increasing behavior of hFP

k for k < 10 in the coauthorship
network of PR is due to rkk ≈ 0.47, while such increasing
behavior is not observed in the coauthorship network of GS
showing no degree-degree correlation, i.e., rkk ≈ −0.02.

D. Case with scale-free networks

In order to study the GFP in a more realistic setup such as
scale-free networks, we generate the correlated networks using
the power-law distribution of degrees and attributes. In case of
power-law degree distribution, the degree-degree correlation
rkk is strongly limited by various factors, such as the system
size and the power-law exponent of degree distribution, as
studied in Ref. [30]. For the realistic consideration, we choose

FIG. 4. (Color online) Paradox holding probability hk(x) of the
correlated networks of size N = 104 for values of rkk = −0.1, 0,
and 0.1 (from left to right) and of ρkx = −0.5, 0, and 0.5 (from
bottom to top). Degrees k follow the power-law distribution in Eq. (15)
with γ = 2.7 and kmin = 6, and attributes x are assigned to nodes
using Eq. (14). For comparison to the uncorrelated case, x has been
regularized by 〈k〉 that has the same value as 〈x〉 for ρkx = 0. Blue
horizontal lines correspond to 〈x〉/〈k〉 for each case.
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FIG. 5. (Color online) Numerical results for correlated networks
of size N = 104 with the power-law distribution for degrees:
(a) Average paradox holding probability H as a function of rkk and
ρkx . (b) Scatter plot showing rxx and rkk|ρkx | for −0.1 � rkk � 0.1.
The solid line corresponds to rxx = rkk|ρkx |. (c) Paradox holding
probability of the FP for various values of degree-degree correlations.

the following distribution

P (k) ∝ k−γ for k � kmin, (15)

with γ = 2.7 and kmin = 6. For these values of parameters, one
can generate the network in the range of −0.1 � rkk � 0.1 for
N = 104. Then, we calculate the paradox holding probability
hk(x) to find that its overall behavior is qualitatively similar to
those in the case of Gamma distribution, as shown in Fig. 4.
We also find similar behaviors for the average paradox holding
probability H (rkk,ρkx), for the linear relationship between rxx

and rkk|ρkx | but with larger deviations due to the relatively
narrow range of rkk , and for the probability of holding the FP
for various values of degree-degree correlation. The results are
summarized in Fig. 5.

III. CONCLUSIONS

As an interplay between topological heterogeneities and
node attributes in complex networks, the generalized friend-
ship paradox (GFP) has been recently suggested, implying that
your friends have on average higher attribute than you do [18].
While the GFP at the network level was clearly explained in
terms of the positive degree-attribute correlations, the GFP at
the individual level has been far from being fully understood. In
order to understand the role of degree-attribute correlations for

022809-5



HANG-HYUN JO AND YOUNG-HO EOM PHYSICAL REVIEW E 90, 022809 (2014)

the GFP at the individual level in more detail, we analyze the
uncorrelated solvable model, which already shows nontrivial
behavior especially for high-attribute nodes. For the general
case, we numerically study the correlated network model
with tunable degree-degree and degree-attribute correlations,
denoted by rkk and ρkx , respectively. We obtain the detailed
patterns of the paradox holding probability of individuals
depending on their degrees and attributes, for the entire range
of correlations of rkk and ρkx . Similarly to the GFP at the
network level, the average paradox holding probability is
strongly affected by the sign of ρkx only in the dissortative
networks with rkk < 0. On the other hand, the results for
the assortative networks with rkk > 0 are robust against the
variation and sign of ρkx .

In our study, we have ignored other topological hetero-
geneities of networks, such as community structure [14], and
assumed that node attributes are fixed and do not change. In
future works, it would be interesting to study the GFP in more
realistic network topology and/or in cases where the attributes

can change in time, such as the attractiveness of scientific
papers [31], or they evolve according to the individual
decisions, e.g., within the framework of evolutionary game
theory [32].

Finally, we like to remark that successful applications of
statistical physics to social phenomena necessitate the detailed
understanding of both objective and subjective sides of indi-
vidual behaviors. In this sense, our study of the GFP can pro-
vide insights for the subjective self-evaluation of individuals
compared to their neighbors [6,7], which shapes the way they
interact with others. This is crucial to understand the emergent
collective dynamics at the community or societal level.
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[32] C. Hauert and G. Szabó, Am. J. Phys. 73, 405 (2005).

022809-6

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1126/science.1167742
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.2307/3090112
http://dx.doi.org/10.2307/3090112
http://dx.doi.org/10.2307/3090112
http://dx.doi.org/10.2307/3090112
http://dx.doi.org/10.1371/journal.pone.0069841
http://dx.doi.org/10.1371/journal.pone.0069841
http://dx.doi.org/10.1371/journal.pone.0069841
http://dx.doi.org/10.1371/journal.pone.0069841
http://dx.doi.org/10.1103/PhysRevLett.112.098702
http://dx.doi.org/10.1103/PhysRevLett.112.098702
http://dx.doi.org/10.1103/PhysRevLett.112.098702
http://dx.doi.org/10.1103/PhysRevLett.112.098702
http://dx.doi.org/10.1177/1745691613504114
http://dx.doi.org/10.1177/1745691613504114
http://dx.doi.org/10.1177/1745691613504114
http://dx.doi.org/10.1177/1745691613504114
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1086/229693
http://dx.doi.org/10.1086/229693
http://dx.doi.org/10.1086/229693
http://dx.doi.org/10.1086/229693
http://arxiv.org/abs/arXiv:1111.4503
http://dx.doi.org/10.1038/srep04603
http://dx.doi.org/10.1038/srep04603
http://dx.doi.org/10.1038/srep04603
http://dx.doi.org/10.1038/srep04603
http://dx.doi.org/10.15195/v1.a10
http://dx.doi.org/10.15195/v1.a10
http://dx.doi.org/10.15195/v1.a10
http://dx.doi.org/10.15195/v1.a10
http://dx.doi.org/10.1103/PhysRevLett.91.247901
http://dx.doi.org/10.1103/PhysRevLett.91.247901
http://dx.doi.org/10.1103/PhysRevLett.91.247901
http://dx.doi.org/10.1103/PhysRevLett.91.247901
http://dx.doi.org/10.1371/journal.pone.0012948
http://dx.doi.org/10.1371/journal.pone.0012948
http://dx.doi.org/10.1371/journal.pone.0012948
http://dx.doi.org/10.1371/journal.pone.0012948
http://dx.doi.org/10.1371/journal.pone.0092413
http://dx.doi.org/10.1371/journal.pone.0092413
http://dx.doi.org/10.1371/journal.pone.0092413
http://dx.doi.org/10.1371/journal.pone.0092413
http://arxiv.org/abs/arXiv:1402.2482
http://dx.doi.org/10.1073/pnas.0705081104
http://dx.doi.org/10.1073/pnas.0705081104
http://dx.doi.org/10.1073/pnas.0705081104
http://dx.doi.org/10.1073/pnas.0705081104
http://dx.doi.org/10.1073/pnas.0806746106
http://dx.doi.org/10.1073/pnas.0806746106
http://dx.doi.org/10.1073/pnas.0806746106
http://dx.doi.org/10.1073/pnas.0806746106
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1103/PhysRevE.71.027103
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1126/science.1065103
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1103/PhysRevE.81.046103
http://dx.doi.org/10.1103/PhysRevE.81.046103
http://dx.doi.org/10.1103/PhysRevE.81.046103
http://dx.doi.org/10.1103/PhysRevE.81.046103
http://dx.doi.org/10.1371/journal.pone.0024926
http://dx.doi.org/10.1371/journal.pone.0024926
http://dx.doi.org/10.1371/journal.pone.0024926
http://dx.doi.org/10.1371/journal.pone.0024926
http://dx.doi.org/10.1119/1.1848514
http://dx.doi.org/10.1119/1.1848514
http://dx.doi.org/10.1119/1.1848514
http://dx.doi.org/10.1119/1.1848514


Eur. Phys. J. B (2014) 87: 246
DOI: 10.1140/epjb/e2014-50497-1

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Move ordering and communities in complex networks describing
the game of go

Vivek Kandiah1,2, Bertrand Georgeot1,2, and Olivier Giraud3,a
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Abstract. We analyze the game of go from the point of view of complex networks. We construct three
different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of
increasing sizes, and links as actual successions of these patterns in databases of real games. We discuss
the peculiarities of these networks compared to other types of networks. We explore the ranking vectors
and community structure of the networks and show that this approach enables to extract groups of moves
with common strategic properties. We also investigate different networks built from games with players of
different levels or from different phases of the game. We discuss how the study of the community structure
of these networks may help to improve the computer simulations of the game. More generally, we believe
such studies may help to improve the understanding of human decision process.

1 Introduction

The study of complex networks has become more and
more important in the recent past. In particular, com-
munication and information networks have become ubiq-
uitous in everyday life. New tools have been created to
understand the mechanisms of growth of such networks
and their generic properties. On the other hand, it has
been realized that other phenomena can also be modelized
by such tools, e.g. in social sciences, linguistics, and so
on [1–3].

However, the tools of complex networks were never ap-
plied to the study of human games. Nevertheless, games
represent one of the oldest human activities, and may give
insight into the human decision-making processes. In ref-
erence [4], a network was built that describes the game of
go, one of the oldest and most famous board games. The
complexity of the game is such that no computer program
has been able to beat a good player, in contrast with chess
where world champions have been bested by game simu-
lators. It is partly due to the fact that the total number of
possible allowed positions in go is about 10171, compared
to e.g. only 1050 for chess [5]. In fact, among traditional
board games it has by far the largest state space complex-
ity [6]. Part of the complexity of the game of go comes
from this large number of different board states, due to
the fact that it is played on a board (the goban) com-
posed of 19 vertical lines and 19 horizontal lines, implying
361 possible positions, against 64 in chess. Also, it is very

a e-mail: olivier.giraud@lptms.u-psud.fr

hard for a computer to evaluate the positional advantages
in the course of the game, while in chess the capture of
different pieces can be easily compared.

Due to that, the study of computer go has become an
important subfield of computer science. Its main challenge
is to estimate a value function of moves, that is, a func-
tion which assigns a value to each move, given a certain
state of the goban. Traditional approaches evaluate the
value function by using huge databases of patterns, from
initial patterns to life-and-death situations, and can learn
to predict the value of moves by reinforcement learning
(see e.g. [7]). By contrast, the recently introduced Monte-
Carlo go does not rest primarily on expert knowledge. Its
basic principle is to evaluate the value of a move by play-
ing at random, according to the rules of go, from a given
state, until the end, so that a value can be assigned to the
move. Playing thousands of games allows to estimate the
value function for each move. This approach has proved
way more efficient than the classical approaches [8,9].

Many improvements have since then been included
in Monte-Carlo go. In particular, Monte-Carlo tree
search, implemented in computer programs such as Crazy
Stone [10] or MoGo [11], is based on the construction of
a tree of goban states, where new states are added itera-
tively as they are met in a simulation. The value function
is updated depending on the outcome of each randomly
played game. Random moves are chosen according to some
playing policy which can itself be biased towards certain
moves (for instance, capture whenever possible), and in
such a way that most promising moves are more carefully
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explored, but with an incentive to visit moves with a large
uncertainty on their actual value. Recent improvements
allow to improve the exploration of the tree [12]. To get
faster estimates of the value of a move the RAVE (Rapid
Action Value Estimation) algorithm, or its Monte-Carlo
version, attributes to a move in a given state s the aver-
age outcome of all games where that move is played after
state s has been encountered [13]. In order to account for
rarely visited states, a heuristic prior knowledge can be
fed into the algorithm to attribute an a priori value to a
move, such as e.g. the value of its grand-father, or a value
depending on local patterns [14].

Although global features, such as chain connections,
or the influence of stones over domains of the goban, are
crucial in the game of go, local features can be used at
many places in the algorithms of computer go, for instance
to improve the heuristic value function which initializes
the value of each move, or to get a faster estimate of the
exact value [15,16].

There is therefore a clear interest in having a better
understanding of local features in the game of go. In ref-
erence [4], two of us introduced a small network based
on local positional patterns and showed that it can be
used to extract information on the tactical sequences used
in real games. However, the small size of the plaquettes
made it difficult to disambiguate many strategically dif-
ferent moves. In the present paper, we construct three
networks based on positional patterns of different sizes,
and study their properties. The network size varies by a
factor one hundred, and the largest one enables to specify
more precise features that were difficult to disambiguate
in reference [4]. In particular, the community structure is
much easier to characterize and discuss. After presenting
the details of the construction of the networks (Sect. 2)
we study their global properties such as ranking vectors
and spectra of the Google matrix, contrast them to other
types of networks, and relate them to specific features of
the game (Sect. 3). In Section 4, we study in detail the
characterization of communities of nodes in the networks,
a well-known subject in network theory, which in our case
enables to regroup tactical moves with common features.
In Section 5 we propose the construction of different net-
works corresponding to specific phases of the game or to
different levels of players.

2 The go networks

The game of go is played on a board (goban) of 19×19 in-
tersections of vertical and horizontal lines. Each player al-
ternately places a stone of his/her color (black or white)
at an empty intersection. Empty intersections next to a
group of connected stones of the same color are called “lib-
erties”. If only one liberty remains, the group of stones
is said to be in atari. When the last liberty is occupied
and the group is entirely surrounded by the opponent,
its stones must be removed. The aim of the game is to
surround large territories and to secure their possession.
Good players follow general strategies through a series of

local tactical fights. We construct the networks represent-
ing the game by connecting local moves played in the same
neighbourhood (note the similarity with some language
networks [17–19] which are also based on local features).
We describe a move by identifying the empty intersection
(h, v) (with 1 ≤ h, v ≤ 19) where the new stone is placed.

The vertices of our networks are based on what we
call “plaquettes”, i.e. a part of the goban with a given
shape and size which depends on the network. Each pla-
quette corresponds to a certain pattern of white and black
stones with an empty intersection at its center, on which
black will put a stone. We identify plaquettes which are
related by translation on the goban or by a symmetry of
the square, and additionally those with colors swapped.

The first network we consider (Network I) is made as
in reference [4] by taking as plaquettes squares of 3×3 in-
tersections, which are subparts of the goban of the form
{(h + r, v + s),−1 ≤ r, s ≤ 1} (edges and corners of
the board can be accounted for by imagining additional
dummy lines outside the board). Once borders and sym-
metries are taken into account, we obtain as vertices of
network I a total of 1107 nonequivalent plaquettes (with
empty centers).

Network II is made by also taking squares of 3×3 inter-
sections and identifying plaquettes related by symmetry,
but we also include the atari status of the four nearest-
neighbour points from the center. Atari status assesses if
the chain of stones to which a given stone belongs has
only one liberty (one empty intersection connected to it).
Removing the last liberty of a chain in atari entails the
capture of the whole group. In this case, many seemingly
possible configurations are not legal since they would con-
tradict the atari status. This leaves 2051 legal nonequiv-
alent plaquettes with empty centers (the same figure was
found in Ref. [20]).

Network III is based on diamond-shape plaquettes: the
3 × 3 plaquettes discussed above plus the four at dis-
tance two from the center in the four directions left, right,
top, down. We still identify plaquettes related by sym-
metry, but do not take into account the atari status. This
gives us 193 995 nonequivalent plaquettes with empty cen-
ters, which are the vertices of network III (96 771 are so
rare that they are actually never used in our database of
games).

We have identified the occurrence of these different pla-
quettes in games from a database available at [21]. This
database contains the sequence of moves of 135 663 differ-
ent games corresponding to players of diverse levels (the
level of the players is marked by a number of dans, from 1
to 9). The games recorded have been played online, and
the dans have been mutually assessed according to the
results of these plays. The frequency of the different pla-
quettes is shown in Figure 1. It can be compared to Zipf’s
law, an empirical law seen in many natural distributions
(word frequency, city sizes, chess openings...) [22–25]. For
items ranked according to their frequency, it corresponds
to a power-law decay of the frequency versus the rank. The
data presented in Figure 1 show that the three different
network choices all give rise to a distribution following
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Fig. 1. Distribution of frequency of occurrences w(i) of differ-
ent plaquettes for the three different networks (full lines), from
left to right at the bottom: red: square plaquettes (network I),
green: square plaquettes with atari status (network II), blue:
diamond plaquettes (network III)(see text)(data from networks
I and II are indistinguishable over parts of the curves). The
dashed straight lines are power law fits with slopes −1.02 (black
upper line, fit of network II) and −0.94 (brown lower line, fit
of network III).
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Fig. 2. Top 30 plaquettes in frequency of occurrences for the
network III (diamond plaquettes). Black plays at the black
cross. Dotted intersections are outside the diamond plaquette
and their status is unknown.

Zipf’s law, although the slope varies from ≈–1 (networks
I and II) to a slightly slower decay for the largest network
(network III).

We display in Figure 2 the top 30 moves in order of
decreasing frequency of occurrences for network III. The
most common correspond to few stones on the plaquettes,
which is natural since these ones are present at the begin-
ning of almost all local fights, while the subsequent moves
differ from games to games.

To define links of our three networks, we connect ver-
tices corresponding to moves a and b played at (ha, va)
and (hb, vb) on the board if b follows a in a game of the
database and max{|hb−ha|, |vb−va|} ≤ d, where d is some
distance. Here contrary to [4] we put a link only between
a an the first move following a in the specified zone. Each
integer d corresponds to a different network. It specifies
the distance beyond which two moves are considered unre-
lated. In reference [4], different values of d were considered
and it was shown that the value d = 4 was the most rele-
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Fig. 3. Distribution of incoming links Pin (black) and out-
going links Pout (red/grey) for the three different networks;
square plaquettes (network I) (squares), square plaquettes with
atari (network II) (triangles), diamond plaquettes (network III)
(crosses). The dashed lines are power law fits with slopes −1.47
(right) and −1.69 (left).

vant, allowing a correct hierarchization of moves: related
local fights are kept while far away tactical moves are not
taken into account. In the following we will thus retain
this value d = 4. Two vertices are thus connected by a
number of directed links given by the number of times the
two corresponding moves follow each other in the same
neighbourhood of the goban in the games of the database.

With this definition, the three networks are now de-
fined, with vertices connected by directed links. The total
number of links including degeneracies is 26 116 006 links.
The numbers without degeneracies are, respectively,
558 190 (network I), 852 578 (network II) and 7 405 395
(network III). The link distributions are shown in Fig-
ure 3; it is close to a power-law. This implies that the
networks present the scale-free property [1–3]. One can
notice a symmetry between ingoing and outgoing links,
which is a peculiarity of this problem, and is not seen in
e.g. the World Wide web, where the exponent for Pout

(≈–2.7) is different from the one for Pin (≈–2.1) [26,27].
Here exponents are similar and close to 1.5, intermediate
between these two values. Our results indicate the pres-
ence of a symmetry (at least at a statistical level) between
moves that follow many different others and moves which
have many possible followers. This symmetry is natural,
since in many cases (i.e. in the course of a local fight)
the occurrence of a plaquette in the database implies the
presence of both an ingoing and an outgoing link.

3 Ranking vectors and spectra
of Google matrices

We have presented up to now the construction of our net-
works for the game of go, and their global statistical prop-
erties. To get more insight into the organization of the
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game, we use tools developed in the framework of net-
work theory, in order to hierarchize vertices of a network.
Such tools are routinely used by search engines to decide in
which order answers to queries are presented. The general
strategy is to build a ranking vector, whose value on each
vertex will measure its importance. A famous vector of this
type is the PageRank [28,29], which has been at the basis
of the Google search engine. It can be obtained from the
Google matrix G, defined as Gij = αSij + (1 − α) tee/N ,
where e = (1, ..., 1), N is the size of the network, α is a
parameter such that 0 < α ≤ 1 (we chose α = 1 in the
computations in this paper), and S is the weighted adja-
cency matrix. The latter starts from the adjacency matrix
where the value of the entry (i, j) corresponds to the num-
ber of links from vertex j to vertex i; then one replaces
any column of 0 by a column of 1, and one normalizes
the sum of each column to 1. This ensures that the ma-
trix G has the mathematical property of stochasticity. The
PageRank vector is defined as the right eigenvector of the
matrix G associated with the largest eigenvalue λ = 1.
It singles out as important vertices the ones with many
incoming links from other important nodes. Equivalently,
it can be seen as giving the average time a random surfer
on the network will spend on each vertex. Indeed, the pro-
cess of iterating G can be seen as the action of a random
surfer choosing randomly at each node to follow a link
to another node. The largest eigenvalue corresponds to
the equilibrium distribution of the surfer, and gives the
average time spent on each node. Other ranking vectors
which can be built from the graph include the CheiRank
vector [30,31], and the Hubs and Authorities of the HITS
algorithm [32]. While PageRanks and Hubs attribute im-
portance to vertices depending on their incoming links,
CheiRanks and Authorities stem from outgoing links. In
particular, CheiRank can be defined as the PageRank of
the “dual” network where all links are inverted. We denote
the Google matrix of this dual network by G∗.

In Figure 4 the distributions of PageRank and
CheiRank are shown for the three networks, showing that
ranking vectors follow an algebraic law, with a slightly dif-
ferent exponent for the largest network. Similarly as for
the link distribution, one sees a symmetry between distri-
butions of ranking vectors based on ingoing links and out-
going links, again an original feature which can be related
to the statistical symmetry between ingoing and outgoing
links and the fact that at lowest approximation ranking
vectors can be approximated by in- or outgoing links [33].

In order to check to what extent this symmetry affects
the ranking vectors, we plot in Figure 5 the CheiRank
K∗ as a function of the PageRank K. It indeed shows
that the two quantities are not independent, and strong
correlations between PageRank and CheiRank do exist.
This symmetry is not visible in general for other net-
works (see e.g. [34] where similar plots are shown in the
context of world trade, displaying much less correlation).
Nevertheless, the symmetry is clearly not exact, especially
for the largest network (a perfect correlation will produce
points only on the diagonal); the plots are not even sym-
metric with respect to the diagonal. Thus PageRank and
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Fig. 4. Distribution of ranking vectors (normalized by∑
K P (K) =

∑
K∗ P

∗(K∗) = 1) for the three different net-
works: PageRank P (K) (solid lines) and CheiRank P ∗(K∗)
(dashed lines), same color code for the networks as in Figure 1
(data from networks I and II are indistinguishable over parts
of the curves). The dotted lines are power law fits with slopes
−1.03 (orange upper line, fit of network II) and −0.89 (black
lower line, fit of network III).
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Fig. 5. PageRank-CheiRank correlation plot of the three dif-
ferent networks: square plaquettes (network I)(top left), square
plaquettes with atari status (network II)(top right) and dia-
mond plaquettes (network III)(bottom). PageRank K is given
in x-axis and CheiRank K∗ in y-axis, the plot of network III
is a zoom on the top 20 000 moves in both K and K∗.

CheiRank produce genuinely different information on the
network.

Figure 6 shows the first 30 plaquettes in decreasing
importance in the PageRank and CheiRank vectors. The
correlation between the two sequences is clearly visible,
although it is again not perfect. We note that these se-
quences are also very similar to the one obtained by just
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Fig. 6. Top 30 plaquettes for first eigenvector of G (PageRank)
(top) and G∗ (CheiRank) (bottom) of the network III.
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Fig. 7. Correlation plot of PageRank-CheiRank vs. fre-
quency of moves for network III (diamond plaquettes) (only
first 1000 moves in K are shown); blue squares: PageRank K,
red crosses: CheiRank K∗.

counting the move frequency (as in Zipf’s law): most fre-
quent moves tend to dominate the ranking vectors.

However, as Figure 7 shows, the correlation between
ranking vectors and frequency ordering is far from per-
fect, especially for the PageRank, which can be extremely
different from the rank obtained by frequency. This shows
that the ranking vectors present an information obtained
from the network construction, which differs from the
mere frequency count of moves in the database. Indeed, as
explained above the frequency count is related to the link
distribution due to the construction process of the net-
work. It is known in general that the PageRank has some
relation with the distribution of ingoing links, but with the
significant difference that it highlights nodes whose ingo-
ing links come from (recursively defined) other important
nodes. This was the basis of the fortune of Google and
in our case means that highlighted moves correspond to
plaquettes with ingoing links coming from other impor-
tant plaquettes. Thus the PageRank underlines moves to

-0.8 -0.4 0 0.4 0.8
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0.4

-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

Fig. 8. Spectrum in the complex plane of G (black squares)
and G∗ (red/grey crosses) for the three different networks:
I (top), II (middle) and III (bottom).

which converge many well-trodden paths of history in the
different games of the database. The CheiRank does the
same in the reverse direction, highlighting moves which
open many such paths.

The ranking vectors discussed above are just one eigen-
vector of the matrices associated with a given network.
However, other eigenvalues and their associated eigenvec-
tors also contain information about the network. We have
computed the spectrum of the Google matrix for the three
networks; they are shown in Figure 8. For square plaque-
ttes (network I) and square plaquettes plus atari status
(network II) all eigenvalues are computed. In the case of
the largest network, standard diagonalization techniques
could not be used and therefore we used an Arnoldi-
type algorithm to compute the largest few thousands
eigenvalues in the complex plane. For the G matrix of
the diamond network (network III), about 1000 eigenvec-
tors were computed. For G∗ matrix of diamond network,
about 500 eigenvectors were computed.

Stochasticity of G and G∗ implies that their spectra
are necessarily inside the unit disk. For the World Wide
Web the spectrum is spread inside the unit circle [35,36],
with no gap between the largest eigenvalue and the bulk.
For networks I and II, Figure 8 shows a huge gap between
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the first and the other eigenvalues. For the third network,
there is still a gap between the first eigenvalue and next
ones, but it is smaller. While the distribution of the rank-
ing vectors shown in Figure 4 reflects the distribution of
links, the gap in the spectrum is related to the connec-
tivity of the network and the presence of large isolated
communities [35,36]. The presence of a large gap indicates
a large connectivity, which is reasonable for the smaller
networks. The presence of a smaller gap for network III
indicates that there is more structure in the networks with
larger plaquettes which disambiguate the different game
paths and makes more visible the communities of moves.
However, the gap being still present shows that even at the
level of diamond-shaped plaquettes, the moves can belong
to many different communities: this underlines one of the
specificities of the game of go, which makes a given posi-
tion part of many different strategic processes, and makes
it so difficult to simulate by a computer.

The results in this section show that the tools of com-
plex networks such as ranking vectors associated to the
largest eigenvalue already give new information which
clearly go beyond the mere frequency count of the moves.
This could be used to make more efficient the Monte Carlo
algorithms of computer go. Nevertheless, other eigenval-
ues also carry valuable information, that we will study in
the next section.

4 Eigenvectors and communities

In the preceding section, we displayed the spectra of the
networks constructed from the game of go. We have al-
ready discussed the ranking vectors associated to the
largest eigenvalue. The other eigenvectors give a differ-
ent information. In Figure 9 we display the intensities of
the first 200 eigenvectors of the three different networks.
It is clear that eigenvectors have specific features, not
being spread out uniformly or localized around a single
specific location. Correlations are also clearly visible be-
tween different eigenvectors, materialized by the vertical
lines where several eigenvectors have similar intensities on
the same node. Correlations are less visible on the largest
network, but it is also due to the much largest size of the
vectors which decreases the individual projections on each
node. It is interesting to note that these correlations are
not necessarily related to the PageRank values or the fre-
quency of moves: vertical lines tend to be more visible on
the left of the figure corresponding to high PageRank, but
they are present all over the interval: certain sequences of
eigenvectors have correlated peaks at locations with rela-
tively low PageRank.

In order to quantify these effects, we first look at the
spreading of eigenvectors: for a given vector, how many
sites have significant projections? This can be measured
for a vector ψ through the Inverse Participation Ratio
(IPR):

∑
i |ψi|4/(

∑
i |ψi|2)2. For a vector uniformly spread

over P vertices it would be equal to P . A random vector
thus has an IPR proportional to the size of the system.
The data of Figure 10 for the eigenvectors corresponding
to the largest eigenvalues show that these vectors are not

Fig. 9. Eigenvector correlation map of the matrix G for the
three different networks: I (top), II (middle) and III (bottom).
Top 200 eigenvectors in order of decreasing eigenvalue modu-
lus are plotted horizontally from bottom to top. Only the first
200 components are shown in the PageRank basis. The colors
are proportional to the modulus of components (the normal-
ization of an eigenstate ψ is

∑
i |ψi|2 = 1), from blue/dark grey

(minimal) to red/light grey (maximal).
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Fig. 10. Histogram of IPR values (see text) for network I
(red/dark grey), network II (green/light grey) and network III
(blue/black). Top panel shows the values computed for eigen-
vectors of G and bottom panel shows the same for G∗. Data
correspond to the top 221 eigenvalues (network I), top 410
eigenvalues (network II) and top 999 eigenvalues (network III).

random or uniformly spread. On the contrary, their IPR is
quite small, even for the largest network: in this case only
a few dozen sites contribute to a given eigenvector, among
almost 200 000 possible nodes. Figure 10 also shows that
there is a relatively large dispersion of the IPR around the
mean value. We provide the distributions for the Google
matrices G and G∗. Qualitatively the features are similar,
but there is both a lower mean value and a lower disper-
sion for G∗, indicating that the statistical symmetry found
previously between incoming and outgoing links is indeed
only approximate.

What is the meaning of these eigenvectors? If one in-
terprets the Google matrix as describing a random walk
among the nodes of the network as in the original pa-
per [28], eigenvectors of G correspond to parts of the net-
work where the random surfer gets stopped for some time
before going elsewhere in the network. In other words,
they are localized on sets of moves which are more linked
together than with the rest of the network. This corre-
sponds to so-called communities of nodes which share cer-
tain common properties (see e.g. [37]). In social networks,
the importance of communities has been stressed several
times and they are the subject of a large number of studies
(see e.g. the review [38]). The use of the eigenvectors of G
to extract the communities is one of the many available
methods, which has been used already in the different con-
text of the World Wide Web [39]. As already mentioned,
eigenvectors with largest eigenvalues tend to be localized
on groups of nodes where the probability is trapped for
some time. This approach will thus detect communities of
nodes from where it is difficult to escape, i.e. with few links
leading to the outside. In parallel, the eigenvectors of G∗
tend to be localized on groups of nodes with few incoming
links from the outside. Figure 10 shows that this latter
type of community, obtained from G∗, tends to be smaller
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Fig. 11. Examples of the top 30 nodes where eigenvectors
of G localize themselves for diamond network, from top to
bottom λ7 = −0.618, λ11 = 0.185–0.5739i, λ13 = 0.5651,
λ21 = −0.4380.

on average for the go game than the former type, obtained
from G. These different communities should reflect differ-
ent strategic groupings of moves during the course of the
game.

The concept of community being intrinsically ambigu-
ous, one can assign a subjective meaning to the defini-
tion of the community related to a chosen method. In our
case, it is a difficult task to establish clear characteristics
regarding what moves should be considered belonging to
which community, however in the spirit of “moves that are
more played together” or “similar moves” we can observe
that a single eigenvector may contain a mixing of several
communities. This could explain why in Figure 9 one can
see similar patterns appearing in different eigenvectors.
These considerations are confirmed by Figures 11 and 12

http://www.epj.org
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Fig. 12. Examples of the top 30 nodes where eigenvectors
of G∗ localize themselves for diamond network, from top to
bottom λ7 = −0.6023, λ11 = 0.1743–0.5365i, λ18 = −0.4511,
λ21 = −0.4021.

where the first 30 moves of representative eigenvectors of
G and G∗ are displayed, ranked by decreasing compo-
nent modulus. While some common features appear, one
gets the impression that groups of moves corresponding
to different strategic processes are mixed and should be
disentangled; for instance the last example of Figure 11
seems to mix moves where black captures a white stone
and moves where black connects a chain.

In principle one could use correlations as the ones
shown in Figure 9 directly to identify communities, but
we chose a different strategy. We propose here different
basic methods that can be a first step into separating the
communities within a given eigenvector. The simplest and
most straightforward method consists in filtering out the
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Fig. 13. Same eigenvectors as in Figure 11 treated by filtering
out the top 30 PageRank moves.

effects of the most common and important moves by re-
moving the top moves given by PageRank and CheiRank
vectors. An example is shown in Figures 13 and 14 where
the remaining moves in the given eigenvectors corresponds
to a specific set of moves. Very common moves (such as
empty or almost empty plaquettes) have been deleted,
leaving more focused groups of moves. For example, the
third eigenvector in Figure 13 is much more focused on
various moves containing situations of Ko or of imminent
capture (Ko or “eternity” is a famous type of fights with
alternate captures of opponent’s stones).

A more systematic method that we propose is to con-
sider the ancestors of each move and determine if they
share a significant number of preceding moves. As the
Google matrix describes a Markovian transition model it
would be natural to look for incoming flows of two moves
to decide whether they belong to the same community.
We implement it as follows: We choose two moves m1

and m2, with, respectively, N1 and N2 incoming links. We
denote the origin of these incoming links pointing to m1

http://www.epj.org
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Fig. 14. Same eigenvectors as in Figure 12 treated by filtering
out the top 30 CheiRank moves.

and m2 as sets of moves S1 and S2. If both moves share
at least a certain fraction ε of common ancestors, that is
if ε min(N1, N2) < card(S1 ∩ S2), we assign both moves
to the same community. This process is iterated until no
more new moves are added to this community. This ex-
tracting process is of course empirical, but helps us never-
theless to sort out some subgroups of moves that are differ-
ent from those extracted with previous methods, provided
that the parameter ε is carefully tuned. Indeed a too low
value of ε does not help much in extracting a group as
in most cases moves share naturally a certain amount of
preceding moves but a too high value of ε will not capture
anything for a sparse matrix. In our network III we thus
used the range of values 0.3 < ε < 0.7. Unfortunately
there is no typical behaviour of how the size of a com-
munity varies with respect to ε: this size depends highly
on the initial move and on the number of components
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Fig. 15. Example of set of moves extracted from data of Fig-
ure 11 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7, λ11 and λ21, and
threshold level ε = 0.5 applied to λ13. .
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Fig. 16. Example of set of moves extracted from data of Fig-
ure 12 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7, λ11, λ18 and λ21.

of an eigenvector on which one is allowed to explore the
ancestries.

We have applied this extracting process on eigenvec-
tors. We thus identify communities in two steps, the first
being to select eigenvectors corresponding to the largest
eigenvalues of G or G∗, and the second step to follow this
ancestry technique. As mentioned earlier an eigenvector
corresponding to a large eigenvalue modulus is more likely
to be localized on a small number of nodes, therefore one
can truncate a given eigenvector to retain its top nodes
and apply this method by choosing one of the top nodes
as the starting move and constructing the community by
successively exploring this subset. Starting from different
nodes will allow to identify the different communities. Fig-
ures 15 and 16 show that the method is able to extract
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moves which have common features, much more so that
just looking at largest components of the vectors or remov-
ing the ranking vectors (as in Figs. 11–14). Small sub-
sets of moves are disambiguated from the larger groups
of the preceding figures, showing sequences which seem
to go together with situations of Ko with different black
dispositions (first and third eigenvector of Fig. 15), black
connecting on the side of the board (fourth eigenvector of
Fig. 15), and so on. Similarly, the first line of Figure 16
can be associated to attempts by black to take over an
opponent’s chain on the rim of the board. These exam-
ples show that the method is effective to regroup moves
according to reasonably defined affinities.

We mention an alternative method which gives good
results in some instances. It consists in analyzing the an-
gles of an eigenvector components when plotted in a com-
plex plane. This method is not systematic as there exist
several real valued eigenvectors but for the complex ones
one can observe interesting patterns. Either the plots show
a meaningless cloud of points or they can reveal a tendency
of a subset of components to be aligned. As shown in an
example in Figure 17 there can be one or several direc-
tions within the same eigenvector, indicating that maybe
the phases of the components can characterize moves shar-
ing common properties. Qualitatively speaking the spatial
configuration of these subgroups of moves look similar but
there are also similarities between moves having differ-
ent angles, and a formal understanding of the meaning of
phases is still lacking. We note that for undirected net-
works the sign of components of eigenvectors of the adja-
cency matrix has been used to detect communities [40].

It is worth insisting again on the fact that in general
the next to leading eigenvectors in the Google matrix rep-
resent a different information from the list of most com-
mon moves. In fact, these eigenvectors can even sometimes
be highly sensitive to rare links, indeed during our anal-
ysis one impossible move was highlighted in one of the
top eigenvectors. This move had only two links among the
several millions, leading us to find a fake gamefile in the
dataset. This shows that the network approach can detect
specificities that a mere statistical analysis of the datasets
will miss.

It is in principle not excluded that one should look into
combinations of eigenvectors but even though we consid-
ered single vectors, the results show that it is possible to
extract community of moves which share some common
properties with these methods. The combination of meth-
ods outlined in this section, namely isolating top moves
in eigenvectors associated to large eigenvalues, and dis-
ambiguating them through search for common ancestries,
seems to yield meaningful groups of moves. We stress
again that they do not merely correspond to most played
moves or sequences of moves, nor to the best ranked in
the PageRank or CheiRank, but give a different informa-
tion related to the network structure around these moves.
It is possible to play with the parameters of the method
(threshold ε, number of eigenvectors, starting point of the
common ancestry) in order to find different sets of commu-
nities, which should be analyzed in relation with the strat-
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Fig. 17. Example of community extraction through phase
analysis (see text) applied on the eigenvector ψ of G∗ corre-
sponding to λ13. Top: eigenvector components in the complex
plane; groups of plaquettes, from top to bottom, correspond to
respective symbols red circles, blue squares, green diamonds,
oranges triangles and purple stars.

egy of the game, and then could help organize the Monte
Carlo go search by running it into specific communities.

5 Generalized networks

One can refine the analysis further by disaggregating the
datasets in several ways, constructing different networks
from the same database. The number of nodes is still the
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Eur. Phys. J. B (2014) 87: 246 Page 11 of 13

0 500 1000 1500
j

0

1

2

3

4

5

r j

Fig. 18. Fluctuation difference rj =
∑

i←j |ki − k′i|/
∑

i ki

of outgoing links versus move indices for top 1500 moves of
diamond patterns in PageRank order (network III)(see text).
An example of difference is shown between two networks built
from games between 6d players (blue crosses) and two networks
built respectively from games between 1d players and games
between 9d players (red squares). The number of games in each
case is 2731, corresponding to the number of 1d/1d games in
the database [21].

same, but links are now selected according to some specific
criterion and may give rise to different properties. In this
section we will illustrate this by a few examples.

An important aspect of the games, especially in view
of applications to computer go, is to select moves which
are more susceptible of winning the game. It is possible
to separate the players between winners and losers, but
the presence of handicaps makes this process ambiguous.
Indeed, it is possible to place up to nine stones before the
beginning of the game at strategic locations, giving an ad-
vantage to a weaker player which may allow him to play
against a better opponent with a fair chance of winning.
Another possibility we thus investigated was to separate
the players by their levels according to their dan ranking.
Indeed, players are ranked from first dan (1d, lowest level)
to ninth dan (9d, highest level). In the database [21] the
number of dans of the players is known, and it is there-
fore possible to separate games played at different levels.
To explore these differences, we constructed the diamond
network from games played by 1d versus 1d, the one from
9d versus 9d, and the one from 6d versus 6d. Figure 18
shows the quantity rj =

∑
i←j |ki−k′i|/

∑
i ki defined for a

pair of networks, where ki (resp. k′i) is the number of links
from a fixed node j to node i for one network (resp. for
the second network). For each node, rj thus quantifies the
difference in outgoing links between two networks. Fig-
ure 18 shows the distribution of this quantity highlighting
the difference between the network 1d/1d and the net-
work 9d/9d. One sees that they are indeed different, with
a mean 〈rj〉 ≈ 1.33. Nevertheless, in the same figure we
add for comparison the difference between two networks
of 6d/6d, showing that one can also find differences be-
tween networks built from players of the same level. In
view of this, to see if the difference between 1d/1d and

a b c d e f g h i j k
sample 

1.2

1.25

1.3

1.35

1.4

r

Fig. 19. Difference r (see text) between the networks built
from games of 1d players and of 9d players (red cross) together
with several examples of r for pairs of networks constructed
from different samples of games of 6d players (green squares).
The three horizontal lines mark the mean and the variance of
the 6d values The number of games in each sample is 2731,
corresponding to the number of 1d/1d games in the database.

9d/9d is statistically significant, Figure 19 shows the av-
erage r = 〈rj〉 for different choices of samples of 6d versus
6d games and the value for the networks constructed from
the games of 1d players and 9d players, with the average
taken on top 1500 moves of the PageRank. It shows that
the difference between 1d players an 9d players has some
statistical significance. The quantity r is a simple way of
quantifying the structural differences in the networks at
the level of outgoing flows which is in our case an indi-
cation that 9d players might have an overall structurally
different style of play than 1d players, even though the
difference is relatively small.

An interesting possibility which might also be useful
for applications is to create separate networks for different
phases of the game. For instance, one can take into account
when using the database of real games only the first 50
moves, the middle 50, or the final 50. Again, this does not
modify the nodes of the networks, but changes the links,
creating three different networks corresponding to respec-
tively beginning, middle, and ending phases of the game.
The number of links is now 6 155936 for the beginning
phase, 6 460 771 for the middle phase, and 5 947 467 for the
ending phase (instead of 26 116 006 for the whole game)
(the numbers without degeneracies for diamond plaque-
ttes are respectively 613 953, 2 070 305 and 3 182 771). The
spectra of the three networks for the diamond plaquettes
are shown in Figure 20 (again, only the largest eigenvalues
are calculated). It is clear that the spectra are quite dif-
ferent, indicating that the structure of the network is not
equivalent for the different phases of the game. It is visible
that the eigenvalue cloud is larger for the ending phase in-
dicating that near the final stage of the game the random
surfer gets trapped more easily in specific patterns, which
should correspond to typical endgames. Similarly, the gap
is smaller for the beginning phase, indicating that one
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-0.5

0
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Fig. 20. Spectrum of G for diamond networks of different
game phases: first 50 moves (red crosses), middle 50 moves
(green circles) and last 50 moves (blue stars). The black squares
correspond to the spectrum of the network when the whole
game is taken into account, shown for reference.

strongly knit community exists with an eigenvalue close
to the PageRank value.

The eigenvectors shown in Figure 21 highlight different
sets of moves as might be expected since strategy should
differ in those phases. Obviously, eigenvectors for open-
ing moves are much more biased towards relatively empty
plaquettes, indicating the start of local fights. In the mid-
dle and end of the games, communities are biased towards
moves corresponding to more and more filled plaquettes,
indicating ongoing fights or fight endings. We stress the
fact that those sets of moves are not just the most played
moves in the respective phases. Running the community
detection process of Section 4 on such eigenvectors should
select communities specific to these different phases of the
game.

6 Conclusion

We have shown that it is possible to construct networks
which describe the game of go, in a spirit similar to the
ones already used for languages. We have extended the
results of [4], comparing three networks of different sizes
according to the size of the plaquettes which serve as
nodes of the network. The three networks share struc-
tural similarities, such as a statistical correlation (but
not an exact symmetry) between incoming and outgoing
links. However, the largest network, besides necessitating
more refined numerical tools in order to obtain the largest
eigenvalues and associated eigenvectors, is also much less
connected and disambiguates much better the different
moves. We have also shown that specific subnetworks can
be constructed, selecting links in the databases according
to levels of the players or phases of the game.

Our results show that the networks constructed in this
way have specific properties which reflect the peculiarities
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Fig. 21. Examples of set of top 30 moves where eigenvectors
of G localize themselves, those examples are computed for dia-
mond network in different game phases: starting phase and λ4

(top), middle phase and λ4 (middle) and ending phase λ4

(bottom).

of the game. In particular, the PageRank and CheiRank
vectors give new orderings of the moves, which do not
merely correspond to most played moves or sequences of
moves, but give a different information. As explained in
Section 3, moves highlighted by the ranking vectors can
correspond to moves which are connected to chains of im-
portant moves, eventhough they are not that frequent (it
was this difference which made Google the famous com-
pany it is today). We have also shown that it is possi-
ble with these methods to extract communities of moves
which share some common properties. A possible use of
these results would be to help organize the Monte Carlo
go search by running it into specific communities. Indeed,
despite its limitations [41], Monte-Carlo go remains the
most promising approach to computer go. The main goal
of these algorithms is an efficient value function estima-
tion [12]. We have proposed in this paper various commu-
nity detection processes, and the knowledge of these com-
munities could be used for instance to initialize the value
of moves according to the local pattern, at a value given
by the value of its ancestors. It could also be used to prop-
agate the value of a move to similar moves. It would be
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interesting to compare the values assigned to nodes of our
networks by the different computer programs available, in
order to see whether adjacency matrix properties could be
used to converge more quickly to the correct value func-
tion. We think an especially interesting path in this direc-
tion corresponds to the approach outlined in Section 5: by
constructing specific networks according to game phases
or levels of players, one can specify communities useful in
specific contexts of the game or corresponding to winning
strategies. It is also possible to use “personalization” tech-
niques (implemented by modifying the vector e in the def-
inition of G in Sect. 3 [29]) which are currently explored
in a World Wide Web context and allow to compute a
ranking vector biased towards a certain group of nodes,
e.g. one of the communities discussed in Section 4. All
these techniques deserve further study in this context.

It will be fascinating to see if other games such as chess
could be modelized this way, and how different the results
will be. Besides its applicability to the simulations of go
on computers, we also believe that such studies enable
to get insight on the way the human brain participates
in such game activities, and more generally on the hu-
man decision-making processes [9]. In this direction, an
interesting extension of this work could be to compare the
networks built from games played by human beings and
computers, and determine how different they are.

We thank Dima Shepelyansky, Klaus Frahm, Pierre Aubourg,
Yoann Séon and François Damon for discussions and insights.
We thank CalMiP for access to its supercomputers. V.K.
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“New tools and algorithms for directed network analysis” (NA-
DINE No. 288956).

References

1. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)
2. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks

(Oxford University Press, Oxford, 2003)
3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U.

Hwang, Phys. Rep. 424, 175 (2006)
4. B. Georgeot, O. Giraud, Europhys. Lett. 97, 68002 (2012)
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Abstract. Using the United Nations COMTRADE database [United Nations Commodity Trade Statistics
Database, available at: http://comtrade.un.org/db/. Accessed November (2014)] we construct the Google
matrix G of multiproduct world trade between the UN countries and analyze the properties of trade flows on
this network for years 1962−2010. This construction, based on Markov chains, treats all countries on equal
democratic grounds independently of their richness and at the same time it considers the contributions
of trade products proportionally to their trade volume. We consider the trade with 61 products for up
to 227 countries. The obtained results show that the trade contribution of products is asymmetric: some
of them are export oriented while others are import oriented even if the ranking by their trade volume
is symmetric in respect to export and import after averaging over all world countries. The construction
of the Google matrix allows to investigate the sensitivity of trade balance in respect to price variations
of products, e.g. petroleum and gas, taking into account the world connectivity of trade links. The trade
balance based on PageRank and CheiRank probabilities highlights the leading role of China and other
BRICS countries in the world trade in recent years. We also show that the eigenstates of G with large
eigenvalues select specific trade communities.

1 Introduction

According to the data of UN COMTRADE [1] and the in-
ternational trade statistics 2014 of the World Trade Orga-
nization (WTO) [2] the international world trade between
world countries demonstrates a spectacular growth with
an increasing trade volume and number of trade products.
It is well clear that the world trade plays the fundamental
role in the development of world economy [3]. According
to the WTO Chief Statistician Hubert Escaith “In recent
years we have seen growing demand for data on the world
economy and on international trade in particular. This de-
mand has grown in particular since the 2008−2009 crisis,
whose depth and breadth surprised many experts” [2]. In
global the data of the world trade exchange can be viewed
as a large multi-functional directed World Trade Network
(WTN) which provides important information about mul-
tiproduct commercial flows between countries for a given
year. At present the COMTRADE database contains data
for Nc = 227 UN countries with up to Np ≈ 104 trade
products. Thus the whole matrix of these directed trade
flows has a rather large size N = NpNc ∼ 106. A usual
approach is to consider the export and import volumes,
expressed in US dollars (USD). An example of the world
map of countries characterized by their import and export
trade volume for year 2008 is shown in Figure 1. However,

a e-mail: dima@irsamc.ups-tlse.fr

such an approach gives only an approximate description of
trade where hidden links and interactions between certain
countries and products are not taken into account since
only a country global import or export are considered.
Thus the statistical analysis of these multiproduct trade
data requires a utilization of more advanced mathematical
and numerical methods.

In fact, in the last decade, modern societies developed
enormous communication and social networks including
the World Wide Web (WWW), Wikipedia, Twitter, etc.
(see e.g. [4]). A necessity of information retrieval from
such networks led to a development of efficient algorithms
for information analysis on such networks appeared in
computer science. One of the most spectacular tools is
the PageRank algorithm developed by Brin and Page in
1998 [5], which became a mathematical foundation of the
Google search engine (see e.g. [6]). This algorithm is based
on the concept of Markov chains and a construction of the
Google matrix G of Markov transitions between network
nodes. The right eigenvector of this matrix G, known as
PageRank vector, allows to rank all nodes according to
their importance and influence on the network. The stud-
ies of various directed networks showed that it is useful
to analyze also the matrix G∗ constructed for the same
network but with an inverted direction of links [7,8]. The
PageRank vector of G∗ is known as the CheiRank vec-
tor. The spectral properties of Google matrix for various
networks are described in reference [9].

http://www.epj.org
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Table 1. Codes and names of the 61 products from COMTRADE Standard International Trade Classification (SITC) Rev. 1.

Code Name Code Name
00 Live animals 54 Medicinal and pharmaceutical products
01 Meat and meat preparations 55 Perfume materials, toilet & cleansing preptions
02 Dairy products and eggs 56 Fertilizers, manufactured
03 Fish and fish preparations 57 Explosives and pyrotechnic products
04 Cereals and cereal preparations 58 Plastic materials, etc.
05 Fruit and vegetables 59 Chemical materials and products, nes
06 Sugar, sugar preparations and honey 61 Leather, lthr. Manufs., nes & dressed fur skins
07 Coffee, tea, cocoa, spices & manufacs. Thereof 62 Rubber manufactures, nes
08 Feed. Stuff for animals excl. Unmilled cereals 63 Wood and cork manufactures excluding furniture
09 Miscellaneous food preparations 64 Paper, paperboard and manufactures thereof
11 Beverages 65 Textile yarn, fabrics, made up articles, etc.
12 Tobacco and tobacco manufactures 66 Non metallic mineral manufactures, nes
21 Hides, skins and fur skins, undressed 67 Iron and steel
22 Oil seeds, oil nuts and oil kernels 68 Non ferrous metals
23 Crude rubber including synthetic and reclaimed 69 Manufactures of metal, nes
24 Wood, lumber and cork 71 Machinery, other than electric
25 Pulp and paper 72 Electrical machinery, apparatus and appliances
26 Textile fibres, not manufactured, and waste 73 Transport equipment
27 Crude fertilizers and crude minerals, nes 81 Sanitary, plumbing, heating and lighting fixt.
28 Metalliferous ores and metal scrap 82 Furniture
29 Crude animal and vegetable materials, nes 83 Travel goods, handbags and similar articles
32 Coal, coke and briquettes 84 Clothing
33 Petroleum and petroleum products 85 Footwear
34 Gas, natural and manufactured 86 Scientif & control instrum, photogr gds, clocks
35 Electric energy 89 Miscellaneous manufactured articles, nes
41 Animal oils and fats 91 Postal packages not class. According to kind
42 Fixed vegetable oils and fats 93 Special transact. Not class. According to kind
43 Animal and vegetable oils and fats, processed 94 Animals, nes, incl. Zoo animals, dogs and cats
51 Chemical elements and compounds 95 Firearms of war and ammunition therefor
52 Crude chemicals from coal, petroleum and gas 96 Coin, other than gold coin, not legal tender
53 Dyeing, tanning and colouring materials

Fig. 1. World map of countries with color showing country
import (top panel) and export (bottom panel) trade volume
expressed in millions of USD given by numbers of the color
bars. The data are shown for year 2008 with Nc = 227 countries
for trade in all Np = 61 products (from UN COMTRADE [1]).
Names of countries can be found at [10].

The approach of Google matrix to the analysis of WTN
was started in [11]. The striking feature of this approach
is that it treats all UN countries on equal democratic
grounds, independently of richness of a given country,
in agreement with the principles of UN where all coun-
tries are equal. This property of G matrix is based on
the property of Markov chains where the total probabil-
ity is conserved to be unity since the sum of elements
for each column of G is equal to unity. Even if in this
approach all countries are treated on equal grounds still
the PageRank and CheiRank analysis recovers about 75%
of industrially developed countries of G20. However, now
these countries appear at the top ranking positions not
due to their richness but due to the efficiency of their trade
network. Another important aspect found in [11] is that
both PageRank and CheiRank vectors appear very nat-
urally in the WTN corresponding to import and export
flows.

In this work we extend the Google matrix analysis for
the multiproduct WTN obtained from COMTRADE [1]
with up to Np = 61 trade products for up to Nc = 227
countries. The global G matrix of such trade flows has a
size up to N = NpNc = 13 847 nodes. The names and
codes of products are given in Table 1 and their trade
volumes, expressed in percent of the whole world trade
volume, are given in Table 2 for years 1998 and 2008.

http://www.epj.org
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Table 2. Columns represent data: codes of 61 products of COMTRADE SITC Rev. 1, ImportRank and ExportRank K̂ = K̂∗

in year 2008, product fraction in global trade volume in 2008, K̂ = K̂∗ in 1998, product fraction in 1998.

Code K̂(08) % Vol(08) K̂(98) % Vol (98) Code K̂(08) % Vol(08) K̂(98) % Vol (98)

00 53 0.10 51 0.17 54 9 2.89 16 1.88
01 27 0.69 26 0.83 55 25 0.76 28 0.79

02 34 0.44 34 0.56 56 30 0.55 43 0.36

03 28 0.63 22 0.99 57 58 0.03 57 0.04
04 21 1.07 19 1.13 58 15 1.95 13 2.07

05 19 1.16 18 1.50 59 22 1.04 20 1.13

06 49 0.23 44 0.36 61 51 0.19 42 0.37

07 33 0.47 29 0.73 62 26 0.73 24 0.85
08 38 0.39 36 0.45 63 35 0.43 32 0.61

09 40 0.34 41 0.39 64 20 1.14 17 1.79

11 31 0.54 31 0.65 65 18 1.40 11 2.46
12 47 0.24 35 0.49 66 17 1.71 14 2.01

21 56 0.05 53 0.11 67 7 3.63 10 2.74

22 37 0.39 48 0.32 68 11 2.27 15 1.95

23 44 0.26 50 0.22 69 13 2.04 12 2.12
24 39 0.35 30 0.65 71 2 11.82 1 15.03

25 43 0.29 45 0.34 72 3 10.42 3 12.26

26 50 0.22 37 0.45 73 4 10.06 2 12.38

27 41 0.33 47 0.33 81 42 0.31 46 0.34
28 16 1.92 25 0.84 82 23 0.93 21 1.03

29 48 0.24 40 0.39 83 45 0.26 49 0.26

32 24 0.82 39 0.42 84 10 2.42 6 3.44
33 1 14.88 4 5.02 85 29 0.59 27 0.79

34 14 2.04 23 0.99 86 12 2.25 8 2.95

35 46 0.26 52 0.17 89 6 3.72 5 4.54

41 57 0.03 58 0.04 91 61 0.00 61 0.00
42 32 0.49 38 0.44 93 5 3.92 9 2.92

43 54 0.08 55 0.08 94 59 0.01 59 0.01

51 8 3.01 7 3.07 95 55 0.08 54 0.11
52 52 0.11 56 0.05 96 60 0.00 60 0.00

53 36 0.39 33 0.60

The main problem of construction of such a matrix is not
its size, which is rather modest compared to those studied
in [9], but the necessity to treat all countries on democratic
grounds and at the same time to treat trade products
on the basis of their trade volume. Indeed, the products
cannot be considered on democratic grounds since their
contributions to economy are linked with their trade vol-
ume. Thus, according to Table 2, in year 2008 the trade
volume of Petroleum and petroleum products (code 33 in
Tab. 1) is by a factor 300 larger than those of Hides, skins
and fur skins (undressed) (code 21 in Tab. 1). To incorpo-
rate these features in our mathematical analysis of multi-
product WTN we developed in this work the google per-
sonalized vector method (GPVM) which allows to keep a
democratic treatment of countries and at the same time
to consider products proportionally to their trade volume.
As a result we are able to perform analysis of the global
multiproduct WTN keeping all interactions between all
countries and all products. This is a new step in the WTN
analysis since in our previous studies [11] it was possible
to consider a trade between countries only in one product
or only in all products summed together (all commodi-
ties). The new finding of such global WTN analysis is an

asymmetric ranking of products: some of them are more
oriented to import and others are oriented to export while
the ranking of products by the trade volume is always sym-
metric after summation over all countries. This result with
asymmetric ranking of products confirms the indications
obtained on the basis of ecological ranking [12], which also
gives an asymmetry of products in respect to import and
export. Our approach also allows to analyze the sensitivity
of trade network to price variations of a certain product.

We think that the GPVM approach allows to perform a
most advanced analysis of multiproduct world trade. The
previous studies have been restricted to studies of sta-
tistical characteristics of WTN links, patterns and their
topology (see e.g. [13–19]). The applications of PageRank
algorithm to the WTN was discussed in [20] but effects
of export had been not analyzed there, the approach
based on HITS algorithm was used in [21]. In compar-
ison to the above studies, the approach developed here
for the multiproduct WTN has an advantage of analysis
of ingoing and outgoing flows, related to PageRank and
CheiRank, and of taking into account of multiproduct as-
pects of the WTN. Even if the importance to multiprod-
uct WTN analysis is clearly understood by researchers

http://www.epj.org
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(see e.g. [22]) the Google matrix methods have not been
efficiently used up to now. We also note that the matrix
methods are extensively used for analysis of correlations
of trade indexes (see e.g. [23,24]) but these matrices are
Hermitian being qualitatively different from those appear-
ing in the frame of Markov chains. Here we make the steps
in multi-functional or multiproduct Google matrix analy-
sis of the WTN extending the approach used in [11].

2 Methods

Below we give the mathematical definition for the con-
struction of the Google matrix G, which belongs to the
class of Perron-Frobenius operators and Markov chains.
The matrixG is constructed for the import (ingoing) trade
flows. We also use the matrix G∗ built from the export
(outgoing) trade flows. The matrix size N is given by the
product of number of countriesNc by the number of prod-
ucts Np. The main features of matrices G and G∗ are: all
elements are real positive numbers or zeros; the sum of
elements in each matrix column is equal to unity, that
gives the probability conservation required for Markov
chains. We use the right eigenvectors of PageRank P and
CheiRank P ∗ respectively for the matrices G,G∗ with the
largest eigenvalue λ = 1 (GP = P , G∗P ∗ = P ∗). These
vectors give the stationary distribution of probability over
the nodes. The important element of G and G∗ is their
democratic (equal grounds) treatment of all world coun-
tries independently of their richness. This results from the
construction rules of G,G∗ where for each country the sum
of elements in each column, corresponding to any product
of given country, is equal to unity. At the same time we
keep the contribution of products to be proportional to
their trade volume since their effect on the trade is in-
deed related with their volume contribution in the world
trade. Thus, the important new element of this work is
the new proposed method which uses a certain personal-
ized vector in construction of G,G∗ and satisfies the above
requirements.

At the same time we note that it is preferable to work
in a certain fixed class of operators, e.g. Google matrix and
Markov chains. Already only this requirement implies that
we need to treat countries in a democratic manner since by
the construction sum of elements in each column should
be unity. For one product, or for a sum of all products,
the construction of G,G∗ is relatively straightforward as
described in [11]. The most tricky part is the case of many
products which contribution should be treated proportion-
ally to their fraction in the world trade. We describe the
construction method of G,G∗ which takes into account
both these features of the world trade. We note that, as
discussed in [11], the obtained results have no significant
dependence on the damping factor α, which we keep be-
low at the fixed value α = 0.5. The simple examples of
constructions of matrices G,G∗ for directed networks are
illustrated in Figures 3 and 4 in [9]. Below we present all
mathematical definitions and describe the main features
of these matrices and eigenvectors.

2.1 Google matrix construction for the WTN

For a given year, we build Np money matrices Mp
c,c′ of the

WTN from the COMTRADE database [1] (see [11]).

Mp
c,c′ = product p transfer (in USD) fromcountry c′ to c.

(1)

Here the country indexes are c, c′ = 1, . . . , Nc and a prod-
uct index is p = 1, . . . , Np. According to the COMTRADE
database the number of UN registered countries is Nc =
227 (in recent years) and the number of products is
Np = 10 and Np = 61 for 1 and 2 digits respectively from
the Standard International Trade Classification (SITC)
Rev. 1. For convenience of future notation we also define
the volume of imports and exports for a given country and
product respectively as:

V p
c =

∑

c′
Mp

c,c′ , V
∗p
c =

∑

c′
Mp

c′,c. (2)

The import and export volumes Vc =
∑

p V
p
c and V ∗

c =∑
p V

∗p
c are shown for the world map of countries in

Figure 1 for year 2008.
In order to compare later with PageRank and

CheiRank probabilities we define volume trade ranks in
the whole trade space of dimension N = Np × Nc. Thus
the ImportRank (P̂ ) and ExportRank (P̂ ∗) probabilities
are given by the normalized import and export volumes

P̂i = V p
c /V, P̂

∗
i = V ∗p

c /V, (3)

where i = p+ (c− 1)Np, i = 1, . . . , N and the total trade
volume is:

V =
∑

p,c,c′
Mp

c,c′ =
∑

p,c

V p
c =

∑

p,c

V ∗p
c .

The Google matrices G and G∗ are defined as N ×N real
matrices with non-negative elements:

Gij = αSij +(1−α)viej , G
∗
ij = αS∗

ij +(1−α)v∗i ej , (4)

where N = Np × Nc, α ∈ (0, 1] is the damping factor
(0 < α < 1), ej is the row vector of unit elements (ej = 1),
and vi is a positive column vector called a personaliza-
tion vector with

∑
i vi = 1 [6]. We note that the usual

Google matrix is recovered for a personalization vector
vi = ei/N . In this work, following [11], we fix α = 0.5. As
discussed in [6,9,11] a variation of α in a range (0.5, 0.9)
does not significantly affect the probability distributions
of PageRank and CheiRank vectors. We specify the choice
of the personalization vector a bit below.

The matrices S and S∗ are built from money matrices
Mp

cc′ as:

Si,i′ =
{
Mp

c,c′δp,p′/V ∗p
c′ if V ∗p

c′ �= 0
1/N if V ∗p

c′ = 0

S∗
i,i′ =

{
Mp

c′,cδp,p′/V p
c′ if V p

c′ �= 0
1/N if V p

c′ = 0 (5)
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where c, c′ = 1, . . . , Nc; p, p′ = 1, . . . , Np; i = p+(c−1)Np;
i′ = p′ + (c′ − 1)Np; and therefore i, i′ = 1, . . . , N . Note
that the sum of each column of S and S∗ are normalized
to unity and hence the matrices G,G∗, S, S∗ belong to the
class of Google matrices and Markov chains. The eigen-
values and eigenstates of G,G∗ are obtained by a direct
numerical diagonalization using the standard numerical
packages.

2.2 PageRank and CheiRank vectors from GPVM

PageRank and CheiRank (P and P ∗) are defined as the
right eigenvectors of G and G∗ matrices respectively at
eigenvalue λ = 1:

∑

j

Gijψj = λψi,
∑

j

G∗
ijψ

∗
j = λψ∗

j . (6)

For the eigenstate at λ = 1 we use the notation Pi =
ψi, P

∗ = ψ∗
i with the normalization

∑
Pi =

∑
i P

∗
i = 1.

For other eigenstates we use the normalization
∑

i |ψi|2 =∑
i |ψ∗

i |2 = 1. According to the Perron-Frobenius theorem
the components of Pi, P ∗

i are positive and give the prob-
abilities to find a random surfer on a given node [6]. The
PageRank K and CheiRank K∗ indexes are defined from
the decreasing ordering of P and P ∗ as P (K) ≥ P (K+1)
and P ∗(K) ≥ P ∗(K∗ + 1) with K,K∗ = 1, . . . , N .

If we want to compute the reduced PageRank and
CheiRank probabilities of countries for all commodities
(or equivalently all products) we trace over the prod-
uct space getting Pc =

∑
p Ppc =

∑
p P (p+ (c− 1)Np)

and P ∗
c =

∑
P ∗

pc =
∑

p P
∗ (p+ (c− 1)Np) with their

corresponding Kc and K∗
c indexes. In a similar way

we obtain the reduced PageRank and CheiRank prob-
abilities for products tracing over all countries and
getting Pp =

∑
c P (p+ (c− 1)Np)

∑
p Ppc and P ∗

p =∑
c P

∗ (p+ (c− 1)Np)
∑
P ∗

pc with their corresponding
product indexes Kp and K∗

p .
In summary we have Kp,K

∗
p = 1, . . . , Np and

Kc,K
∗
c = 1, . . . , Nc. A similar definition of ranks from

import and export trade volume can be done in a straight-
forward way via probabilities P̂p, P̂

∗
p , P̂c, P̂

∗
c , P̂pc, P̂

∗
pc and

corresponding indexes K̂p, K̂
∗
p , K̂c, K̂

∗
c , K̂, K̂

∗.
To compute the PageRank and CheiRank probabilities

from G and G∗ keeping democracy in countries and pro-
portionality of products to their trade volume we use the
GPVM approach with a personalized vector in (4). At the
first iteration of Google matrix we take into account the
relative product volume per country using the following
personalization vectors for G and G∗:

vi =
V p

c

Nc

∑
p′ V

p′
c

, v∗i =
V ∗p

c

Nc

∑
p′ V

∗p′
c

, (7)

using the definitions (2) and the relation i = p+ (c− 1)Np.
This personalized vector depends both on product and
country indexes. In order to have the same value of person-
alization vector in countries we can define the second it-
eration vector proportional to the reduced PageRank and
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Fig. 2. Dependence of probabilities of PageRank P (K),

CheiRank P ∗(K∗), ImportRank P̂ (K̂) and ExportRank

P̂ ∗(K̂∗) as a function of their indexes in logarithmic scale for
WTN in 2008 with α = 0.5 at Nc = 227, Np = 1, N = 13 847.
Here the results for GPVM after 1st and 2nd iterations are
shown for PageRank (CheiRank) in red (blue) with dashed
and solid curves, respectively. ImportRank and ExportRank
(trade volume) are shown by red and blue thin curves, re-
spectively. The fit exponents for PageRank and CheiRank are
β = 0.61, 0.7 for the first iteration, β = 0.59, 0.65 for the second
iteration, and β = 0.94, 1.04 for ImportRank and ExportRank
(for the range K ∈ [10, 2000]).

CheiRank vectors in products obtained from the GPVM
Google matrix of the first iteration:

v′(i) =
Pp

Nc
, v′∗(i) =

P ∗
p

Nc
. (8)

In this way we keep democracy in countries but weighted
products. This second iteration personalized vectors are
used for the main part of computations and operations
with G and G∗. This procedure with two iterations forms
our GPVM approach. The difference between results ob-
tained from the first and second iterations is not very large
(see Figs. 2 and 3) but a detailed analysis of ranking of
countries and products shows that the personalized vector
for the second iteration improves the results making them
more stable and less fluctuating. In all figures below (ex-
cept Figs. 2 and 3) we show the results after the second
iteration.

The obtained results show the distribution of nodes
on the PageRank-CheiRank plane (K,K∗). In addition
to two ranking indexes K,K∗ we use also 2DRank in-
dex K2 which combines the contribution of these indexes
as described in [8]. The ranking list K2(i) is constructed
by increasing K → K + 1 and increasing 2DRank in-
dex K2(i) by one if a new entry is present in the list
of first K∗ < K entries of CheiRank, then the one unit
step is done in K∗ and K2 is increased by one if the new
entry is present in the list of first K < K∗ entries of
CheiRank. More formally, 2DRank K2(i) gives the order-
ing of the sequence of sites, that appear inside the squares
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Fig. 3. Probability distributions of PageRank and CheiRank
for products Pp(Kp), P ∗

p (K∗
p ) (left panel) and countries

Pc(Kc), P
∗
c (K∗

c ) (right panel) in logarithmic scale for WTN
from Figure 2. Here the results for the 1st and 2nd GPVM
iterations are shown by red (blue) curves for PageRank
(CheiRank) with dashed and solid curves, respectively. The
probabilities from the trade volume ranking are shown by black
curve (left) and dotted red and blue curves (right) for Impor-
tRank and ExportRank, respectively.

[1, 1;K = k,K∗ = k; . . .] when one runs progressively from
k = 1 to N . Additionally, we analyze the distribution of
nodes for reduced indexes (Kp,K

∗
p ), (Kc,K

∗
c ).

We also characterize the localization properties of
eigenstates of G,G∗ by the inverse participation ratio
(IPR) defined as ξ = (

∑
i |ψi|2)2/

∑
i |ψi|4. This char-

acteristic determines an effective number of nodes which
contribute to a formation of a given eigenstate (see details
in Ref. [9]).

2.3 Correlators of PageRank and CheiRank vectors

Following previous works [7,8,11] the correlator of
PageRank and CheiRank vectors is defined as:

κ = N
N∑

i=1

P (i)P ∗(i) − 1. (9)

The typical values of κ are given in [9] for various
networks.

For global PageRank and CheiRank the product-
product correlator matrix is defined as:

κpp′ = Nc

×
Nc∑

c=1

[
P (p+ (c−1)Np)P ∗(p′ + (c−1)Np)∑

c′ P (p+ (c′−1)Np)
∑

c′′ P
∗(p′ + (c′′−1)Np)

]
−1.

(10)

Then the correlator for a given product is obtained
from (10) as:

κp = κpp′δp,p′ , (11)

where δp,p′ is the Kronecker delta.
We also use the correlators obtained from the prob-

abilities traced over products (Pc =
∑

p Ppc) and over

countries (Pp =
∑

c Ppc) which are defined as:

κ(c) = Nc

Nc∑

c=1

PcP
∗
c − 1,

κ(p) = Np

Np∑

p=1

PpP
∗
p − 1. (12)

In the above equations (9)–(12) the correlators are com-
puted for PageRank and CheiRank probabilities. We can
also compute the same correlators using probabilities from
the trade volume in ImportRank P̂ and ExportRank P̂ ∗
defined by (3).

We discuss the values of these correlators in Section 4.

3 Data description

All data are obtained from the COMTRADE database [1].
We used products from COMTRADE SITC Rev. 1 clas-
sification with number of products Np = 10 and 61. We
choose SITC Rev. 1 since it covers the longest time inter-
val. The main results are presented for Np = 61 with up
to Nc = 227 countries. The names of products are given in
Table 1, their ImportRank index K and their fraction (in
percent) of global trade volume in years 1998 and 2008 are
given in Table 2. The data are collected and presented for
the years 1962−2010. Our data and results are available
at [25], the data for the matrices Mp

c,c′ are available at
COMTRADE [1] with the rules of their distribution pol-
icy. Following [11] we use for countries ISO 3166-1 alpha-3
code available at Wikipedia.

4 Results

We apply the above methods to the described data sets of
COMTRADE and present the obtained results below.

4.1 PageRank and CheiRank probabilities

The dependence of probabilities of PageRank P (K) and
CheiRank P ∗(K∗) vectors on their indexes K,K∗ are
shown in Figure 2 for a selected year 2008. The results can
be approximately described by an algebraic dependence
P ∝ 1/Kβ with the exponent values given in the cap-
tion. It is interesting to note that we find approximately
the same β ≈ 0.6 both for PageRank and CheiRank in
contrast to the WWW, universities and Wikipedia net-
works where usually one finds β ≈ 1 for PageRank and
β ≈ 0.6 for CheiRank [6,9]. We attribute this to an intrin-
sic property of WTN where the countries try to keep econ-
omy balance of their trade. The data show that the range
of probability variation is reduced for the Google rank-
ing compared to the volume ranking. This results from a
democratic ranking of countries used in the Google matrix
analysis that gives a reduction of richness dispersion be-
tween countries. The results also show that the variation
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of probabilities for 1st and 2nd GPVM results are not very
large that demonstrates the convergence of this approach.

After tracing probabilities over countries we obtain
probability distributions Pp(Kp), P ∗

p (K∗
p) over products

shown in Figure 3. The variation range of probabilities is
the same as for the case of volume ranking. This shows
that the GPVM approach correctly treats products keep-
ing their contributions proportional to their volume. The
difference between 1st and 2nd iterations is rather small
and is practically not visible on this plot. The impor-
tant result well visible here is a visible difference between
PageRank and CheiRank probabilities while there is no
difference between ImportRank and ExportRank proba-
bilities since they are equal after tracing over countries.

After tracing over products we obtain probability dis-
tributions Pc(Kc), P ∗

c (K∗
c ) over countries shown in Fig-

ure 3. We see that the probability of volume ranking varies
approximately by a factor 1000 while for PageRank and
CheiRank such a factor is only approximately 10. Thus
the democracy in countries induced by the Google matrix
construction reduces significantly the variations of proba-
bilities among countries and inequality between countries.

Both panels of Figure 3 show relatively small varia-
tions between 1st and 2nd GPVM iterations confirming
the stability of this approach. In next sections we present
the results only for 2nd GPVM iteration. This choice is
confirmed by consideration of ranking positions of various
nodes of global matrices G,G∗ which show less fluctua-
tions compared to the results of the 1st GPVM iteration.

From the global ranking of countries and products we
can select a given product and then determine local rank-
ing of countries in a given product to see how strong is
their trade for this product. The results for three selected
products are discussed below for year 2008. For compar-
ison we also present comparison with the export-import
ranking from the trade volume.

4.2 Ranking of countries and products

After tracing the probabilities P (K), P ∗(K∗) over prod-
ucts we obtain the distribution of world countries on
the PageRank-CheiRank plane (Kc,K

∗
c ) presented in

Figure 4 for a test year 2008. In the same figure we
present the rank distributions obtained from ImportRank-
ExportRank probabilities of trade volume and the results
obtained in [11] for trade in all commodities. For the
GPVM data we see the global features already discussed
in [11]: the countries are distributed in a vicinity of diag-
onal Kc = K∗

c since each country aims to keep its trade
balanced. The top 20 list of top K2 countries recover 15
of 19 countries of G20 major world economies (EU is the
number 20) thus obtaining 79% of the whole list. This
is close to the percent obtained in [11] for trade in all
commodities.

The global distributions of top countries with Kc ≤ 40,
K∗

c ≤ 40 for the three ranking methods, shown in Fig-
ure 4, are similar on average. But some modifications in-
troduced by the GPVM analysis are visible. Thus China
(CHN) moves on 2nd position of CheiRank while it is in

Fig. 4. Country positions on PageRank-CheiRank plane
(Kc, K

∗
c ) obtained by the GPVM analysis (top panels),

ImportRank-ExportRank of trade volume (center panels), and
for PageRank-CheiRank of all commodities (bottom panels,
data from [11]). Left panels show global scale (Kc,K

∗
c ∈

[1, 200]) and right panels show zoom on top ranks (Kc,K
∗
c ∈

[1, 40]). Each country is shown by circle with its own flag (for
a better visibility the circle center is slightly displaced from its
integer position (Kc,K

∗
c ) along direction angle π/4). Data are

shown for year 2008.

the 1st position for trade volume ranking and CheiRank of
all commodities. Also e.g. Saudi Arabia (SAU) and Rus-
sia (RUS) move from the CheiRank positions K∗

c = 21
and K∗

c = 7 in all commodities [11] to K∗
c = 29 and

K∗
c = 6 in the GPVM ranking, respectively. Other ex-

ample is a significant displacement of Nigeria (NGA). We
explain such differences as the result of larger connectiv-
ity required for getting high ranking in the multiproduct
WTN. Indeed, China is more specialized in specific prod-
ucts compared to USA (e.g. no petroleum production and
export) that leads to its displacement in K∗

c . We note that
the ecological ranking gives also worse ranking positions
for China comparing to the trade volume ranking [12]. In
a similar way the trade of Saudi Arabia is strongly dom-
inated by petroleum and moreover its petroleum trade is
strongly oriented on USA that makes its trade network
concentrated on a few links while Russia is improving its
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Machinery, other than electric
Electrical machinery, apparatus and appliances
Transport equipment
Sanitary, plumbing, heating and lighting fixt.
Furniture
Travel goods, handbags and similar articles
Clothing
Footwear
Scientif & control instrum, photogr gds, clocks
Miscellaneous manufactured articles, nes
Postal packages not class. According to kind
Special transact. Not class. According to kind
Animals, nes, incl. Zoo animals, dogs and cats
Firearms of war and ammunition therefor
Coin, other than gold coin, not legal tender

Medicinal & pharmaceutical prod.
Perfume mat., toilet & clean. prep.
Fertilizers, manufactured
Explosives and pyrotechnic prod.
Plastic materials, etc.
Chemical materials and products
Leather. Manuf. & dressed fur skin
Rubber manufactures, nes
Wood & cork manuf. exc. furniture
Paper, paperboard and manuf.
Textile yarn, fabrics, etc.
Non metallic mineral manuf., nes
Iron and steel
Non ferrous metals
Manufactures of metal, nes

Pulp and paper
Textile fibres, not manuf., & waste
Crude fertilizers & crude minerals
Metalliferous ores and metal scrap
Crude animal & vegetable mat.
Coal, coke and briquettes
Petroleum and petroleum products
Gas, natural and manufactured
Electric energy
Animal oils and fats
Fixed vegetable oils and fats
Animal & veg. oils & fats (proc.)
Chemical elements & compounds
Crude chem. from coal, petr. & gas
Dyeing, tanning & colouring mat.

Live animals
Meat and meat preparations
Dairy products and eggs
Fish and fish preparations
Cereals and cereal preparations
Fruit and vegetables
Sugar, sugar prep. and honey
Coffee, tea, cocoa, spices & man
Feed. Stuff for animals
Miscellaneous food preparations
Beverages
Tobacco and tobacco manuf.
Hides, skins and fur skins, undress.
Oil seeds, oil nuts and oil kernels
Crude rubber incl. synth & recl.
Wood, lumber and cork

Fig. 5. Two dimensional ranking of products on the
PageRank-CheiRank plane (Kp,K

∗
p ). Each product is repre-

sented by its specific combination of color and symbol: color il-
lustrates the first digit of COMTRADE SITC Rev. 1 code with
the corresponding name shown in the legend on the bottom;
symbols correspond to product names listed in Table 1 with
their code numbers; the order of names on the bottom panel of
symbols of this figure is the same as in Table 1 (counting from
top to bottom and left to right). The trade volume ranking via
ImportRank-ExportRank is shown by small symbols at the di-
agonal K̂p = K̂∗

p , after tracing over countries this ranking is
symmetric in products. Top left and right panels show years
1963 and 1978, while bottom left and right panels show years
1993 and 2008, respectively.

position in K∗
c due to significant trade links with EU and

Asia.
In global, the comparison of three ranks of countries

shown in Figure 4 confirms that the GPVM analysis gives
a reliable ranking of multiproduct WTN. Thus we now
try to obtain new features of multiproduct WTN using
the GPVM approach.

The main new feature obtained within the GPVM ap-
proach is shown in Figure 5 which gives the distribution
of products on the PageRank-CheiRank plane (Kp,K

∗
p )

after tracing of global probabilities P (K), P ∗(K∗) over
all world countries. The data clearly show that the dis-
tribution of products over this plane is asymmetric while
the ranking of products from the trade volume produces
the symmetric ranking of products located directly on
diagonal Kp = K∗

p . Thus the functions of products are
asymmetric: some of them are more oriented to export

(e.g. 03 Fish and fish preparations, 05 Fruit and vegeta-
bles, 26 Textile fibers, not manuf. etc., 28 Metalliferous
ores and metal scrap, 84 Clothing); in last years (e.g. 2008)
34 Gas, natural and manufactured also takes well pro-
nounced export oriented feature characterized by location
in the lower right triangle (K∗

p < Kp) of the square plane
(Kp,K

∗
p). In contrast to that the products located in the

upper left triangle (K∗
p > Kp) represent import oriented

products (e.g. 02 Dairy products and eggs, 04 Cereals and
cereal preparations, 64 Paper, paperboard and manuf., 65
Textile yarn, fabrics, etc., 86 Scientific & control instrum,
photogr gds, clocks).

It is interesting to note that the machinery products
71, 72. 73 are located on leading import oriented positions
in 1963, 1978, 1993 but they become more close to sym-
metric positions in 2008. We attribute this to development
of China that makes the trade in these products more sym-
metric in import-export. It is interesting to note that in
1993 the product 33 Petroleum and petroleum products
loses its first trade volume position due to low petroleum
prices but still it keeps the first CheiRank position show-
ing its trade network importance for export. Each product
moves on (Kp,K

∗
p ) with time. However, a part of the above

points, we can say that the global distribution does not
manifest drastic changes. Indeed, e.g. the green symbols of
first digit 2 remain export oriented for the whole period
1963−2008. We note that the established asymmetry of
products orientation for the world trade is in agreement
with the similar indications obtained on the basis of eco-
logical ranking in [12]. However, the GPVM approach used
here have more solid mathematical and statistical founda-
tions with a reduced significance of fluctuations comparing
to the ecological ranking.

The comparison between the GPVM and trade volume
ranking methods provides interesting information. Thus in
petroleum code 33 we have on top positions Russia, Saudi
Arabia, United Arab Emirates while from the CheiRank
order of this product we find Russia, USA, India (see Fig. 6
and Tab. 3). This marks the importance of the role of USA
and India played in the WTN and in the redistribution of
petroleum over nearby region countries, e.g. around India.
Also Singapore is on a local petroleum position just be-
hind India and just before Saudi Arabia, see Table 3. This
happens due to strong involvement of India and Singapore
in the trade redistribution flows of petroleum while Saudi
Arabia has rather restricted trade connections strongly
oriented on USA and nearby countries.

For electrical machinery 72 there are less modifications
in the top export or CheiRank positions (see Fig. 6) but we
observe significant broadening of positions on PageRank-
CheiRank plane comparing to ImportRank-ExportRank.
Thus, Asian countries (China, Japan, S. Korea, Singa-
pore) are located on the PageRank-CheiRank plane well
below the diagonal K = K∗ showing a significant trade
advantages of these countries in product 72 comparing to
Western countries (USA, Germany, France, UK).

Another product, shown in Figure 6, is 03 Fish and
fish preparations. According to the trade volume export
ranking the top three positions are attributed to China,
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Fig. 6. Left panels show results of the GPVM data for country
positions on PageRank-CheiRank plane of local rank values
K,K∗ ordered by (Kcp,K

∗
cp) for specific products with p =

33 (top panel), p = 72 (center panel) and p = 03 (bottom
panel). Right panels show the ImportRank-ExportRank planes
respectively for comparison. Data are given for year 2008. Each
country is shown by circle with its own flag as in Figure 4.

Norway, Thailand. However, from CheiRank of product 03
we find another order with Thailand, USA, China. This
result stresses again the broadness and robustness of the
trade connections of Thailand and USA. As another exam-
ple we note a significant improvement of Spain CheiRank
position showing its strong commercial relations for prod-
uct 03. On the other side Russia has relatively good po-
sition in the trade volume export of 03 product but its
CheiRank index becomes worse due to absence of broad
commercial links for this product.

The global top 20 positions of indexes K,K∗, K2, K̂,
K̂∗ are given in Table 3 for year 2008. We note a sig-
nificant improvement of positions of Singapore and India
in PageRank-CheiRank positions comparing to their po-
sitions in the trade volume ranking. This reflects their
strong commercial relations in the world trade. In the
trade volume ranking the top positions are taken by 33
petroleum and digit 7 of machinery products. This re-
mains mainly true for PageRank-CheiRank positions but
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K*
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South Korea
China
Russia
France
Brazil

2008

1 10 100 1000 10000
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K*
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China
Russia
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Fig. 7. Global plane of rank indexes (K,K∗) for PageRank-
CheiRank (left panel) and ImportRank-ExportRank (right
panel) for N = 13 847 nodes in year 2008. Each country and
product pair is represented by a gray circle. Some countries
are highlighted in colors: USA with black, South Korea with
red, China with green, Russia with red, France with yellow and
Brazil with orange.

Fig. 8. Top 200 global PageRank-CheiRank indexes (K,K∗)
distributions for year 2008. Each country (for different
products) is represented by its flag.

we see the spectacular improvement of positions of 84
Clothing for China (K∗ = 2) and 93 Special transact. for
USA (K = 4) showing thus these two products have strong
commercial exchange all over the world even if their trade
volume is not so dominant.

We show the plane (K,K∗) for the global world rank-
ing in logarithmic scale in 2008 in Figure 7. The positions
of trade nodes of certain selected countries are shown by
color. We observe that the trade volume gives a higher
concentration of nodes around diagonal comparing to the
GPVM ranking. We attribute this to the symmetry of
trade volume in products.

In Figure 8 we show the distributions of top 200 ranks
of the PageRank-CheiRank plane (zoom of left panel of
Fig. 7). Among the top 30 positions of K∗ there are 8
products of USA, 6 of China, 3 of Germany and other
countries with less number of products. The top position
atK∗ = 1 corresponds to product 33 of Russia while Saudi
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Table 3. Top 20 ranks for global PageRank K, CheiRank K∗, 2dRank K2, ImportRank K̂ and ExportRank K̂∗ for given
country and product code for year 2008.

# K K∗ K2 K̂ K̂∗

country & code country & code country & code country & code country & code
1 USA 33 Russia 33 Germany 73 USA 33 China 72
2 USA 73 China 84 USA 73 USA 71 Russia 33
3 USA 71 Germany 73 USA 33 USA 72 China 71
4 USA 93 Japan 73 USA 71 USA 73 Germany 73
5 Germany 73 USA 73 India 33 Japan 33 Germany 71
6 USA 72 China 72 Singapore 33 China 72 Saudi Arabia 33
7 France 73 USA 33 Germany 71 China 33 USA 71
8 Germany 71 India 33 USA 72 Germany 71 Japan 73
9 Singapore 33 USA 71 France 73 Germany 73 USA 73
10 India 33 China 71 Netherlands 33 Netherlands 33 Japan 71
11 China 33 Singapore 33 USA 93 Germany 72 USA 72
12 Netherlands 33 Saudi Arabia 33 Nigeria 33 China 71 China 89
13 France 33 Germany 71 Germany 72 USA 89 Germany 72
14 UK 71 USA 72 China 72 Italy 33 China 84
15 UK 73 France 73 China 71 Germany 33 Japan 72
16 Germany 72 Thailand 3 UK 33 South Korea 33 South Korea 72
17 USA 89 Kazakhstan 33 Germany 93 France 73 France 73
18 South Korea 33 U. Arab Emir. 33 China 33 China 28 Italy 71
19 France 71 USA 28 South Korea 33 Germany 93 U. Arab Emir. 33
20 Sudan 73 Netherlands 33 Australia 33 India 33 Germany 93

Arabia is only at K∗ = 12 for this product. The lists of
all N = 13 847 network nodes with their K,K2,K

∗ values
are available at [25].

4.3 Time evolution of ranking

The time evolution of indexes of products Kp,K
∗
p is

shown in Figure 9. To obtain these data we trace PageR-
ank and CheiRank probabilities over countries and show
the time evolution of rank indexes of products Kp,K

∗
p

for top 15 rank products of year 2010. The product 33
Petroleum and petroleum products remains at the top
CheiRank position K∗

p = 1 for the whole period while
in PageRank it shows significant variations from Kp = 1
to 4 being at Kp = 4 at 1986−1999 when the petroleum
had a low price. Products with first digit 7 have high ranks
of Kp but especially strong variation is observed for K∗

p of
72 Electrical machinery moving from position 26 in 1962
to 4 in 2010. Among other indexes with strong variations
we note 58 Plastic materials, 84 Clothing, 93 Special trans-
act., 34 Gas, natural and manufactured.

The time evolution of products 33 and 72 on the global
index plane (K,K∗) is shown in Figure 10 for 6 countries
from Figure 7. Thus for product 72 we see a striking im-
provement of K∗ for China and Korea that is at the origin
of the global importance improvement of K∗

p in Figure 9.
For the product 33 in Figure 10 Russia improves signif-
icantly its rank positions taking the top rank K∗ = 1
(see also Tab. 3).

The variation of global ranksK,K∗ with time is shown
for 4 products and 10 countries in Figure 11. For prod-
ucts 72, 73 on a scale of 50 years we see a spectacular im-
provement of K∗ for China, Japan, Korea. For the prod-
uct 33 we see strong improvement of K∗ for Russia in
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Fig. 9. Time evolution of PageRank Kp and CheiRank K∗
p

indexes for years 1962 to 2010 for certain products marked on
the right panel side by their codes from Table 1. Top panels
show top 5 ranks of 2010, middle and bottom panels show
ranks 6 to 10 and 11 to 15 for 2010, respectively. Colors of
curves correspond to the colors of Figure 5 marking the first
code digit.

last 15 years. It is interesting to note that at the pe-
riod 1986−1992 of cheap petroleum 33 USA takes the
top position K∗ = 1 with a significant increase of its
corresponding K value. We think that this is a result
of political decision to make an economical pressure on
USSR since such an increase of export of cheap price
petroleum is not justified from the economical view point.
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72 − Electrical mahinery, apparatus and appliances 33 − Petroleum and petroleum products

Fig. 10. Time evolution of ranking of two products 72 and 33
for 6 countries of Figure 7 shown on the global PageRank-
CheiRank plane (K,K∗). Left and right panels show the
cases of 72 Electrical machinery, apparatus and appliances and
33 petroleum and petroleum products, respectively. The evolu-
tion in time starts in 1962 (marked by cross) and ends in 2010
(marked by square).
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Fig. 11. Time evolution of global ranking of PageRank and
CheiRank indexes K,K∗ for selected 10 countries and 4 prod-
ucts. Left and right panels show K and K∗ as a function of
years for products: 03 Fish and fish preparations; 33 Petroleum
and petroleum products; 72 Electrical machinery, apparatus
and appliances; and 73 Transport equipment (from top to bot-
tom). In all panels the ranks are shown in logarithmic scale for
10 given countries: USA, South Korea, China, Russia, France,
Brazil, Great Britain, Japan, Germany and Argentina marked
by curve colors.

For the product 33 we also note a notable improvement
of K∗ of India which is visible in CheiRank but not in
ExportRank (see Tab. 3). We attribute this not to a large
amount of trade volume but to a significant structural im-
provements of trade network of India in this product. We
note that the strength and efficiency of trade network is
also at the origin of significant improvement of PageRank
and CheiRank positions of Singapore comparing to the
trade volume ranking. Thus the development of trade con-
nections of certain countries significantly improves their

10 20 30 40 50 60p
0.1

1

10

100

κ
p

Fig. 12. PageRank-CheiRank correlators κp (11) from the
GPVM are shown as a function of the product index p with
the corresponding symbol from Figure 5. PageRank-CheiRank
and ImportRank-ExportRank correlators are shown by solid
and dashed lines respectively, where the global correlator κ (9)
is shown in black, the correlator for countries κ(c) (12) is shown
by red lines, the correlator for products κ(p) (12) is shown by
blue lines. Here product number p is counted in order of ap-
pearance in Table 1. The data are given for year 2008 with
Np = 61, Nc = 227, N = 13 847.

Google rank positions. For the product 03 we note the im-
provement of K∗ positions of China and Argentina while
Russia shows no improvements in this product trade for
this time period.

4.4 Correlation properties of PageRank and CheiRank

The properties of κ correlator of PageRank and CheiRank
vectors for various networks are reported in [7,9]. There
are directed networks with small or even slightly negative
values of κ, e.g. Linux Kernel or Physical Review citation
networks, or with κ ∼ 4 for Wikipedia networks and even
larger values κ ≈ 116 for the Twitter network.

The values of correlators defined by equations (9)–(12)
are shown in Figures 12 and 13 for a typical year 2008.
For the global PageRank-CheiRank correlator we find
κ ≈ 5.7 (9) while for Import-Export probabilities the
corresponding value is significantly larger with κ ≈ 33.7.
Thus the trade volume ranking with its symmetry in prod-
ucts gives an artificial increase of κ by a significant factor.
A similar enhancement factor of Import-Export remains
for correlators in products κ(p) and countries κ(c) from
equation (12) while for PageRank-CheiRank we obtain
moderate correlator values around unity (see Fig. 12). The
PageRank-CheiRank correlator κp (11) for specific prod-
ucts have relatively low values with κp < 1 for practically
all products with p ≤ 45 (we remind that here p counts
the products in the order of their appearance in Tab. 1, it
is different from COMTRADE code number).

The correlation matrix of products κpp′ (10) is shown
in Figure 13. This matrix is asymmetric and demonstrates
the existence of relatively high correlations between prod-
ucts 73 Transport equipment, 65 Textile yarn, fabrics,
made up articles, etc. and 83 Travel goods, handbags and
similar articles that all are related with transportation of
products.
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Table 4. Top 10 values of 4 different eigenvectors from Figure 16. The corresponding eigenvalues form left to right are λ = 0.9548,
λ = 0.9345, λ = 0.452+ i0.775 and λ = 0.424+ i0.467. There is only one product in each of these top 10 list nodes which are: 57
Explosives and pyrotechnic products; 06 Sugar, sugar preparations and honey ; 56 Fertilizers, manufactured ; 52 Crude chemicals
from coal, petroleum and gas.

Ki |ψi| Country |ψi| Country |ψi| Country |ψi| Country
prod: 57 prod:06 prod:56 prod:52

1 0.052 USA 0.216 Mali 0.332 Brazil 0.288 Japan
2 0.044 Tajikistan 0.201 Guinea 0.304 Bolivia 0.279 Rep. of Korea
3 0.042 Kyrgyzstan 0.059 USA 0.274 Paraguay 0.245 China
4 0.022 France 0.023 Germany 0.031 Argentina 0.020 Australia
5 0.021 Mexico 0.021 Mexico 0.017 Uruguay 0.013 USA
6 0.018 Italy 0.021 Canada 0.009 Chile 0.012 U. Arab Em.
7 0.018 Canada 0.018 UK 0.004 Portugal 0.010 Canada
8 0.015 Germany 0.015 Israel 0.004 Angola 0.010 Singapore
9 0.013 U. Arab Em. 0.015 C. d’Ivoire 0.004 Spain 0.009 Germany
10 0.012 Qatar 0.014 Japan 0.003 France 0.008 New Zealand
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Fig. 13. Product PageRank-CheiRank correlation matrix κp,p′

(10) for year 2008 with correlator values shown by color. The
code indexes p and p′ of all Np = 61 products are shown on x
and y axes by their corresponding first digit (see Tab. 1).

4.5 Spectrum and eigenstates of WTN Google matrix

Above we analyzed the properties of eigenstates of G and
G∗ at the largest eigenvalue λ = 1. However, in total there
are N eigenvalues and eigenstates. The results obtained
for the Wikipedia network [26] demonstrated that eigen-
states with large modulus of λ correspond to certain spe-
cific communities of the network. Thus it is interesting to
study the spectral properties of G for the multiproduct
WTN. The spectra of G and G∗ are shown in Figure 14
for year 2008. It is interesting to note that for G the spec-
trum shows some similarities with those of Wikipedia (see
Fig. 1 in [26]). At α = 1 there are 12 and 7 degenerate
eigenvalues λ = 1 for G and G∗, respectively. Thus the
spectral gap appears only for α < 1. The dependence of
IPR ξ of eigenstates of G on Reλ is shown in Figure 15.
The results show that ξ 
 N so that the eigenstates are
well localized on a certain group on nodes.

The eigenstates ψi can be ordered by their decreas-
ing amplitude |ψi| giving the eigenstate index Ki with

-1 -0.5 0 0.5 1

-0.5

0

0.5 λ

-1 -0.5 0 0.5 1

-0.5

0

0.5 λ

Fig. 14. Spectrum of Google matrices G (left panel) and G∗

(right panel) represented in the complex plane of λ. The data
are for year 2008 with α = 1, and N = 13 847, Nc = 227,
Np = 61. Four eigenvalues marked by colored circles are used
for illustration of eigenstates in Figures 15 and 16.

the largest amplitude at Ki = 1. The examples of four
eigenstates are shown in Figure 16. We see that the am-
plitude is mainly localized on a few top nodes in agreement
of small values of ξ ∼ 4 shown in Figure 15. The top ten
amplitudes of these four eigenstates are shown in Table 4
with corresponding names of countries and products. We
see that for a given eigenstate these top ten nodes cor-
respond to one product clearly indicating strong links of
trade between certain countries. Thus for 06 Sugar we see
strong link between geographically close Mali and Guinea
with further links to USA, Germany, etc. In a similar
way for 56 Fertilizers there is a group of Latin American
countries Brazil, Bolivia, Paraguay linked to Argentina,
Uruguay, etc. We see a similar situation for products 57
and 52. These results confirm the observation established
in [26] for Wikipedia that the eigenstates with large mod-
ulus of λ select interesting specific network communities.
We think that it would be interesting to investigate the
properties of eigenstates in further studies.

4.6 Sensitivity to price variations

Above we established the global mathematical structure
of multiproduct WTN and presented results on its ranking
and spectral properties. Such ranking properties bring new
interesting and important information about the WTN.
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Fig. 15. Inverse participation ratio (IPR) ξ of all eigen-
states of G as a function of the real part of the corresponding
eigenvalue λ from the spectrum of Figure 14. The eigenvalues
marked by color circles are those from Figure 14.
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Fig. 16. Eigenstate amplitudes |ψi| ordered by its own de-
creasing amplitude order with index Ki for 4 different eigen-
values of Figure 14 (states are normalized as

∑
i |ψi| = 1). Top

panel shows two examples of real eigenvalues with λ = 0.9548
and λ = 0.9345 while bottom panel shows two eigenval-
ues with large imaginary part with λ = 0.452 + i0.775 and
λ = 0.424+ i0.467. Node names (country, product) for top ten
largest amplitudes of these eigenvectors are shown in Table 4.

However, from the view point of economy it is more im-
portant to analyze the effects of crisis contamination and
price variations. Such an analysis represents a complex
task to which we hope to return in our further investiga-
tions. However, the knowledge of the global WTN struc-
ture is an essential building block of this task and we think
that the presented results demonstrate that this block is
available now.

Using the knowledge of WTN structure, we illustrate
here that it allows to obtain nontrivial results on sensitiv-
ity to price variations for certain products. We consider as
an example year 2008 and assume that the price of prod-
uct 33 Petroleum and petroleum products is increased by
a relative fraction δ going from its unit value 1 to 1+δ (or
δ = δ33). Then we compute the derivatives of probabilities

Fig. 17. Derivatives D = dP/dδ33 and D∗ = dP ∗/dδ33 for a
price variation δ33 of 33 Petroleum and petroleum products for
year 2008. Top left and right panels show the cases of negative
and positive D and D∗ respectively, with some products and
countries labeled by their 2 digit code. Bottom panels show
the positive and negative cases of the logarithmic derivatives
Dl = D/P and D∗

l = D∗/P ∗ for countries and products with
K2 ≤ 50, where the flags and 2 digit codes for countries and
products are shown (in right panels only product 33 is present).
Codes are described in Table 1.

of PageRank D = dP/dδ = ΔP/δ and CheiRank D∗ =
dP ∗/dδ = ΔP ∗/δ. The computation is done for values of
δ = 0.01, 0.03, 0.05 ensuring that the result is not sensi-
tive to a specific δ value. We also compute the logarithmic
derivatives Dl = d lnP/dδ, D∗

l = d lnP ∗/dδ which give us
a relative changes of P, P ∗.

The results for the price variation δ33 of 33 Petroleum
and petroleum products are shown in Figure 17. The
derivatives for all WTN nodes are shown on the
planes (D,D∗) and (Dl, D

∗
l ). For (D,D∗) the nodes

are distributed in two sectors with D > 0, D∗ > 0
andD < 0, D∗ < 0. The largest values withD > 0, D∗ > 0
correspond to nodes of countries of product 33 which are
rich in petroleum (e.g. Russia, Saudi Arabia, Nigeria)
or those which have strong trade transfer of petroleum
to other countries (Singapore, India, China, etc). It is
rather natural that with the growth of petroleum prices
the rank probabilities P, P ∗ of these countries grow. A
more unexpected effect is observed in the sector D <
0, D∗ < 0. Here we see that an increase of petroleum
price leads to a decrease of probabilities of nodes of coun-
tries Germany, France, China, Japan trading in machinery
products 71, 72, 73.

For comparison we also compute the derivativesD,D∗,
Dl, D

∗
l from the probabilities (3) defined by the trade vol-

ume of Import-Export instead of PageRank-CheiRank.
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Fig. 18. Same as in top panels of Figure 17 but using
probabilities from the trade volume (3).

The results are shown in Figure 18 for petroleum price
variation to be compared with Figure 17. The distribu-
tion ofD,D∗ is rather different from those values obtained
with PageRank-CheiRank probabilities. This is related to
the fact that PageRank and CheiRank take into account
the global network structure while the trade volume gives
only local relations in trade links between countries. The
difference between these two methods becomes even more
striking for logarithmic derivatives Dl, D

∗
l . Indeed, for the

trade volume ranking the variation of probabilities P ∗, P
due to price variation of a given product can be computed
analytically taking into account the trade volume change
with δp. The computations giveDcp = (1−fp)Pcp, D∗

cp =
(1−fp)P ∗

cp for a derivative of probability of product p and
country c over the price of product δp and Dcp′ = −fpPcp′ ,
Dcp′ = −fpPcp′ , D∗

cp′ = −fpP
∗
cp′ (if p′ �= p), where fp

is a fraction of product p in the world trade. From these
expressions we see that the logarithmic derivatives are in-
dependent of country and product. Indeed, for the case of
Figure 18 we obtain analytically and by direct numerical
computations that Dl = D∗

l = −0.2022 (for all countries
if p′ �= p = 33) and Dl = D∗

l = 0.7916 (for all countries
if p′ = p = 33). Due to simplicity of this case we do not
show it in Figure 18.

The results for price variation of 34 Gas, natural and
manufactured are presented in Figure 19 showing deriva-
tives of PageRank and CheiRank probabilities over δ34.
We see that for absolute derivatives D,D∗ the mostly af-
fected are now nodes of gas producing countries for the
sector D,D∗ > 0, while for the sector D,D∗ < 0 the
mostly affected are countries linked to petroleum produc-
tion or trade, plus USA with products 71,72,73. For the
sector of logarithmic derivativesDl, D

∗
l < 0 among topK2

and K,K∗ nodes we find nodes of countries of product 33
and also 93.

Thus the analysis of derivatives provides an interest-
ing new information of sensitivity of world trade to price
variations.

4.7 World map of CheiRank-PageRank trade balance

On the basis of the obtained WTN Google matrix we can
now analyze the trade balance in various products between
the world countries. Usually economists consider the ex-

Fig. 19. Derivative of P and P ∗ (D and D∗ respectively) for a
price variation of 34 Gas, natural and manufactured for 2008.
Top left and right panels show the cases of negative and posi-
tive sectors of D and D∗ respectively, with some products and
countries labeled by their 2 digit code and names (in top right
panel all points correspond to product 34). Bottom panels show
the cases of the logarithmic derivatives Dl and D∗

l for countries
and products with K2 ≤ 50 (bottom left panel) and K,K∗ ≤
25 (bottom right panel); flags and 2 digit codes for countries
and products are shown. In bottom right panel (K,K∗ ≤ 25)
we do not show the case of Sudan (73 Transport equipment)
which has values of (Dl,D

∗
l ) = (2 × 10−4, 1.75 × 10−2). Codes

are described in Table 1.

port and import of a given country as it is shown in Fig-
ure 1. Then the trade balance of a given country c can be
defined making summation over all products:

Bc =
∑

p

(
P ∗

cp − Pcp

)
/

∑

p

(
P ∗

cp + Pcp

)

= (P ∗
c − Pc) / (P ∗

c + Pc) . (13)

In economy, Pc, P
∗
c are defined via the probabilities of

trade volume P̂cp, P̂
∗
cp from (3). In our approach, we define

Pcp, P
∗
cp as PageRank and CheiRank probabilities. In con-

trast to the trade volume our approach takes into account
the multiple network links between nodes.

The comparison of the world trade balance obtained
by these two methods is shown in Figure 20. We see
that the leadership of China becomes very well visible
in CheiRank-PageRank balance map while it is much
less pronounced in the trade volume balance. The Google
matrix analysis also highlights the dis-balance of trade
network of Nigeria (strongly oriented on petroleum ex-
port and machinery import) and Sudan. It is interest-
ing to note that the positive CheiRank-PageRank bal-
ance is mainly located in the countries of BRICS (Brazil,
Russia, India, China, South Africa). In contrast to that,
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Fig. 20. World map of probabilities balance Bc = (P ∗
c −

Pc)/(P
∗
c +Pc) determined for each ofNc = 227 countries in year

2008. Top panel: probabilities P ∗
c , Pc are given by CheiRank

and PageRank vectors; bottom panel: probabilities are com-
puted from the trade volume of Export-Import (3). Names of
countries can be found at [10].

the usual trade volume balance highlights Western Sahara
and Afghanistan at large positive and negative trade bal-
ance in 2008.

We can also determine the sensitivity of trade bal-
ance to price variation of a certain product p comput-
ing the balance derivative dBc/dδp. The world map sen-
sitivity in respect to price of petroleum p = 33 is shown
in Figure 21 for the above two methods of definition of
probabilities Pc, P

∗
c in (13). For the CheiRank-PageRank

balance we see that the derivative dBc/dδ33 is positive
for countries producing petroleum (Russia, Saudi Arabia,
Venezuela) while the highest negative derivative appears
for China which economy is happened to be very sensi-
tive to petroleum price. The results from the trade vol-
ume computation of dBc/dδp, shown in Figure 21, give
rather different distribution of derivatives over countries
with maximum for Sudan and minimum for the Republic
of Nauru (this country has very small area and is not vis-
ible in the bottom panel of Fig. 21), while for China the
balance looks to be not very sensitive to δ33 (in contrast
to the CheiRank-PageRank method). This happens due to
absence of links between nodes in the trade volume com-
putations while the CheiRank-PageRank approach takes
links into account and recover hidden trade relations be-
tween products and countries.

This absence of links in the trade volume approach
becomes also evident if we consider the derivative of the
partial trade balance for a given product p defined as:

Bcp = (P ∗
cp − Pcp)/

∑

p

(P ∗
cp + Pcp)

= (P ∗
cp − Pcp)/(P ∗

c + Pc), (14)

Fig. 21. Derivative of probabilities balance dBc/dδ33 over
petroleum price δ33 for year 2008. Top panel: balance of coun-
tries Bc is determined from CheiRank and PageRank vectors
as in the top panel of Figure 20; bottom panel: Bc values are
computed from the trade volume as in the bottom panel of
Figure 20. Names of countries can be found at [10].

so that the global country balance is Bc =
∑

p Bcp. Then
the sensitivity of partial balance of a given product p in
respect to a price variation of a product p′ is given by
the derivative dBcp/dδp′ . The sensitivity for balance of
product p = 72 (72 Electrical machinery . . . ) in respect
to petroleum p′ = 33 price variation δ33 is shown for the
CheiRank-PageRank balance in Figure 22 (top panel) in-
dicating sensitivity of trade balance of product p = 72
at the petroleum p′ = 33 price variation. We see that
China has a negative derivative for this partial balance.
In contrast, the computations based on the trade volume
(Fig. 22 bottom panel) give a rather different distribu-
tion of derivatives dBcp/dδp′ over countries. In the trade
volume approach the derivative dBcp/dδp′ appears due to
the renormalization of total trade volume and nonlinearity
coming from the ratio of probabilities. We argue that the
CheiRank-PageRank approach treats the trade relations
between products and countries on a significantly more
advanced level taking into account all the complexity of
links in the multiproduct world trade.

Using the CheiRank-PageRank approach we determine
the sensitivity of partial balance of all 61 products in re-
spect to petroleum price variation δ33 for China, Russia
and USA, as shown in Figure 23 (top panel). We see that
the diagonal derivative dBc33/dδ33 is positive for Russia
but is negative for China and USA. Even if USA produce
petroleum its sensitivity is negative due to a significant
import of petroleum to USA. For non-diagonal derivatives
over δ33 we find positive sensitivity of Russia and USA
for products p = 71, 72, 73 while for China it is negative.
Other product partial balances sensitive to petroleum are
e.g. 84 Clothing for China for which expensive petroleum
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Fig. 22. Derivative of partial probability balance of product
p defined as dBcp/dδ33 over petroleum price δ33 for year 2008;
here Bcp = (P ∗

cp − Pcp)/(P
∗
c + Pc) and p = 72 (72 Electrical

machinery . . . from Tab. 1); the product balance of countries
Bcp is determined from CheiRank and PageRank vectors (top
panel) and from the trade volume of Export-Import (3) (bot-
tom panel). Names of countries can be found at [10].

gives an increase of transportation costs; negative deriva-
tive of balance in metal products p = 67, 68 for Russia
due to fuel price increase; positive derivative for 93 Special
transact . . . of USA.

The sensitivity of country balance Bc to price varia-
tion δp′ for all products is shown in Figure 23 for China
(middle panel) and USA (bottom panel). We find that
the balance of China is very sensitive to p′ = 33, 84 and
indeed, these products play an important role in its econ-
omy with negative and positive derivatives, respectively.
For USA the trade balance is also very sensitive to these
two products p′ = 33, 84 but the derivative is negative
in both cases. We also present the derivative of balance
without diagonal term (d(Bc −Bcp′)/dδp′) for China and
USA. This quantity shows that for USA all other products
give a positive derivative for p′ = 33 but the contribution
of petroleum import gives the global negative derivative
of the total USA balance. In a similar way for China for
p′ = 84 all products, except the diagonal one p′ = 84, give
a negative sensitivity for balance but the diagonal con-
tribution of p′ = 84 gives the final positive derivative of
China total balance in respect to δ84.

The CheiRank-PageRank approach allows to deter-
mine cross-product sensitivity of partial trade balance
computing the derivative dBcp/dδp′ shown in Figure 24
for China and USA. The derivatives are very different
for two countries showing a structural difference of their
economies. Thus for China the cross-derivative (at p �= p′)
are mainly negative (except a few lines around p = 33)
but the diagonal terms dBcp/dδp are mainly positive.
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Fig. 23. Top panel: derivative dBcp/dδ33 of partial probability
balance Bcp of product p over petroleum price δ33 for year 2008
and countries: China (black circles), Russia (blue squares) and
USA (red diamonds); inset panel shows the products of digit
3 including the diagonal term p = 33 being out of scale in
the main panel; here Bcp = (P ∗

cp −Pcp)/(P
∗
c +Pc) (14). Center

(China) and bottom (USA) panels show derivative dBc/dδp′ of
country total probability balance Bc over price δp′ of product
p′ for year 2008; derivatives of balance without diagonal term
(dBc/dδp′ − dBcp′/dδp′) are represented by open circles and
open diamonds for China and USA, respectively. The product
balance of countries Bcp and Bc are determined from CheiRank
and PageRank vectors. The vertical dotted lines mark the first
digit of product index p or p′ from Table 1.

In contrast, for USA the situation is almost the oppo-
site. We attribute this to the leading role of China in ex-
port and the leading role of USA in import. However, a
detailed analysis of these cross-products derivatives and
correlations require further more detailed analysis. We
think that the presented cross-product sensitivity plays
and important role in the multiproduct trade network that
are highlighted by the Google matrix analysis developed
here. This analysis allows to determine efficiently the sen-
sitivity of multiproduct trade in respect to price variations
of various products.

http://www.epj.org
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China

USA

Fig. 24. China (top) and USA (bottom) examples of deriva-
tive dBcp/dδp′ of partial probability balance Bcp of product
p over price δp′ of product p′ for year 2008. Diagonal terms,
given by dBcp/dδp vs. p = p′, are shown on the top panels of
each example. Products p′ and p are shown in x-axis and y-axis
respectively (indexed as in Tab. 1), while dBcp/dδp′ is repre-
sented by colors with a threshold value given by −0.01 and
0.01 for negative and positive values respectively, also shown
in red dashed lines on top panels with diagonal terms. Dotted
lines mark the first digit of Table 1. Here Bcp are defined by
CheiRank and PageRank probabilities.

5 Discussion

In this work we have developed the Google matrix anal-
ysis of the multiproduct world trade network. Our ap-
proach allows to treat all world countries on equal demo-
cratic grounds independently of their richness keeping the
contributions of trade products proportional to their frac-
tions in the world trade. As a result of this approach we
have obtained a reliable ranking of world countries and

products for years 1962−2010. The Google analysis cap-
tures the years with crises and also shows that after av-
eraging over all world countries some products are export
oriented while others are import oriented. This feature is
absent in the usual Import-Export analysis based on trade
volume which gives a symmetric orientation of products
after such an averaging.

The WTN matrix analysis determines the trade bal-
ance for each country not only in trade volume but also in
CheiRank-PageRank probabilities which take into account
multiple trade links between countries which are absent in
the usual Export-Import considerations. The CheiRank-
PageRank balance highlights in a clear manner the lead-
ing WTN role of new rising economies of China and other
BRICS countries. This analysis also allows to determine
the sensitivity of trade network to price variations of var-
ious products that opens new possibilities for analysis of
cross-product price influence via network links absent in
the standard Export-Import analysis.

We think that this work makes only first steps in
the development of WTN matrix analysis of multiproduct
world trade. Indeed, the global properties of the Google
matrix of multiproduct WTN should be studied in more
detail since the statistical properties of matrix elements
of G, shown in Figure 25 for year 2008, are still not well
understood (e.g. visible patterns present in the coarse-
grained representation of G in Fig. 25).

Even if the UN COMTRADE database contains a
lot of information there are still open questions if all es-
sential economic aspects are completely captured in this
database. Indeed, the COMTRADE data for trade ex-
change are diagonal in products since there are no interac-
tions (trade) between products. However, this feature may
be a weak point of collected data since in a real economy
there is a transformation of some products into some other
products (e.g. metal and plastic are transferred to cars
and machinery). It is possible that additional data should
be collected to take into account the existing interactions
between products. There are also some other aspects of
services and various other activities which are not present
in the COMTRADE database and which can affect the
world economy. At the same time our results show that
the existing COMTRADE data allow to obtain reliable
results using the Google matrix analysis: thus the ranking
of countries and products are reasonable being in corre-
spondence with results of other methods. Also sensitivity
to price variations is correct from the economy view point
(e.g Fig. 22 showing a high sensitivity of China economy to
petroleum price). We think that additional inter-product
links will not modify significantly the results presented
here but we expect that they will allow to characterize in
a better way how one product is transfered to others in
the result of the multiproduct world trade.

One of the important missing element of COMTRADE
are financial flows between countries. Indeed, the prod-
uct 93 Special trans . . . (see Tabs. 1 and 2) partially
takes into account the financial flows but it is clear that
the interbank flows are not completely reported in the
database. In fact the Wold Bank Web (WBW) really exists

http://www.epj.org
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Fig. 25. Google matrix GKK′ representation for 2008 with α =
0.5 ordered by PageRank index Kvalue (where K = K′ = 1 is
on top left corner). Top panel shows the whole Google matrix
(N = Nc × Np = 227 × 61 = 13 847) with coarse-graining
of N × N elements down to 200 × 200 shown cells. Center
panel represents the top corner of the full Google matrix with
K,K′ ≤ 200. Bottom panel shows the coarse-grained Google
matrix for countries for the top 100 countries (Kc,K

′
c ≤ 100).

Color changes from black at minimal matrix element to white
at maximal element, α = 0.5.

(e.g. a private person can transfer money from his bank
account to another person account using SWIFT code)
but the flows on the WBW remain completely hidden and
not available for scientific analysis. The size on interbank
networks are relatively small (e.g. the whole Federal Re-
serve of USA has only N ≈ 6600 bank nodes [27] and there
are only about N ≈ 2000 bank nodes in Germany [28]).

Thus the WBW size of the whole world is about a few
tens of thousands of nodes and the Google matrix analysis
should be well adapted for WBW. We consider that there
are many similarities between the multiproduct WTN and
the WBW, where financial transfers are performed with
various financial products so that the above WTN analysis
should be well suited for the WBW. The network approach
to the WBW flows is now at the initial development stage
(see e.g. [27–29]) but hopefully the security aspects will be
handled in an efficient manner opening possibilities for the
Google matrix analysis of the WBW. The joint analysis of
trade and financial flows between world countries would
allow to reach a scientific understanding of peculiarities
of such network flows and to control in an efficient way
financial and petroleum crises.

The developed Google matrix analysis of multiprod-
uct world trade allows to establish hidden dependencies
between various products and countries and opens new
prospects for further studies of this interesting complex
system of world importance.

We thank the representatives of UN COMTRADE [1] for pro-
viding us with the friendly access to this database. This re-
search is supported in part by the EC FET Open project “New
tools and algorithms for directed network analysis” (NADINE
No. 288956). We thank Barbara Meller (Deutsche Bundesbank,
Zentrale) for constructive critical remarks.
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Abstract. Using the new data from the OECD-WTO world network of economic activities we construct
the Google matrix G of this directed network and perform its detailed analysis. The network contains 58
countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain
transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is
proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable
ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commer-
cial balance of countries in respect to price variations and labor cost in various countries. We demonstrate
that the developed approach takes into account multiplicity of network links with economy interactions
between countries and activity sectors thus being more efficient compared to the usual export-import anal-
ysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities
of countries.

PACS. 89.75.Fb Structures and organization in complex systems – 89.65.Gh Econophysics – 89.75.Hc
Networks and genealogical trees – 89.20.Hh World Wide Web, Internet

1 Introduction

The recent reports of the Organisation for Economic Co-
operation and Development (OECD) [1] and of the World
Trade Organization (WTO) [2] demonstrate all the com-
plexity of global manufactoring activities, exchange and
trade in the modern world. This complexity is rapidly
growing with time and now it becomes clear that tra-
ditional statistics are increasingly unable to provide all
the necessary information. Applying modern mathemati-
cal tools and methods to new data sets can allow to under-
stand the hidden trends of the world economic activities.
Thus the matrix tools for analysis of Input-Out trans-
actions are broadly used in economy starting from the
fundamental works of Leontief [3,4] with their more re-
cent developments described in [5]. In the last decade the
development of modern society generated enormous com-
munication and social networks including the World Wide
Web (WWW), Wikipedia, Twitter and other directed net-
works (see e.g. [6]). It has been found that the concept of
Markov chains provides a very useful and powerful math-
ematical approach for analysis of such networks. Thus the
PageRank algorithm, developed by Brin and Page in 1998
[7] for the WWW information retrieval, became at the
mathematical foundation of the Google search engine (see
e.g. [8]). This algorithm constructs the Google matrix G
of Markov chain transitions between network nodes and
allows to rank billions of web pages of the WWW. The

spectral and other properties of the Google matrix are
analyzed in [9]. The historical overviews of the develop-
ment of Google matrix methods and their links with the
works of Leontief are given in [10,11].

The obtained results demonstrate the efficiency of the
Google matrix analysis not only for the WWW but also
for various types of directed networks [9]. One of such
examples is the World Trade Network (WTN) with multi-
product exchange between the world countries. The data
of trade flows are available at the United Nations (UN)
COMTRADE database [12] for more than 50 years. The
results presented in [13,14] for the WTN show that the
Google matrix analysis is well adapted to the ranking of
world countries and trade products and to determination
of the sensitivity of trade to price variations of various
products. The new element of such an approach is a demo-
cratic treatment of world countries independently of their
richness being different from the usual Import and Export
ranking. At the same time the contributions of various
products are considered being proportional to their trade
volume contribution in the exchange flows.

Here we use the Google matrix analysis developed for
the multiproduct WTN [14] showing that it can be di-
rectly used for the World Network of Economic Activi-
ties (WNEA) constructed from the OECD-WTO trade in
value-added database. In a certain sense activities (or sec-
tors) are correlated to products in the WTN. However, for
the WTN there is exchange between countries but there
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is no exchange between industries and commodities. Thus
in [14] it was argued that certain economical features are
not captured by the COMTRADE database since in real
economy the traders are industries, not countries; in par-
ticular certain products are transferred to each other (e.g.
metal and plastic are used for production of cars). In con-
trast to that, the OECD-WTO WNEA incorporates the
transitions between activity sectors thus representing the
economic reality of world activities in a more correct man-
ner.

Fig. 1. World map of countries with color showing country
import (top panel) and export (bottom panel) with economic
activity (trade) volume expressed in billions of USD and given
by numbers at color bars; the gray color marks countries at-
tributed to the ROW group (rest of the world) with exchange
values 733 (Import) and 1018 (Export) in billions of USD. The
data are shown for year 2008 with Nc = 57 + 1 countries (with
ROW) for the economic activities in all Ns = 37 sectors. Coun-
try names can be found in Table 1 and in the world map of
countries [22].

We note that there has been a number of other in-
vestigations of the WTN reported in [15–21]. However, in
this work we have the new important elements, introduced
in [13,14]: the analysis of PageRank and CheiRank proba-
bilities corresponding to direct and inverted network flows
and related to Import and Export; democratic treatment
of countries combined with the contributions of sectors
(or products) being proportional to their commercial ex-
change fractions. We point that the OECD-WTO TiVA
database of economic activities between world countries
and activity sectors has been created very recently (2013)
and thus this work represents the first Google matrix anal-
ysis of these data. We stress that the usual Import-Export

ranking of commercial flows, shown in Fig. 1, is not able
to take into account all the complexity of chains of links
between various countries and various activity sectors. In
contrast to that the approach developed here takes all of
them into account due to the powerful method based on
the Google matrix.

2 Methods and data description

Here we describe the data available for the OECD-WTO
TiVA network and the mathematical methods used for the
analysis of this network. The list of Nc = 58 countries (57
plus 1 for the Rest Of the World ROW) is given in Table 1
with their flags. Following [13] we use for countries ISO
3166-1 alpha-3 code available at Wikipedia. The list of
sectors with their names is given in Table 2 . The fractions
of sectors in the exchange volume are given in Table 3 for
years 1995, 2008.

2.1 Google matrix construction for the OECD-WTO
WNEA

We use the OECD-WTO TiVA database released in May
2013 which covers years 1995, 2000, 2005, 2008, 2009 with
the main emphasis for years 1995and2008 (2009 data are
affected by the global crisis and may not be represen-
tative). The network considers Nc = 58 world countries
given in Table 1. In fact, there are 57 countries and the
rest of the world, which includes the remaining countries of
the world forming one group called ROW. There are also
Ns = 37 sectors of economic activities given in Table 2.
The sectors are classified according to the International
Standard Industrial Classification of All Economic Activ-
ities (ISIC) Rev.3 [23]. Here we present results for all 37
sectors of Table 2, noting that the sectors s = 1, 2, ..20
represent production activities while s = 21, ..., 37 repre-
sent service activities. The transections between service
sectors are hard to exctract and the future improvements
of this part of TiVA database are desirable.

For a given year, the TiVA data extend OECD In-
put/Out tables of economic activity expressed in terms of
USD for a given year. From these data we construct the
matrix Mcc′,ss′ of money transfer between nodes expressed
in USD:

Mcc′,ss′ = transfer from country c′, sector s′ to c, s (1)

Here the country indexes are c, c′ = 1, . . . , Nc and activ-
ity sector indexes are s, s′ = 1, . . . , Ns with Nc = 58 and
Ns = 37. The whole matrix size is N = Nc ×Ns = 2146.
Here each node represents a pair of country and activity
sector, a link gives a transfer from a sector of one country
to another sector of another country. We construct the
matrix Mcc′,ss′ from the TiVA Input/Output tables us-
ing the transposed representation so that the volume of
products or sectors flows in a column from line to line. In
the construction of Mcc′,ss′ we exclude exchanges inside
a given country in order to highlight the trade exchange
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flows between countries (elements inside country are ze-
ros).

The ISIC Rev.3 classification of sectors have a sig-
nificant correlation with the UN Standard International
Trade Classification (SITC) Rev. 1 of products used in
[14]. There is a clear relationship on the production side
between ISIC sectors and products of the world exports
(but not at import level: if all agricultural exports are pro-
duced by the agricultural sector, agricultural products will
be imported by manufacturing industries such as food pro-
cessing of textile and clothing). There is also another im-
portant difference: the transfer matrix from COMTRADE
is diagonal in products [14] (thus there is no transfer from
product to product), while for the TiVA data there are
transitions from one sector to another sector and thus the
matrix of nominal values, in current prices, (1) is not di-
agonal in s, s′.

For convenience of future notations we also define the
value of imports Vcs and exports V ∗cs for a given country
c and sector s as

Vcs =
∑
c′,s′

Mcc′,ss′ , V
∗
cs =

∑
c′,s′

Mc′c,s′s. (2)

The import Vc =
∑
s Vcs and export V ∗c =

∑
s V
∗
cs values

for countries c are shown on the world map of countries
in Fig. 1 for year 2008. We note that often one uses the
notion of volume of export or import (see. e.g. [14]) but
from the economic view point it more correct to speak
about value of export or import.

In order to compare later with the PageRank and
CheiRank probabilities we define exchange value ranks in
the whole matrix space of dimension N = Nc ×Ns. Thus
the ImportRank (P̂ ) and ExportRank (P̂ ∗) probabilities
are given by the normalized import and export values

P̂i = Vcs/V , P̂
∗
i = V ∗cs/V , (3)

where i = s + (c − 1)Ns, i = 1, . . . , N and the total
exchange value is V =

∑
c,c′,s,s′ Mcc′,ss′ =

∑
c,s Vcs =∑

cs V
∗
cs.

The Google matrices G and G∗ are defined as N ×N
real matrices with non-negative elements:

Gij = αSij+(1−α)viej , G
∗
ij = αS∗ij+(1−α)v∗i ej , (4)

where N = Nc × Ns, α ∈ (0, 1] is the damping fac-
tor (0 < α < 1), ej is the row vector of unit elements
(ej = 1), and vi is a positive column vector called a per-
sonalization vector with

∑
i vi = 1 [8,14]. We note that

the usual Google matrix corresponds to a personalization
vector vi = ei/N with ei = 1. In this work, following
[13,14], we fix α = 0.5 noting that a variation of α in a
range (0.5, 0.9) does not significantly affect the probabil-
ity distributions of PageRank and CheiRank vectors [8,9,
13]. The choice of the personalization vector is specified
below. Following [14] we call this approach the Google
Personalized Vector Method (GPVM).

The matrices S and S∗ are built from money matrices
Mcc′,ss′ as

Si,i′ =

{
Mcc′,ss′/Vc′s′ if Vc′s′ 6= 0

1/N if Vc′s′ = 0

S∗i,i′ =

{
Mc′c,s′s/V

∗
c′s′ if V ∗c′s′ 6= 0

1/N if V ∗c′s′ = 0
(5)

where c, c′ = 1, . . . , Nc; s, s
′ = 1, . . . , Ns; i = s+(c−1)Ns;

i′ = s′ + (c′ − 1)Ns; and therefore i, i′ = 1, . . . , N . Here
Vc′s′ =

∑
csMcc′,ss′ . The sum of elements of each column

of S and S∗ is normalized to unity and hence the matrices
G,G∗, S, S∗ belong to the class of Google matrices and
Markov chains. Thus S,G look at the import perspective
and S∗, G∗ at the export side of transactions.

PageRank and CheiRank (P and P ∗) are the right
eigenvectors of G and G∗ matrices respectively at eigen-
value λ = 1. The equation for right eigenvectors have the
form ∑

j

Gijψj = λψi ,
∑
j

G∗ijψ
∗
j = λψ∗j . (6)

For the eigenstate at λ = 1 we use the notation Pi =
ψi, P

∗ = ψ∗i with the normalization
∑
Pi =

∑
i P
∗
i = 1.

For other eigenstates we use the normalization
∑
i |ψi|2 =∑

i |ψ∗i |2 = 1. The eigenvalues and eigenstates of G,G∗

are obtained by a direct numerical diagonalization using
the standard numerical packages.

2.2 PageRank and CheiRank vectors from GPVM

The components of Pi, P
∗
i are positive. In the WWW con-

text they have a meaning of probabilities to find a random
surfer on a given WWW node in the limit of large num-
ber of surfer jumps over network links [8]. In the WNEA
context nodes can be viewed and markets with a random
trader transitions between them. We will use in the fol-
lowing notation of netwrok nodes. We define the PageR-
ank K and CheiRank K∗ indexes ordering probabilities P
and P ∗ in a decreasing order as P (K) ≥ P (K + 1) and
P ∗(K) ≥ P ∗(K∗ + 1) with K,K∗ = 1, . . . , N .

We note that the pair of PageRank and CheiRank vec-
tors is very natural for economy and trade networks cor-
responding to Import and Export flows. For the directed
networks the statistical properties of the pair of such rank-
ing vectors have been introduced and studied in [24,25,
13].

We compute the reduced PageRank and CheiRank prob-
abilities of countries tracing probabilities over all sectors
and getting Pc =

∑
s Pcs =

∑
s P (s+ (c− 1)Ns) and

P ∗c =
∑
s P
∗
cs =

∑
s P
∗ (s+ (c− 1)Ns) with the corre-

sponding Kc and K∗c indexes. In a similar way we obtain
the reduced PageRank and CheiRank probabilities for sec-
tors tracing over all countries and getting
Ps =

∑
c P (s+ (c− 1)Ns) =

∑
c Pcs and

P ∗s =
∑
c P
∗ (s+ (c− 1)Ns) =

∑
c P
∗
cs with their corre-

sponding sector indexes Ks and K∗s . A similar procedure
has been used for the multiproduct WTN data [14].
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In summary we haveKs,K
∗
s = 1, . . . , Ns andKc,K

∗
c =

1, . . . , Nc. A similar definition of ranks from import and
export exchange value can be done in a straightforward
way via probabilities P̂s, P̂

∗
s , P̂c, P̂

∗
c , P̂cs, P̂

∗
cs and correspond-

ing indexes K̂s, K̂
∗
s , K̂c, K̂

∗
c , K̂, K̂

∗.
To compute the PageRank and CheiRank probabili-

ties from G and G∗, keeping a “democratic”, or equal,
treatment of countries (independently of their richness)
and at the same time keeping the proportionality of ac-
tivity sectors to their exchange value, we use the Google
Personalized Vector Method (GPVM) developed in [14]
with a personalized vector vi in (4). At the first iteration
of Google matrix we take into account the relative prod-
uct value per country using the following personalization
vectors for G and G∗:

vi =
Vcs

Nc
∑
s′ Vcs′

, v∗i =
V ∗cs

Nc
∑
s′ V

∗
cs′

, (7)

using the definitions (2) and the relation i = s+(c−1)Ns.
This personalized vector depends both on sector and coun-
try indexes. As for the multiproduct WTN in [14] we de-
fine the second iteration vector being proportional to the
reduced PageRank and CheiRank vectors in sectors, ob-
tained from the GPVM Google matrix of the first itera-
tion:

v′(i) =
Ps
Nc

, v′∗(i) =
P ∗s
Nc

. (8)

In this way we keep democracy in countries but keep con-
tribution of sectors proportional to their exchange value.
This second iteration personalized vectors are used in the
following computations and operations with G and G∗ giv-
ing us the PageRank and CheiRank vectors. This proce-
dure with two iterations forms our GPVM approach. The
difference between results obtained from the first and sec-
ond iterations is not very large (see Figs. 2, 3), but the
personalized vector for the second iteration gives a reduc-
tion of fluctuations. In all Figures after Fig. 3 we show the
GPVM results after the second iteration.

As for the WTN it is convenient to analyze the distri-
bution of nodes on the PageRank-CheiRank plane (K,K∗).
In addition to two ranking indexes K,K∗ we use also
2DRank index K2 which describes the combined contri-
bution of two ranks as described in [25]. The ranking list
K2(i) is constructed by increasing K → K+1 and increas-
ing 2DRank index K2(i) by one if a new entry is present
in the list of first K∗ < K entries of CheiRank, then the
one unit step is done in K∗ and K2 is increased by one if
the new entry is present in the list of first K < K∗ entries
of CheiRank. More formally, 2DRank K2(i) gives the or-
dering of the sequence of nodes, that appear inside the
squares [1, 1; K = k,K∗ = k; ...] when one runs progres-
sively from k = 1 to N . Additionally, we analyze the dis-
tribution of nodes for reduced indexes (Kc,K

∗
c ), (Ks,K

∗
s ).

The localization properties of eigenstates of G,G∗ are
characterized by the inverse participation ration (IPR)
defined as ξ = (

∑
i |ψi|2)2/

∑
i |ψi|4. This quantity de-

termines an effective number of nodes contributing to a
formation of a given eigenstate (see details in [9]).
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Fig. 2. Dependence of probabilities of PageRank P (K),

CheiRank P ∗(K∗), ImportRank P̂ (K̂) and ExportRank

P̂ ∗(K̂∗) on their indexes in logarithmic scale for WNEA (or
OECD-WTO TiVA network) in 2008 with α = 0.5, Nc = 58,
Ns = 37, N = Nc×Ns = 2146. Here the results for the GPVM
after the first and second iterations are shown for PageRank
(CheiRank) in red (blue) with dashed and solid curves respec-
tively. Probabilities for ImportRank and ExportRank from
exchange value are shown by magenta and cyan thin curves
respectively.
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Fig. 3. Probability distributions of PageRank and CheiRank
for sectors Ps(Ks), P ∗s (K∗s ) (left panel) and countries Pc(Kc),
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OECD-WTO TiVA network) from Fig.2. Here the results for
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curves for PageRank (CheiRank) with dashed and solid curves
respectively (with a strong overlap of curves). The probabilities
from the exchange value ranking are shown by thin magenta
and cyan lines for ImportRank and ExportRank respectively.

2.3 Correlators of PageRank and CheiRank vectors

As in previous works [24,25,13] we consider the correlator
of PageRank and CheiRank vectors:

κ = N

N∑
i=1

P (i)P ∗(i)− 1 . (9)

The typical values of κ are given in [9] for various net-
works.
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For the global PageRank and CheiRank probabilities
the sector-sector correlator matrix is defined as:

κss′ = Nc

Nc∑
c=1

[
P (s+ (c− 1)Ns)P ∗(s′ + (c− 1)Ns)∑

c′ P (s+ (c′ − 1)Ns)
∑

c′′ P
∗(s′ + (c′′ − 1)Ns)

]
−1

(10)

Then the correlator for a given sector is obtained from
(10) as:

κs = κss′δs,s′ , (11)

where δs,s′ is the Kronecker delta.

We also use the correlators obtained from the probabil-
ities traced over sectors (Pc =

∑
s Psc) and over countries

(Ps =
∑
c Psc) which are defined as

κ(c) = Nc

Nc∑
c=1

PcP
∗
c − 1 , κ(s) = Ns

Ns∑
s=1

PsP
∗
s − 1 . (12)

In the above equations (9)-(12) the correlators are com-
puted for PageRank and CheiRank probabilities. We can
also compute the same correlators using probabilities from
the exchange value in ImportRank P̂ and ExportRank P̂ ∗

defined by (3).

The obtained results are presented in the next Section
and at the web site [26].

3 Results

We apply the GPVM approach to the data sets of OECD-
WTO TiVA of WNEA and present the obtained results
below.

3.1 PageRank and CheiRank probabilities

The dependence of probabilities of PageRank P (K) and
CheiRank P ∗(K∗) vectors on their indexesK,K∗ are shown
in Fig. 2 for a selected year 2008. The results can be ap-
proximately described by an algebraic dependence P ∝
1/Kβ , P ∗ ∝ 1/K∗β with the fit exponent value β =
0.385 ± 0.014 for PageRank and β = 0.486 ± 0.02 for
CheiRank for K,K∗ ≤ 103. In contrast to WWW and
Wikipedia networks (see e.g. [9]) there is no significant
difference of β between two ranks that can be attributed
to an intrinsic property of economy networks to keep econ-
omy balance of commercial exchange. The probability vari-
ation is reduced for the Google ranking compared to the
value ranking. This results from a “democratic”, or equal
grounds ranking of countries used in the Google matrix
analysis. The obtained data also show that the variation
of probabilities for 1st and 2nd GPVM iterations are not
very large that demonstrates the convergence of this ap-
proach.
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Fig. 4. Country positions on PageRank-CheiRank plane
(Kc,K

∗
c ) obtained for the WNEA by the GPVM analysis (top

panels), ImportRank-ExportRank of exchange value (middle
panels), and PageRank-CheiRank plane of WTN ranking of
trade in all commodities from [13] (bottom panels) shown for
Kc,K

∗
c ≤ 60. Left (right) panels show year 1995 (2008).

3.2 Ranking of countries and sectors

After tracing the probabilities P (K), P ∗(K∗) over sec-
tors we obtain the distribution of world countries on the
PageRank-CheiRank plane (Kc,K

∗
c ) presented in Fig. 4

for WNEA in years 1995, 2008. In the same figure we
present the rank distributions obtained from ImportRank-
ExportRank probabilities of exchange value and the re-
sults obtained in [13] for the WTN with all commodities.
For the GPVM data we see the global features already
discussed in [13]: the countries are distributed in a vicin-
ity of diagonal Kc = K∗c since for each country the size of
imports is correlated with the size of exports, even if trade
is never exactly balanced and some countries can sustain
significant trade surplus or deficit. The top 20 list of top
K2 countries recover 13 of 19 countries of G20 major world
economies (EU is the number 20) thus obtaining 68% of
the whole list. This is close to the percent obtained in
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[13] for trade in all commodities. The Google ranking for
WNEA and WTN (top and bottom panels in Fig. 4) gives
different positions for specific countries (e.g. Russia im-
proves its position for WNEA with the opposite trend for
China) but the global features of distributions of WNEA
and WTN remain similar corresponding to the same eco-
nomical forces.
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plane using the GPVM approach for PageRank and CheiRank
(left panels) and ImportRank-ExportRank (right panels). Each
sector is represented by its specific combination of color and
symbol. The list of all 37 sectors are given in Table 2. Top
panels show the case for the year 1995 and bottom panels for
the year 2008.

After tracing over countries we obtain the PageRank-
CheiRank plane of activity sectors shown in Fig. 5. We
see that some sectors are export oriented (e.g. s = 2
C10T14 Mining at K∗s = 1 in 2008) others are import
oriented (e.g. s = 23 C50T52 World Retail and Trade of
motors etc. at Ks = 1 in 2008). The ImportRanking gives
a rather different import leader s = 7 C23 Manufacture of
coke, refined petroleum products etc. with Ks = 1 in 2008.
Thus the Google ranking highlights highly connected net-
work nodes while Import-Export gives preference to high
value neglecting existing network relations between vari-

ous countries and activity sectors. We can also order sec-
tors by 2DRank index K2 getting for PageRank-CheiRank
top sectors s = 25, 23, 8 at K2 = 1, 2, 3 while Import-
Export gives s = 8, 11, 14 for top K2 values in 2008 (more
data are given at [26]). We note that s = 25 corresponds
to Transport which has many network connections thus
taking the top K2 position. We note that asymmetry of
ranking of products has been discussed in [14] for COM-
TRADE data, however, the comparison with these data is
not so simple since the correspondence between products
and activity sectors is not straightforward. Of course, for
the WNEA the asymmetry of sector ranking exists even
for Export-Import ranking, in a drastic difference from
the WTN, since there are interactions between activity
sectors.

The global ranks of top 20 countries and their activities
are given in Table 4 for 2008. The top 3 places of PageR-
ank K = 1, 2, 3 are taken by Germany (Manufacture of
motors etc. s = 18), USA (Public administration and de-
fence s = 33), ROW (also s = 33). Thus imports of arms
and weapons play a very important role. In contrast for
ImportRank K̂ = 1, 2, 3 we find rather different results
with USA (petroleum s = 7), Japan (also s = 7), and
only then USA (s = 33). For CheiRank K∗ = 1, 2, 3 we
find ROW, Russia, Saudi Arabia (s = 2 C10T14 Mining)
while for ExportRank we have ROW, Saudi Arabia, Rus-
sia (s = 2 C10T14 Mining) respectively. Thus Russia goes
ahead of Saudi Arabia due to a broad network of activ-
ity and trade connections (a similar effect has been found
in [13,14] for trade in petroleum). The top 3 positions of
2DRank K2 = 1, 2, 3 are taken by Germany (s = 8 Man-
ufacture of chemicals etc.). USA (s = 27 Finance etc.),
Germany (s = 13 Manufacture of machinery etc.).

We can fix a certain activity sector s and then consider
local ranking of countries in (Kc,Kc

∗) plane. Three exam-
ples are shown in Fig. 6 for s = 21 (Electricity, gas, water),
28 (Real estate activity), 1 (Agriculture). The comparison
of Google ranking (left column) with value Import-Export
ranking (right column) shows importance of network con-
nections highlighted by the GPVM, thus Russia moves
from Kc

∗ = 4 on right panel to K∗c = 2 on left panel
for s = 21 due to its broad links with Europe and Asia.
For s = 1 case in bottom panels of Fig. 6 we find that
the Import-Export ranking distribution is more clse to di-
agonal comparing to the PageRank-CheiRank case that
we attribute to effect of indirect links present in the later
case.

The distribution of nodes on the global (K,K∗) plane
is shown in Fig. 7 for Google ranking (left panel) and
Import-Export ranking (right panel) in 2008. The major-
ity of countries are shown by gray squares while 6 selected
countries are marked by colors. The comparison of two
panels show that in the Google ranking the positions of
USA are improved (more black symbols at top K2 posi-
tions) while for China the positions (green symbols) are
weakened. We attribute this to a broader network con-
nections of USA in important activity sectors world wide
(e.g. military activities and defense).
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Fig. 6. Left column panels show results of the GPVM data for
country positions on PageRank-CheiRank plane of local rank
values Kc,Kc

∗ ordered by (Kcs,K
∗
cs) for specific sectors with

s = 21 (top), s = 28 (center) and s = 1 (bottom). Right column
panels show the ImportRank-ExportRank planes respectively
for comparison. Data are given for year 2008. Each country is
shown by its own flag as in Fig 4.

3.3 Correlation properties of PageRank and CheiRank

The directed networks can be characterized by the corre-
lator κ of PageRank and CheiRank vectors. For various
networks the properties of κ are reported in [24,9]. There
are directed networks with small or even slightly negative
values of κ, e.g. Linux Kernel or Physical Review citation
networks, or with κ ∼ 4 for Wikipedia networks and even
larger values κ ≈ 116 for the Twitter network.

The correlators of WNEA for various sectors are shown
in Fig. 7. Almost all correlators κs are positive being dis-
tributed in a range (0, 1). A small negative value appears
only for s = 37 (Private households etc.) corresponding to
anti-correlation between buyers and sellers. The largest
correlator κs is for s = 29 (Renting of machinery etc.)
shows that sales of machinery correlates with their pur-
chases probably because components are needed to pro-
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Fig. 7. Global plane of rank indexes (K,K∗) for PageRank-
CheiRank (left panel) and ImportRank-ExportRank (right
panel) for N = 2146 nodes in year 2008. Each country and
sector pair is represented by a gray square. Some countries
are highlighted in colors : USA in black, South Korea in red,
China (and Taiwan) in green, Russia in blue, France in yellow
and Brazil in orange.
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Fig. 8. PageRank-CheiRank correlators κs from the GPVM
(see (10), (11)) are shown as a function of the sector in-
dex s with the corresponding symbol from Fig.5. PageRank-
CheiRank and ImportRank-ExportRank correlators are shown
by solid and dashed lines respectively, where the global corre-
lator κ (9) is shown in black, the correlator for countries κ(c)
(12) is shown by red lines, the correlators for sectors κ(s) (12)
is shown by blue lines. Here sector index s is counted in order
of appearance in Table 2. The data are given for year 2008 with
Ns = 37, Nc = 58, N = 2146.

duce machines produced by firms in the same industrial
sectors.

The matrix of correlators between sectors s, s′ is shown
in Fig. 8 for years 1995, 2008. It is interesting to see a
significant shift of line of maximal correlators located in
1995 at s′ = 28 (Real estate activities) to s = 29 (Renting
of machinery etc.) in 2008. We also see that there are less
correlations between sectors in 2008 compared to 1995. A
further more detailed analysis of correlations would bring
a better understanding of hidden inter-relations between
various sectors of economic activity.
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Fig. 9. Top panels: Spectrum of Google matrices G (left) and
G∗ (right) represented in the complex plane of λ. The data are
for year 2008 with α = 1, N = 2146, Nc = 58, Ns = 37. Four
eigenvalues marked by colored circles are used for illustration
of eigenstates in Fig. 10 and Table 5. Bottom panels: Inverse
participation ratio (IPR) ξ of all eigenstates of G (left) and
G∗ (right) as a function of the real part of the corresponding
eigenvalue λ from the spectrum above.

3.4 Spectrum and eigenstates of WNEA Google matrix

The results obtained for the Wikipedia network [29] and
the multiproduct WTN [14] demonstrated that the eigen-
vectors of G and G∗ with large eigenvalue modulus |λ|
select certain specific communities. Thus it is interesting
to analyze the properties of eigenvalues for the WNEA. At
α = 1 the gap between λ = 1 and other eigenvalues char-
acterize the rate of system relaxation to the equilibrium
stationary PageRank state (for G). The presence of small
gap indicates that the mixing and relaxation in the system
are developed only after many iterations of G matrix (see
more discussion in [9]).

The matrix size of WNEA is relatively small and the
whole spectrum λ of G,G∗ can be determined by direct
matrix diagonalization. The spectrum is shown in top pan-
els of Fig. 9. It is characterized by a significant gap be-
tween λ = 1 and other eigenvalues with |λ| < 0.7 at α = 1.
We attribute this to a large number of inter-connected
links between matrix nodes (countries and sectors) which
is usually responsible for appearance of the spectral gap
(see [27], where the gap increases with the increase of num-
ber of random links per node). We also note that the max-
imal value of |Imλ| < 0.2 is relatively small due to pres-
ence of links going in direct and inverse directions between
nodes. These features show that the relaxation processes
to the steady-state PageRank vector are relatively rapid
on the WNEA. Indeed, the relaxation is governed by the
exponent exp(−∆λt) where ∆λ ≈ 0.25 the gap for for
WNEA in Fig. 9 and t is number of iterations of G.

The properties of eigenstates are characterized by the
IPR ξ shown in bottom panels of Fig. 9. We find that the
main part of states have ξ � N so that they occupy only
a small fraction of nodes corresponding to localized states
(see discussion about the Anderson localization of Google
matrix eigenstates in [9,28]).

The dependence of amplitudes |ψi| of a few eigen-
states, ordered by a local rank index Ki corresponding
to a monotonic amplitude decrease, are shown in Fig. 10.
The names of top 10 nodes of these eigenstates are given in
Table 5. The red curve in Fig. 10 selects mainly the sector
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Fig. 10. Eigenstates amplitudes |ψi| ordered by its own de-
creasing amplitude order with local rank index Ki for 4 differ-
ent eigenvalues of Fig. 9 (states are normalized as

∑
i |ψi| = 1).

The four examples are λ = 0.4993 (red), λ = 0.3746 + 0.0126i
(green), λ = 0.6256 (blue) and λ = −0.0001 + 0.1687i (ma-
genta). Node names (country, sector) for top ten largest am-
plitudes of these eigenvectors are shown in Table 5.

s = 4 (Manufacture of textiles etc.) with close links be-
tween China, Italy, USA and ROW; the green one selects
s = 18 (Manufacture of motor vehicles etc.) with close
links between Argentina, Brasil, Japan and Germany; the
blue state corresponds to s = 16 (Manufacture of radio,
television and communication equipment and apparatus)
in the Asian region (China, Korea, Chinese Taipei, Sin-
gapore, Malaysia); the magenta state represents sector
s = 2 (Mining etc.) with related countries like Russia,
Saudi Arabia, ROW, Norway. These results coincide with
the previous observations for Wikipedia-type network [29]
that the eigenstates of G and G∗ select specific communi-
ties of the network nodes. Similar properties of eigenstates
of G of the multiproduct WTN have been found in [14].

3.5 Sensitivity to price variations

The ranking of WNEA nodes provides interesting and im-
portant information. In addition, the established matrix
structure of G,G∗ of WNEA also allows to study the sensi-
tivity of the world economic activities to price variations.
There are certain parallels with the multiproduct WTN
analyzed in [14] but there are also new elements specific
to the WNEA.

To analyze the sensitivity of price variation in a cer-
tain activity sector s we increase from 1 to 1 + δs the
money transfer in the sector s in Mcc ss′ in (1), where δs
is a dimensionless fraction variation of price in this sector.
After that the matrices G,G∗ are recomputed in the usual
way described above and their rank probabilities P, P ∗ are
determined. Then we compute the derivatives of probabil-
ities of PageRank D = dP/dδs = ∆P/δs and CheiRank
D∗ = dP ∗/dδs = ∆P ∗/δs. We do these computations at
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Fig. 11. Left panel: Derivatives D = dP/dδ7 and D∗ =
dP ∗/dδ7 for a price variation δ7 of 7 C23 PET (Manufac-
ture of coke, refined petroleum products and nuclear fuel) for
year 2008. Right panel: Logarithmic derivatives Dl = D/P
and D∗l = D∗/P ∗ for the same case as left panel. Codes in
panels give sector number s = 1, ...37 described in Table 2,
country codes are from Table 1. The group of points, high-
lighted by the dashed box, represents 58 nodes of the form
(country, s = 7) where s = 7 is C23 PET (Manufacture of
coke, refined petroleum products and nuclear fuel).

sufficiently small δs values checking that the variations of
P, P ∗ are linear in δs. In addition we also compute the
logarithmic derivatives Dl = d lnP/dδs, D

∗
l = d lnP ∗/dδs

which give us relative changes of P , P ∗.

The sensitivities to price of s = 7 (Manufacture of
coke, refined petroleum products and nuclear fuel) are shown
in Fig. 11. The data for D,D∗ in the left panel show a
rather complex picture with a significant derivatives not
only for s = 7 but also for countries with sectors: s = 18
(Manufacture of motor vehicles, trailers and semi-trailers)
at strongly negative D for Germany. USA, Japan; s = 25
(Land transport; transport via pipelines etc) at significant
positive D for Germany. Korea, Denmark, Singapore; of
course, for s = 7 we have positive D∗, but also for s = 2
related to mining and negative D∗ for s = 8 (Manufacture
of chemicals and chemical products) for USA and Ger-
many. The logarithmic derivatives provide strong relative
changes and are shown in the right panel of Fig. 11.
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Fig. 12. Same as the left panel of Fig. 11 but using probabil-
ities from the trade value. In the right panel, D∗l = 0.9348 if
s = s′ and D∗l = −0.0633 if s 6= s′.

A similar analysis can be done using the probabilities
P̂ , P̂ ∗ from the exchange value probabilities (3) instead
of the above PageRank and CheiRank probabilities. The
results for the value probabilities are presented in Fig. 12
for the same case as in Fig. 11. We see that the results are
drastically different especially for the logarithmic deriva-
tives Dl, D

∗
l . In fact Dl, D

∗
l cannot give correct picture of

sensitivity to price variations since for the monetary ex-
change the network links between nodes are not taken into
account and there is only a mechanical re-computation of
the value normalization. A similar situation appears also
for the multiproduct WTN [14]. Thus we see from Fig. 11
and Fig. 12 that the Google matrix approach provides new
elements for the economic activity analysis going signifi-
cantly beyond the usual consideration of Import-Export
method.

The new element of the WNEA, compared to the mul-
tiproduct WTN, is existence of transfers between sectors
of the same economy. This allows us to consider the sen-
sitivity not only to sectoral prices but also the sensitivity
to labor cost in a given country c (e.g. price shock af-
fecting all industries in the same country). This can be
taken into account by the introduction of the dimension-
less labor cost change in a given country c by replacing
the related monetary flows from coefficient 1 to 1 + σc in
Mcc′,ss; (1) for a selected country c.

Of course, the above derivatives over price of activity
sector and labor country cost give only an approximate
consideration of effects of price variations which is a very
complex phenomenon. For an economic discussion of the
effect of price shocks on international production networks
we address a reader to the research performed in [30]. We
will see below that our approach gives results being in
a good agreement with economic realities thus opening
complementary possibilities of economic activity analysis
based on the underlying network relations between coun-
tries and activity sectors which are absent in the usual
Import-Export consideration. We present the results on
sensitivity to sector prices and labor cost in next subsec-
tions.

3.6 Price shocks and trade balance sensitivity

On the basis of the obtained WNEA Google matrix we can
now analyze the trade balance in various activity sectors
for all world countries. Usually economists consider the
export and import of a given country as it is shown in
Fig. 1. Then the trade balance of a given country c can be
defined making summation over all sectors:

Bc =
∑
s

(P ∗cs−Pcs)/
∑
s

(P ∗cs+Pcs) = (P ∗c −Pc)/(P ∗c +Pc).

(13)
In economy, Pc, P

∗
c are defined via the probabilities of

trade value P̂cs, P̂
∗
cs from (3). In our matrix approach, we

define Pcs, P
∗
cs as PageRank and CheiRank probabilities.

In contrast to the Import-Export value our approach takes
into account the multiple network links between nodes.
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Fig. 13. World map of CheiRank-PageRank balance Bc =
(P ∗c − Pc)/(P

∗
c + Pc) determined for all Nc = 58 countries in

year 2008. Top panel shows the probabilities P and P ∗ given
by PageRank and CheiRank vectors; the value of ROW group
is Bc=58 = 0.023. Bottom panel shows the probabilities P and
P ∗ computed from the Export and Import value; the value of
ROW group is Bc=58 = 0.16. Names of the countries are given
in Table 1 and in the world map of countries [22].

The comparison of CheiRank-PageRank balance with
Export-Import balance for the world countries shown in
Fig. 13 for year 2008. Each country is shown by color wh-
cih is proportional to the country balance BC (13) with
the color bar given on the figure. For Export-Import bal-
ance we see the dominance of petroleum producing coun-
tries Saudi Arabia, Russia, Norway with the largest val-
ues. The CheiRank-PageRank balance highlights
new features placing on the top Russia, Norway, Germany,
China. In fact, USA has now a slightly positive balance
in top panel of Fig. 13) while it was negative before in
bottom panel of same figure. We see that the broad net-
work of economic activity relations and links makes the
economies of the above countries more important in the
world economy while Saudi Arabia, with the largest pos-
itive Export-Import balance, looses its leading position.
Indeed, the trade of this country is mainly oriented to
USA and nearby countries that reduces its importance for
world economy (a similar effect has been observed with
COMTRADE data [13,14]).

The sensitivity of country balance dBc/dδ7 to price
variation of sector s = 7 Manufacture of coke, refined
petroleum products and nuclear fuel is shown in Fig. 14.
For Export-Import in bottom panel the most sensitive
countries are Lithuania (positive) and Vietnam (negative).
Lithuania does not produce petroleum, but in fact in 2008

Fig. 14. Derivative of probabilities balance dBc/dδ7 over price
of sector s = 7 C23PET for year 2008. Top panel shows the
case when Bc is determined by CheiRank and PageRank vec-
tors as in the top panel of Fig.13; the value of ROW group
is dB58/dδ7 = 0.04. Bottom panel shows the case when Bc

is computed from the Export-Import value as in the bottom
panel of Fig.13; the value of ROW group is dB58/dδ7 = −0.07.
Names of the countries can be found in Table 1 and in the
world map of countries [22].

there was a large oil refinery company there which had a
large exportation value (see e.g.
http://en.wikipedia.org/wiki/Economy of Lithuania). The
Export-Import approach shows that Russia is slightly pos-
itive, even less positive is Saudi Arabia, China and Ger-
many are close to zero change, USA is only very slightly
positive. The results of CheiRank-PageRank sensitivity
(top panel) are significantly different showing strongly pos-
itive sensitivity for Saudi Arabia, Russia and strongly neg-
ative sensitivity for China, Germany and Japan; USA goes
from slightly positive side in bottom panel to moderate
negative one in top panel. The CheiRank-PageRank bal-
ance demonstrates much higher sensitivity of Russia, Saudi
Arabia and China to price variations of s = 7 sector com-
paring to the case of Export-Import value analysis. The
economies of Germany, China and Japan are also very
sensitive to petroleum prices that is correctly captured by
our analysis. We consider that the CheiRank-PageRank
approach describes the economic reality from a new com-
plementary angle and that provides new useful informa-
tion about complex trade systems. We also note that the
highly negative sensitivity of China to petroleum prices
has been also obtained on the basis of Google matrix anal-
ysis of COMTRADE data (see Fig.21 in [14]).
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Fig. 15. Derivative of partial probability balance of sector
s defined as dBcs/dδs′ over sector s′ = 7 C23PET price δ7
for year 2008. Here Bcs = (P ∗cs − Pcs)/(P ∗c + Pc) and s = 2
(C10T14MIN, Mining, extraction,...) from Table 2. The sec-
tor balance sensitivity of countries Bcs is determined from
CheiRank and PageRank vectors (top panel) and from the ex-
change value of Export-Import (bottom panel); the values of
ROW group are dB58,2/dδ7 = 0.05 and dB58,2/dδ7 = −0.03
respectively. Names of the countries can be found at Table 1
and in the world map of countries [22].

It is also possible to determine the cross-sensitivity of
activity sectors to price variation. For that we determine
the partial exchange balance for a given sector s defined
as

Bcs = (P ∗cs−Pcs)/
∑
s

(P ∗cs+Pcs) = (P ∗cs−Pcs)/(P ∗c +Pc),

(14)
so that the global country balance is Bc =

∑
sBcs. Then

the sensitivity of partial balance of a given sector s in re-
spect to a price variation of a sector s′ is given by the
derivative dBcs/dδs′ . The results for s = 2, s′ = 7 are
shown in Fig. 15. We see that two methods give results
with even opposite signs. According to the Google matrix
analysis the increase of petroleum prices stimulates devel-
opment of mining while for the Export-Import approach
the result is the opposite. In our opinion, the absence of
links and next step relations between countries and sectors
in the Export-Import methods does not allow to take into
account all complexity of economy relations. In contrast
the CheiRank-PageRank approach captures effects of all
links providing more advanced indications.

The sensitivities dBc/dδs′ of CheiRank-PageRank bal-
ance of China and USA to price variation of sectors s′ are
presented in Fig. 16. We see two rather different profiles.
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Fig. 16. Top (China) and bottom (USA) panels show deriva-
tive dBc/dδs′ of country total probability balance Bc over
price δs′ of sector s′ for year 2008 (black points connected
by dashed line); derivatives of balance without diagonal term
(dBc/dδs′ − dBcs′/dδs′) are represented by open red circles.
The sector balance of countries Bcs and Bc are determined
from CheiRank and PageRank vectors. The sectors correspond-
ing to sector index s or s′ are listed in Table2.

Thus, for China the derivative dBc/dδs′ is positive for sec-
tors s = 4, 14, 16 (Manufacture of textiles; office machin-
ery; radio etc,) and negative for s = 7, 25, 27 (Petroleum;
Land transport etc.; Financial intermediation etc.). For
USA the sensitivity is significantly positive for s = 23, 29, 32
(Sale of motor vehicles etc.; Renting of machinery and
equipment etc.; Other business activities) and negative for
s = 11 (Manufacture of basic metals). Thus the economic
activities of these two countries have very different strong
and weak points. We note that the sensitivity without the
diagonal term (dBc/dδs′−dBcs′/dδs′) has negative values
for almost all sectors for both countries.

The matrices of cross-sector sensitivity dBcs/dδs
′ are

shown for China and USA in Fig. 17. Such matrices pro-
vide a detailed information of interconnections of various
activity sectors. Thus for USA we see that its s = 8 (Man-
ufacture of chemicals etc.) has a significant negative sen-
sitivity to s′ = 7, 23, 25 (Petroleum; Renting of machinery
and equipment etc.; Land transport etc.). Indeed, chemical
production is linked with petroleum, machinery and trans-
port. For China we find that its sector s = 11 (Manufac-
ture of basic metals) has a negative sensitivity to s′ = 8, 23
(Manufacture of chemicals etc.; Renting of machinery and
equipment etc.); also s = 14, 16 have a negative derivative
in respect to s′ = 11).

Of course, the cross sensitivity to price variations in
one sector and their effects on another sector, based on
(14), is a very delicate thing since a price in one sector
can affect prices in other sectors also in other manner since
economic systems learn and adapt while here we consid-
ered only linear algebraic relations without any adapta-
tion features. However, even being linear, the Google ma-
trix approach provides a detailed information on hidden
interactions and inter-dependencies of various economic
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Fig. 17. China (top) and USA (bottom) examples of deriva-
tive dBcs/dδs′ of partial probability balance Bcs of sector s
over price δs′ of sector s′ for year 2008. Diagonal terms, given
by y = dBcs/dδs for s = s′, are shown on the top panels of each
example. Sectors s′ and s are shown in x-axis and y-axis respec-
tively (indexed as in Table2 from 1 to 37), while dBcs/dδs′ is
represented by colors with a threshold value given by +ε and
−ε for negative and positive values respectively, also shown
in red dashed lines on top panels with diagonal terms. Here
ε = 0.01 for USA and China; partial balance Bcs is defined by
CheiRank and PageRank probabilities.

activities for various countries that can provide a useful
message even for nonlinear adapting systems.

Fig. 18. Derivative of probabilities balance dBc/dσc′ over la-
bor cost of China c′ = 37 for year 2008. Top panel shows
the case when Bc is determined by CheiRank and PageRank
vectors; here the special values are dB58/dσ37 = −0.0146 for
ROW group (gray) and dB37/dσ37 = 0.3217 for China (ma-
genta). Bottom panel shows the case whenBc is computed from
the Export-Import value; the special values are dB58/dσ37 =
−0.0352 for ROW group (gray) and dB37/dσ37 = 0.4810 for
China (magenta). Names of the countries can be found in Table
1 and in the world map of countries [22].

3.7 World map of sensitivity to labor cost

Using the established structure of WNEA we can study
the sensitivity of country balance dBc/dσ

′
c to the labor

cost in different countries. At the difference of sectoral
shocks on one product, here the price shock affects all in-
dustries in a country. As before, the change in price has
to be small enough for the resulting simulation to remain
in a neighbourhood of the original data. Indeed, larger
shocks would trigger a series of substitution effects divert-
ing trade to other partners.

The derivative dBc/dσ
′
c is computed numerically as de-

scribed in Sec. 3.5. The world sensitivity to the labor cost
of China is shown in Fig. 18. Of course, the largest deriva-
tive is found for China itself (dBc/dσc at c = 37 from
Table 1). The effect on other countries is given by non-
diagonal derivatives at c 6= c′ = 37. From the CheiRank-
PageRank balance we find that the most strong negative
effect (minimal negative dBc/dσc′) is obtained for USA,
Germany, UK; a positive derivative is visible only for Chi-
nese Taipei (s = 38) and S.Korea (s = 19). For the
Export-Import balance the results are rather different: at
first all derivatives at c 6= c′ are negative; among the most
negative values are such countries as Hong Kong (most
negative with dark red color but hardly visible due to its
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small size), Chinese Taipei, S.Korea, Vietnam. Thus the
Google matrix approach bring a new perspective for anal-
ysis of complex of economical relations between countries
and sectors.

Fig. 19. Same as in Fig. 18 with the derivative dBc/dσc′

over the labor cost c′ = 11 of Germany for year 2008. Top
panel shows the case when Bc is determined by CheiRank and
PageRank vectors; the special values are dB58/dσ11 = −0.0367
for ROW group (gray) and dB11/dσ11 = 0.3248 for Germany
(magenta). Bottom panel shows the case when Bc is com-
puted from the Export-Import value; the special values are
dB58/dσ11 = −0.0280 fro ROW group (gray) and dB11/dσ11 =
0.4911 for Germany (magenta). Names of the countries can be
found in Table 1 and in the world map of countries [22].

Another results for the effects of labor cost in Germany
and in USA are shown in Fig. 19 and Fig. 20. In the case of
Germany the most strong negative sensitivity is for USA,
Russia, China for CheiRank-PageRank balance while for
Import-Export it is Switzerland and Austria. However,
USA and Russia are relatively weakly affected. This again
stresses the qualitative difference between these two ap-
proaches.

The increase of USA labor cost in Fig. 20 produces
positive derivatives of CheiRank-PageRank balance for
Canada and Mexico that looks reasonable from a view
point of economy since these countries will profit from
higher production costs in USA. In opposite, Export-Import
gives most strong negative derivatives for Canada and
Mexico.

The whole matrix of labor cost derivatives dBc/dσc′ of
the CheiRank-PageRank balance Bc is shown in Fig. 21
(numerical values of derivatives are given at [26]). Of course,
the diagonal terms have the strongest positive derivatives,

Fig. 20. Same as in Fig. 18 with the derivative dBc/dσc′ over
labor cost c′ = 34 of USA for year 2008. Top panel shows
the case when Bc is determined by CheiRank and PageR-
ank vectors; the special values are dB58/dσ34 = −0.0257 for
ROW group (gray) and dB34/dσ34 = 0.3148 for USA (ma-
genta). Bottom panel shows the case whenBc is computed from
the Export-Import value; the special values are dB58/dσ34 =
−0.0632 for ROW group (gray) and dB34/dσ34 = 0.4852 for
USA (magenta). Names of the countries can be found in Table
1 and in the world map of countries [22].

but off-diagonal terms change signs and characterize the
sensitivity of one country to labor cost in other country.
The vertical lines with high derivative values correspond
to Germany (c′ = 11), Japan (c′ = 18), S.Korea (c′ = 19),
USA (c′ = 34), China (c′ = 37), Russia (c′ = 41). The
rest of the world (ROW) group also have a visible effect
of other countries (c′ = 58). Thus is it desirable to obtain
individual OECD data for countries of the ROW group.

In Fig. 21 we considered the effects of the labor cost in
various countries. We can also see the effect of price vari-
ation δs′ in a given sector s′ on the CheiRank-PageRank
balance Bc of country c. This sensitivity is given by the
rectangular matrix of derivatives dBc/dδs′ shown in Fig. 22
(numerical data are given at [26]). The strongest pos-
itive derivatives (blue squares) are for s′ = 2, c = 50
(mining and Saudi Arabia), s′ = 23, c = 44 (motors and
Hong Kong), s′ = 27, c = 20 (finance and Luxembourg).
The strongest negative derivatives (red squares) are for
s′ = 2, c = 3 (mining and Belgium), s′ = 2, c = 42 (min-
ing and Singapore which economy is very sensitive to min-
ing products), s′ = 7, c = 11 (petroleum and Germany),
s′ = 7, c = 18 (petroleum and Japan), s′ = 7, c = 37
(petroleum and China), s′ = 11, c = 34 (manufacture of
basic metals and USA), s′ = 11, c = 42 (manufacture of
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Fig. 21. Global view of the effect of labor cost variation in
country c′ on country c in 2008. Matrix elements dBc/dσc′

are given in colors shown by the truncated color scale; matrix
elements above the scale (diagonal terms) are shown in the top
inset where y = dBc/dσc′ . In the matrix of derivatives shown
by color, x-axis shows the index c′ of country where a labor
cost variation σc′ takes place and y-axis shows the country c
affected by the change. Here Bc is computed from CheiRank
and PageRank probabilities. Country identification numbers
c = 1, ..., 58 are given in Table 1.

basic metals and Singapore). All these results are in agree-
ment with the economic realities of sensitivity of the above
countries to given activity sectors. This shows the strength
of the Google matrix approach to analysis of WNEA.

3.8 World transformation matrix of activity sectors

From the obtained Google matrices G,G∗ of WNEA we
can analyze the transformation of the activity sectors by
the world economy. For this analysis we compute the trans-
fer matrix

T = (1− η)(1− ηG∗)−1G , (15)

where η is a numerical constant. Our study show that
as in the case of damping factor α the results are robust
to variations of η in the range 0.5 < η < 0.9 and thus
in the following we present the results for η = 0.7. We
note that a similar construction for ImpactRank has been
used for Wikipedia networks [27] and the C.elegans neural
network [31]. In a certain sense (15) can be considered
as a scattering matrix of particles entering in a system
by G term and then going out by the expansion term
1 + ηG∗ + (ηG∗)2.... = 1/(1 − ηG∗). In this approach η
describes a relaxation rate in the system. We note that T
belongs to the Google matrix class.
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Fig. 22. Global view of the effect of sector s′ price variation on
balance of country c in 2008. Colors are proportional to matrix
elements dBc/dδs′ , x-axis shows the sector index s′ (sectors are
given in Table 2) and y-axis gives the country index c affected
by the change (countries are given in Table 1). Here Bc is
computed from CheiRank and PageRank probabilities.

From the global matrix T of size N we obtain the
reduced matrix Rss′(c) of size Ns describing the trans-
formation for activity sectors for a country c. We have
Rss′(c

′) =
∑
c Ts,s′,c,c′ where c′ is a target country we are

interested in. The matrices Rss′(c
′) giving the transfor-

mation of sector s′ to all other sectors s for c′ of China,
USA, Germany are given in [26]. The reduced transforma-
tion matrix for the whole world is obtained by averaging
over countries with Rss′ =

∑
c′ Rss′(c

′)/Nc′ (see Fig. 23).
The results of Fig. 23 show a few characteristic features:
the reduced transfer matrix has a strong diagonal element
(this is because each product is strong projection on it-
self), there are characteristic horizontal lines correspond-
ing to important sectors (e.g. s = 2, 7, 11, 25).

By considering a transformation of a given sector to all
other sectors for a given country. For s′ = 2 (mining) we
present the resulting transformed vector v(s) in Fig. 24
for France, Germany, Switzerland and USA. The global
profiles are similar but there are significant enhancement
for Germany at sector s = 7 (petroleum) and for Switzer-
land at sector s = 20 (manufacturing and recycling). For
comparison we show the results of transformation of in-
put/output matrix M of (1). The comparison shows a
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Fig. 23. Image of the average reduced transfer matrix Rs,s′ of
sectors to sectors for for the whole world (averaged over coun-
tries) for year 2008. Here x-axis represents the initial sector s′

and y-axis represents the final sectors s into which s′ is trans-
formed. The sector numbering is given in Table 2. Colors are
proportional to matrix elements and η = 0.7.

drastic difference between two approaches which we at-
tribute to the fact that M does not take into account the
multiple network transitions.

The transformation for the sector s′ = 34 are shown in
Fig. 25 for Cyprus (blue), Singapore (red), Luxembourg
(green) and Malta (black). We see that for Luxembourg
there is a strong transformation of s′ = 20 to s = 6
(publishing). At the same time the global profile, being
different from the case of Fig. 24 with s′ = 2, has simi-
lar features for different countries. The comparison with
the transformation results from value exchange matrix
Mss′,cc′ are again very different as in the case of Fig. 24.

The obtained results for the activity sector transfor-
mation by the WNEA open new possibilities for analysis
of interactions between the world economic activities. The
Google matrix approach provides new type of results being
very different from usual Input/Output matrix approach.
This is related to the fact that the transformation matrix
(14) takes into account summation over various cycles over
the network.

4 Discussion

In this work we have developed the Google matrix anal-
ysis of the world network of economic activities from the
OECD-WTO TiVA database. The PageRank and CheiRank
probabilities allowed to obtain ranking of world countries
independently of their richness being mainly determined
by the efficiency of their economic relations. The devel-
oped approach demonstrated the asymmetry in the eco-
nomic activity sectors some of which are export oriented
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Fig. 24. Top panel: Examples of profile v(S) for transforma-
tion vector from the reduced transfer matrix for several coun-
tries in 2008. Here the initial sector is s = 2 (mining) while
the transformed vector v(s) is formed by the matrix defined
in Fig. 23; the countries are France (blue), Germany (red),
Switzerland (green) and USA (black). Bottom panel: For com-
parison, we show here the same as top panel but instead of T,R
matrices we use the input/output matrix M with normalized
columns (dangling nodes are not replaced here, transitions in-
side one country are taken to be zero); a column s′ of such a
matrix for country c′ is given by

∑
cMss′,cc′ ; here the same

countries are shown by same colors as in top panel..
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Fig. 25. Same as in Fig. 24 for the initial sector s′ = 34 (ed-
ucation). The results are shown for Cyprus (blue), Singapore
(red), Luxembourg (green) and Malta (black).

and others are import oriented. We also showed that the
eigenstates of the WNEA Google matrix select specific
quasi-isolated communities oriented to specific activity sec-
tors. The CheiRank-PageRank balance Bc allows to deter-
mine economically rising countries with robust network
of economic relations. The sensitivity of this Bc to price
variations and labor cost in various countries determines
the hidden relations between world economies being not
visible via usual Export-Import exchange analysis. The
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Google matrix analysis determines also the transforma-
tion features of world activity sectors.

The comparison with the multiproduct world trade
network from UN COMTRADE shows certain similari-
ties between the two networks of WNEA and WTN. At
the same time the WNEA data provides new elements
for interactions of activity sectors while there are no di-
rect interactions of products in COMTRADE database.
From this viewpoint the OECD-WTO data captures the
economic reality on a deeper level. But at the same time
the OECD-WTO network is less developed compared to
COMTRADE (less countries, years, sectors). Thus it is
highly desirable to extend the OECD-WTO database.

We think that the Google matrix analysis developed
here and in [13,14] captures better the new reality of mul-
tifunctional directed tensor interactions and that the uni-
versal features of this approach can be also extended to
multifunctional financial network flows which now attract
an active interest of researchers [32,33]. Unfortunately, the
data on financial flows have much less accessibility com-
pared to the networks discussed here.

We point that recently some of the matrix methods,
developed in physics community, started to find active ap-
plication for economy systems (see e.g. [34,35]). However,
usually for physicists these matrices have been from the
unitary or Hermitian ensembles, where the Random Ma-
trix Theory allowed to obtained certain universal results.
Here, we show that the directed networks and tensors ap-
pearing in the interacting economy systems are described
by the matrices of Perron-Frobenius operators which had
not been studied much in physics. Thus the new field of
research is now opened for physicists, mathematicians and
computer scientists with application to complex interact-
ing economy systems.
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country name country code country flag country name country code country flag

1 Australia AUS 30 Sweden SWE

2 Austria AUT 31 Switzerland CHE

3 Belgium BEL 32 Turkey TUR

4 Canada CAN 33 United Kingdom GBR

5 Chile CHL 34 United States USA

6 Czech Republic CZE 35 Argentina ARG

7 Denmark DNK 36 Brazil BRA

8 Estonia EST 37 China CHN

9 Finland FIN 38 Chinese Taipei TWN

10 France FRA 39 India IND

11 Germany DEU 40 Indonesia IDN

12 Greece GRC 41 Russia RUS

13 Hungary HUN 42 Singapore SGP

14 Iceland ISL 43 South Africa ZAF

15 Ireland IRL 44 Hong Kong HKG

16 Israel ISR 45 Malaysia MYS

17 Italy ITA 46 Phillippines PHL

18 Japan JPN 47 Thailand THA

19 Korea KOR 48 Romania ROU

20 Luxembourg LUX 49 Vietnam VNM

21 Mexico MEX 50 Saudi Arabia SAU

22 Netherlands NLD 51 Brunei Darussalam BRN

23 New Zealand NZL 52 Bulgaria BGR

24 Norway NOR 53 Cyprus CYP

25 Poland POL 54 Latvia LVA

26 Portugal PRT 55 Lithuania LTU

27 Slovak Republic SVK 56 Malta MLT

28 Slovenia SVN 57 Cambodia KHM

29 Spain ESP 58 Rest of the World ROW

Table 1. List of Nc = 58 countries (with rest of the world ROW) with country name, code and flag.
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OECD ICIO Category ISIC Rev. 3 correspondence

1 C01T05 AGR

01 - Agriculture, hunting and related service activities
02 - Forestry, logging and related service activities
05 - Fishing, operation of fish hatcheries and fish farms; service activities incidental to fishing

2 C10T14 MIN

10 - Mining of coal and lignite; extraction of peat
11 - Extraction of crude petroleum and natural gas; service activities incidental to oil and gas extraction excluding surveying
12 - Mining of uranium and thorium ores
13 - Mining of metal ores
14 - Other mining and quarrying

3 C15T16 FOD
15 - Manufacture of food products and beverages
16 - Manufacture of tobacco products

4 C17T19 TEX

17 - Manufacture of textiles
18 - Manufacture of wearing apparel; dressing and dyeing of fur
19 - Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear

5 C20 WOD
20 - Manufacture of wood and of products of wood and cork, except furniture;
Manufacture of articles of straw and plaiting materials

6 C21T22 PAP
21 - Manufacture of paper and paper products
22 - Publishing, printing and reproduction of recorded media

7 C23 PET 23 - Manufacture of coke, refined petroleum products and nuclear fuel
8 C24 CHM 24 - Manufacture of chemicals and chemical products
9 C25 RBP 25 - Manufacture of rubber and plastics products
10 C26 NMM 26 - Manufacture of other non-metallic mineral products
11 C27 MET 27 - Manufacture of basic metals
12 C28 FBM 28 - Manufacture of fabricated metal products, except machinery and equipment
13 C29 MEQ 29 - Manufacture of machinery and equipment n.e.c.
14 C30 ITQ 30 - Manufacture of office, accounting and computing machinery
15 C31 ELQ 31 - Manufacture of electrical machinery and apparatus n.e.c.
16 C32 CMQ 32 - Manufacture of radio, television and communication equipment and apparatus
17 C33 SCQ 33 - Manufacture of medical, precision and optical instruments, watches and clocks
18 C34 MTR 34 - Manufacture of motor vehicles, trailers and semi-trailers
19 C35 TRQ 35 - Manufacture of other transport equipment

20 C36T37 OTM
36 - Manufacture of furniture; manufacturing n.e.c.
37 - Recycling

21 C40T41 EGW
40 - Electricity, gas, steam and hot water supply
41 - Collection, purification and distribution of water

22 C45 CON 45 - Construction

23 C50T52 WRT

50 - Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of automotive fuel
51 - Wholesale trade and commission trade, except of motor vehicles and motorcycles
52 - Retail trade, except of motor vehicles and motorcycles; repair of personal and household goods

24 C55 HTR 55 - Hotels and restaurants

25 C60T63 TRN

60 - Land transport; transport via pipelines
61 - Water transport
62 - Air transport
63 - Supporting and auxiliary transport activities; activities of travel agencies

26 C64 PTL 64 - Post and telecommunications

27 C65T67 FIN

65 - Financial intermediation, except insurance and pension funding
66 - Insurance and pension funding, except compulsory social security
67 - Activities auxiliary to financial intermediation

28 C70 REA 70 - Real estate activities
29 C71 RMQ 71 - Renting of machinery and equipment without operator and of personal and household goods
30 C72 ITS 72 - Computer and related activities
31 C73 RDS 73 - Research and development
32 C74 BZS 74 - Other business activities
33 C75 GOV 75 - Public administration and defense; compulsory social security
34 C80 EDU 80 - Education
35 C85 HTH 85 - Health and social work

36 C90T93 OTS

90 - Sewage and refuse disposal, sanitation and similar activities
91 - Activities of membership organizations n.e.c.
92 - Recreational, cultural and sporting activities
93 - Other service activities

37 C95 PVH 95 - Private households with employed persons

Table 2. List of sectors considered by Input/Output matrices from OECD database, their correspondence to the ISIC classifi-
cation is also given.
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Sector K̂ (1995) % vol (1995) K̂∗ (1995) % vol (1995) K̂ (2008) % vol (2008) K̂∗ (2008) % vol (2008)

1 19 2.2979 16 2.9763 20 1.9532 16 2.0902
2 27 1.2993 2 8.6183 24 1.5245 1 15.8784
3 3 6.0117 12 3.3271 11 3.9327 17 1.9835
4 10 3.9579 14 3.0831 17 2.0934 19 1.8634
5 30 1.108 20 1.9037 33 0.60075 22 1.3001
6 11 3.5687 6 4.2128 18 2.0608 14 2.3736
7 4 5.9126 19 2.2783 1 11.589 4 6.34
8 2 6.251 1 10.6954 3 6.0558 2 9.1103
9 17 2.4035 15 3.0546 19 1.9785 13 2.5549
10 28 1.2 21 1.8337 29 1.0389 21 1.3177
11 8 4.4393 3 8.0658 4 5.4907 3 8.3184
12 20 2.2646 17 2.7194 23 1.6212 15 2.2182
13 9 4.0642 8 4.0365 9 4.0117 9 4.0597
14 12 3.3353 13 3.158 8 4.0642 6 5.0066
15 18 2.3789 9 4.0148 25 1.456 18 1.8673
16 15 2.7053 10 3.8054 14 2.7844 11 3.6339
17 31 1.0034 23 1.1434 34 0.31041 29 0.40161
18 7 5.2722 7 4.1643 6 5.1478 10 3.9907
19 26 1.3665 22 1.7813 26 1.3028 23 1.2752
20 24 1.6331 27 0.67546 22 1.6652 20 1.3858
21 21 2.1673 30 0.34377 10 3.946 30 0.39969
22 1 6.538 32 0.22022 2 6.8692 32 0.15209
23 5 5.8472 4 7.9296 7 4.6893 8 4.6745
24 25 1.5283 29 0.37682 27 1.2377 27 0.62202
25 6 5.8385 5 6.5023 5 5.2454 5 5.8065
26 29 1.1862 26 0.6839 28 1.2179 26 0.62929
27 13 2.7584 18 2.3006 15 2.5623 12 3.3487
28 33 0.70446 24 0.93849 31 0.84772 33 0.105
29 36 0.16329 33 0.18955 36 0.21276 24 0.81082
30 34 0.53799 28 0.39581 32 0.67481 28 0.61668
31 35 0.36919 31 0.33351 35 0.24684 31 0.24177
32 16 2.618 11 3.372 13 3.0455 7 4.7163
33 14 2.7071 34 0.064931 12 3.3939 35 0.06377
34 32 0.89993 36 0.0416 30 1.036 34 0.09439
35 22 1.8912 35 0.045551 16 2.2601 36 0.025979
36 23 1.7326 25 0.7136 21 1.8131 25 0.72283
37 37 0.03899 37 0 37 0.019524 37 0

Table 3. First column gives the sectors from OECD database, for each of them the following columns give the ImportRank K̂
with the sector fraction in global trade value and ExportRank K̂∗ with sector fraction in global trade value. Data are shown
for 1995 and 2008.
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K K∗ K2 K̂ K̂∗

1 DEU C34 MTR ROW C10T14 MIN DEU C24 CHM USA C23 PET ROW C10T14 MIN
2 USA C75 GOV RUS C10T14 MIN USA C65T67 FIN JPN C23 PET SAU C10T14 MIN
3 ROW C75 GOV SAU C10T14 MIN DEU C29 MEQ USA C75 GOV RUS C10T14 MIN
4 SAU C85 HTH USA C24 CHM DEU C34 MTR ROW C45 CON USA C24 CHM
5 GBR C85 HTH DEU C24 CHM DEU C27 MET CHN C32 CMQ CAN C10T14 MIN
6 USA C34 MTR DEU C27 MET USA C74 BZS CHN C27 MET DEU C24 CHM
7 ROW C45 CON NOR C10T14 MIN DEU C50T52 WRT USA C45 CON NOR C10T14 MIN
8 ROW C15T16 FOD RUS C27 MET USA C24 CHM DEU C34 MTR AUS C10T14 MIN
9 USA C15T16 FOD USA C50T52 WRT DNK C60T63 TRN KOR C23 PET CHN C30 ITQ
10 RUS C50T52 WRT DEU C29 MEQ GBR C74 BZS DEU C23 PET USA C30 ITQ
11 USA C45 CON USA C74 BZS JPN C34 MTR JPN C40T41 EGW JPN C30 ITQ
12 USA C85 HTH CHN C27 MET GBR C65T67 FIN ROW C75 GOV DEU C29 MEQ
13 DEU C15T16 FOD USA C60T63 TRN CHN C32 CMQ CHN C24 CHM DEU C34 MTR
14 ROW C60T63 TRN GBR C65T67 FIN CHN C24 CHM USA C34 MTR KOR C32 CMQ
15 USA C65T67 FIN USA C23 PET DEU C60T63 TRN USA C24 CHM USA C23 PET
16 GBR C50T52 WRT GBR C74 BZS FRA C50T52 WRT CHN C30 ITQ USA C74 BZS
17 DEU C24 CHM USA C65T67 FIN USA C50T52 WRT CHN C23 PET TWN C32 CMQ
18 DEU C29 MEQ CHN C30 ITQ CHN C50T52 WRT ROW C60T63 TRN CHN C27 MET
19 DEU C50T52 WRT DEU C34 MTR CHN C29 MEQ CHN C29 MEQ DEU C27 MET
20 DEU C27 MET USA C30 ITQ ROW C60T63 TRN DEU C29 MEQ GBR C74 BZS

Table 4. Top 20 ranks for global PageRank K, CheiRankK∗, 2DRank K2, ImportRank K and ExportRank K∗ for the year
2008.

Ki |ψi| node |ψi| node |ψi| node |ψi| node

1 0.037606 ROW C17T19 TEX 0.050431 ARG C34 MTR 0.054681 CHN C32 CMQ 0.052248 RUS C10T14 MIN
2 0.025695 CHN C17T19 TEX 0.049991 BRA C34 MTR 0.053306 KOR C32 CMQ 0.03948 SAU C10T14 MIN
3 0.021618 ITA C17T19 TEX 0.029753 JPN C34 MTR 0.053253 TWN C32 CMQ 0.026187 ROW C10T14 MIN
4 0.017075 USA C17T19 TEX 0.026592 DEU C34 MTR 0.027361 SGP C32 CMQ 0.022125 NOR C10T14 MIN
5 0.016216 CHN C32 CMQ 0.018372 THA C34 MTR 0.025189 MYS C32 CMQ 0.019764 USA C71 RMQ
6 0.013003 CHN C30 ITQ 0.01531 IDN C34 MTR 0.018824 USA C30 ITQ 0.013899 USA C50T52 WRT
7 0.010963 FRA C17T19 TEX 0.0093875 ROW C21T22 PAP 0.016965 PHL C32 CMQ 0.011638 ROW C29 MEQ
8 0.010175 TUR C17T19 TEX 0.0093382 DEU C15T16 FOD 0.01534 JPN C30 ITQ 0.010871 RUS C27 MET
9 0.010161 USA C75 GOV 0.0090288 USA C15T16 FOD 0.014664 GBR C65T67 FIN 0.0082943 DEU C29 MEQ
10 0.0099839 USA C65T67 FIN 0.0086552 USA C75 GOV 0.013713 CHN C30 ITQ 0.0082905 RUS C23 PET

Table 5. Top 10 values of 4 different eigenvectors from Fig.9, Fig. 10. The corresponding eigenvalues from left to right are
λ = 0.4993 (red), λ = 0.3746 + 0.0126i (green), λ = 0.6256 (blue) and λ = −0.0001 + 0.1687i (magenta).
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Top 100 historical figures of Wikipedia
The top 100 historical figures of Wikipedia were determined by researchers from the University of Toulouse in
France using mathematical and statistical methods from the Wikipedia database, and published in two scientific
papers. In the statistical respects this top 100 list is of differs from the historical, cultural and other type arguments
used by such historians like Michael H. Hart. The various mathematical methods and results obtained by different
groups are described below. In spite or the mathematical and statistical grounds of those approaches they have
overlap of about 43 percent with the top 100 list of Hart. The distribution of top PageRank historical figures over
world countries is shown in Fig.1.

Fig1. World map of top 100 historical figures of 24 Wikipedia editions from PageRank
for the period from BC 15th century to AD 20th century (darkness is proportional to a

number of appearances of top persons born in a given country of AD 21st century
geographical borders). After.

Approaches of different
groups

The early ranking of top people of
Wikipedia was done on the basis of
PageRank algorithm and HITS
algorithm for English Wikipedia
edition (2005) by F.Belloni and
R.Bonato .[1] For top people of
PageRank they found Jesus, Paul the
Apostole, Saint Peter and for HITS
George W. Bush, Adolf Hitler, Bill
Clinton.

Later studies of Quantware group
analyzed English Wikipedia edition
Aug 2009 using PageRank, CheiRank and 2DRank algorithms.[2] The top persons found are: Napoleon, George W.
Bush, Elizabeth II for PageRank; Michael Jackson, Frank Lloyd Wright, David Bowie for 2DRank; Kasey S. Pipes,
Roger Calmel, Yury G. Chernavsky for CheiRank. For this study the distributions of top 100 historical figures of
PageRank, CheiRank and Hart's list are shown in Fig.2.

http://en.wikipedia.org/w/index.php?title=University_of_Toulouse
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Fig2. Density distribution of Wikipedia English articles (Aug 2009) in the
plane of PageRank and CheiRank indexes

shown by color with blue for minimum
and white for maximum (black for zero); green/red points show top 100

personalities from PageRank/CheiRank, yellow pluses show top 100
personalities from Hart's book, number of articles .

After.

Time evolution of Wikipedia ranking of
historical figures was investigated for English
Wikipedia editions for 2003 - 2011 using the
approach developed for Wikipedia Aug 2009.[3]

The distribution over fields of human activity
was established there for various years.

Independently, a study with 15 largest Wikipedia
language editions was done by Barcelona Media
group .[4] This group considered network of links
between biographical articles of Wikipedia.
However, a number of such biographical articles
is relatively small compared to the total number
of articles of a given edition that led to
fluctuating ranking results.

The investigations of 9 Wikipedia editions have
been reported by Eom and Shepelyansky
producing a reliable ranking of top 30 persons
for each edition. However, a selection of
historical figures from the whole list of ranked
edition articles was done manually that was
restricting efficiency of the approach.
In parallel, the Stony-Brook group performed
ranking of English Wikipedia edition combining
PageRank method with other methods .[5] This group found the top figures: Jesus, Napoleon. Muhammad. However,
even if this group used the public Wikipedia database the whole list of their top 100 people is not publicly available.

The Pantheon MIT project produced the ranking list of top 100 persons using all language editions of Wikipedia
counting number of editions and clicks on an article about a given person.[6] This group found at the top: Aristotle,
Plato, Jesus.

A list of the top 100 historical figures was created from Wikipedia pages in 24 different languages, using computer
algorithms to analyze the importance of people based on the links to those people's pages.[][][7]

Ranking Methodology
The researchers used several different page-ranking algorithms, including Google PageRank, 2DRank, and
CheiRank. They retrieved data from the text of Wikipedia pages in the 24 languages, and applied the algorithms to
the data to create culturally-specific list of influential people, as well as a list across all the cultures examined in the
project.
Among the data elements specifically targeted as indicators of importance were each person's birth country, date of
birth, century of birth, and quantity of hyperlinks. In the case of hyperlinks for people's Wikipedia pages, both links
to a person's page and links from that person's page were included in the analysis.
Other methods are described at and, they are not directly related to link analysis, network theory and Markov chains.
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Results
For the global list of 24 editions of Wikipedia, the top 10 historical figures, identified by averaging over PageRank
lists, were as follows:
1.1. Carl Linnaeus
2.2. Jesus
3.3. Aristotle
4.4. Napoleon
5.5. Hitler
6.6. Julius Caesar
7.7. Plato
8.8. William Shakespeare
9.9. Albert Einstein
10.10. Elizabeth II
The top global persons of 2DRank are Adolf Hitler, Michael Jackson, Madonna (entertainer). The top women of
human history are Elizabeth II, Mary (mother of Jesus), Queen Victoria for PageRank list and Madonna
(entertainer), Elizabeth II, Mary (mother of Jesus) for 2DRank list. Top 100 historical figures for 24 Wikipedia
editions are available at.[8] The overlap of top 100 people of Quantware, Stony-Brook, MIT Pantheon groups with
the Hart list is found to be on a level of 42-44 percents. This shows that the mathematical methods of determination
of top 100 historical figures of humanity via Wikipedia database give the relable results.
Discussion of Wikipedia ranking of historical figures in public press can be found at.
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Convergence of rank based degree-degree correlations in

random directed networks
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Abstract

We introduce, and analyze, three measures for degree-degree dependencies, also called

degree assortativity, in directed random graphs, based on Spearman’s rho and Kendall’s tau.

We proof statistical consistency of these measures in general random graphs and show that

the directed Configuration Model can serve as a null model for our degree-degree dependency

measures. Based on these results we argue that the measures we introduce should be preferred

over Pearson’s correlation coefficients, when studying degree-degree dependencies, since the

latter has several issues in the case of large networks with scale-free degree distributions.

Keywords: Degree-degree dependencies, rank correlations, directed random graphs, directed
configuration model, Spearman’s rho, Kendall’s tau

1 Introduction

This paper investigates statistical consistency of rank correlation measures for dependencies be-
tween in- and/or out-degrees on both sides of a randomly sampled edge in large directed networks,
such as the World Wide Web, Wikipedia, or Twitter. These dependencies, also called the assorta-
tivity of the network, degree correlations, or degree-degree dependencies, represent an important
topological property of real-world networks, and they have received a vast attention in the litera-
ture, starting with the work of Newman [12, 13].

The underlying question that motivates analysis of degree-degree dependencies is whether
nodes of high in- or out-degree are more likely to be connected to nodes of high or low in- or out-
degree. These dependencies have been shown to influence many topological features of networks,
among others, behavior of epidemic spreading [1], social consensus in Twitter [9], stability of
P2P networks under attack [15] and network observability [6]. Therefore, being able to properly
measure degree-degree dependencies is essential in modern network analysis.

Given a network, represented by a directed graph, a measurement of degree-degree dependency
usually consists of computing some expression that is defined by the degrees at both sides of the
edges. Here the value on each edge can be seen as a realization of some unknown ‘true’ parameter
that characterizes the degree-degree dependency.

Currently, the most commonly used measure for degree-degree dependencies is a so-called
assortativity coefficient, introduced in [12, 13], that computes Pearson’s correlation coefficient
for the degrees at both sides of an edge. However, this dependency measure suffers from the
fact that most real-world networks have highly skewed degree distributions, also called scale-free
distributions, formally described by power laws, or more formally, regularly varying distributions.
Indeed, when the (in- or out-) degree at the end of a random edge has infinite variance, then
Pearson’s coefficient is ill-defined. As a result, the dependency measure suggested in [12, 13]
depends on the graph size and converges to a non-negative number in the infinite network size

∗University of Twente, w.l.f.vanderhoorn@utwente.nl
†University of Twente, n.litvak@utwente.nl
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limit, as was pointed out in several papers [5, 8]. The detailed mathematical analysis and examples
for undirected graphs have been given in [7], and for directed graphs in our recent work [17]. Thus,
Pearson’s correlation coefficient is not suitable for measuring degree-degree dependencies in most
real-world directed networks.

The fact that the most commonly used degree correlation measure has obvious mathematical
flaws, motivates for design and analysis of new estimators. Despite the importance of degree-
degree dependencies and vast interest from the research community, this remains a largely open
problem.

In [7] it was suggested to use a rank correlation measure, Spearman’s rho, and it was proved
that under general regularity conditions, this measure indeed converges to its correct population
value. Both configuration model and preferential attachment model [16] were proved to satisfy
these conditions. In [17] we proposed three rank correlation measures, based on Spearman’s rho
and Kendall’s tau, as defined for integer valued random varibles, cf. [11], and we compared these
measures to Pearson’s correlation coefficient on Wikipedia graphs for nine different languages.

In this paper we first prove that, under the convergence assumption of the empirical two-
dimensional distributions of the degrees on both sides of a random edge, the rank correlations
defined in [17] are indeed statistically consistent estimators of degree-degree dependencies. We
obtain their limiting values in terms of the limiting distributions of the degrees.

Next, we apply our results to the recently developed directed Configuration Model [2]. Roughly
speaking, in this model, each node is given a random number of in- and out-bound stubs, that are
subsequently connected to each other at random. Since multiple edges and self-loops may appear
as a result of such random wiring, [2] presents two versions of the directed Configuration Model.
The repeated version repeats the wiring until the resulting graph is simple, while the erased version
merges multiple edges and removes self-loops to obtain a simple graph.

We analyze our suggested rank correlation measures in the Repeated and Erased Configuration
Model, as described in [2], and prove that all three measures converge to zero in both models.
This result is not very surprising for the repeated model, since we connect vertices uniformly at
random. However, in the erased scenario, the graph is made simple by design, and this might
contribute to the network showing negative degree-degree dependencies as observed and discussed
in, for instance, [10, 14]. Our result shows that such negative degree-degree dependencies vanish
for sufficiently large graphs, and thus both flavors of the directed Configuration Model can be used
as ‘null model’ for our three rank correlation measures.

By proving consistency of three estimators for degree-degree dependencies in directed networks,
and providing an easy-to-construct null model for these estimators, this paper makes an important
step towards assessing statistical significance of degree-degree dependencies in a mathematically
rigorous way.

This paper is structured as follows. In Section 2 we introduce notations, used throughout
this paper. Then, in Section 3, we prove a general theorem concerning statistical consistency of
estimators for Spearman’s rho and Kendall’s tau on integer-valued data. This result is applied in
Section 4 in the setting of random graphs to prove the convergence in the infinite size graph limit
of the three degree-degree dependency measures from [17], based on Spearman’s rho and Kendall’s
tau. We analyze both the Repeated and Erased Directed Configuration Model in Section 5.

2 Notations and definitions

Throughout the paper, if X and Y are random variables we denote their distribution functions
by FX and FY , respectively, and their joint distribution by HX,Y . For integer valued random
variables X,Y and k, l ∈ Z we will often use the following notations:

FX(k) = FX(k) + FX(k − 1), (1)

HX,Y (k, l) = HX,Y (k, l) +HX,Y (k − 1, l) +HX,Y (k, l − 1) +HX,Y (k − 1, l− 1). (2)
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If Z is a random element, we define the function FX|Z : R× Ω → [0, 1] by

FX|Z(x, ω) = E [I {X ≤ x}|Z] (ω),

where I {X ≤ x} denotes the indicator of the event {ω : X(ω) ≤ x}. We furthermore define the
random variable FX|Z(Y ) by

FX|Z(Y )(ω) = FX|Z(Y (ω), ω),

and we write FX|Z(x) to indicate the random variable E [I {X ≤ x}|Z]. With these notations it
follows that if X ′ is an independent copy of X , then

E [I {X ′ ≤ X}|Z] =

∫

R

∫

R

I {z ≤ x} dP (z|Z)dP (x|Z)

=

∫

R

E [I {X ′ ≤ x}|Z] dP (x|Z)

= E
[
FX|Z(X)

∣∣Z
]
.

Using similar definitions for HX,Y |Z(x, y, ω) and HX,Y |Z(X,Y ) we get, if (X ′, Y ′) and (X ′′, Y ′′)
are independent copies of (X,Y ), that

E [I {X ′ ≤ X} I {Y ′′ ≤ Y }|Z] = E
[
HX,Y |Z(X,Y )

∣∣Z
]
.

For integer valued random variables X and Y , the random variables FX|Z(k) and HX,Y |Z(k, l) are
defined similarly to (1) and (2), using FX|Z(k) and HX,Y |Z(k, l), respectively.

We introduce the following notion of convergence, related to convergence in distribution.

Definition 2.1. Let {Xn}n∈N and X be random variables and {Zn}n∈N be a sequence of random
elements. We say that Xn converges in distribution to X conditioned on Zn and write

(Xn|Zn) ⇒ X as n → ∞

if and only if for all continuous, bounded h : R → R

E [h(Xn)|Zn]
P
→ E [h(X)] as n → ∞.

Here
P
→ denotes convergence in probability. Note that if h is bounded then E [h(Xn)|Zn]

is bounded almost everywhere, hence limn→∞ E [h(Xn)] = limn→∞ E [E [h(Xn)|Zn]] = E [h(X)].
Therefore, (Xn|Zn) ⇒ X implies that Xn ⇒ X , where we write⇒ for convergence in distribution.
Similar to convergence in distribution, it holds that Definition 2.1 is equivalent to

FXn|Zn
(k)

P
→ FX(k) as n → ∞, for all k ∈ Z.

In this paper we use a continuization principle, applied for instance in [11], where we transform
given discrete random variables in continuous ones. From here on we will work with integer valued
random variables instead of arbitrary discrete random variables.

Definition 2.2. Let X be an integer valued random variable and U a uniformly distributed random
variable on [0, 1) independent of X. Then we define the continuization of X as

X̃ = X + U.

We will refer to U as the continuous part of X̃ . We remark that although we have chosen U to
be uniform we could instead take any continuous random variable on [0, 1) with strictly increasing
cdf, cf. [4].
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3 Rank correlations for integer valued random variables

We will use the rank correlations Spearman’s rho and Kendall’s tau for integer valued random
variables as defined in [11]. Below we will state these and rewrite them in terms of the functions
F and H, defined in (1) and (2) respectively. We will then proceed, defining estimators for these
correlations and prove that, under natural conditions, these converge to the correct value.

3.1 Spearman’s rho

Given two integer valued random variablesX and Y , Spearman’s rho ρ(X,Y ) is defined as, c.f. [11]

ρ(X,Y ) = 3 (P (X < X ′, Y < Y ′′) + P (X ≤ X ′, Y < Y ′′)

+ P (X < X ′, Y ≤ Y ′′) + P (X ≤ X ′, Y ≤ Y ′′)− 1) ,

where (X ′, Y ′) and (X ′′, Y ′′) are independent copies of (X,Y ). We will rewrite this expression,
starting with a single term:

P (X < X ′, Y < Y ′′) = E [I {X < X ′} I {Y < Y ′′}]

= 1− E [I {X ′ ≤ X}]− E [I {Y ′′ ≤ Y }] + E [I {X ′ ≤ X} I {Y ′′ ≤ Y }]

= 1− E [FX(X)]− E [FY (Y )] + E [FX(X)FY (Y )] .

If we do the same for the other three terms and use (57) we obtain,

ρ(X,Y ) = 3E [FX(X)FY (Y )]− 3. (3)

Since, given two continuous random variables X and Y, Spearman’s rho is defined as

ρ(X ,Y) = 12E [FX (X )FY (Y)]− 3,

Lemma A.3 now implies that

ρ(X,Y ) = ρ(X̃, Ỹ ). (4)

3.2 Kendall’s tau

For two continuous random variables X and Y, Kendall’s tau τ(X ,Y) is defined as

τ(X ,Y) = 4E [HX ,Y(X ,Y)] − 1.

Given two discrete random variables X and Y , Kendall’s Tau can be written as, c.f. [11] Propo-
sition 2.2,

τ(X,Y ) = E [HX,Y (X,Y )]− 1. (5)

Similar to Spearman’s rho we obtain, using Lemma A.3, that

τ(X,Y ) = τ(X̃, Ỹ ). (6)

Hence applying the continuization principle from Definition 2.2 on X and Y preserves both rank
correlations. We remark that (4) and (6) were obtained for arbitrary discrete random variables,
using a different approach, in [11].

3.3 Convergence for Spearman’s rho and Kendall’s tau

Let {Xn}n∈N and {Yn}n∈N be sequences of integer valued random variables. If (Xn, Yn) ⇒
(X,Y ), for some integer valued random variables X and Y , then limn→∞ E [FXn

(Xn)FYn
(Yn)] =

E [FX(X)FY (Y )] which implies that limn→∞ ρ(Xn, Yn) = ρ(X,Y ). The next theorem generalizes
this to the setting of the convergence of (Xn, Yn|Zn), of Definition 2.1.
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Theorem 3.1. Let {Xn}n∈N, {Yn}n∈N be sequences of integer valued random variables for which
there exist a sequence {Zn}n∈N of random elements and two integer valued random variables X
and Y such that

(Xn, Yn|Zn) ⇒ (X,Y ) as n → ∞.

Then, as n → ∞,

i) 3E
[
FXn|Zn

(Xn)FYn|Zn
(Yn)

∣∣Zn

]
− 3

P
→ ρ(X,Y ) and

ii) E
[
HXn,Yn|Zn

(Xn, Yn)
∣∣Zn

]
− 1

P
→ τ(X,Y ).

Moreover, we also have convergence of the expectations:

iii) limn→∞ 3E
[
FXn|Zn

(Xn)FYn|Zn
(Yn)

]
− 3 = ρ(X,Y ) and

iv) limn→∞ E
[
HXn,Yn|Zn

(Xn, Yn)
]
− 1 = τ(X,Y ).

Proof. Observe first that since (Xn, Yn|Zn) ⇒ (X,Y ), it follows that for all k, l ∈ Z, as n → ∞,

FXn|Zn
(k)

P
→ FX(k) (7)

FYn|Zn
(l)

P
→ FY (l) (8)

HXn,Yn|Zn
(k, l)

P
→ HX,Y (k, l). (9)

Moreover, these convergence hold uniformly, since X and Y are integer valued.
i) Using first (3) and then applying Lemma A.3 and Proposition A.4 we obtain,

∣∣3E
[
FXn|Zn

(Xn)FYn|Zn
(Yn)

∣∣Zn

]
− 3− ρ(X,Y )

∣∣
= 3

∣∣E
[
FXn|Zn

(Xn)FYn|Zn
(Yn)

∣∣Zn

]
− E [FX(X)FY (Y )]

∣∣

= 12
∣∣∣E
[
F
X̃n|Zn

(X̃n)FỸn|Zn
(Ỹn)

∣∣∣Zn

]
− E

[
F
X̃
(X̃)F

Ỹ
(Ỹ )
]∣∣∣

≤ 12
∣∣∣E
[
F
X̃n|Zn

(X̃n)FỸn|Zn
(Ỹn)

∣∣∣Zn

]
− E

[
F
X̃
(X̃n)FỸ

(Ỹn)
∣∣∣Zn

]∣∣∣

+ 12
∣∣∣E
[
F
X̃
(X̃n)FỸ

(Ỹn)
∣∣∣Zn

]
− E

[
F
X̃
(X̃)F

Ỹ
(Ỹ )
]∣∣∣

≤ 12 sup
x,y∈R

∣∣∣FX̃n|Zn
(x)F

Ỹn|Zn
(y)− F

X̃
(x)F

Ỹ
(y)
∣∣∣ (10)

+ 12
∣∣∣E
[
F
X̃
(X̃n)FỸ

(Ỹn)
∣∣∣Zn

]
− E

[
F
X̃
(X̃)F

Ỹ
(Ỹ )
]∣∣∣ . (11)

Because the function h(x, y) = F
X̃
(x)F

Ỹ
(y) is continuous and bounded, (11) converges in proba-

bility to 0. For (10) we observe that

∣∣∣FX̃n|Zn
(x)F

Ỹn|Zn
(y)− F

X̃
(x)F

Ỹ
(y)
∣∣∣ ≤

∣∣∣FX̃n|Zn
(x)F

Ỹn|Zn
(y)− F

X̃n|Zn
(x)F

Ỹ
(y)
∣∣∣

+
∣∣∣FX̃n|Zn

(x)F
Ỹ
(y)− F

X̃
(x)F

Ỹ
(y)
∣∣∣

≤
∣∣∣FỸn|Zn

(y)− F
Ỹ
(y)
∣∣∣+
∣∣∣FX̃n|Zn

(x)− F
X̃
(x)
∣∣∣ .

It now follows that (10) converges in probability to 0, since the convergence (7) and (8) are uniform.
ii) Here we again use Lemma A.3 and Proposition A.4, now combined with (5) to obtain,

∣∣E
[
HXn,Yn|Zn

(Xn, Yn)
∣∣Zn

]
− 1− τ(X,Y )

∣∣

=
∣∣E
[
HXn,Yn|Zn

(Xn, Yn)
∣∣Zn

]
− E [HX,Y (X,Y )]

∣∣

= 4
∣∣∣E
[
H

X̃n,Ỹn|Zn
(X̃n, Ỹn)

∣∣∣Zn

]
− E

[
H

X̃,Ỹ
(X̃, Ỹ )

]∣∣∣
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≤ 4
∣∣∣E
[
H

X̃n,Ỹn|Zn
(X̃n, Ỹn)

∣∣∣Zn

]
− E

[
H

X̃,Ỹ
(X̃n, Ỹn)

∣∣∣Zn

]∣∣∣

+ 4
∣∣∣E
[
H

X̃,Ỹ
(X̃n, Ỹn)

∣∣∣Zn

]
− E

[
H

X̃,Ỹ
(X̃, Ỹ )

]∣∣∣

≤ 4 sup
x,y∈R

∣∣∣HX̃n,Ỹn|Zn
(x, y)−H

X̃,Ỹ
(x, y)

∣∣∣ + 4
∣∣∣E
[
H

X̃,Ỹ
(X̃n, Ỹn)

∣∣∣Zn

]
− E

[
H

X̃,Ỹ
(X̃, Ỹ )

]∣∣∣

The former term converges in probability to 0 because (9) holds uniformly, and for the latter this
holds since h(x, y) = H

X̃,Ỹ
(x, y) is continuous and bounded.

Since both E
[
FXn|Zn

(Xn)FYn|Zn
(Yn)

∣∣Zn

]
and E

[
HXn,Yn|Zn

(Xn, Yn)
∣∣Zn

]
are bounded a.e.

we obtain iii) and iv) directely from i) and ii), respectively.

4 Rank correlations for random graphs

We now turn to the setting of rank correlations for degree-degree dependencies in random directed
graphs. We will first introduce some terminology concerning random graphs. Then we will recall
the rank correlations given in [17] and prove statistical consistency of these measures.

4.1 Random graphs

Given a directed graph G = (V,E), we denote by (D+(v), D−(v))v∈V the degree sequence where
D+ denotes the out-degree and D− the in-degree. We adopt the convention, introduced in [17], to
index the degree type by α, β ∈ {+,−}. Furthermore, we will use the projections π∗, π

∗ : V 2 → V
to distinguish the source and target of a possible edge. That is, if (v, w) ∈ V 2 then π∗(v, w) = v
and π∗(v, w) = w. When both projections are applicable we will use π. For v, w ∈ V we denote
by E(v, w) = {e ∈ E|π∗e = v, π∗e = w} the set of all edges from v to w. For e ∈ V 2, we write
E(e) = E(π∗e, π

∗e).
Given a set V of vertices we call a graph G = (V,E) random, if for each e ∈ V 2, |E(e)| is a

random variable. Since I {e ∈ E} = I {|E(e)| > 0}, it follows that the former is also a random
variable, cf. [3] for a similar definition of random graphs using edge indicators. Therefore, when
we refer to G as a random element it is understood that we refer to the random variables |E(e)|,
for e ∈ V 2.

When G is a random graph, the number of edges in the graph and the degrees of the nodes
are random variables defined by I {e ∈ E} and |E(e)|, e ∈ V 2:

|E| =
∑

e∈V 2

I {e ∈ E} |E(e)|,

D−(v) =
∑

w∈V

I {(w, v) ∈ E} |E(w, v)|, v ∈ V,

D+(v) =
∑

w∈V

I {(v, w) ∈ E} |E(v, w)|, v ∈ V.

Given a random graph G = (V,E) we define a uniformly sampled edge EG as a two-dimensional
random variable on V 2 such that

P (EG = e|G) =
|E(e)|

|E|
.

When it is clear which graph we are considering, we will use E instead of EG. Let α, β ∈ {+,−},
k, l ∈ N and π be any of the projections π∗ and π∗. Then we define

Fα
G(k) = FDα(π(EG))|G(k), (12)

Hα,β
G (k, l) = HDα(π∗(EG)),Dβ(π∗(EG))|G(k, l). (13)
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These functions are the empirical distribution of Dα(π(EG)) and the joint empirical distribution
of Dα(π∗(EG)) and Dβ(π∗(EG)), respectively, given the random graph G. The functions Fα

G and

Hα,β
G are defined in a similar way as (1) and (2), using (12) and (13), respectively. In order to

keep notations clear, we will, when considering both projections π∗ and π∗, always use α to index
the degree type of the sources and β to index the degree type of targets. Moreover, we will often
write DαπEG instead of Dα (π(EG)).

Now we will introduce Spearman’s rho and Kendall’s tau on random directed graphs and write
them in terms of the functions (12) and (13). This way we will be in a setting similar to the one
of Theorem 3.1 so that we can utilize this theorem to prove statistical consistency of these rank
correlations.

4.2 Spearman’s Rho

Spearman’s rho measure for degree-degree dependencies in directed graphs, introduced in [17], is
in fact Pearson’s correlation coefficient computed on the ranks of the degrees rather than their
actual values. In our setting, this definition is ambiguous because the data has many ties. For
example, if the in-degree of node v is d then we will observe D−π∗e = d for at least d edges
e ∈ E, plus there will be many more nodes with the same degree. In [17] we consider two possible
ways of resolving ties: by assigning a unique rank to each tied value uniformly at random, and
by assigning the same, average, rank to all tied values. We denote the ranks resulting from the
random and the average resolution of ties by R and R̄, respectively. Formally, for α, β ∈ {+,−},
we write:

Rαπ∗e =
∑

f∈E

I {Dαπ∗f + Uf ≥ Dαπ∗e+ Ue} , (14)

Rβπ∗e =
∑

f∈E

I
{
Dβπ∗f +Wf ≥ Dβπ∗e+We

}
, (15)

where U , W are independent |V |2 vectors of independent uniform random variables on [0, 1), and

R
α
πe =

1

2
+
∑

f∈E

I {Dαπf > Dαπe}+
1

2
I {Dαπf = Dαπe} . (16)

Then the corresponding two versions of Spearman’s rho are defined as follows, cf. [17]:

ρβα(G) =
12
∑

e∈E Rαπ∗(e)R
βπ∗(e)− 3|E|(|E|+ 1)2

|E|3 − |E|
and

ρβα(G) =
4
∑

e∈E R
α
π∗(e)R

β
π∗(e)− |E|(|E|+ 1)2

Var∗(R
α
)Var∗(R

β
)

,

where

Var∗(R
α
) =

√
4
∑

e∈E

R
α
π∗(e)2 − |E|(|E|+ 1)2 and

Var∗(R
β
) =

√
4
∑

e∈E

R
β
π∗(e)2 − |E|(|E|+ 1)2.

The next proposition relates the random variables ρβα(G) and ρβα(G) to the random variable

E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]
. (17)

Proposition 4.1. Let G = (V,E) be a random graph, E an edge on G sampled uniformly at
random and α, β ∈ {+,−}. Then

7



i)
1

|E|

∑

e∈E

R
α
π∗e

|E|

R
β
π∗e

|E|
=

1

4
E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]
+ oP(|E|−1) and

ii)
1

|E|

∑

e∈E

Rαπ∗e

|E|

Rβπ∗e

|E|
=

1

4
E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]
+ oP(|E|−1).

Proof. i) Let E ′ be an independent copy of E and e ∈ V 2. Then it follows from (16) that

R
α
πe

|E|
=

1

2|E|
+
∑

f∈E

1

|E|
I {Dαπf > Dαπe}+

1

2|E|
I {Dαπf = Dαπe}

= 1 +
1

2|E|
−

1

2|E|

∑

f∈E

I {Dαπf ≤ Dαπe}+ I {Dαπf ≤ Dαπe− 1}

= 1 +
1

2|E|
−

1

2

∑

f∈V 2

(I {Dαπf ≤ Dαπe}+ I {Dαπf ≤ Dαπe− 1})
|E(f)|

|E|

= 1 +
1

2|E|
−

1

2

∑

f∈V 2

(I {Dαπf ≤ Dαπe}+ I {Dαπf ≤ Dαπe− 1})P (E ′ = f |G)

= 1 +
1

2|E|
−

1

2
(Fα

G (Dαπe) + Fα
G (Dαπe− 1))

= 1 +
1

2|E|
−

1

2
Fα

G (Dαπe) . (18)

Using a similar expression for
(
R

β
π∗e
)
/|E| we obtain,

1

|E|

∑

e∈E

R
α
π∗e

|E|

R
β
π∗e

|E|
=

1

|E|

∑

e∈E

(
1 +

1

2|E|
−

1

2
Fα

G (Dαπ∗e)

)(
1 +

1

2|E|
−

1

2
Fβ

G

(
Dβπ∗e

))

= E

[(
1 +

1

2|E|
−

1

2
Fα

G (Dαπ∗E)

)(
1 +

1

2|E|
−

1

2
Fβ

G

(
Dβπ∗E

))∣∣∣∣G
]
.

Rearranging the terms yields

1

|E|

∑

e∈E

R
α
π∗e

|E|

R
β
π∗e

|E|
=

1

4
E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]

+ 1−
1

2
E
[
Fα

G (Dαπ∗E) + Fβ
G

(
Dβπ∗E

)∣∣∣G
]
+ oP(|E|−1). (19)

Since the sum over all average ranks equals |E|(|E|+ 1)/2, it follows that

1

2
+

1

2|E|
=

1

|E|

∑

e∈E

R
α
πe

|E|
= 1 +

1

2|E|
−

1

2
E [Fα

G (Dαπe)|G] ,

from which we deduce that

E [Fα
G (Dαπe)|G] = 1. (20)

The result now follows by inserting (20) in (19).
ii) Again, let E ′ be an independent copy of E and α, β ∈ {+,−}. For x, y ∈ R, we write

F̃α
G(x) = F

D̃απ∗E|G
(x) and similarly F̃ β

G(y) = F
D̃βπ∗E|G

(y). Then we have,

Rαπ∗e

|E|
=

1

|E|

∑

f∈E

I {Dαπ∗f + Uf ≥ Dαπ∗e+ Ue}

8



=
1

|E|

∑

f∈E

I {Dαπ∗f + Uf > Dαπ∗e+ Ue}+ I {f = e}

= 1− E [I {Dαπ∗E
′ + UE′ ≤ Dαπ∗e+ Ue}|G] +

1

|E|

= 1− F̃α
G (Dαπ∗e+ Ue) +

1

|E|
. (21)

Using similar calculations we get

Rβπ∗e

|E|
= 1− F̃ β

G

(
Dβπ∗e+We

)
+

1

|E|
. (22)

Now, using both (21) and (22), we obtain,

1

|E|

∑

e∈E

Rαπ∗e

|E|

Rβπ∗e

|E|
= 1 +

2

|E|
+

1

|E|2
+

1

|E|

∑

e∈E

F̃α
G (Dαπ∗e+ Ue) F̃

β
G

(
Dβπ∗e+We

)

−

(
1 +

1

|E|

)
1

|E|

∑

e∈E

(
F̃α
G (Dαπ∗e+ Ue) + F̃ β

G

(
Dβπ∗e+We

))

= 1 +
2

|E|
+

1

|E|2
+ E

[
F̃α
G

(
D̃απ∗E

)
F̃ β
G

(
D̃βπ∗E

)∣∣∣G
]

−

(
1 +

1

|E|

)(
E
[
F̃α
G

(
D̃απ∗E

)∣∣∣G
]
+ E

[
F̃ β
G

(
D̃βπ∗E

)∣∣∣G
])

=
1

4
E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]
+

1

|E|
+

1

|E|2
.

The last line follows by first using Propositions A.2 and A.4 to rewrite the conditional expectations
and then applying (20).

4.3 Kendall’s Tau

The definition for τβα (G) is, cf. [17],

τβα (G) =
2(NC(G) −ND(G))

|E|(|E| − 1)
,

where NC(G) and ND(G) denote the number of concordant and discordant pairs, respectively,
among

(
Dαπ∗e,D

βπ∗e
)
e∈E

. We recall that a pair
(
Dαπ∗e,D

βπ∗e
)
and

(
Dαπ∗f,D

βπ∗f
)
, for

e, f ∈ E is called (discordant) concordant if

(Dαπ∗e−Dαπ∗f)
(
Dβπ∗e−Dβπ∗f

)
(< 0) > 0.

Therefore we have, for the concordant pairs,

2

|E|2
NC(G) =

1

|E|2

∑

e,f∈E

I
{
Dαπ∗(f) < Dαπ∗(e), D

βπ∗(f) < Dβπ∗(e)
}

+
1

|E|2

∑

e,f∈E

I
{
Dαπ∗(f) > Dαπ∗(e), D

βπ∗(f) > Dβπ∗(e)
}

= E
[
Hα,β

G

(
Dαπ∗E − 1, Dβπ∗E − 1

)∣∣∣G
]

+ 1− E [Fα
G (Dαπ∗E)|G]− E

[
F β
G

(
Dβπ∗E

)∣∣∣G
]

+ E
[
Hα,β

G

(
Dαπ∗E , D

βπ∗E
)∣∣∣G

]
.

9



In a similar fashion we get for the discordant pairs

2

|E|2
ND(G) = E [Fα

G (Dαπ∗E − 1)|G] + E
[
F β
G

(
Dβπ∗E − 1

)∣∣∣G
]

− E
[
Hα,β

G

(
Dαπ∗E − 1, Dβπ∗E

)∣∣∣G
]
− E

[
Hα,β

G

(
Dαπ∗E , D

βπ∗E − 1
)∣∣∣G

]
.

Combining the above with (20) we conclude that

τβα (G) = E
[
Hα,β

G

(
Dαπ∗E , D

βπ∗E
)∣∣∣G

]
− 1 + oP(|E|−1). (23)

4.4 Statistical consistency of rank correlations

We will now prove that the rank correlations defined in the previous two sections are, under natural
regularity conditions on the degree sequences, consistent statistical estimators.

For a sequence {Gn}n∈N of random graphs with |Vn| = n, it is common in the theory of random
graphs to assume convergence of the empirical degree distributions, see for instance Condition 7.5
in [16], Condition 4.1 in [2]. Here, similarly to [7], we impose the following regularity condition on
the degrees at the end points of edges.

Condition 4.2. Given a sequence {Gn}n∈N of random graphs with |Vn| = n and α, β ∈ {+,−}
there exist integer valued random variables Dα and Dβ , not concentrated in a single point, such
that (

Dα
nπ∗En, D

β
nπ

∗En
∣∣Gn

)
⇒
(
Dα,Dβ

)
as n → ∞,

where En is a uniformly sampled edge in Gn.

In the previous two sections it was shown that ρβα(G), ρβα(G) and τβα (G) on a random graph
G are related to, respectively,

E
[
Fα

G (Dαπ∗E)F
β
G

(
Dβπ∗E

)∣∣∣G
]

and E
[
Hα,β

G

(
Dαπ∗E , D

βπ∗E
)∣∣∣G

]
.

Note that these are in fact empirical versions of the functions appearing in the definitions of Spear-
man’s rho and Kendall’s tau, cf. (3) and (5). The following result formalizes these observations
and states that under Condition 4.2, ρβα(Gn), ρ

β
α(Gn) and τβα (Gn) are indeed consistent statistical

estimators of correlation measures associated with Spearman’s rho and Kendall’s tau.

Theorem 4.3. Let α, β ∈ {+,−} and {Gn}n∈N be a sequence of graphs satisfying Condition 4.2

such that as n → ∞, |En|
P
→ ∞. Then, as n → ∞,

i) ρβα(Gn)
P
→ ρ

(
Dα,Dβ

)
,

ii) ρβα(Gn)
P
→

ρ
(
Dα,Dβ

)

3
√
SDα (Dα)SDβ (Dβ)

,

where SDα (Dα) = E [FDα (Dα)FDα (Dα − 1)], and

iii) τβα (Gn)
P
→ τ

(
Dα,Dβ

)
.

Moreover, we have convergence of the first moments:

iv) lim
n→∞

E
[
ρβα(Gn)

]
= ρ

(
Dα,Dβ

)
,

v) lim
n→∞

E
[
ρβα(Gn)

]
=

ρ
(
Dα,Dβ

)

3
√
SDα (Dα)SDβ (Dβ)

and
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vi) lim
n→∞

E
[
τβα (Gn)

]
= τ

(
Dα,Dβ

)
.

Proof. i) By Proposition 4.1 we have that

12

|En|

∑

e∈En

Rα
nπ∗e

|En|

Rβ
nπ

∗e

|En|
= 3E

[
Fα

Gn
(Dα

nπ∗En)F
βGn

(
Dβ

nπ
∗En
)∣∣Gn

]
+ oP(|En|

−1).

From this and the fact that |En|
P
→ ∞ it follows that,

ρβα(Gn) =
1

1− |En|−2

(
12

|En|

∑

e∈En

Rα
nπ∗e

|En|

Rβ
nπ

∗e

|En|
− 3

|En|(|En|+ 1)2

|En|3

)

= 3E
[
Fα

Gn
(Dα

nπ∗En)F
β
Gn

(
Dβ

nπ
∗En
)∣∣∣Gn

]
− 3 + oP(|En|

−1)

P
→ ρ

(
Dα,Dβ

)
as n → ∞,

where the last line follows from Theorem 3.1.
ii) From (18) it follows that,

(
R

α

nπe

|En|

)2

=

(
1 +

1

2|En|

)2

−

(
1 +

1

2|En|

)
Fα

Gn
(Dαπe) +

1

4
Fα

Gn
(Dαπe)

2
.

Therefore,

1

|En|

∑

e∈En

(
R

α

nπe

|En|

)2

=

(
1 +

1

2|En|

)2

+
1

4
E
[
Fα

Gn
(DαπEn)

2
∣∣∣Gn

]

−

(
1 +

1

2|En|

)
E
[
Fα

Gn
(DαπEn)

∣∣Gn

]

= 1 +
1

4
E
[
Fα

Gn
(DαπEn)

2
∣∣∣Gn

]
− E

[
Fα

Gn
(Dα

nπEn)
∣∣Gn

]
+ oP(|En|

−1)

P
→ 1 +

1

4
E
[
FDα (Dα)

2
]
− E [FDα (Dα)] as n → ∞

=
1

4
+

1

4
E [FDα (Dα)FDα (Dα − 1)] ,

where we used Lemma A.1 for the last line. It follows that, as n → ∞,

4

|En|

∑

e∈En

(
R

α

nπe

|En|

)2

−
|En|(|En|+ 1)2

|En|3
P
→ E [Fα (Dα)Fα (Dα − 1)] .

Since Dα and Dβ are not concentrated in one point the above term is non-zero. Now, combining
this with Proposition 4.1 i) and applying Theorem 3.1, we obtain

ρβα(Gn)
P
→

ρ
(
Dα,Dβ

)

3
√
SDα (Dα)SDβ (Dβ)

as n → ∞.

iii) Combining (23) with Theorem 3.1 yields, as n → ∞,

τβα (Gn) = E
[
Hα,β

Gn

(
Dα

nπ∗En, D
β
nπ

∗En
)∣∣∣Gn

]
− 1 + oP(|En|

−1)
P
→ τ

(
Dα,Dβ

)
.

Finally, iv),v),vi) now follow from, respectively, i), ii) and iii) since ρβα(Gn), ρ
β
α(Gn) and τβα (Gn)

are bounded.

Comparing results i) and iv) to ii) and v), note that the way in which ties are resolved influences
the measure estimated by Spearman’s rho on random directed graphs. In particular, resolving ties
uniformly at random yields the value corresponding to Spearman’s rho for the two limiting integer
valued random variables Dα and Dβ as defined in [11], in the infinite size network limit.
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5 Directed Configuration Model

In this section we will analyze degree-degree dependencies for the directed Configuration Model
(CM), as described and analyzed in [2]. First, in Section 5.1, we analyze the model where in- and
out-links are connected at random, which, in general, results in a multi-graph. Then we move on
to two other models that produce simple graphs: the Repeated and Erased Configuration Model
(RCM and ECM). By applying Theorem 4.3, in Sections 5.2 and 5.3, we will show that RCM and
ECM can be used as null models for the rank correlations ρ, ρ and τ .

5.1 General model: multi-graphs

The directed Configuration Model in [2] starts with picking two target distributions F−, F+ for
the in- and out-degrees, respectively, stochastically bounded from above by regularly varying
distributions. We will adopt notations from [2] and let γ and ξ denote random variables with
distributions F− and F+, respectively. It is assumed that E [γ] = E [ξ] < ∞. The next step is
generating a bi-degree sequence of inbound and outbound stubs. This is done by first taking two
independent sequences of n independent copies of γ and ξ, which are then modified into a sequence
of in- and outbound stubs

D̂(G) =
(
D̂+(v), D̂−(v)

)
v∈V

,

using the algorithm in [2], Section 2.1. This algorithm ensures that the total number of in- and

outbound stubs is the same, |Ê| =
∑

v∈V D̂α(v), α ∈ {+,−}. Using this bi-degree sequence, a
graph is build by randomly pairing the stubs to form edges. We call a graph generated by this
model a Configuration Model graph, or CM graph for short. We remark that a CM graph in
general does not need to be simple.

Given a vertex set V , a bi-degree sequence D̂(G) and v ∈ V , we denote by v+i , v
−
j for 1 ≤ i ≤

D̂+(v) and 1 ≤ j ≤ D̂−(v), respectively, the outbound and inbound stubs of v. For v, w ∈ V ,
we denote by {v+i → w−

j } the event that the outbound stub v+i is connected to the inbound stub

w−
j and by {v+i → w} the event that v+i is connected to an inbound stub of w. By definition

of CM, it follows that P
(
v+i → w−

j |D̂(G)
)
= 1/|Ê| and hence P

(
v+i → w|D̂(G)

)
= D̂−(w)/|Ê|.

Furthermore we observe that |Ên(e)| =
∑D̂+

n π∗e

i=1 I
{
(π∗e)

+
i → π∗e

}
. Given a random graph G, we

denote
Iα,βe (k, l) = I {Dαπ∗e = k} I

{
Dβπ∗e = l

}
,

where α, β ∈ {+,−}, k, l ∈ N and e ∈ V 2.
For proper reference we summarize some results from Proposition 2.5, in [2], which we will use

in the remainder of this paper.

Proposition 5.1 ([2], Proposition 2.5). Let D̂(Gn) be the bi-degree sequence on n vertices, as
generated in Section 2.1 of [2], and k, l ∈ N. Then, as n → ∞,

1

n

∑

v∈Vn

I
{
D̂+

n v = k
}
I
{
D̂−

n v = l
}

P
→ P (ξ = k)P (γ = l) ,

1

n

∑

v∈Vn

D̂+
n v

P
→ E [ξ] and

1

n

∑

v∈Vn

D̂−
n v

P
→ E [γ] .

Given a random graph G = (V,E), we will use D(G) as a short hand notation for its degree
sequence (D−(v), D+(v))v∈V . We emphasize that for a graph generated using an initial bi-degree

sequence, the eventual degree sequence D(G) can be different from D̂(G). This, for example, is
true for the ECM, Section 5.3, where, after the random pairing of the stubs, self-loops are removed
and multiple edges are merged.

In order to apply Theorem 4.3 to a sequence of (multi-)graphs {Gn}n∈N generated by CM, we
need to prove that (

Dα
nπ∗En, D

β
nπ

∗En
∣∣Gn

)
⇒
(
Dα,Dβ

)
,

12



for some integer valued random variables Dα and Dβ . For this, it suffices to show that, as n → ∞,

Hα,β
Gn

(k, l)
P
→ HDα,Dβ (k, l),

for all k, l ∈ N. We will prove this by showing that

E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
P
→ P

(
Dα = k,Dβ = l

)
,

as n → ∞, using a second moment argument as follows. Given a sequence {Gn}n∈N of graphs,

α, β ∈ {+,−} and k, l ∈ N, we will show that the empirical joint probability E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]]

converges to P
(
Dα = k,Dβ = l

)
. Then we will prove that the variance of E

[
Iα,βEn

(k, l)
∣∣∣Gn

]
con-

verges to zero.

We start with expressing the first and second moment of E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
, for CM graphs,

conditioned on the bi-degree sequence D̂(Gn) in terms of the degrees. We observe that, for
α, β ∈ {+,−}, e ∈ V 2

n and k, l ∈ N, the events {Dα
nπ∗e = k} and

{
Dβ

nπ
∗e = l

}
are completely

defined by D̂(Gn), hence so is Iα,βe (k, l). We remark that, since CM leaves the number of inbound

and outbound stubs intact, we have D(Gn) = D̂(Gn). However, in this section we will keep using

hats, e.g. D̂n instead of Dn, to emphasize that Gn can be a multi-graph.

Lemma 5.2. Let {Gn}n∈N be a sequence of CM graphs with |Vn| = n and α, β ∈ {+,−}. Then,
for each k, l ∈ N,

i) E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
=
∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗e D̂
−
n π

∗e

|Ên|2
and

ii) E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn)

]
=


∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗eD̂
−
n π

∗e

|Ên|2




2

+ oP(1).

Proof.

i) E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
= E



∑

e∈V 2
n

Iα,βe (k, l)
|Ên(e)|

|Ên|

∣∣∣∣∣∣
D̂(Gn)


 (24)

=
1

|Ên|

∑

e∈V 2
n

Iα,βe (k, l)E
[
|Ên(e)|

∣∣∣ D̂(Gn)
]

=
1

|Ên|

∑

e∈V 2
n

Iα,βe (k, l)E




D̂+
n π∗e∑

i=1

I
{
(π∗e)

+
i → π∗e

}
∣∣∣∣∣∣
D̂(Gn)




=
∑

e∈V 2
n

Iα,βe (k, l)

(
D̂+

n π∗e
)(

D̂−
n π

∗e
)

|Ên|2
.

ii) Following similar calculations as above we get,

E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn)

]

= E


 ∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)
|Ên(e)| |Ên(f)|

|Ên|2

∣∣∣∣∣∣
D̂(Gn)


 (25)
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=
1

|Ên|2

∑

e,f∈V 2
n


Iα,βe (k, l)Iα,βf (k, l)

D̂+
n π∗e∑

i=1

D̂+
n π∗f∑

s=1

E
[
I
{
(π∗e)

+
i → π∗e

}
I
{
(π∗f)

+
s → π∗f

}∣∣ D̂(Gn)
]

 . (26)

We will, for e, f ∈ V 2
n , analyze

1

|Ên|2

D̂+
n π∗e∑

i=1

D̂+
n π∗f∑

s=1

E
[
I
{
(π∗e)

+
i → π∗e

}
I
{
(π∗f)

+
s → π∗f

}∣∣ D̂(Gn)
]

(27)

for all different cases, e = f , e∩ f = ∅, e∗ = f∗ and e∗ = f∗. First, suppose that e = f . Then (27)
equals

1

|Ên|2

D̂+
n π∗e∑

i,s=1

D̂−

n π∗e∑

j,t=1

I {i = s} I {j = t}

|Ên|
+

I {i 6= s} I {j 6= t}

|Ên|(|Ên| − 1)
.

Writing out the sums and using that e = f we obtain,

(27) =
D̂+

n π∗eD̂
−
n π

∗eD̂+
n π∗fD̂

−
n π

∗f

|Ên|3(|Ên| − 1)
(28)

+

(
D̂+

n π∗e
)(

D̂−
n π

∗e
)

|Ên|3
+

(
D̂+

n π∗e
)(

D̂−
n π

∗e
)

|Ên|3(|Ên| − 1)
(29)

−

(
D̂−

n π
∗e
)2 (

D̂+
n π∗e

)

|Ên|3(|Ên| − 1)
−

(
D̂+

n π∗e
)2 (

D̂−
n π

∗e
)

|Ên|3(|Ên| − 1)
(30)

Since for all k ≥ 0 and κ ∈ {+,−} it holds that

1

|Ên|k+1

∑

v∈Vn

(
D̂κ

nv
)k

≤
1

|Ên|k+1

(
∑

v∈Vn

D̂κ
nv

)k

=
1

|Ên|
,

we deduce that the terms in (29) and (30) contribute as oP(1) in (26), from which the result for
e = f follows. The calculations for the other three cases for e, f ∈ V 2

n are similar and are hence
omitted.

As a direct consequence we have the following

Proposition 5.3. Let {Gn}n∈N be a sequence of CM graphs with |Vn| = n and α, β ∈ {+,−}.
Then, for each k, l ∈ N, as n → ∞,

∣∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn)

]
− E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]2∣∣∣∣

P
→ 0.

Now, using the convergence results from [2], summarized in Proposition 5.1, we are able to
determine the limiting random variables Dα and Dβ .

Proposition 5.4. Let {Gn}n∈N be a sequence of CM graphs with |Vn| = n and α, β ∈ {+,−}.
Then there exist integer valued random variables Dα and Dβ such that for each k, l ∈ N, as n → ∞,

E
[
E
[
Iα,βE (k, l)

∣∣∣Gn

]∣∣∣ D̂(Gn)
]

P
→ P (Dα = k)P

(
Dβ = l

)
.
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Proof. First let (α, β) = (+,−). Then it follows from Lemma 5.2 i) that

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
=

∑

v,w∈Vn

I
{
D̂+

n v = k
}
I
{
D̂−

nw = l
} D̂+

n vD̂
−
nw

|Ên|2

=

(
∑

v∈Vn

I
{
D̂+

n v = k
} D̂+

n v

|Ên|

)(
∑

w∈Vn

I
{
D̂−

nw = l
} D̂−

nw

|Ên|

)

=


k

∑

v∈Vn

I
{
D̂+

n v = k
}

|Ên|




l

∑

w∈Vn

I
{
D̂−

nw = l
}

|Ên|




P
→

kP (ξ = k)

E [ξ]

l P (γ = l)

E [γ]
as n → ∞,

where the convergence in the last line is by Proposition 5.1. The other three cases are slightly
more involved. Consider, for example, (α, β) = (−,+). Then we have,

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
=
∑

v∈Vn

I
{
D̂−

n v = k
} D̂+

n v

|Ên|

∑

w∈Vn

I
{
D̂+

nw = l
} D̂−

nw

|Ên|
(31)

We will first analyze the last summation.

1

|Ên|

∑

w∈Vn

D̂−
n (w)I

{
D̂+

nw = l
}
=

1

|Ên|

∑

i∈N

i
∑

w∈Vn

I
{
D̂−

nw = i
}
I
{
D̂+

nw = l
}

P
→

P (ξ = l)

E [ξ]

∑

i∈N

iP (γ = i) as n → ∞

=
P (ξ = l)E [γ]

E [ξ]
= P (ξ = l) , (32)

where we again used Proposition 5.1 and E [γ] = E [ξ]. In a similar way we obtain that, as n → ∞,

1

|Ên|

∑

v∈Vn

D̂+
n (v)I

{
D̂−

n (v) = k
}

P
→ P (γ = k) . (33)

Applying (32) and (33) to (31) we get

E
[
E
[
I−,+
En

(k, l)
∣∣Gn

]∣∣ D̂(Gn)
]

P
→ P (γ = k)P (ξ = l) .

For the other two cases we obtain, as n → ∞,

E
[
E
[
I+,+
En

(k, l)
∣∣Gn

]∣∣ D̂(Gn)
]

P
→

kP (ξ = k)P (ξ = l)

E [ξ]

E
[
E
[
I−,−
En

(k, l)
∣∣Gn

]∣∣ D̂(Gn)
]

P
→

lP (γ = k)P (γ = l)

E [γ]

The results now holds if we define Dα and Dβ by their probabilities summarized in Table 1.

We end this section with a convergence result for first and second moment of E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
.

Proposition 5.5. Let {Gn}n∈N be a sequence of CM graphs with |Vn| = n and α, β ∈ {+,−}.
Then, for each k, l ∈ N,

i) lim
n→∞

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]]
= P (Dα = k)P

(
Dβ = l

)
,
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α β P (Dα = k) P
(
Dβ = l

)

+ − kP (ξ = k) /E [ξ] l P (γ = l) /E [γ]
− + P (γ = k) P (ξ = l)
+ + kP (ξ = k) /E [ξ] P (ξ = l)
− − P (γ = k) l P (γ = l) /E [γ].

Table 1: Distributions of Dα and Dβ for α, β ∈ {+,−}.

ii) lim
n→∞

E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2]
= P (Dα = k)2 P

(
Dβ = l

)2
,

and hence, as n → ∞, E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
P
→ P (Dα = k)P

(
Dβ = l

)
.

Proof.

i) Let k, l ∈ N, then, since

E
[
E
[
Iα,βE (k, l)

∣∣∣Gn

]∣∣∣ D̂(Gn)
]
≤ 1, (34)

it follows, using Proposition 5.4 and dominated convergence, that for each pair α, β ∈ {+,−},
we have

lim
n→∞

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]]
= P (Dα = k)P

(
Dβ = l

)
,

where Dα, Dβ have distributions defined in Table 1.

ii) For the second moment we get, using conditioning on D̂(Gn),

lim
n→∞

E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2]
= lim

n→∞
E

[
E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn)

]]

= lim
n→∞

E






∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗eD̂
−
n π

∗e

|Ên|2




2

+ oP(1)


 (35)

= lim
n→∞

E

[
E
[
E
[
Iα,βE (k, l)

∣∣∣Gn

]∣∣∣ D̂(Gn)
]2

+ oP(1)

]
(36)

=
(
P (Dα = k)P

(
Dβ = l

))2
. (37)

Here (35) follows from Lemma 5.2 ii), (36) is by Lemma 5.2 i), and (37) is due to Proposi-
tion 5.4, continuous mapping theorem, (34) and the fact that the oP(1) terms are uniformly
bounded, see proof Lemma 5.2. The distributions of Dα, Dβ are again given in Table 1.

The last result now follows by a second moment argument.

5.2 Repeated Configuration Model

Described in Section 4.1 of [2], RCM connects inbound and outbound stubs uniformly at random
and then the resulting graph is checked to be simple. If not, one repeats the connection step
until the resulting graph is simple. If the distributions F− and F+ have finite variances, then
the probability of the graph being simple converges to a non-zero number, see [2], Theorem 4.3.
Therefore, throughout this section, we will assume that E

[
γ2
]
, E
[
ξ2
]
< ∞.

Let {Gn}n∈N be again a sequence of CM graphs, and let Sn denote the event that Gn is simple.
We will prove, in Theorem 5.7 below, that for a sequence of RCM graphs of growing size, our three
rank correlation measures converge to zero, by showing that for all α, β ∈ {+,−} and k, l ∈ N,

E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]
P
→ P (Dα = k)P

(
Dβ = l

)
,
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as n → ∞, where Dα and Dβ are random variables whose distributions are defined in Table 1.
First we show that, asymptotically, conditioning on the graph being simple does not effect the

conditional expectation E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
.

Lemma 5.6. Let {Gn}n∈N be a sequence of CM graphs with |Vn| = n and α, β ∈ {+,−} and
denote by Sn the event that Gn is simple. Then, for each k, l ∈ N, as n → ∞,

∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]
− E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]∣∣∣ P

→ 0.

Proof. First, we write

∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]
− E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]∣∣∣

=

∣∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

](I {Sn}

P (Sn)
− 1

)∣∣∣∣ D̂(Gn)

]∣∣∣∣ . (38)

Next, denote by

Var
(
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
)

and Var
(
I {Sn}| D̂(Gn)

)

the variance of, respectively E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
and I {Sn}, conditioned on D̂(Gn). Then, by adding

and subtracting in (38) the product of the conditional expectations

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]


P
(
Sn|D̂(Gn)

)

P (Sn)
− 1


 ,

we get

(38) ≤
1

P (Sn)

√
Var

(
I {Sn}| D̂(Gn)

)√
Var

(
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
)

+

∣∣∣∣∣∣
E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]


P
(
Sn|D̂(Gn)

)

P (Sn)
− 1



∣∣∣∣∣∣

≤
1

P (Sn)

√
Var

(
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
)
+

∣∣∣∣∣∣

P
(
Sn|D̂(Gn)

)

P (Sn)
− 1

∣∣∣∣∣∣
. (39)

Following the argument in the first part of the proof of Proposition 4.4 from [2] we conclude that,

P
(
Sn|D̂(Gn)

)
and P (Sn) converge to the same positive limit, hence the latter expression in (39)

is oP(1). The result now follows, since by Proposition 5.3

Var
(
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
)
= oP(1).

In the next theorem we show that the conditions of Theorem 4.3 hold for a sequence of RCM
graphs, and thus obtain the desired convergence of the three rank correlations, using a second
moment argument.

Theorem 5.7. Let {Gn}n∈N be a sequence of RCM graphs with |Vn| = n and α, β ∈ {+,−}.
Then, as n → ∞,

ρβα(Gn)
P
→ 0, ρβα(Gn)

P
→ 0 and τβα (Gn)

P
→ 0.
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Proof. Instead of conditioning on RCM graphs we condition on CM graphs Gn and the event that
it is simple, Sn. Let k, l ∈ N and let Dα, Dβ have distributions defined in Table 1. Then, for each
pair α, β ∈ {+,−}, we have

∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]
− P (Dα = k)P

(
Dβ = l

)∣∣∣

≤
∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]
− E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]∣∣∣

+
∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]
− P (Dα = k)P

(
Dβ = l

)∣∣∣ .

Hence by Lemma 5.6 and Proposition 5.4 it follows that, as n → ∞,

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]

P
→ P (Dα = k)P

(
Dβ = l

)
.

Since E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]∣∣∣ D̂(Gn)
]
≤ 1, dominated convergence and the above imply that

lim
n→∞

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]]
= P (Dα = k)P

(
Dβ = l

)
. (40)

For the second moment we have
∣∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]2∣∣∣∣ D̂(Gn)

]
− P (Dα = k)

2
P
(
Dβ = l

)2
∣∣∣∣

≤

∣∣∣∣∣E
[((

I {Sn}

P (Sn)

)2

− 1

)
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2
∣∣∣∣∣ D̂(Gn)

]∣∣∣∣∣ (41)

+

∣∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn)

]
− E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]2∣∣∣∣ (42)

+

∣∣∣∣E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn)
]2

− P (Dα = k)2 P
(
Dβ = l

)2
∣∣∣∣ (43)

From Proposition 5.3 it follows that (42) converges to zero, while this holds for (43) because
of Proposition 5.4 and the continuous mapping theorem. Finally, since

((
I {Sn}

P (Sn)

)2

− 1

)
≤

(
I {Sn}

P (Sn)
− 1

)(
1 + P (Sn)

−1
)

and E
[
Iα,βEn

(k, l)
∣∣∣Gn

]
≤ 1,

it follows that

(41) ≤ E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

](I {Sn}

P (Sn)
− 1

)∣∣∣∣ D̂(Gn)

] (
1 + P (Sn)

−1
)

P
→ 0 as n → ∞,

by (38), Lemma 5.6 and Proposition 4.4 from [2]. Therefore, using (34) and dominated conver-
gence, we get

lim
n→∞

E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]2]
= P (Dα = k)2 P

(
Dβ = l

)2
. (44)

Combining (40) and (44), a second moment argument now yields that,

E
[
Iα,βEn

(k, l)
∣∣∣Gn, Sn

]
P
→ P (Dα = k)P

(
Dβ = l

)
as n → ∞.

The result now follows from Theorem 4.3 by observing that the random variables Dα and Dβ are
independent and not concentrated in a single point. The latter is needed so that in case of average
ranking we have SDα (Dα) 6= 0, see Theorem 4.3.
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5.3 Erased Configuration Model

When the variances of the degree distributions are infinite, the probability of getting a simple
graph using RCM converges to zero as the graph size increases. To remedy this we use ECM,
described in Section 4.2 of [2]. In ECM stubs are connected at random, and then self-loops are
removed and multiple edges are merged. We emphasize that for this model the actual degree
sequence D(G) may differ from the bi-degree sequence, D̂(G), used to do the pairing.

We will often use results from Proposition 4.5 of [2], which we state below for reference.

Proposition 5.8 ([2], Proposition 4.5). Let Gn = (Vn, En) be a sequence of ECM graphs with
|Vn| = n and k, l ∈ N. Then, as n → ∞,

1

n

∑

v∈Vn

I
{
D+v = k

} P
→ P (ξ = k) and

1

n

∑

v∈Vn

I
{
D−v = l

} P
→ P (γ = l) .

We will follow the same second moment argument approach as in the previous section to prove
that all three rank correlations, ρ, ρ and τ converge to zero in ECM. First we will establish a
convergence result for the total number of erased in- and outbound stubs.

For v, w ∈ V and α ∈ {+,−}, we denote by Ec, α(v) and Ec(v, w), respectively, the set of erased
α-stubs from v and erased edges between v and w. For e ∈ V 2, we write Ec(e) = Ec(π∗e, π

∗e).

Lemma 5.9. Let {Gn}n∈N be a sequence of ECM graphs with |Vn| = n and α ∈ {+,−}. Then

1

n

∑

v∈Vn

|Ec, α
n (v)|

P
→ 0 as n → ∞.

Proof. Let N ∈ N and fix a v ∈ VN , then for all n ≥ N , |Ec, α
n (v)| ≤ γn + 1 where all γn are i.i.d.

copies of γ. Since by Lemma 5.2 from [2] we have Ec, α
n (v) → 0 almost surely and furthermore

E [γ] < ∞, dominated convergence implies that

lim
n→∞

1

n

∑

v∈Vn

E [|Ec, α
n (v)|] = 0.

Applying the Markov inequality then yields, for arbitrary ε > 0,

lim
n→∞

P

(
1

n

∑

v∈Vn

|Ec, α
n (v)| ≥ ε

)
≤ lim

n→∞

∑
v∈Vn

E [|Ec, α
n (v)|]

nε
= 0.

Since
|E| = |Ê| −

∑

v∈V

|Ec, α(v)| for α ∈ {+,−},

the above lemma combined with Proposition 5.1 implies that

|En|

n

P
→ E [γ] as n → ∞. (45)

We proceed with the next lemma, which is an adjustment of Lemma 5.2, where we now condi-
tion on both the bi-degree sequence of stubs as well as the eventual degree sequence. We remark
that Iα,βe (k, l) is completely determined by the latter while

∑
e∈V 2 |Ec(e)| is completely determined

by the combination of the two sequences. Recall that for e ∈ V 2, |Ê(e)| denotes the number of
edges f ∈ E with f = e before removal of self-loops and merging multiple edges and observe that
|E(e)| = |Ê(e)| − |Ec(e)|.

Lemma 5.10. Let {Gn}n∈N be a sequence of ECM graphs with |Vn| = n. Then, for each k, l ∈ N

and α, β ∈ {+,−},
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i) E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn),D(Gn)
]
=
∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|En|2
+ oP(1),

ii) E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn),D(Gn)

]
=



∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|En|2




2

+ oP(1).

To obtain this result we need the following Lemma.

Lemma 5.11. Let {Gn}n∈N be a sequence of ECM graphs with |Vn| = n. Then, for each k, l ∈ N

and α, β ∈ {+,−},

∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗eD̂
−
n π

∗e

|Ên|2
=
∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|Ên|2
+ oP(1).

Proof. Since D̂α
nπe = Dα

nπe + |Ec, α
n (πe)|, we have

∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗eD̂
−
n π

∗e

|Ên|2
=
∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|Ên|2

+
∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗e|E
c,−(π∗e)|

|Ên|2
(46)

+
∑

e∈V 2
n

Iα,βe (k, l)
D̂−

n π∗e|Ec,+(π∗e)|

|Ên|2
(47)

+
∑

e∈V 2
n

Iα,βe (k, l)
|Ec,+(π∗e)||Ec,−(π∗e)|

|Ên|2
. (48)

By Lemma 5.9 and Proposition 5.1 it follows that (48) is oP(1). For (46) we have

∑

e∈V 2
n

Iα,βe (k, l)
D̂+

n π∗e|Ec,−(π∗e)|

|Ên|2
≤
∑

v∈Vn

D̂+
n v

|Ên|

∑

w∈Vn

|Ec,−
n (w)|

|Ên|

≤
∑

w∈Vn

|Ec,−
n (w)|

|Ên|
= oP(1),

where the last line is due to
∑

v∈Vn
D̂+

n v = |Ên|. The last equation then follows from Lemma 5.9
and Proposition 5.1. This holds similarly for (47) and hence the result follows.

Proof of Lemma 5.10. i) By splitting |En(e)| we obtain,

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn),D(Gn)
]
= E


 ∑

e∈V 2
n

Iα,βe (k, l)
|En(e)|

|En|

∣∣∣∣∣∣
D̂(Gn),D(Gn)




=
|Ên|

|En|
E


 ∑

e∈V 2
n

Iα,βe (k, l)
|Ên(e)|

|Ên|

∣∣∣∣∣∣
D̂(Gn)


 (49)

−
1

|En|

∑

e∈V 2
n

Iα,βe (k, l)E
[
|Ec

n(e)|| D̂(Gn),D(Gn)
]

(50)

For (50) we have,

1

|En|

∑

e∈V 2
n

Iα,βe (k, l)E
[
|Ec

n(e)|| D̂(Gn),D(Gn)
]
≤

1

|En|

∑

e∈V 2
n

E
[
|Ec

n(e)|| D̂(Gn),D(Gn)
]
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=
1

|En|

∑

v∈Vn

|Ec,+
n (v)|,

which is oP(1) by Lemma 5.9 and (45). Now, since the conditional expectation in (49) equals (24),
it follows from Lemma 5.2 i), Lemma 5.11 and (45) that

(49) =
∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|En|2
+ oP(1).

ii) Splitting both terms |En(e)| and |En(f)| for e, f ∈ V 2
n yields,

E

[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]2∣∣∣∣ D̂(Gn),D(Gn)

]

= E



∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)
|En(e)| |En(f)|

|En|2

∣∣∣∣∣∣
D̂(Gn),D(Gn)




=
|Ên|2

|En|2
E



∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)
|Ê(e)||Ê(f)|

|Ên|

∣∣∣∣∣∣
D̂(Gn)


 (51)

+
∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)E

[
|Ec

n(e)||E
c
n(f)|

|En|2

∣∣∣∣ D̂(Gn),D(Gn)

]
(52)

−
∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)E

[
|Ec

n(e)||Ên(f)|

|En|2

∣∣∣∣∣ D̂(Gn),D(Gn)

]
(53)

−
∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)E

[
|Ec

n(f)||Ên(e)|

|En|2

∣∣∣∣∣ D̂(Gn),D(Gn)

]
(54)

Recognizing the conditional expectation in (51) as (25), then using first Lemma 5.2 ii) and then
Lemma 5.11 and (45), it follows that (51) equals


∑

e∈V 2
n

Iα,βe (k, l)
D+

n π∗eD
−
n π

∗e

|En|2




2

+ oP(1).

It remains to show that (52)-(54) are oP(1). For (52) we have

∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)E

[
|Ec

n(e)||E
c
n(f)|

|En|2

∣∣∣∣ D̂(Gn),D(Gn)

]
≤

(
1

|En|

∑

v∈Vn

|Ec,+
n (v)|

)2

= oP(1)

by Lemma 5.9 and (45). Since (53) and (54) are symmetric we will only consider the latter:

∑

e,f∈V 2
n

Iα,βe (k, l)Iα,βf (k, l)E

[
|Ec

n(f)||Ên(e)|

|En|2

∣∣∣∣∣ D̂(Gn),D(Gn)

]

≤


∑

f∈V 2
n

|Ec
n(f)|

|En|


 1

|En|

∑

e∈V 2
n

E
[
|Ên(e)|

∣∣∣ D̂(Gn)
]

=

(
∑

v∈Vn

|E+
n (v)|

|En|

)
|Ên|

|En|
= oP(1).

Here, for the last line, we used
∑

e∈V 2
n
E
[
|Ên(e)|

∣∣∣ D̂(Gn)
]
= |Ên|, and then Lemma 5.9 and (45).
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A straightforward adaptation of the proof of Proposition 5.4, using Lemma 5.10 instead of
Lemma 5.2, yields the following result.

Proposition 5.12. Let {Gn}n∈N be a sequence of ECM graphs with |Vn| = n and α, β ∈ {+,−}.
Then there exist integer valued random variables Dα and Dβ such that for each k, l ∈ N, as n → ∞,

E
[
E
[
Iα,βEn

(k, l)
∣∣∣Gn

]∣∣∣ D̂(Gn),D(Gn)
]

P
→ P (Dα = k)P

(
Dβ = l

)
,

where the distributions of Dα and Dβ are given in Table 1.

We can now again use a second moment argument to get the convergence result for the three
rank correlations in the Erased Configuration Model. We omit the proof since the computation of
the variance follows the exact same steps as those in Proposition 5.5, where now, instead of only
conditioning on D̂(Gn), we also condition on D(Gn) and use Lemma 5.10.

Theorem 5.13. Let {Gn}n∈N be a sequence of ECM graphs with |Vn| = n and α, β ∈ {+,−}.
Then, as n → ∞,

ρβα(Gn)
P
→ 0, ρβα(Gn)

P
→ 0 and τβα (Gn)

P
→ 0.

This theorem shows that even when the variance of the degree sequences is infinite, one can
construct a random graph for which the degree-degree dependencies, measured by rank correla-
tions, converge to zero in the infinite graph size limit. Therefore this model can be used as a null
model for such dependencies.
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Appendix A Continuization

In this appendix we will establish several relations between the distribution functions of integer
valued random variables and their continuizations, using the functions F and H defined in (1) and
(2), respectively.

Let X̃ = X +U be as in Definition 2.2, take k ∈ Z and define Ik = [k, k+1). Then for x ∈ Ik,

F
X̃
(x) = (x− k)FX(k) + (k + 1− x)FX(k − 1). (55)

As a consequence, it follows that for x ∈ Ik,

dF
X̃
(x) = (FX(k)− FX(k − 1)) dx = P (X = k) dx. (56)

These identities capture the essential relations between X and its continuization X̃. As a first
result we have the following.

Lemma A.1. Let X be an integer valued random variable and m ∈ N. Then,

E
[
F
X̃
(X̃)m

]
=

1

m+ 1

m∑

i=0

E
[
FX(X)iFX(X − 1)m−i

]
.

Proof. Using (55) we obtain,
∫

Ik

F
X̃
(x)mdx =

∫

Ik

((x − k)FX(k) + (k + 1− x)FX(k − 1))
m
dx

=

m∑

i=0

(
m

i

)
FX(k)iFX(k − 1)m−i

∫ 1

0

(y)i(1− y)m−idy
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=
m∑

i=0

m!

i!(m− i)!
FX(k)iFX(k − 1)m−iΓ(i+ 1)Γ(m− i+ 1)

Γ(m+ 2)

=
1

m+ 1

m∑

i=0

FX(k)iFX(k − 1)m−i,

Combining this with (56), we get

E
[
F
X̃
(X̃)m

]
=
∑

k∈Z

∫

Ik

F
X̃
(x)mdF

X̃
(x)

=
∑

k∈Z

∫

Ik

F
X̃
(x)mP (X = k) dx

=
1

m+ 1

m∑

i=0

E
[
FX(X)iFX(X − 1)m−i

]
.

As a direct consequence of Lemma A.1 we get

1

2
= E

[
F
X̃
(X̃)

]
=

1

2
E [FX(X)] , (57)

relating F
X̃

to FX . Similar to (55), if Z is a random element independent of X , we get for x ∈ Ik,

F
X̃|Z(x) = (x− k)FX|Z(k) + (k + 1− x)FX|Z (k − 1). (58)

Applying (58) in a similar way as (55) we arrive at an extension of Lemma A.1. The proof is
elementary, hence omitted.

Proposition A.2. Let X be an integer valued random variable and Z a random element inde-
pendent of the continuous part of X̃. Then

i) E
[
F
X̃
(X̃)

∣∣∣Z
]
=

1

2
E [FX(X)|Z], a.s.;

ii) F
X̃|Z

(
X̃
)
=

1

2
FX|Z(X), a.s.

The following results are extensions of the previous ones to the case of two integer valued ran-
dom variables X and Y . We will state these without proofs, since these are either straightforward
extensions of those for the case of a single random variable or follow from elementary calculations
and the previous results.

Lemma A.3. Let X,Y be integer valued random variables. Then,

i) E
[
F
X̃
(X̃)F

Ỹ
(Ỹ )
]
=

1

4
E [FX(X)FY (Y )],

ii) E
[
H

X̃,Ỹ
(X̃, Ỹ )

]
=

1

4
E [HX,Y (X,Y )].

Proposition A.4. Let X,Y be integer valued random variables and let Z be a random variable
independent of the uniform parts of X̃ and Ỹ . Then

i) E
[
F̃
X̃
(X̃)F̃

Ỹ
(Ỹ )
∣∣∣Z
]
=

1

4
E [FX(X)FY (Y )|Z] a.s.;

ii) H
X̃,Ỹ |Z(X̃, Ỹ ) =

1

4
HX,Y |Z(X,Y ) a.s.
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Phase transitions for scaling of structural correlations in

directed networks.

Pim van der Hoorn∗, Nelly Litvak†

April 8, 2015

Abstract

Analysis of degree-degree dependencies in complex networks, and their impact on processes
on networks requires null models, i.e. models that generate uncorrelated scale-free networks.
Most models to date however show structural negative dependencies, caused by finite size
effects. We analyze the behavior of these structural negative degree-degree dependencies, us-
ing rank based correlation measures, in the directed Erased Configuration Model. We obtain
expressions for the scaling as a function of the exponents of the distributions. Moreover, we
show that this scaling undergoes a phase transition, where one region exhibits scaling related
to the natural cut-off of the network while another region has scaling similar to the structural
cut-off for uncorrelated networks. By establishing the speed of convergence of these struc-
tural dependencies we are able to asses statistical significance of degree-degree dependencies
on finite complex networks when compared to networks generated by the directed Erased
Configuration Model.

1 Introduction

The tendency of nodes in a network to be connected to nodes of similar large or small degree,
called network assortativity, degree mixing or degree-degree dependency, is an important char-
acterization of the topology of the network, influencing many processes on the network. It has
received significant attention in the literature, for instance in the field of network stability [29],
attacks on P2P networks [25] and epidemics [2, 3].

An important method to analyze these degree-degree dependencies or their influence on other
network properties or processes on the network, is to compare results to an average over several
instances of similar networks with neutral mixing. These null models often come in two flavors.
The first approach is to sample from graphs with the same degree sequence but neutral mixing. A
widely accepted methodology for such sampling is through the local rewiring model, [17], which
takes the original network and randomly swaps edges until a randomized version is attained.
The disadvantage of these methods is that they have no theoretical performance guarantees.
The second approach is to generate a random graph with neutral mixing, which preserves basic
features, such as the degree distribution. A well known model of this type is the Configuration
Model [6, 19, 21]. Here the degrees of vertices are drawn independently from the given distribution,
under the restriction that the total sum of degrees is even. Then the stubs are paired uniformly
at random to form edges. If we want to obtain a simple graph in this way, we can either rewire
till a simple graph is generated (Repeated Configuration Model), or we remove the excess edges
and self loops (Erased Configuration Model).

We note that there are many other methods, that generate simple random graphs and have
theoretically established performance guarantees, for example, the sequential algorithm in [1] that
creates a random graph with given degrees, or a grand-canonical model in [24] that generates a

∗University of Twente, w.l.f.vanderhoorn@utwente.nl
†University of Twente, n.litvak@utwente.nl
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Wikipedia N N1/2 γ+ γ− maxD+ maxD−

DE 1,532,978 1,238 1.80 1.05 5,032 118,064
EN 4,212,493 2,052 2.14 1.20 8,104 432,629
IT 1,017,953 1,009 1.96 1.05 5,212 91,588
NL 1,144,615 1,070 1.82 1.10 10,175 102,450
PL 949,153 974 1.90 1.04 4,100 112,537

Table 1: Basic degree characteristics of Wikipedia networks. The exponents of the degree dis-
tributions are estimated using the implementation of the techniques from [9] by Peter Bloem,
http://github.com/Data2Semantics/powerlaws.

graph with given average degrees using a maximum-entropy method. However, to the best of our
knowledge, none of these methods has an efficient implementation, that is feasible for a truly large
network, such as Wikipedia or Twitter.

Although for both local rewiring and the Configuration Model neutral mixing is expected, since
there is no preference in connecting two vertices, negative correlations are observed, [7, 18, 22],
for scale-free networks with infinite variance of degrees, i.e. where the degree distribution satisfies

P (k) ∼ k−(γ+1), 1 < γ ≤ 2. (1)

In [18] this phenomenon is explained by observing that if one allows at most one edge between
two vertices, nodes with large degree must connect to nodes of small degree because there are
simply not enough distinct large nodes to connect to. A similar explanation is given in [7]. Here,
however, this is then related to the difference in scaling between the natural and structural cut-off
of the network. The former is defined [10] as the degree value kc, of which, on average, only one
instance is observed:

N

∫ ∞

kc

P (k)dk ∼ 1. (2)

The structural cut-off is defined as the value ks for which the ratio between the average number
of edges that connect any two vertices of degree ks, and the maximum possible number of such
edges in a simple graph, is 1. For networks with degree distribution (1) it follows from (2) that
the natural cut-off scales as N1/γ , while the structural cut-off for uncorrelated networks scales as,
see [4], N1/2. Therefore, when γ < 2, the natural cut-off scales at a slower rate which in turn
gives rise to structural negative correlations.

To remedy these finite size effects the authors of [7] propose an Uncorrelated Configuration
Model. This model follows the same procedure as the regular Configuration Model, with the
addition that the sampled degrees are bounded, m ≤ ki ≤ N1/2. Experiments in [7] indeed show
that these networks are uncorrelated. However, many scale-free networks, for instance Twitter,
have nodes who’s degree is of larger order than N1/2, which is a characteristic property of scale-
free graphs. For example, Table 1 displays the characteristics of Wikipedia networks for different
languages. Here we see that the maximum out-degree could be considered to be of order N1/2,
while the maximum in-degree is definitely of a much larger scale. Therefore, randomized versions
of these networks, generated by the Uncorrelated Configuration Model, do not have the same basic
degree characteristics as the original network, since the maximum degree is restricted. Hence, they
are less suitable for comparison of the degree-degree dependencies.

In this paper we consider the directed Erased Configuration Model, [8], where after the pairing
self loops are removed and multiple edges are merged. This model was shown to have neutral
mixing in the infinite network size limit, see [27] Section 5. Therefore, from a purely mathematical
point of view, it is a null model for degree-degree dependencies in the limit. Moreover, asymptot-
ically, the degree distributions are preserved and hence, all basic degree characteristics. Still, for
finite sizes, structural dependencies are present.

Rather than trying to control these correlations, our goal is to evaluate their magnitude and
investigate their size dependence. We obtain the scaling for the structural correlations in the
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Figure 1: The four different degree-degree dependency types in directed networks.
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Figure 2: Plots of the empirical cumulative distribution of ρ−+, ρ
−
+ and τ−+ for ECM graphs of

different sizes with γ± = 1.2. Each plot is based on 103 realizations of the model.

ECM, in terms of the power law exponents of the in- and out-degrees. In particular, we show that
this scaling undergoes an interesting phase transition, and can be dominated by terms related to
either the structural or the natural cut-off of the network. To the best of our knowledge, this
is the first study that provides a systematic mathematical characterization for the magnitude of
negative correlations in a simple graph with neutral mixing.

By determining the scaling of the structural correlations we can asses the significance of mea-
sured correlations as well as their influence on network processes, on real world networks of finite
size, by comparing them to the directed Erased Configuration Model. This approach has the
advantage of preserving the degree characteristics of the original network, it can be easily imple-
mented and applied to all networks with scale free-degree distributions and finite expectation.

2 Degree-degree dependencies in random directed networks

We analyze degree-degree dependencies in random directed networks of size N , where the distri-
bution of the out- and in-degree (D+, D−) follow, respectively,

P+(k) ∼ k−(1+γ+) and P−(ℓ) ∼ ℓ−(1+γ−), γ± > 1. (3)

In directed networks one can consider four types of degree-degree dependencies, depending on
the choice of the degree type on both sides of an edge, see Figure 1. For the remainder of this
paper we denote by E the number of edges and adopt the notation style from [12, 28] to index
the degree types by α, β ∈ {+,−}.

A common measure for degree-degree dependencies, introduced in [20], computes Pearson’s

correlation coefficients on the joint data (Dα
i , D

β
j )i→j , where the indices run over all i, j for which

there is an edge i → j.
However, Pearson’s correlation coefficients are unable to measure strong negative degree-degree

dependencies in large networks where the variance of the degrees is infinite, as was shown for
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Figure 3: Plots of the out- and in-degree distribution, on log-log scale, for a graph generated by
the ECM, of size 106 with γ+ = 1.9 and γ− = 1.2, before (CM) and after (ECM) the removing of
edges.

undirected networks in [16, 11] and for directed networks in [28]. Since our interest is mainly in
networks in the infinite variance domain, i.e. 1 < γ± ≤ 2, we need different measures. In [28] it
was suggested to use rank correlations, related to Spearman’s rho [23] and Kendall’s tau [14], to
measure degree-degree dependencies.

Spearman’s rho computes Pearson’s correlation coefficient on the ranks of (Dα
i , D

β
j )i→j rather

then their actual values. Since this data will contain many ties, one needs to use ranking schemes
that deal with these ties. In [28] two such schemes are considered, resolving ties at random and
assigning an average rank to tied values, which give two correlation measures denoted by ρβα
and ρβα, respectively. Here, the subscript index denotes the degree type of the source, while the
superscript index denotes the degree type of the target of a directed edge. For instance, ρ−+ denotes
Spearman’s rho for the Out-In dependency. The second rank correlation measure, Kendall’s tau
τβα , calculates the normalized number of swaps needed to match the ranks of the joint data.

Exact formulas for these three measures, in terms of the degrees, are given in [28]. In [27]
formulas are given in terms of the empirical distributions ofDα andDβ and their joint distribution,
evaluated at (Dα

i , D
β
j ) for an edge i → j selected uniformly at random. From these it follows that

if the network has neutral mixing, then ρβα and τβα are similar, while ρβα and ρβα differ by a term
of O(1), which does not influence the scaling. To illustrate this we plotted the empirical cdf’s of
ρ−+, ρ

−
+ and τ−+ for a collection of ECM graphs in Figure 2; where we clearly observe the similar

behavior of the three measures. Therefore, for the analysis of degree-degree dependencies, we
will only consider ρβα, which corresponds to Spearman’s rho where ties are resolved uniformly at
random.
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Figure 4: Plots of the empirical cumulative distribution of ρβα for all four degree-degree dependency
types for ECM graphs of different sizes with γ± = 2.1. Each plot is based on 103 realizations of
the model.

3 The directed Erased Configuration Model

The directed Configuration Model (CM) starts with degree sequences (D+
i , D

−
i )1≤i≤N that satisfy,

E =
N
∑

i=1

D±
i ∼ µN (4a)

N
∑

i=1

D+
i D

−
i ∼ µ2N (4b)

N
∑

i=1

(D±
i )

p ∼ Np/γ± , p > γ±, (4c)

for some µ > 0. The stubs are then paired at random to form edges. This will in general
constitute a graph with self-loops and multiple edges between nodes. If the degree variance is
finite, then the probability of generating a simple graph is bounded away from zero and thus, by
repeating the pairing step until such a graph is generated, we get a network randomly sampled
from all networks of given size and degree sequences. This is called the Repeated Configuration
Model (RCM).

When the variance of the degrees is infinite, the probability of generating a simple graph
converges to zero as the graph size increases, and therefore we need to enforce that the resulting
graph is simple. For this we use the Erased Configuration Model (ECM), where, during the
pairing, a new edge is removed if it already exists or if it is a self loop. Although this seems to
be a strong alteration of the initial degree sequence, asymptotically, the degrees of the resulting
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Figure 5: Plots of the empirical cumulative distribution of ρβα for all four degree-degree dependency
types for ECM graphs of different sizes with γ± = 1.2. Each plot is based on 103 realizations of
the model.

network still follow the same distribution, see [8]. For illustration, in Figure 3, we plotted the
degree distributions of and ECM graph of size 106 before and after the removing of edges. Clearly
there is hardly any difference between the two distributions. In particular the degree sequences
of ECM graphs still satisfy (4). Unlike many other methods, random pairing of the stubs can be
implemented very efficiently for even billions of nodes. Moreover, the ECM is computationally
less expensive than RCM, since we do not need to repeat the pairing. Therefore we suggest to use
the ECM as a standard null-model. In the rest of the paper we will characterize the structural
dependencies in the ECM.

4 Degree-degree dependencies in the ECM

It is clear that when we use the CM, i.e. allow for multiple edges and self loops, then our graphs will
have neutral mixing since all stubs are connected completely at random. For the ECM however,
we remove edges to make the graph simple, which has been shown [18, 7] to give rise to negative
correlations. Nevertheless, the ECM has asymptotically neutral mixing, which can be shown as
follows.

Let Eij be the matrix counting the number of edges between i and j after the pairing and let
Ec

ij denote the matrix counting the number of removed edges between i and j by the ECM. Then

for the CM it holds that D+
i =

∑N
j=1 Eij while for the ECM we have D+ ′

i =
∑N

j=1(Eij − Ec
ij).

Therefore, the difference between the empirical distributions of Dα
i and Dβ

j , for an edge i → j

sampled at random, in the CM and ECM, will be of the order
∑N

i,j=1 E
c
ij/E, whose average, with

respect to the degree sequences, converges to zero [27],
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N 〈ρ−+〉 〈ρ+−〉 〈ρ++〉 〈ρ−−〉
10000 -0.1568 -0.0001 0.0039 0.0048
50000 -0.1439 0.0001 0.0014 0.0029
100000 -0.1388 -0.0001 0.0026 0.0028
500000 -0.1198 0.0001 0.0011 0.0017
1000000 -0.1131 0.0000 0.0009 0.0002

Table 2: The average values for ρ for all four degree-degree dependencies types, for ECM graphs
of different sizes, with γ± = 1.2, based on 103 realizations of the model.

lim
N→∞

1

N

N
∑

i,j=1

〈

Ec
ij

〉

= 0. (5)

This implies that the values of ρβα for an ECM graph will converge to that of a CM graph, hence,
asymptotically, ρβα = 0 and also ρβα = 0 = τβα , for the ECM.

However, for finite realizations in the infinite variance regime, negative correlations are still
observed. To illustrate this we plotted the empirical cumulative distribution functions of ρβα for
graphs generated by the ECM with, both, finite and infinite degree variance, see Figure 4 and
Figure 5, respectively. In addition, Table 2 contains the average values for all four correlation types
in the infinite variance regime. One immediately observes that the Out-In dependency in ECM
graphs with infinite variance, Figure 5a, displays strong structural negative correlations which
decrease as the network grows, while for other three dependency types the values are concentrated
around zero. Moreover, we see, Figure 4, that all four dependency types behave similar when the
variance of the degrees is finite.

These negative Out-In correlations (ρ−+) can be explained by first observing that multiple edges
are more likely to start in a node of large out-degree and end in a node of large in-degree, since
these are more likely to be sampled. Now, consider the algorithm as first connecting all stubs at
random and then removing self loops and merging multiple edges. By construction, immediately
after the pairing the network will have neutral mixing. When merging multiple edges we will often
delete connections from nodes of large out-degree to nodes of large in-degree. Such edges have
contributed positively into ρ−+, thus, deleting them will shift ρ−+ from zero in the CM to a negative
value in the ECM. The other three dependency types are not effected since the out- and in-degree
of a node in the ECM are independent.

Motivated by the analysis in this section, we will further focus on the behavior of ρ−+ in the
infinite-variance case, 1 < γ+, γ− ≤ 2, as the only scenario where we observe prominent structural
correlations. We will discuss other scenarios in Section 6.

5 Scaling of the Out-In degree-degree dependency in the

ECM

We will determine the scaling of ρ−+ as a function of the exponents γ±. That is, we will find
coefficients f(γ+, γ−) such that

ρ−+ −
〈

ρ−+
〉

Nf(γ+,γ−)

converges to some limiting distribution. Here the expectation
〈

ρ−+
〉

is taken over all possible graphs
of size N , generated by the ECM, with degree sequences satisfying (4). We note that although
〈

ρ−+
〉

is of similar order as the typical spreading of ρ−+, the latter, which we are going to evaluate,
will define the magnitude of the structural negative correlations.

We obtain the scaling exponents f(γ+, γ−) by establishing upper bounds on the scaling, and
then show empirically that these bounds are tight. The scaling is an important quantity, charac-
terizing the spread around the sample mean of ρ−+ as a function of N . Roughly, this tells us how
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much the measured values on a ECM graph of size N can deviate from the average and therefore
enable us to asses the significance of the measured correlations of the corresponding real world
networks.

5.1 Scaling of the erased number of edges

As we discussed in the previous section, the structural negative correlations appear after multiple
edges and self-loops are erased. Hence, part of the scaling of ρ−+ comes from the scaling of the
average total number of erased edges. The latter scaling has a phase transition, which we will
show by establishing two different upper bounds.

For the first upper bound, observe that

N
∑

i,j=1

Ec
ij =

N
∑

i=1

Sii +

N
∑

i,j=1

Mij , (6)

where S is the diagonal matrix counting the number of self loops and M is the zero diagonal
matrix that counts the excess edges, so Mij = k > 0 means that Eij = k +1. For the self loops it
holds that

〈Sii〉 =
D+

i D
−
i

E
. (7)

If we now take the total number of pairs of edges between i and j as an upper bound for the Mij ,
then

〈Mij〉 ≤
(D+

i )
2(D−

j )
2

E2
. (8)

Applying this to (6) we get

N
∑

i,j=1

〈

Ec
ij

〉

E
≤

∑N
i,j=1(D

+
i )

2(D−
j )

2

E3
+

∑N
i=1 D

+
i D

−
i

E2
. (9)

We remark that if the second moment of both the out- and in-degree exists, then this upper bound
scales as N−1. When this is not the case, we get the scaling from (4) as

1

E

N
∑

i,j=1

〈

Ec
ij

〉

= O
(

N (2/γ+)+(2/γ−)−3
)

. (10)

The upper bound (10) is rather crude in the sense that for certain 1 < γ± ≤ 2, we have
(2/γ+) + (2/γ−) > 3 so that the right-hand side of (10) becomes infinite as N → ∞.

To get a more precise upper bound let p(n,m,L) denote the probability that none of the
outbound stubs from a set of size n connect to an inbound stub from a set of size m, given that
the total number of available stubs is L. We will establish a recursive relation for p(D+

i , D
−
j , E)

by adopting the analysis from [26], Section 4. Similarly we get, by conditioning on whether we
pick an inbound stub of i or not,

p(D+
i , D

−
j , E) ≤

(

1−
D−

j

E

)

p(D+
i − 1, D−

j , E − 1),

where the upper bound comes from neglecting the eventD+
i +D−

j > E, in which case p(D+
i , D

−
j , E) =

0. Continuing the recursion yields

p(D+
i , D

−
j , E) ≤

D+

i
−1
∏

k=0

(

1−
D−

j

E − i

)

,
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and a first order Taylor expansion then gives

p(D+
i , D

−
j , E) ≤ e−D+

i
D−

j
/E . (11)

Now, recall that Eij denotes the total number of edges between i and j in the CM, before the
removal step. Therefore,

〈

Ec
ij

〉

= 〈Eij〉 − (1− p(D+
i , D

−
j , E)).

Since E =
∑N

i,j=1 〈Eij〉 it follows that

1

E

N
∑

i,j=1

〈

Ec
ij

〉

= 1−
N2

E
+

1

E

N
∑

i,j=1

p(D+
i , D

−
j , E) (12)

Hence, by plugging (11) into (12) we arrive at the following upper bound for the total average
number of erased edges,

1

E

N
∑

i,j=1

〈

Ec
ij

〉

≤ 1−
N2

E
+

1

E

N
∑

i,j=1

e−D+

i
D−

j
/E . (13)

The right hand side of (13) can be slightly rewritten to obtain the more informative expression

N2

E





1

E

N
∑

i,j=1

D+
i D

−
j

N2
− 1 +

N
∑

i,j=1

e−(D+

i
D−

j
)/E

N2



 . (14)

Next, we note that (14) can be seen as an empirical form of

N

µ

(

1

Nµ
〈ξ〉 − 1 +

〈

e−ξ/(Nµ)
〉

)

, (15)

where, using a ∧ b to denote the minimum, ξ has distribution

Pξ(k) ∼ k−(γ+∧γ−)−1.

From a classical Tauberian Theorem for regularly varying random variables, see for instance [15], it
follows that (15) scales as N1−(γ+∧γ−). However, by the Central limit Theorem for stable random
variables, see [30], we have

∣

∣

∣

∣

∣

∣

1

E

N
∑

i,j=1

D+
i D

−
j

N2
−

µ

N

∣

∣

∣

∣

∣

∣

= O
(

n−2+1/(γ+∧γ−)
)

.

Therefore, since E ∼ µN , the difference between (14) and (15) scales as N−1+1/(γ+∧γ−). This last
term dominates (15) when 1 < γ± ≤ 2, hence it follows that

1

E

N
∑

i,j=1

〈

Ec
ij

〉

= O(N−1+1/(γ+∧γ−)) (16)

The scaling in (16) is related to that of the structural cut off described in [4], adjusted to the
setting of directed networks with degree distributions (3). Moreover, comparing (16) to (10) we
observe a phase transition, with respect to the tail exponents γ± of the degree distributions, in
the scaling of the average total number of removed edges in the ECM, which will induce a phase
transition in the scaling of the Out-In degree-degree dependency.
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Figure 6: Plot of the different scaling regimes for ρ−+. The scaling terms for each of the three
regions can be found in Table 3. The Roman numerals indicate the three different choices of γ+
and γ−, used in Figure 7 and 8, to illustrated the different regimes.

Region f(γ+, γ−)
A 1/(γ+ ∧ γ−) − 1
B (2/γ+) + (2/γ−)− 3
C −1/2

Table 3: The three scaling terms for ρ−+ for each of the three regions, displayed in Figure 6

5.2 Phase transitions for the Out-In degree-degree dependency

First we remark that for the CM, the empirical distribution of the degrees on both sides of a
randomly sampled edge converges to the distribution of two independent random variables as
N−1, see [27]. Because Spearman’s rho and Kendall’s tau on independent joint measurements
are normal statistics [13], the scaling of their average is N−1/2. Hence ρβα for CM graphs scales
as N−1/2. Since an ECM graph is basically a CM graph where multiple edges are merged and
self-loops are removed, it follows that the distributions for the degrees on both side of a randomly
chosen edge differ from those of the CM by terms of the order

∑N
i,j=1 E

c
ij/E. Therefore, the scaling

of ρ−+ is determined by the largest term out of N−1/2 and the scaling of
∑N

i,j=1 E
c
ij/E. Since the

latter undergoes a phase transition, we actually have a three stage phase transition for the scaling
of ρ−+ in the ECM. The first stage has scaling N−1+1/(γ+,∧γ−) and holds for all γ± for which

1

γ+ ∧ γ−
− 1 ≤

2

γ+
+

2

γ−
− 3,

since both correspond to upper bounds. The next region, γ± such that 2/γ+ + 2/γ− − 3 ≥ −1/2,
has scaling N2/γ++2/γ−−3. Outside this region we have normal scaling, N−1/2. The different
regions are displayed in Figure 6, while Table 3 shows the three scaling terms. We remark that
the phase transitions of the scaling are smooth since they are induced by inequalities on the terms.

5.3 Simulations

In order to show the phase transitions we plotted the empirical cumulative distribution function
of ρ−+ for the specific choices of γ±, corresponding to the points I, II and III in Figure 6. For each

of the three points we shifted the empirical data by its average and multiplied it by N−f(γ+,γ−),
for any of the three coefficients from Table 3, corresponding to the different scaling areas A, B
and C. The results are shown in Figure 7. When the correct scaling is applied, the corresponding
cdf plots should almost completely overlap and resemble the cdf of some limiting distribution. We
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Figure 7: Plots of the empirical cumulative distribution function of ρ−+ using different scaling and

for different choices of γ±. The left column is scaled by N1/min(γ+,γ−), the center column by
N2/γ++2/γ−−3 and the right column by N−1/2. The first row is for ECM graphs with γ± = 1.3,
the second for γ+ = 1.9, γ− = 1.3 and the third for γ+ = 1.9, γ− = 1.5, corresponding to points
I, II and III, respectively in Figure 6.
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observe that for each of the three choices I, II and III, this is the case when the corresponding
scaling from its area, respectively A, B and C, is chosen.

6 Scaling of degree-degree dependencies for the other cases

In the previous section we completely characterized the scaling behavior of ρ−+ for ECM graphs
with infinite variance of the degrees. Here, we first discuss the remaining correlation types, ρ++, ρ

−
−

and ρ+− in the infinite variance regime and lastly, we consider all four types in the finite variance
regime.

The intuition behind the structural negative Out-In dependencies was that multiple edges are
more likely to exist between nodes of large out- and in-degree. The other three types do not show
negative correlations, see Figure 5b-5d, which we argued was due to the fact that the in- and
out-degree of a node in the ECM are independent. Nevertheless, the spread of both the Out-
Out and In-In degree-degree dependency exhibits scaling with the same functions as the Out-In
dependency. This is illustrated in Figure 8, where we plotted the empirical cumulative distribution
of the Out-Out dependency for ECM graphs, for values of γ± corresponding to points I, II and
III from Figure 6, scaled by the correct term for each of these points. This is because ρ++ again
depends on the number of erased edges, through the out-degree of their target nodes. However,
the out-degree of the source node of a removed edge can be both large or small, thus ρ++ in the
ECM remains zero on average. By symmetry, the scaling for the In-In dependency is similar.

This non-trivial scaling is typical for the ECM. Recall that in the CM, ρβα is a normal statistic
and scales as N−1/2, for any, α, β because all degrees are independent random variables. This is
exactly what we observe for the In-Out degree-degree dependency, which, in contrast to the other
three, is not biased towards removed edges. As we expect, here we have normal, square root,
scaling for ECM graphs for any choice of γ±. This can clearly be observed in Figure 9, where we
plotted the empirical cumulative distributions of ρ+− scaled by N−1/2.

For the degree-degree dependencies in the finite variance regime we plotted the empirical
cumulative distributions of ρβα, scaled by N−1/2, in Figure 10. Since these are all completely
similar, we took the plot for ρ−+ for a ECM graph of size 106 and compared it to a fitted normal
distribution with µ = 0 and σ2 = 0.8, see Figure 11. These plots strongly overlap, enforcing the
claim that for ECM graphs with finite degree variance all four correlations are normal statistics.

7 Conclusion and Discussion

In this paper we analyzed degree-degree dependencies in the directed Erased Configuration Model.
We showed, Figure 5, that in the infinite variance regime only the Out-In dependency exhibits
structural negative values, while all correlations behave similar when both degrees have finite
variance, Figure 4. We investigated the scaling of the structural negative Out-In correlations.
These undergo a phase transition in terms of the exponents γ± of the degree distributions (3),
which we showed by establishing two upper bounds, (10) and (16), on the total, average, removed
number of edges, both of which scale at different rates. Combining this with the square root scaling
of Spearman’s rho and Kendall’s tau, we identified three regions, depending on γ±, with different
scaling, Figure 6, and illustrated their phase transitions in Figure 7. Next, we considered the
remaining three dependency types for the infinite variance regime. We showed, Figure 8, that the
scaling of the Out-Out and In-In correlations behaves similarly to the Out-In, even though they
do not exhibit structural negative values, while the In-Out degree-degree dependency has square
root scaling, Figure 9. Finally we investigated the scaling for correlations when the degrees have
finite variance. In this case all four types have square root scaling and the plots of the cumulative
distributions are very similar, Figure 10. This was confirmed when we compared the plot of ρ−+
for ECM graphs of size 106, with γ± = 2.1, with that of a fitted normal distribution in Figure 11.

Our analysis shows that degree-degree dependencies in directed networks display non-trivial
behavior in terms of scaling when the degrees have infinite variance. This scaling is important
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Figure 8: Plots of the empirical cumulative distribution function of ρ++ for choices of γ± corre-
sponding to points I, II and III from Figure 6, using the corresponding scaling.
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Figure 9: Plots of the empirical cumulative distribution function of ρ+− for choices of γ± corre-
sponding to points I, II and III from Figure 6, using square root scaling.

when doing statistical analysis of these measures or their impact on other processes on networks,
for it determines their spread and hence enables to asses the significance of measurements.

We showed that degree-degree dependencies for degrees with finite variance, scaled by N−1/2,
converge to a normal distribution with zero mean. We have not yet been able to determine the
variance of these distributions as a function of the tail exponents γ± which would completely
characterize their behavior.

For three of the four correlation types in the infinite variance regime, we did not determine the
limiting distributions. This is mainly due to the fact that we expect these to be stable distributions,
since one of the three scaling regions is due to the Central Limit Theorem for stable random
variables. Although these distributions have a well defined characteristic function, their density
function, in general, does not have an analytical expression. Moreover, we are dealing with discrete
data and simulation of such distributions is a field of it’s own. Nevertheless, we do expect that
Central Limit Theorems for degree-degree dependencies can be formulated and proven, which
would fully complete their statistical analysis.

Finally, our empirical results clearly show the, analytically derived, phase transitions. However,
the region with the N (2/γ+)+(2/γ−)−3 scaling is less distinct than the other two. One of the possible
reasons for this is that within the area where this scaling applies, the difference in value with the
other two terms is small. We therefore picked point II in Figure 6 such that this difference was
large enough to distinctly show this scaling visually in the plots.

We close by strongly suggesting to use the ECM as a null model for analysis of degree-degree
dependencies, both for determining their impact on processes as well as significance. Although for
the latter, values are often compared to averages, using the rewiring model [17], we emphasize that
fixing the degrees imposes strong constraints on the possible simple graphs that can be generated.
Moreover, in real-life networks, not only wiring but also the degrees of the nodes, are a result of a
random process. Therefore, in a null-model, it seems more natural to fix only general properties
of the network, such as degree distributions.
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Abstract. In this paper we model user behaviour in Twitter to capture
the emergence of trending topics. For this purpose, we first extensively
analyse tweet datasets of several different events. In particular, for these
datasets, we construct and investigate the retweet graphs. We find that
the retweet graph for a trending topic has a relatively dense largest con-
nected component (LCC). Next, based on the insights obtained from the
analyses of the datasets, we design a mathematical model that describes
the evolution of a retweet graph by three main parameters. We then
quantify, analytically and by simulation, the influence of the model pa-
rameters on the basic characteristics of the retweet graph, such as the
density of edges and the size and density of the LCC. Finally, we put
the model in practice, estimate its parameters and compare the resulting
behavior of the model to our datasets.

Keywords: Retweet graph, Twitter, graph dynamics, random graph model

1 Introduction

Nowadays, social media play an important role in our society. The topics people
discuss on-line are an image of what interests the community. Such trends may
have various origins and consequences: from reaction to real-world events and
naturally arising discussions to the trends manipulated e.g. by companies and
organisations [14]. Trending topics on Twitter are ‘ongoing’ topics that become
suddenly extremely popular4. In our study, we want to reveal differences in the
retweet graph structure for different trends and model how these differences
arise.

? The work of Nelly Litvak is partially supported the EU-FET Open grant NADINE
(288956)

4 https://support.twitter.com/articles/101125-about-trending-topics
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In Twitter5 users can post messages that consist of a maximum of 140 char-
acters. These messages are called tweets. One can “follow” a user in Twitter,
which places their messages in the message display, called the timeline. Social
ties are directed in Twitter, thus if user A follows user B, it does not imply that
B follows A. People that “follow” a user are called “friends” of this user. We refer
to the network of social ties in Twitter as the friend-follower network. Further,
one can forward a tweet of a user, which is called a retweet.

There have been many studies on detecting different types of trends, for
instance detecting emergencies [9], earthquakes [18], diseases [13] or important
events in sports [11]. In many current studies into trend behaviour, the focus
is mainly on content of the messages that are part of the trend, see e.g. [12].
Our work focuses instead on the underlying networks describing the social ties
between users of Twitter. Specifically, we consider a graph of users, where an
edge means that one of the users has retweeted a message of a different user.

In this study we use several datasets of tweets on multiple topics. First we
analyse the datasets, described in Section 3, by constructing the retweet graphs
and obtaining their properties as discussed in Section 4. Next, we design a math-
ematical model, presented in Section 5, that describes the growth of the retweet
graph. The model involves two attachment mechanisms. The first mechanism
is the preferential attachment mechanism that causes more popular messages
to be retweeted with a higher probability. The second mechanism is the super-
star mechanism which ensures that a user that starts a new discussion receives
a finite fraction of all retweets in that discussion [2]. We quantify, analytically
and with simulations, the influence of the model parameters on its basic char-
acteristics, such as the density of edges, the size and the density of the largest
connected component. In Section 6 we put the model in practice, estimate its
parameters and compare it to our datasets. We find that what our model cap-
tures, is promising for describing the retweet graphs of trending topics. We close
with conclusions and discussion in Section 7.

2 Related work

The amount of literature regarding trend detection in Twitter is vast. The
overview we provide here is by no means complete. Many studies have been
performed to determine basic properties of the so-called “Twitterverse”. Kwak
et al. [10] analysed the follower distribution and found a non-power-law distri-
bution with a short effective diameter and a low reciprocity. Furthermore they
found that ranking by the number of followers and PageRank both induce sim-
ilar rankings. They also report that Twitter is mainly used for News (85% of
the content). Huberman et al. [8] found that the network of interactions within
Twitter is not equal to the follower network, it is a lot smaller.

An important part of trending behaviour in social media is the way these
trends progress through the network. Many studies have been performed on

5 www.twitter.com

www.twitter.com


Twitter data. For instance, [3] studies the diffusion of news items in Twitter for
several well-known news media and finds that these cascades follow a star-like
structure. Also, [20] investigates the diffusion of information on Twitter using
tweets on the Iranian election in 2009, and finds that cascades tend to be wide,
not too deep and follow a power law-distribution in their size.

Bhamidi et al. [2] proposed and validated on the data a so-called superstar
random graph model for a giant component of a retweet graph. Their model is
based on the well-known preferential attachment idea, where users with many
retweets have a higher chance to be retweeted [1], however, there is also a super-
star node that receives a new retweet at each step with a positive probability. We
build on this idea to develop our model for the progression of a trend through
the Twitter network.

Another perspective on the diffusion of information in social media is ob-
tained through analysing content of messages. For example, [17] finds that on
Twitter, tags tend to travel to more distant parts of the network and URLs
travel shorter distances. Romero et al. [16] analyse the spread mechanics of con-
tent through hashtag use and derive probabilities that users adopt a hashtag.

Classification of trends on Twitter has attracted considerable attention in
the literature. Zubiaga et al. [21] derive four different types of trends, using 15
features to make their distinction. They distinguish trends triggered by news,
current events, memes or commemorative tweets. Lehmann et al. [12] study
different patterns of hashtag trends in Twitter. They also observe four different
classes of hashtag trends. Rattanaritnont et al. [15] propose to distinguish topics
based on four factors, which are cascade ratio, tweet ratio, time of tweet and
patterns in topic-sensitive hashtags.

We extend the model of [2] by mathematically describing the growth of a
complete retweet graph. Our proposed model has two more parameters that
define the shape of the resulting graph, in particular, the size and the density of
its largest connected component. To the best of our knowledge, this is the first
attempt to classify trends using a random graph model rather than algorithmic
techniques or machine learning. The advantage of this approach is that it gives
insight in emergence of the trend, which, in turn, is important for understanding
and predicting the potential impact of social media on real world events.

3 Datasets

We use datasets containing tweets that have been acquired either using the
Twitter Streaming API6 or the Twitter REST API7. Using the REST API one
can obtain tweets or users from Twitter ’s databases. The Streaming API filters
tweets that Twitter parses during a day, for example, based on users, locations,
hashtags, or keywords.

Most of the datasets used in this study were scraped by RTreporter, a com-
pany that uses an incoming stream of Dutch tweets to detect news for news

6 https://dev.twitter.com/docs/streaming-apis
7 https://dev.twitter.com/docs/api/1.1
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agencies in the Netherlands. These tweets are scraped based on keywords, using
the Streaming API. For this research, we selected several events that happened
in the period of data collection, based on the wikipedia overviews of 2013 and
20148. We have also used two datasets scraped by TNO - Netherlands Organ-
isation for Applied Scientific Research. The Project X dataset contains tweets
related to large riots in Haren, the Netherlands. This dataset is acquired by
Twitcident9. For this study, we have filtered this dataset on two most important
hashtags: #projectx and #projectxharen. The Turkish-Kurdish dataset is de-
scribed in more detail in Bouma et al. [4]. A complete overview of the datasets,
including the events and the keywords, is given in Table 1. The size and the
timespans for each dataset are given in Table 2.

dataset keywords
PX Project X Haren projectx, projectxharen
TK Demonstrations in Amsterdam koerden, turken, rellen, museumplein,

related to the Turkish-Kurdish conflict amsterdam
WCS World cup speedskating single distanced 2013 wkafstanden, sochi, sotsji
W-A Crowning of His Majesty King troonswisseling, troon, Willem-Alexander,

Willem-Alexander in the Netherlands Wim-Lex, Beatrix, koning, koningin
ESF Eurovision Song Festival esf, Eurovisie Songfestival, ESF,

songfestival, eurovisie
CL Champions Leage final 2013 Bayern Munchen, Borussia Dortmund,

dorbay, borussia, bayern, borbay, CL
Morsi Morsi deposited as Egyption president Morsi, afgezet, Egypte
Train Train crash in Santiago, Spain Treincrash, treincrash, Santiago,

Spanje, Santiago de Compostella, trein
Heat Heat wave in the Netherlands hittegolf, Nederland
Damascus Sarin attack in Damascus Sarin, Damascus, Syrië, syrië
Peshawar Bombing in Peshawar Peshawar, kerk, zelfmoordaanslag, Pakistan
Hawk Hawk spotted in the Netherlands sperweruil, Zwolle
Pile-up Multiple pile-ups in Belgium on the A19 A19, Ieper, Kortrijk, kettingbotsing
Schumi Michael Schumachar has a skiing accident Michael Schumacher, ski-ongeval
UKR Rebellion in Ukrain Azarov, Euromaidan, Euromajdan, Oekräıne,

opstand
NAM Treaty between NAM and Dutch government Loppersum, gasakkoord, NAM, Groningen
WCD Michael van Gerwen wins PDC WC Darts van Gerwen, PDC, WK Darts
NSS Nuclear Security Summit 2014 NSS2014, NSS,

Nuclear Security Summit 2014,
Den Haag

MH730 Flight MH730 disappears MH730, Malaysia Airlines
Crimea Crimea referendum for independance Krim, referendum, onafhankelijkheid
Kingsday First Kingsday in the Netherlands koningsdag, kingsday, koningsdag
Volkert Volkert van der Graaf released from prison Volkert, volkertvandergraaf,

Volkert van der Graaf

Table 1. Datasets: events and keywords (some keywords are in Dutch).

For each dataset we have observed there is at least one large peak in the
progression of the number of tweets. For example, Figure 1 shows such peak in
Twitter activity for the Project X dataset.

8 http://nl.wikipedia.org/wiki/2014 & http://nl.wikipedia.org/wiki/2013
9 www.twitcident.com

http://nl.wikipedia.org/wiki/2014
http://nl.wikipedia.org/wiki/2013
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dataset year first tweet last tweet # tweets # retweets
PX 2012 Sep 17 09:37:18 Sep 26 02:31:15 31,144 15,357
TK 2011 Oct 19 14:03:23 Oct 27 08:42:18 6,099 999
WCS 2013 Mar 21 09:19:06 Mar 25 08:45:50 2,182 311
W-A 2013 Apr 27 22:59:59 May 02 22:59:25 352,157 88,594
ESF 2013 May 13 23:00:08 May 18 22:59:59 318,652 82,968
CL 2013 May 22 23:00:04 May 26 22:59:54 163,612 54,471
Morsi 2013 Jun 30 23:00:00 Jul 04 22:59:23 40,737 13,098
Train 2013 Jul 23 23:00:02 Jul 30 22:59:41 113,375 26,534
Heat 2013 Jul 10 19:44:35 Jul 29 22:59:58 173,286 42,835
Damascus 2013 Aug 20 23:01:57 Aug 31 22:59:54 39,377 11,492
Peshawar 2013 Sep 21 23:00:00 Sep 24 22:59:59 18,242 5,323
Hawk 2013 Nov 11 23:00:07 Nov 30 22:58:59 54,970 19,817
Pile-up 2013 Dec 02 23:00:15 Dec 04 22:59:57 6,157 2,254
Schumi 2013-14 Dec 29 02:43:16 Jan 01 22:54:50 13,011 5,661
UKR 2014 Jan 26 23:00:36 Jan 31 22:57:12 4,249 1,724
NAM 2014 Jan 16 23:00:22 Jan 20 22:59:49 41,486 14,699
WCD 2013-14 Dec 31 23:03:48 Jan 02 22:59:05 15,268 5,900
NSS 2014 Mar 23 23:00:06 Mar 24 22:59:56 29,175 13,042
MH730 2014 Mar 08 00:18:32 Mar 28 22:40:44 36,765 17,940
Crimea 2014 Mar 13 23:02:22 Mar 17 22:59:57 18,750 5,881
Kingsday 2014 Apr 26 23:00:00 Apr 29 22:53:00 7,576 2,144
Volkert 2014 Apr 30 23:08:14 May 04 22:57:06 9,659 4,214

Table 2. Characteristics of the datasets.
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Fig. 1. Project X Number of tweets and cumulative number of tweets per hour.

When a retweet is placed on Twitter, the Streaming API returns the retweet
together with the message that has been retweeted. We use this information to
construct the retweet trees of every message and the user IDs for each posted
message. The tweet and graph analysis is done using Python and its modules
Tweepy10 and NetworkX 11. In this paper, we investigate the dynamics of retweet
graphs with the goal to predict peaks in Twitter activity and classify the nature
of trends.

10 http://www.tweepy.org/
11 http://networkx.github.io/

http://www.tweepy.org/
http://networkx.github.io/


4 Retweet graphs

Our main object of study is the retweet graph G = (V,E), which is a graph
of users that have participated in the discussion on a specific topic. A directed
edge e = (u, v) indicates that user v has retweeted a tweet of u. We observe
the retweet graph at the time instances t = 0, 1, 2, . . ., where either a new node
or a new edge was added to the graph, and we denote by Gt = (Vt, Et) the
retweet graph at time t. As usual, the out- (in-) degree of node u is the number
of directed edges with source (destination) in u. In what follows, we model and
analyse the properties of Gt. For every new message initiated by a new user u
a tree Tu is formed. Then, Tt denotes the forest of message trees. Note that in
our model a new message from an already existing user u (that is, u ∈ Tt) does
not initiate a new message tree. We define |Tt| as the number of new users that
have started a message tree up to time t.

After analyzing multiple characteristics of the retweet graphs for every hour
of their progression, we found that the size of the largest (weakly) connected
component (LCC) and its density are the most informative characteristics for
predicting the peak in Twitter. In Figure 2 we show the development of these
characteristics in the Project X dataset. One day before the actual event, we
observe a very interesting phenomenon in the development of the edge density
of the LCC in Figure 2a. Namely, at some point the edge density of the LCC
exceeds 1 (indicated by the dash-dotted gray lines), i.e. there is more than one
retweet per user on average. We shall refer to this as the densification (or dens.)
of the LCC. Furthermore, the relative size of the LCC increases from 18% to
25% as well, see Figure 2b.
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Fig. 2. Progression for the edge density (a) and the size of the LCC (b) in the Project
X dataset.

We have observed a densification of the LCC in each dataset that we have
studied. Indeed, when the LCC grows its density must become at least one (each
node is added to the LCC together with at least one edge). However, we have also
observed that in each dataset the densification occurs before the main peak, but



the scale of densification is different. For example, in the Project X dataset the
densification already occurs one day before the peak activity. Plausibly, in this
discussion, that ended up in riots, a group of people was actively participating
before the event. On the other hand, in the WCS dataset, which tweets about
an ongoing sport event, the densication of the LCC occurs during the largest
peak. This is the third peak in the progression. Hence, our experiments suggest
that the time of densification has predictive value for trend progression and
classification. See Table 5 for the density of the LCC in each dataset at the end
of the progression.

5 Model

Our goal is to design a model that captures the development of trending be-
haviour. In particular, we need to capture the phenomenon that disjoint com-
ponents of the retweet graph join together forming the largest component, of
which the density of edges may become larger than one. To this end, we employ
the superstar model of Bhamidi et al. [2] for modelling distinct components of
the retweet graph, and add the mechanism for new components to arrive and
the existing components to merge. For the sake of simplicity of the model we ne-
glect the friend-follower network of Twitter. Note that in Twitter every user can
retweet any message sent by any public user, which supports our simplification.

At the start of the progression, we have the graph G0. In the analysis of this
section, we assume that G0 consists of a single node. Note that in reality, this
does not need to be the case: any directed graph can be used as an input graph
G0. In fact, in Section 6 we start with the actual retweet graph at a given point
in time, and then use the model to build the graph further to its final size.

We consider the evolution of the retweet graph in time (Gt)t≥0. We use a
subscript t to indicate Gt and related notions at time t. We omit the index t
when referring to the graph at the end of the progression.

Recall that Gt is a graph of users, and an edge (u, v) means that v has
retweeted a tweet of u. We consider time instances t = 1, 2, . . . when either a
new node or a new edge is added to the graph Gt−1. We distinguish three types
of changes in the retweet graph:

◦ T1: a new user u has posted a new message on the topic, node u is added to
Gt−1;
◦ T2: a new user v has retweeted an existing user u, node v and edge (u, v)

are added to Gt−1;
◦ T3: an existing user v has retweeted another existing user u, edge (u, v) is

added to Gt−1.

The initial node is equivalent to a T1 arrival at time t = 0. Assume that each
change in Gt at t = 1, 2, . . . is T1 with probability λ/(1 + λ), independently of
the past. Also, assume that a new edge (retweet) is coming from a new user with
probability p. Then the probabilities of T1, T2 and T3 arrivals are, respectively



λ
λ+1 , p

λ+1 , 1−p
λ+1 . The parameter p is governing the process of components merging

together, while λ is governing the arrival of new components in the graph.

For both T2 and T3 arrivals we define the same mechanism for choosing the
source of the new edge (u, v) as follows.

Let u0, u1, . . . be the users that have been added to the graph as T1 arrivals,
where u0 is the initial node. Denote by Ti,t the subgraph of Gt that includes ui
and all users that have retweeted the message of ui in the interval (0, t]. We call
such a subgraph a message tree with root ui. We assume that the probability
that a T2 or T3 arrival at time t will attach an edge to one of the nodes in Ti,t−1

with probability pTi,t−1
, proportional to the size of the message tree:

pTi,t−1
=

|Ti,t−1|∑
Tj,t−1⊂Tt−1

|Tj,t−1|
.

This creates a preferential attachment mechanism in the formation of the mes-
sage trees. Next, a node in the selected message tree Ti,t−1 is chosen as the source
node following the superstar attachment scheme [2]: with probability q, the new
retweet is attached to ui, and with probability 1−q, the new retweet is attached
to any other vertex, proportional to the preferential attachment function of the
node, that we choose to be the number of children of the node plus one.

Thus we employ the superstar-model, which was suggested in [2] for modelling
the largest connected component of the retweet graph on a given topic, in order
to describe a progression mechanism for a single retweet tree. Our extensions
compared to [2] are that we allow new message trees to appear (T1 arrivals),
and that different message trees may either remain disconnected or get connected
by a T3 arrival.

For a T3 arrival, the target of the new edge (u, v) is chosen uniformly at
random from Vt−1, with the exception of the earlier chosen source node u, to
prevent self-loops. That is, any user is equally likely to retweet a message from
another existing user.

Note that, in our setting, it is easy to introduce a different superstar param-
eter qTi for every message tree Ti. This way one could easily implement specific
properties of the user that starts the message tree, e.g. his/her number of fol-
lowers. For the sake of simplicity, we choose the same value of q for all message
trees. Also note that we do not include tweets and retweets that do not result
in new nodes or edges in a retweet graph. This could be done, for example, by
introducing dynamic weights of vertices and edges, that increase with new tweets
and retweets. Here we consider only an unweighted model.

5.1 Growth of the graph

The average degree, or edge density, is one of the aspects through which we give
insight to the growth of the graph. The essential properties of this characteristic
are presented in Theorem 1. The proof is given in the Appendix.



Theorem 1 Let τn be the time when node n is added to the graph. Then

E
[
|Eτn |
|Vτn |

]
=

1

λ+ p
− 1

n(λ+ p)
, (1)

var

(
|Eτn |
|Vτn |

)
=

(n− 1)(λ+ 1− p)
n2(λ+ p)2

. (2)

Note that the variance of the average degree in (2) converges to zero as
n→∞ at rate 1

n .
The next theorem studies the observed ratio between T2 and T3 arrivals

(new edges) and T1 arrivals (new nodes with a new message). As we see from
the theorem, this ratio can be used for estimating the parameter λ. The proof
is given in the Appendix.

Theorem 2 Let Gt = (Vt, Et) be the retweet graph at time t, let Tt be the set
of all message trees in Gt. Then

E
[
|Et|
|Tt|

]
= λ−1 ·

(
1−

(
1

λ+ 1

)t)
, (3)

lim
t→∞

λ3t

(1 + λ)2
var

(
|Et|
|Tt|

)
= 1, (4)

Furthermore,
λ3/2
√
t

λ+ 1

(
|Et|
|Tt|
− 1

λ

)
D→ Z, (5)

where Z is a standard normal N(0, 1) random variable, and
D→ denotes conver-

gence in distribution.

Note that, as expected from the definition of λ,

lim
t→∞

E
[
|Et|
|Tt|

]
= λ−1. (6)

This will be used in Section 6 for estimating λ.

5.2 Component size distribution

In the following, we assume that Gt consists of m connected components
(C1, C2, . . . , Cm) with known respective sizes (|C1|, . . . , |Cm|). We aim to derive
expressions for the distribution of the component sizes in Gt+1.

Lemma 3 The distribution of the sizes of the components of Gt+1, given Gt is
as follows,

|C1|, . . . , |Ci|, |Cj |, . . . , |Cm|, 1 w.p. λ
λ+1

|C1|, . . . , |Ci|+ 1, |Cj |, . . . , |Cm| w.p. p
λ+1 ·

|Ci|
|V |

|C1|, . . . , |Ci|+ |Cj |, . . . , |Cm| w.p. 1−p
λ+1 ·

2·|Ci|·|Cj |
|V |2−|V |

|C1|, . . . , |Ci|, |Cj |, . . . , |Cm| w.p. 1−p
λ+1 ·

∑m
k=1 |Ck|

2−|Ck|
|V |2−|V |

(7)



The proof of Lemma 3 is given in the Appendix. Lemma 3 provides a recursion
for computing the distribution of component sizes. However, the computations
are highly demanding if not infeasible. Also, deriving an exact expression of the
distribution of the component sizes at time t is very cumbersome because they are
hard and they strongly depend on the events that occurred at t = 0, . . . , t − 1.
Note that if p = 1, there is a direct correspondence between our model and
the infinite generalized Pólya process [5]. However, this case is uninformative as
there are no T3 arrivals. Therefore, in the next section we resort to simulations to
investigate the sensitivity of the graph characteristics to the model parameters.

5.3 Influence of q, p and λ

We analyze the influence of the model parameters λ, p and q on the character-
istics of the resulting graph numerically using simulations. To this end, we fix
two out of three parameters and execute multiple simulation runs of the model,
varying the values for the third parameter. We start simulations with graph G0,
consisting of one node. We perform 50 simulation runs for every parameter set-
ting and obtain the average values over the individual runs for given parameters.

Parameter q affects the degree distribution [2] and the overall structure of
the graph. If q = 0, then the graph contains less nodes that have many retweets.
If q = 1 each edge is connected to a superstar, and the graph consists of star-like
sub graphs, some of which are connected to each other. In the Project X dataset,
which is our main case study, q ≈ 0.9 results in a degree distribution that closely
approximates the data. Since degree distributions are not in the scope of this
paper, we omit these results for brevity.

We compare the results for two measures that produced especially important

characteristics of the Project X dataset: |ELCC|
|VLCC| and |VLCC|

|V | . These characteristics

do not depend on q. In simulations, we set t = 1, 000, q = 0.9 and vary the values
for p and λ. the results are give in Figure 3.
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Fig. 3. Numerical results for the model using q = 0.9 and t = 1, 000.



We see that the edge density in the LCC in Figure 3a decreases with λ and
p. Note that according to (1), |E|/|V | is well approximated by 1/(λ + p) when
λ or p are large enough. The edge density in LCC shows a similar pattern, but
it is slightly higher than in the whole graph. When λ and p are small, there are
many T3 arrivals, and new nodes are not added frequently enough. This results
in an unexpected non-monotonic behaviour of the edge density near the origin.
For the fraction of nodes in the LCC, depicted in Figure 3b, we see that the
parameter λ is most influential. The parameter p is of considerable influence
only when it is large.

6 The model in practice

In this section we obtain parameter estimators for our model and compare the
model to the datasets discussed in Section 3.

Using Theorem 2, we know that |Et||Tt| converges to λ−1 as t → ∞. Thus, we

suggest the following estimator for λ at time t > 0:

λ̂t =
|Tt|
|Et|

. (8)

Second, we derive an expression for p̂t using (1) and substituting (??) for λ:

p̂t =
|Vt| − |Tt| − 1

|Et|
. (9)

Since the Twitter API only gives back the original message of a retweet and
not the level in the progression tree of that retweet, we can not determine q
easily from the data. Since this parameter does not have a large influence on the
outcomes of the simulations, we choose this parameter to be 0.9 for all datasets.

Notice that we can obtain the numbers (|Et|, |Tt| and |Vt|) directly from
a given retweet graph for each t = 1, 2, . . .. The computed estimators for our
datasets are displayed in Table 5.

Next, we compare 50 simulations of the datasets from the point of densifica-
tion of the LCC until the graph has reached the same size as the actual dataset.
We display the average outcomes of these simulations and compare them to the
actual properties of the retweet graphs of each dataset in Table 5.

Here we see diverse results per dataset in the simulations. For the CL, Morsi
and WCD datasets, the simulations are very similar to the actual progressions.
However, for some datasets, for instance the ESF dataset, simulations are far
off. In general, the model predicts the density of the LCC quite well for many
datasets, but tends to overestimate the size of the LCC. We notice that current
random graph models for networks usually capture one or two essential features,
such as degree distribution, self-similarity, clustering coefficient or diameter. Our
model captures both degree distribution and, in many cases, the density of the
LCC. It seems that our model performs better on the datasets that have a
singular peak rather than a series of peaks. We have observed on the data that



actual progression simulations (starting at dens.)

dataset λ̂ p̂
|VLCC |
|V |

|E|
|V |

|ELCC |
|VLCC |

|VLCC |
|V |

|E|
|V |

|ELCC |
|VLCC |

PX .23 .78 .76 1.00 1.12 .54 .75 1.08
TK .42 .85 .25 .79 1.00 .54 .74 1.08

WCS .49 .73 .20 .81 .99 .49 .95 1.90
W-A .41 .52 .67 1.07 1.30 .40 .62 1.41
ESF .38 .43 .73 1.24 1.48 .45 .69 1.42
CL .40 .72 .44 .90 1.22 .46 .66 1.16

Morsi .60 .55 .39 .87 1.20 .47 .67 1.17
Train .54 .78 .28 .76 1.04 .50 .70 1.17
Heat .42 .59 .60 .99 1.23 .41 .72 1.68

Damascus .58 .51 .46 .92 1.24 .44 .65 1.30
Peshawar .54 .68 .31 .82 1.18 .53 .75 1.25

Hawk .38 .38 .82 1.31 1.45 .49 .76 1.43
Pile-up .33 .64 .65 1.03 1.24 .58 .93 1.54
Schumi .38 .83 .33 .82 1.08 .56 .77 1.07
UKR .72 .37 .53 .91 1.12 .50 .75 1.38
NAM .44 .48 .50 1.09 1.51 .45 .72 1.51
WCD .26 .81 .66 .94 1.10 .64 .83 1.07
NSS .26 .62 .79 1.13 1.26 .23 .35 1.21

MH730 .33 .52 .15 1.18 1.00 .56 .76 1.09
Crimea .44 .63 .51 .93 1.19 .52 .72 1.12

Kingsday .47 .92 .07 .72 1.11 .47 .67 1.15
Volkert .29 .55 .79 1.18 1.31 .64 .87 1.22

Table 5. Estimated parameter values using complete dataset, simulation and progres-
sion properties.

each peak activity has a large impact on the parameters estimation. We will
strive to adopt the model for incorporating different rules for activity during
peaks, and improving results on the size of the LCC.

7 Conclusion and Discussion

We have found that our model performs well in modelling the retweet graph
for tweets regarding a singular topic. However, there is a room for improvement
when the dataset covers a prolonged discussion with users activity fluctuating
over time.

A possible extension of the present work is incorporating more explicitly the
time aspect into our model. We could for example add the notion of ‘novelty’,
like Gómez et al. in [6], taking into account that e.g. the retweet probability for a
user may decrease the longer he/she remains silent after having received a tweet.
But also other model parameters may be assumed to vary over time. In addition,
we propose to analyse the clustering coefficient of a node in the network model
and, in particular, to investigate how it evolves over time. This measure (see
[19]) provides more detailed insight in how the graph becomes denser, making it
possible to distinguish between local and global density.
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Appendix

A1. Proof of Theorem 1

Proof. The proof is based on the fact that the total number of edges |Eτn | equals
a total number of the T2 and T3 arrivals on (0, τn]. By definition, (0, τn] contains
exactly (n−1) of T1 or T2 arrivals, hence, the number of T2 arrivals has a Bino-
mial distribution with number of trials equal to (n− 1), and success probability
P (T2 | T1 or T2) = p

λ+p . Next, the number of T3 arrivals on [τi, τi+1), where
i = 1, . . . , n− 1, has a shifted geometric distribution, namely, the probability of
k T3 arrivals on [τi, τi+1) is(

1− 1− p
λ+ 1

)(
1− p
λ+ 1

)k
, k = 0, 1, . . . .

Observe that there have been n−1 of these transitions from 1 node to n. Hence,
the number of T3 arrivals on (0, τn] is the sum of (n−1) i.i.d. Geometric random
variables with mean 1−p

λ+p . Summarizing the above, we obtain (1). For (2) we also

need to observe that the number of T2 and T3 arrivals on [0, τn] are independent.

A2. Proof of Theorem 2

Proof. Let Xt be the number of T2 and T3 arrivals by time t. Note that |Et| =
Xt, and |Tt| = t − Xt + 1, which is the number of T1 arrivals on [0, t], since
the first node at time t = 0 is by definition a T1 arrival. Note that Xt has a
binomial distribution with parameters t and P (T2 arrival) + P (T3 arrival) =

1
λ+1 . Furthermore, the number of T1 arrivals is t −Xt + 1 since the first node
at time t = 0 is by definition a T1 arrival. Hence,

E
[
|Et|
|Tt|

]
=

t∑
i=1

i

t− i+ 1

(
t

i

)(
1

λ+ 1

)i(
λ

λ+ 1

)t−i
=

1

λ
·

t∑
i=1

(
t

i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

,



which proves (3). Next, we write

E

[(
|Et|
|Tt|

)2
]

=

t∑
i=0

(
i

t− i+ 1

)2(
t

i

)(
1

λ+ 1

)i(
λ

λ+ 1

)t−i
=

1

λ
·

t∑
i=1

i

t− i+ 1

(
t

i− 1

)(
1

λ+ 1

)i−1(
λ

λ+ 1

)t−i+1

=
1

λ
E
[
t+ 1

t−Xt
1{Xt≤t−1}

]
− 1

λ

(
1−

(
1

1 + λ

)t)
, (10)

where 1{A} is an indicator of event A. Denoting

Zt =
Xt − E [Xt]√

var (Xt)
=

(λ+ 1)Xt − t√
λt

, (11)

we further write

E
[
t+ 1

t−Xt
1{Xt≤t−1}

]
= E

[
(t+ 1)(λ+ 1)

λt(1− Zt√
λt

)
1{Zt≤

√
λt−λ+1√

λt
}

]
. (12)

We now split the indicator above as follows:

1{Zt≤−
√
λt} + 1{−

√
λt<Zt<

√
λt/2} + 1{

√
λt/2≤Zt≤

√
λt−λ+1√

λt
}. (13)

For the first and the third term we use the Chernoff bound:

E

[
1

1− Zt√
λt

1{Zt≤−
√
λt}

]
≤ 2e−λt/4, (14)

E

[
1

1− Zt√
λt

1{
√
λt/2≤Zt≤

√
λt−λ+1√

λt
}

]
≤
√
λt

λ+ 1
2e−λt/16, (15)

and notice that both expressions above converge to zero faster than 1/t. For
the second case, note first that E [Zt] = 0 and hence it follows from (??) and
(??)–(15) that, as t→∞,

E
[
Zt1{−

√
λt<Zt<

√
λt/2}

]
= o

(
1

t

)
.

Then we use the Taylor expansion to obtain:∣∣∣∣∣E
[

1

1− Zt√
λt

1{−
√
λt<Zt<

√
λt/2}

]
− 1

∣∣∣∣∣
≤ E

[
Z2
t

λt

]
+ 2E

[
|Zt|3

(λt)3/2

]
+ o

(
1

t

)
, (16)



as t → ∞. By the central limit theorem, Zt
D−→ Z as t → ∞. Furthermore,

for r > 0, the convergence of moments holds [7]: limt→∞ E [|Zt|r] = E [|Z|r]. In
particular, in (16), E

[
|Zt|3

]
converges to a constant, and E

[
Zt

2
]

converges to 1
as t→∞. Thus, using (10)–(12) and (3) we write

var

(
|Et|
|Tt|

)
= E

[(
|Et|
|Tt|

)2
]
−
(
E
[
|Et|
|Tt|

])2

= E

[
(t+ 1)(λ+ 1)

λt(1− Zt√
λt

)
1{Zt≤

√
λt−λ+1√

λt
}

]
− 1

λ
− 1

λ2
+ o

(
1

t

)
.

Now, subsequently using (??) – (16), we get

var

(
|Et|
|Tt|

)
=

1

λ

(t+ 1)(λ+ 1)

λt

(
1 +

1

λt
+ o

(
1

t

))
− 1

λ
− 1

λ2
+ o

(
1

t

)
,

which results in (4). Statement (??) is proved along similar lines: we apply the
expansion directly to the random variable

Xt

t−Xt + 1
=

(t+ 1)(λ+ 1)

(λt+ λ+ 1)(1− Zt
√
λt

λt+λ+1 )
1{Zt≤

√
λt} − 1,

and then use the Chernoff bounds and the CLT to obtain the result.

A3. Proof of Lemma 3

Proof. Assume the arrival at time t+ 1 is of type T1. This occurs w.p. λ
λ+1 , and

then a new component consisting of size one is created in Gt+1, corresponding
to the first case in (3).

Next, consider a T2 arrival, which occurs w.p. p
λ+1 . We now add a node to

an existing component Ci w.p. |Ci||V | . Thus the probability that we add the new

node to Ci is p
λ+1 ·

|Ci|
|V | .

Last, we consider a T3 arrival. In this case we have two options. The new
edge can either join two components, or join two nodes that are already in one
component. For the first case, we derive the probability that Ci and Cj join as

P (Ci and Cj merge) =
1− p
λ+ 1

· 2 · |Ci| · |Cj |
|V |2 − |V |

.

Then for the second case, the number of ways a T3 arrival links two nodes that
are already connected in a component, say Ci, is |Ci| (|Ci| − 1). Therefore with

probability
∑m
k=1 |Ck|

2−|Ck|
|V |2−|V | the component size does not change.
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ABSTRACT
Knowledge about the general graph structure of the World Wide
Web is important for understanding the social mechanisms that
govern its growth, for designing ranking methods, for devising bet-
ter crawling algorithms, and for creating accurate models of its
structure. In this paper, we describe and analyse a large, pub-
licly accessible crawl of the web that was gathered by the Common
Crawl Foundation in 2012 and that contains over 3.5 billion web
pages and 128.7 billion links. This crawl makes it possible to ob-
serve the evolution of the underlying structure of the World Wide
Web within the last 10 years: we analyse and compare, among other
features, degree distributions, connectivity, average distances, and
the structure of weakly/strongly connected components.

Our analysis shows that, as evidenced by previous research [17],
some of the features previously observed by Broder et al. [10] are
very dependent on artefacts of the crawling process, whereas other
appear to be more structural. We confirm the existence of a giant
strongly connected component; we however find, as observed by
other researchers [12, 5, 3], very different proportions of nodes that
can reach or that can be reached from the giant component, sug-
gesting that the “bow-tie structure” as described in [10] is strongly
dependent on the crawling process, and to the best of our current
knowledge is not a structural property of the web.

More importantly, statistical testing and visual inspection of size-
rank plots show that the distributions of indegree, outdegree and
sizes of strongly connected components are not power laws, con-
trarily to what was previously reported for much smaller crawls,
although they might be heavy tailed. We also provide for the first
time accurate measurement of distance-based features, using re-
cently introduced algorithms that scale to the size of our crawl [8].
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author’s site if the Material is used in electronic media.
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Categories and Subject Descriptors
H.3.4 [Information storage and retrieval]: Systems and software—
World Wide Web (WWW)

Keywords
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Web Mining

1. INTRODUCTION
The evolution of the World Wide Web is summarized by Hall and

Tiropanis as the development from “the web of documents” in the
very beginning, to “the web of people” in the early 2000’s, to the
present “web of data and social networks” [13]. With the evolution
of the World Wide Web (WWW), the corresponding web graph has
grown and evolved as well.

Knowledge about the general graph structure of the web graph is
important for a number of purposes. From the structure of the web
graph, we can provide evidence for the social phenomena govern-
ing the growth of the web [13]. Moreover, the design of exogenous
ranking mechanisms (i.e., based on the links between pages) can
benefit from deeper knowledge of the web graph, and the very pro-
cess of crawling the web can be made more efficient using infor-
mation about its structure. Finally, studying the web can help to
detect rank manipulations such as spam networks, which publish
large numbers of “fake" links in order to increase the ranking of a
target page.

In spite of the importance of knowledge about the structure of the
web graph, the latest publicly accessible analysis of a large global
crawl is nearly a decade old. The first, classic work about the struc-
ture of the web as a whole was published by Broder et al. [10] in
2000 using an AltaVista crawl of 200 million pages and 1.5 billion
links.1 A second similar crawl was used to validate the results.

One of their main findings was a bow-tie structure within the
web graph: a giant strongly connected component containing 28%
of the nodes. In addition, Broder et al. show that the indegree dis-
tribution, the outdegree distribution and the distribution of the sizes

1Throughout the paper, we avoid redundant use of the ≈ symbol:
all reported figures are rounded.



of strongly connected components are heavy tailed. The paper ac-
tually claims the distributions to follow power laws, but provides
no evidence in this sense except for the fact that the data points in
the left part of the plots are gathered around a line. The authors
comment also on the fact that the initial part of the distributions
displays some concavity on a log-log plot, which requires further
analysis.

An important observation that has been made by Serrano et al. [17]
analysing four crawls gathered between 2001 and 2004 by differ-
ent crawlers with different parameters is that several properties of
web crawls are dependent on the crawling process. Maybe a bit
optimistically, Broder et al. claimed in 2000 that “These results are
remarkably consistent across two different, large AltaVista crawls.
This suggests that our results are relatively insensitive to the par-
ticular crawl we use, provided it is large enough”. We now know
that this is not true: several studies [12, 5, 3, 21] using different
(possibly regional) crawls gathered by different crawlers provided
quite different pictures of the web graph (e.g., that “daisy” of [12]
or the “teapot” of [21]).

In particular, recent strong and surprising results [1] have shown
that, in principle, most heavy-tailed (and even power-law) distribu-
tions observed in web crawls may be just an artefact of the crawling
process itself. It is very difficult to predict when and how we will
be able to understand fully whether this is true or not.

Subsequent studies confirmed the existence of a large strongly
connected component, usually significantly larger than previously
found, and heavy-tailed (often, power-law) distributions. However,
such studies used even smaller web crawls while the size of the web
was approaching the tera scale, and provided the same, weak visual
evidence about distribution fitting. While no crawl can claim to
represent the web as a whole (even large search engines crawl only
a small portion of the web, geographically, socially and economi-
cally selected) the increase in scale of the web requires the analysis
of crawls an order of magnitude larger. Nonetheless, billion-scale
representative crawls have not been available to the scientific com-
munity until very recently. Thus, only large companies such as
Google, Yahoo!, Yandex, and Microsoft had updated knowledge
about the structure of large crawls of the WWW.

A few exceptions exist, but they have significant problems. The
AltaVista webpage connectivity dataset, distributed by Yahoo! as
part of the WebScope program, has in theory 1.4 billion nodes, but
it is extremely disconnected: half of the nodes are isolated (no links
incoming or outgoing) and the largest strongly connected compo-
nent is less than 4% of the whole graph, which makes it entirely
unrepresentative. We have no knowledge of the crawling process,
and URLs have been anonymised, so no investigation of the causes
of these problems is possible.

The ClueWeb09 graph, gathered in 2009 within the U.S. Na-
tional Science Foundation’s Cluster Exploratory (CluE), has a sim-
ilar problem due to known mistakes in the link construction, with
a largest strongly connected component that is less the 3% of the
whole graph. As such, these two crawls cannot be used to infer
knowledge about the structure of the web.

The ClueWeb12 crawl, released concurrently with the writing of
this paper, has instead an accurate link structure, and contains a
largest strongly connected component covering 76% of the graph.
The crawl, however, is significantly smaller than the graph used in
this paper, as it contains 1.2 billion pages,2 and it is focused mostly
on English web pages.

2Note that the web graph distributed with ClueWeb09 and
ClueWeb12 appears to be much larger because all frontier nodes
have been included in the graph. The number we report are those
of the actually crawled pages.

In this paper, we try to update the original studies on the structure
of the web and its current state. We revisit and update the findings
of previous research to give an up-to-date view of the web graph
today, using a crawl that is significantly larger (3.5 billion pages)
than the ones used in previous work.

We repeat previous measurement, observing interesting differ-
ences, and provide new, previously unknown data, such as the dis-
tance distribution. The crawl3 as well as the hyperlink graph4 are
publicly available, so to encourage other researchers and analysts
to replicate our results and investigate in further interesting topics.

2. DATASET AND METHODOLOGY
The object of study of this paper is a large web crawl gathered

by the Common Crawl Foundation5 in the first half of 2012. The
crawl contains 3.83 billion web documents, of which over 3.53 bil-
lion (92%) are of mime-type text/html. The crawler used by the
Common Crawl (CC) Foundation for the crawl is based on a breath-
first visiting strategy, together with heuristics to detect spam pages.
In addition heuristics were used to reduce the number of crawled
pages with duplicate or no content. Such heuristics, in principle,
may cut some of the visiting paths and make the link structure
sparser. The crawl was seeded with the list of pay-level-domain
names from a previous crawl and a set of URLs from Wikipedia.
The list of seeds was ordered by the number of external references.
Unfortunately this list is not public accessible, but we estimated
that at least 71 million different seeds were used, based on our ob-
servations on the ratio between pages and domains. The selected
amount of seeds in combination with the methodology are likely
to affect the distribution of host sizes, as popular websites were
crawled more intensely: for example, youtube.com is represented
by 93.1 million pages within the crawl [18]. In addition, it is likely
that the large number of seeds used in the multiple phases of the
crawl caused the large number of pages of indegree zero (20% of
the graph) found in the graph.

Associated with the crawl is a web graph, in which each node
represents a page and each arc between two nodes represents the
existence of one or more hypertextual links between the associated
pages. We extracted the web graph from the crawl with a 3-step
process, using an infrastructure similar to the framework used by
Bizer et al. to parse the Common Crawl corpus and extract struc-
tured data embedded in HTML pages [4]. We first collected for
each crawled page its URL, mime-type, links to other pages, type,
and, if available, the redirect URL, using 100 parallel c1.xlarge
Amazon Elastic Compute Cloud (EC2) machine instances. We then
filtered the extracted URLs by mime-type text/html and kept
only links within HTML elements of type a and link, as we want
to focus on HTML pages linking to other HTML pages.6 Also redi-
rects contained in HTTP header have been treated as links. Finally,
we used a 40-node Amazon Elastic MapReduce cluster to compress
the graph, indexing all URLs and remove duplicate links.

Additionally, we built the host graph and the pay-level-domain
(PLD) graph. Nodes in such graphs represent sets of pages with the

3https://commoncrawl.atlassian.net/wiki/display/
CRWL/About+the+Data+Set
4http://webdatacommons.org/hyperlinkgraph/
5http://commoncrawl.org/
6We remark that this choice might have introduced some sparsity,
as in principle the crawling process might have followed further
links, such as src attributes of iframe elements. Keeping per-
fectly aligned the online (during the crawl) and offline (in a sepa-
rate pass after the crawl) link extraction process when they are per-
formed by different organisations is, unfortunately, quite difficult,
as link and page selection strategies could differ.



same host/pay-level-domain, and there is an arc between nodes x
and y if there is at least one arc from a page in the set associated
with x to a page in the set associated with y. Table 1 provides basic
data about the size of the graphs.

Granularity # Nodes in millions # Arcs in millions
Page Graph 3 563 128 736
Host Graph 101 2 043
PLD Graph 43 623

Table 1: Sizes of the graphs

3. ANALYSIS OF THE WEB GRAPH
Most of the analyses presented in the following section have

been performed using the “big” version of the WebGraph frame-
work [6], which can handle more than 231 nodes. The BV compres-
sion scheme was able to compress the graph in crawl order at 3.52
bits per link, which is just 12.6% of the information-theoretical
lower bound (under a suitable permutation of the node identifiers it
is common to obtain slightly more than one bit per link). The whole
graph occupied in compressed form just 57.5GB, which made it
possible to run resource intensive computations such as the compu-
tation of the strongly connected components.

3.1 Indegree & Outdegree Distribution
The simplest indicator of density of web graphs is the average

degree, that is, the ratio between the number of arcs and the number
of nodes in the graph.7

Broder et al. report an average degree of 7.5 links per page. Sim-
ilar low values can be found in crawls of the same years—for in-
stance, in the crawls made by the Stanford WebBase project.8 In
contrast our graph has average degree of 36.8, meaning that the av-
erage degree is factor 4.9 larger than in the earlier crawls. Similar
values can be found in 2007 .uk crawls performed by the Labora-
tory for Web Algorithmics, and the ClueWeb12 crawl has average
degree 45.1.9 A possible explanation for the increase of the aver-
age degree is the wide adoption of content management systems,
which tend to create dense websites.

Figures 1 and 2 show frequency plots of indegrees and outde-
grees in log-log scale. For each d, we plot a point with an ordinate
equal to the number of pages with that have degree d. Note that
we included the data for degree zero, which is omitted in most of
the literature. We then aggregate the values using Fibonacci bin-
ning [19] to show the approximate shape of the distribution.

Finally, we try to fit a power law to a tail of the data. This part is
somewhat delicate: previous work in the late 90’s has often claimed
to find power laws just by noting an approximate linear shape in
log-log plots: unfortunately, almost all distributions (even, some-
time, non-monotone ones) look like a line on a log-log plot [20].
Tails exhibiting high variability, in particular, are very noisy (see
the typical “clouds of points” in the right part of degree plots) and
difficult to interpret.
7Technically speaking, the density of a graph is the ratio between
the square of the number of nodes and the number of arcs, but for
very sparse graphs one obtains abysmally small numbers that are
difficult to interpret.
8http://dbpubs.stanford.edu:8091/~testbed/
doc2/WebBase/
9We remark that all these values are actually an underestimation,
as they represent the average number of outgoing arcs in the web
graph built from the crawl. The average number of links per page
can be higher, as several links will point outside the graph.

Figure 1: Frequency plot of the indegree distribution

Figure 2: Frequency plot of the outdegree distribution

We thus follow the methodological suggestions of Clauset et al. [11].
We use the plfit10 tool to attempt a maximum-likelihood fitting of
a power law starting from each possible degree, keeping the start-
ing point and the exponent providing the best likelihood. After that
we perform a goodness-of-fit test and estimate a p-value.

The first important fact we report is that the p-value of the best
fits is 0 (±0.01). In other words, from a statistical viewpoint, in
spite of some nice graphical overlap the tail of the distribution is
not a power law. We remark that this paper applies for the first time
a sound methodology to a large dataset: it is not surprising that the
conclusions diverge significantly from previous literature.

To have some intuition about the possibility of a heavy tail (i.e.,
that the tail of the distribution is not exponentially bounded) we
draw the size-rank plot, as suggested in [14]. The size-rank plot is
the discrete version of the complementary cumulative distribution
function in probability: if the data fits a power law it should display
as a line on a log-log scale. Concavity indicates a superpolynomial
decay. Size-rank plots are monotonically decreasing functions, and
do not suffer the “cloud of points” problem.

Figure 3 shows the size-rank plot of the degree distributions of
our graph and the best power-law fit: from what we can ascertain
visually, there is a clear concavity, indicating once again that the tail
of the distribution is not a power law. The concavity leaves open
the possibility of a non-fat heavy tail, such as that of a lognormal
distribution.

10https://github.com/ntamas/plfit



Figure 3: Size-rank plot of degree distributions

In any case, the tails providing the best fit characterize a very
small fraction of the probability distribution: for indegrees, we ob-
tain an exponent 2.24 starting at degree 1 129, whereas for outde-
grees we obtain an exponent 2.77 starting at 199, corresponding,
respectively, to 0.4% and less than 2% of the probability mass (or,
equivalently, fraction of nodes). Models replicating this behaviour,
thus, explain very little of the process of link formation in the web.

The values we report are slightly different than those of Broder et
al., who found 2.09 respectively 2.72 as power-law exponent for
the indegree respectively outdegree. But in fact they are incompa-
rable, as our fitting process used different statistical methods.

Finally, the largest outdegree is three magnitudes smaller than
the largest indegree. This suggests that the decay of the indegree
distribution is significantly slower than that of the outdegree distri-
bution, a fact confirmed by Figure 3.

3.2 High Indegree Pages and Hosts
The three web pages with highest indegree are the starting pages

of YouTube, WordPress and Google. Other six pages from YouTube
from the privacy, press and copyright sections of this website ap-
pear within the top 10 of pages ranked by their indegree. This is an
artefact of the large number of pages crawled from YouTube.11

The list of hosts with the highest indegree (in the host graph)
is more interesting: in Table 2 we show the top 20 hosts by in-
degree, PageRank [16] and harmonic centrality [9]. While most
of the sites are the same, some noise appears because some sites
are highly linked for technical or political reasons. In particular,
the site miibeian.gov.cn must be linked by every Chinese site,
hence the very high ranking. PageRank is as usual very correlated
to degree, and cannot avoid ranking highly this site, whereas har-
monic centrality understands its minor importance and ranks it at
position 6146.

3.3 Components
Following the steps of Broder et al., we now analyse the weakly

connected components (WCC) of our web graph.
Weakly connected components are difficult to interpret—in the-

ory, unless one has two seed URLs reaching completely disjoint re-
gions of the web (unlikely), one should always find a single weakly
connected component. The only other sources of disconnection are
crawling and/or parsing artefacts.

Figure 4 shows the distribution of the sizes of the weakly con-
nected components using a visualization similar to the previous fig-
ures. The largest component (rightmost grey point) contains about
around 94% of the whole graph, and it is slightly larger than the

11The highest ranked pages are listed at http://
webdatacommons.org/hyperlinkgraph/top_degree_
pages.html.

PageRank Indegree Harmonic Centrality
gmpg.org wordpress.org youtube.com

wordpress.org youtube.com en.wikipedia.org
youtube.com gmpg.org twitter.com

livejournal.com en.wikipedia.org google.com
tumblr.com tumblr.com wordpress.org

en.wikipedia.org twitter.com flickr.com
twitter.com google.com facebook.com

networkadvertising.org flickr.com apple.com
promodj.com rtalabel.org vimeo.com

skriptmail.de wordpress.com creativecommons.org
parallels.com mp3shake.com amazon.com
tistory.com w3schools.com adobe.com
google.com domains.lycos.com myspace.com

miibeian.gov.cn staff.tumblr.com w3.org
phpbb.com club.tripod.com bbc.co.uk

blog.fc2.com creativecommons.org nytimes.com
tw.yahoo.com vimeo.com yahoo.com
w3schools.com miibeian.gov.cn microsoft.com
wordpress.com facebook.com guardian.co.uk

domains.lycos.com phpbb.com imdb.com

Table 2: The 20 top web hosts by PageRank, indegree and har-
monic centrality (boldfaced entries are unique to the list they
belong to)

one reported by Broder et al. (91.8%). Again, we show the max-
likelihood power-law fit starting at 14 with exponent 2.22, which
however excludes the largest component. The p-value is again 0,
and the law covers only to 1% of the distribution.

Figure 4: Frequency plot of the distribution of WCCs

More interestingly, we now analyse the strongly connected com-
ponents (SCC). Computing the strongly connected components of
a 3.5 billion node graph was no easy task: it required one terabyte
of core memory and, in fact, the computation was only possible
because WebGraph [6] uses lazy techniques to generate successor
lists (i.e., successors lists are never actually stored in memory in
uncompressed form).

Figure 5 shows the distribution of the sizes of the strongly con-
nected components. The largest component (rightmost grey point)
contains 51.3% of the nodes. Again, we show a fitted power law
starting at 22 with exponent 2.20, which however excludes the
largest component, and fits only to 8.9% of the distribution. The
p-value is again 0.

In Figure 6 we show the size-rank plots of both distributions,
which confirm again that the apparent fitting in the previous figures
is an artefact of the frequency plots (the rightmost grey points are
again the giant components).

3.4 The Bow Tie
Having identified the giant strongly connected component, we

can determine the so-called bow tie, a depiction of the structure of
the web suggested by Broder et al.. The bow tie is made of six
different components:



Figure 5: Frequency plot of the distribution of SCCs

Figure 6: Size-rank plot of the distribution of components

• the core is given by the giant strongly connected component
(LSCC);

• the IN component contains non-core pages that can reach the
core via a directed path;

• the OUT component contains non-core pages that can be
reached from the core;

• the TUBES are formed by non-core pages reachable from IN
and that can reach OUT;

• pages reachable from IN, or that can reach OUT, but are not
listed above, are called TENDRILS;

• the remaining pages are DISCONNECTED.

All these components are easily computed by visiting the direct
acyclic graph of strongly connected components (SCC DAG): it is
a graph having one node for each strongly connected component
with an arc from x to y if some node in the component associated
with x is connected with a node in the component associated with y.
Such a graph can be easily generated using WebGraph’s facilities.
Figure 7 shows the size of bow-tie component.

Table 3 compares the sizes of the different components of the
bow-tie structure between the web graph discussed in this paper
(column two and three) and the web graph analysed by Broder et al.
in 2000 (column four and five).12

12Broder et al. did not report the number of nodes belonging to the
TUBE component separately, as they define as TUBE as a TEN-
DRIL from the IN component hooked into the TENDRIL of a node
from the OUT component.

Figure 7: Bow-tie structure of the web graph

The main constant is the existence of a LSCC, which in our graph
has almost doubled in relative size. We also witness a much smaller
OUT component and a larger IN component. The different propor-
tions are most likely to be attributed to different crawling strategies
(in particular, to our large number of nodes with indegree zero,
which cannot belong to the LSCC or OUT component). Unfortu-
nately, basic data such as the seed size, the type of visit strategy,
etc. are not available for the Broder et al. crawl. Certainly, how-
ever, the web has become significantly more dense and connected
in the last 13 years.

Common Crawl 2012 Broder et al.
# nodes % nodes # nodes % nodes

Component (in thousands) (in %) (in thousands) (in %)
LSCC 1 827 543 51.28 56 464 27.74
IN 1 138 869 31.96 43 343 21.29
OUT 215 409 6.05 43 166 21.21
TENDRILS 164 465 4.61 43 798 21.52
TUBES 9 099 0.26 - -
DISC. 208 217 5.84 16 778 8.24

Table 3: Comparison of sizes of bow-tie components

3.5 Diameter and Distances
In this paper we report, for the first time, accurate measurements

of distance-related features of a large web crawl. Previous work
has tentatively used a small number of breadth-visit samples, but
convergence guarantees are extremely weak (in fact, almost non-
existent) for graphs that are not strongly connected. The data we
report have been computed using HyperBall [8], a diffusion-based
algorithm that computes an approximation of the distance distri-
bution (technically, we computed four runs with relative standard
deviation 9.25%). We report, for each datum, the empirical stan-
dard error computed by the jackknife resampling method.

In our web graph, 48.15±2.14% of the pairs of pages have a con-
necting directed path. Moreover, the average distance is 12.84 ±
0.09 and the harmonic diameter (the harmonic mean of all dis-
tances, see [15] and [7] for motivation) is 24.43± 0.97. These fig-
ures should be compared with the 25% of connected pairs and the
average distance 16.12 reported by Broder et al. (which however
have been computed averaging the result of few hundred breadth-
first samples): even if our crawl is more than 15 times larger, it
is significantly more connected, in contrast to commonly accepted
predictions of logarithmic growth of the diameter in terms of the



number of nodes. This is a quite general phenomenon: the average
distance between Facebook users, for instance, has been steadily
going down as the network became larger [2].

We can also estimate that the graph has a diameter of at least
5 282 (the maximum number of iteration of a HyperBall run). Fig-
ure 8 shows the distance distribution, sharply concentrated around
the average.

Figure 8: Distance distribution

4. CONCLUSION
We have reported a number of graph measurements on the largest

web graph that is available to the public outside companies such
as Google, Yahoo, Yandex, and Microsoft. Comparing our results
with previous measurements performed in the last 13 years, and
with previous literature on significantly smaller crawls, we reach
the following conclusions:

• The average degree has significantly increased, almost by a
factor of 5.

• At the same time, the connectivity of the graph (the percent-
age of connected pairs) has increased (almost twice) and the
average distance between pages has decreased, in spite of a
predicted growth that should have been logarithmic in the
number of pages.

• While we can confirm the existence of a large strongly con-
nected component of growing size, witnessing again the in-
crease in connectivity, the structure of the rest of the web ap-
pears to be very dependent on the specific web crawl. While
it is always possible to compute the components of the bow
tie of Broder et al., the proportion of the components is not
intrinsic.

• The distribution of indegrees and outdegrees is extremely
different. Previous work on a smaller scale did not detect or
underplayed this fact, in part because of the little size of the
concave (on a log-log plot) part of the distribution in smaller
crawls. In our dataset, the two distributions have very little
in common.

• The frequency plots of degree and component-size distribu-
tions are visually identical to previous work. However, us-
ing proper statistical tools, neither degree nor component-
size distributions fit a power law. Moreover, visual inspec-
tion of the size-rank plots suggests that their tails are not fat
(i.e., they decrease faster than a polynomial), in contrast with
assumptions taken for granted in the current literature. Our
data, nonetheless, leaves open the possibility of a heavy tail
(e.g., lognormal).
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Abstract

The computation of a peeling order in a randomly generated hypergraph is the most time-
consuming step in a number of constructions, such as perfect hashing schemes, random r-SAT solvers,
error-correcting codes, and approximate set encodings. While there exists a straightforward linear
time algorithm, its poor I/O performance makes it impractical for hypergraphs whose size exceeds
the available internal memory.

We show how to reduce the computation of a peeling order to a small number of sequential scans
and sorts, and analyze its I/O complexity in the cache-oblivious model. The resulting algorithm
requires O(sort(n)) I/Os and O(n logn) time to peel a random hypergraph with n edges.

We experimentally evaluate the performance of our implementation of this algorithm in a real-
world scenario by using the construction of minimal perfect hash functions (MPHF) as our test case:
our algorithm builds a MPHF of 7.6 billion keys in less than 21 hours on a single machine. The
resulting data structure is both more space-efficient and faster than that obtained with the current
state-of-the-art MPHF construction for large-scale key sets.
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1 Introduction
Hypergraphs can be used to model sets of dependencies among variables of a system: vertices correspond
to variables and edges to relations of dependency among variables, such as equations binding variables
together. This correspondence can be used to transfer graph-theoretical properties to solvability conditions
in the original system of dependencies.

Among these, one of the most useful is the concept of peeling order. Given an r-hypergraph, a peeling
order is an order of its edges such that each edge has a vertex of degree 1 in the subgraph obtained
by removing the previous edges in the order. Such an order exists if the hypergraph does not have a
non-empty 2-core, i.e. a set of vertices that induces a subgraph whose vertices have all degree at least 2.

In the above interpretation, if the equations of a system are arranged in peeling order, then each
equation has at least one variable that does not appear in any equation that comes later in the ordering,
i.e., the system becomes triangular, so it can be easily solved by backward substitution. For this reason,
peeling orders found application in a number of fundamental problems, such as hash constructions [3, 6,
9, 10, 11, 12, 21], solving random instances of r-SAT [12, 24, 25], and the construction of error-correcting
codes [15, 20, 23]. These applications exploit the guarantee that if the edge sparsity γ of a random
r-hypergraph is larger than a certain sparsity threshold cr (e.g., c3 ≈ 1.221), then with high probability
the hypergraph has an empty 2-core [25].

The construction of perfect hash functions (PHF) is probably the most important of the aforementioned
applications. Given a set S of n keys, a PHF for S maps the n keys onto the set of the first m natural
numbers bijectively. A perfect hash function is minimal (MPHF) if m = n = |S|. A lower bound by
Mehlhorn [22] states that n log e ≈ 1.44n bits are necessary to represent a MPHF; a matching (up to
lower order terms) upper bound is provided in [16], but the construction is impractical. Most practical
approaches, instead, are based on random 3-hypergraphs, resulting in MPHFs that use about 2c3n ≈ 2.5n
bits [6, 10, 21]. These solutions, which we review in Section 3, build on the MWHC technique [21], whose
most demanding task is in fact the computation of a peeling order.

There is a surprisingly simple greedy algorithm to find a peeling order when it exists, or a 2-core
when it does not: find a vertex of degree 1, remove (peel) its only edge from the hypergraph, and iterate
this process until either no edges are left (in which case the removal order is a peeling order), or all the
non-isolated vertices left have degree at least 2 (thus forming a 2-core). This algorithm can be easily
implemented to run in linear time and space.

MPHFs are the main ingredient in many space-efficient data structures, such as (compressed) full-text
indexes [4], monotone MPHFs [1], Bloom filter-like data structures [5], and prefix-search data structures [2].

It should be clear that the applications that benefit the most from such data structures are those
involving large-scale key sets, often orders of magnitude larger than the main memory. Unfortunately, the
standard linear-time peeling algorithm requires several tens of bytes per key of working memory, even if
the final data structure can be stored in just a handful of bits per key. It is hence common that, while
the data structure fits in memory, such memory is not enough to actually build it. It is then necessary
to resort to external memory, but the poor I/O performance of the algorithm makes such an approach
impossible.

Application-specific workarounds have been devised; for example, Botelho et al. [6] proposed an
algorithm (called HEM) to build MPHFs in external memory by splitting the key set into small buckets
and computing independent MPHFs for each bucket. A first-level index is used to find the bucket of a
given key. The main drawback of this solution is that the first-level index introduces a non-negligible
overhead in both space and lookup time; moreover, this construction cannot be extended to applications
other than hashing.

In this paper we provide the first efficient algorithm in the cache-oblivious model that, given a random
r-hypergraph with n edges and γn vertices (with r = O(1) and γ > cr), computes a peeling order in
time O(n log n) and with O(sort(n)) I/Os w.h.p., where sort(n) is the I/O complexity of sorting n keys.
By applying this result we can construct (monotone) MPHFs, static functions, and Bloom filter-like
data structures in O(sort(n)) I/Os. In our experimental evaluation, we show that the algorithm makes it
indeed possible to peel very large hypergraphs: an MPHF for a set of 7.6 billion keys is computed in less
than 21 hours; on the same hardware, the standard algorithm would not be able to manage more than
2.1 billion keys. Although we use minimal perfect hash functions construction as our test case, results of
these experiments remain valid for all the other applications due to the random nature of the underlying
hypergraphs.
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2 Notation and tools

Model and assumptions We analyze our algorithms in the cache-oblivious model [14]. In this model,
the machine has a two-level memory hierarchy, where the fast level has an unknown size of M words and
a slow level of unbounded size where our data reside. We assume that the fast level plays the role of a
cache for the slow level with an optimal replacement strategy where the transfers (a.k.a. I/Os) between
the two levels are done in blocks of an unknown size of B ≤M words; the I/O cost of an algorithm is
the total number of such block transfers. Scanning and sorting are two fundamental building blocks in
the design of cache-oblivious algorithms [14]: under the tall-cache assumption [8], given an array of N
contiguous items the I/Os required for scanning and sorting are

scan(N) = O

(
1 +

N

B

)
I/Os and sort(N) = O

(
N

B
logM/B

N

B

)
.

Hypergraphs An r-hypergraph on a vertex set V is a subset E of
(
V
r

)
, the set of subsets of V of

cardinality r. An element of E is called an edge. We call an ordered r-tuple from V an oriented edge; if e
is an edge, an oriented edge whose vertices are those in e is called an orientation of e. From now on we
will focus on 3-hypergraphs; generalization to arbitrary r is straightforward. We define valid orientations
those oriented edges (v0, v1, v2) where v1 < v2 (for arbitrary r, v1 < · · · < vr−1). Then for each edge there
are 6 orientations, but only 3 valid orientations (r! orientations of which r are valid).

We say that a valid oriented edge (v0, v1, v2) is the i-th orientation if v0 is the i-th smallest among the
three; in particular, the 0-th orientation is the canonical orientation. Edges correspond bijectively with
their canonical orientations. Furthermore, valid orientations can be mapped bijectively to pairs (e, v) where
e is an edge and v a vertex contained in e, simply by the correspondence (v0, v1, v2) 7→ ({v0, v1, v2}, v0).
In the following all the orientations are assumed to be valid, so we will use the term orientation to mean
valid orientation.

3 The Majewski–Wormald–Havas–Czech technique
Majewski et al. [21] proposed a technique (MWHC) to compute an order-preserving minimal perfect hash
function, that is, a function mapping a set of keys S in some specified way into [|S|]. The technique
actually makes it possible to store succinctly any function f : S → [σ], for arbitrary σ. In this section we
briefly describe their construction.

First, we choose three random1 hash functions h0, h1, h2 : S → [γn] and generate a 3-hypergraph2

with γn vertices, where γ is a constant above the critical threshold c3 [25], by mapping each key x to
the edge {h0(x), h1(x), h2(x)}. The goal is to find an array u of γn integers in [σ] such that for each key
x one has f(x) = uh0(x) + uh1(x) + uh2(x) mod σ. This yields a linear system with n equations and γn
variables ui; if the associated hypergraph is peelable, it is easy to solve the system. Since γ is larger than
the critical threshold, the algorithm succeeds with probability 1− o(1) as n→∞ [25].

By storing such values ui, each requiring dlog σe bits, plus the three hash functions, we will be able to
recover f(x). Overall, the space required will be dlog σeγn bits, which can be reduced to dlog σen+γn+o(n)
using a ranking structure [17]. This technique can be easily extended to construct MPHFs: we define the
function f : S → [3] as x 7→ i where hi(x) is a degree-1 vertex when the edge corresponding to x is peeled;
it is then easy to see that hf(x)(x) : S → [γn] is a PHF. The function can be again made minimal by
adding a ranking structure on the vector u [6].

As noted in the introduction, the peeling procedure needed to solve the linear system can be performed
in linear time using a greedy algorithm (referred to as standard linear-time peeling). However, this
procedure requires random access to several integers per key, needed for bookkeeping; moreover, since
the graph is random, the visit order is close to random. As a consequence, if the key set is so large that
it is necessary to spill to the disk part of the working data structures, the I/O volume slows down the
algorithm to unacceptable rates.

1Like most MWHC implementations, in our experiments we use a Jenkins hash function with a 64-bit seed in place of a
fully random hash function.

2Although the technique works for r-hypergraphs, r = 3 provides the lowest space usage [25].
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Practical workarounds (HEM) Botelho et al. [6] proposed a practical external-memory solution:
they replace each key with a signature of Θ(log n) bits computed with a random hash function, so that
no collision occurs. The signatures are then sorted and divided into small buckets based on their most
significant bits, and a separate MPHF is computed for each bucket with the approach described above.
The representations of the bucket functions are then concatenated into a single array and their offsets
stored in a separate vector.

The construction algorithm only requires to sort the signatures (which can be done efficiently in
external memory) and to scan the resulting array to compute the bucket functions; hence, it is extremely
scalable. The extra indirection needed to address the blocks causes however the resulting data structure
to be both slower and larger than one obtained by computing a single function on the whole key set. In
their experiments with a practical version of the construction, named HEM, the authors report that the
resulting data structure is 21% larger than the one built with plain MWHC, and lookups are 30–50%
slower. A similar overhead was confirmed in our experiments, which are discussed in Section 5.

4 Cache-oblivious peeling
In this section we describe a cache-oblivious algorithm to peel an r-hypergraph. We describe the algorithm
for 3-hypergraphs, but it is easy to generalize it to arbitrary r.

4.1 Maintaining incidence lists
In order to represent the hypergraph throughout the execution of the algorithm, we need a data structure
to store the incidence list of every vertex v0, i.e., the list Lv0 = {(v0, v01 , v02), . . . , (v0, v

d−1
1 , vd−12 )} of valid

oriented edges whose first vertex is v0. To realize the peeling algorithm, it is sufficient to implement the
following operations on the lists.

• Degree(Lv0) returns the number of edges d in the incidence list of v0;

• AddEdge(Lv0 , e) adds the edge e to the incidence list of v0;

• DeleteEdge(Lv0 , e) deletes the edge e from the incidence list of v0;

• RetrieveEdge(Lv0) returns the only edge in the list if Degree(Lv0) = 1.

For all the operations above, it is assumed that the edge is given through a valid orientation. Under
this set of operations, the data structure does not need to store the actual list of edges: it is sufficient to
store a tuple (v0, d, ṽ1, ṽ2), where d is the number of edges, ṽ1 =

⊕
j<d v

j
1, and ṽ2 =

⊕
j<d v

j
2, that is, all

the vertices of the list in the same position are XORed together.
The operations AddEdge and DeleteEdge on an edge (v0, v

′
1, v
′
2) simply XOR v′1 into ṽ1 and v′2 into

ṽ2, and respectively increment or decrement d. Since all the edges are assumed valid (i.e., it holds that
v′1 < v′2) these operations maintain the invariant. When d = 1, clearly ṽ1 = v1 and ṽ2 = v2 where
(v0, v1, v2) is the only edge in Lv0 , so it can be returned by RetrieveEdge. If necessary, the data structure
can be trivially extended to labeled edges (v0, v1, v2, `) by XORing together the labels ` into a new field ˜̀.

We call this data structure packed incidence list, and we refer to this technique as the XOR trick. The
advantage with respect to maintaining an explicit list, besides the obvious space savings, is that it is
sufficient to maintain a single fixed-size record per vertex, regardless of the number of incident edges.
This will make the peeling algorithm in the next section substantially simpler and faster. The same trick
can be applied to the standard linear-time algorithm, replacing the linked lists traditionally used. As we
will see in Section 5, the improvements are significant in both working space and running time.

4.2 Layered peeling
The peeling procedure we present is an adaptation of the CORE procedure presented by Molloy [25]. The
basic idea is to proceed in rounds: at each round, all the vertices of degree 1 are removed, and then the
next round is performed on the induced subgraph, until either a 2-core is left, or the graph is empty. In
the latter case, the algorithm partitions the edges into a sequence of layers, one per round, by defining
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each layer as the set of edges removed in its round. It is easy to see that by concatenating the layers the
resulting edge order is a peeling order, regardless of the order within each layer.

The layered peeling process terminates in a small number of rounds: Jiang et al. [18] proved that
if the hypergraph is generated randomly with a sparsity above the peeling threshold, then with high
probability the number of rounds is bounded by O(log log n). Moreover, the fraction of vertices remaining
in each round decreases double-exponentially. In the following we show how to implement the algorithm
in an I/O-efficient way by putting special care in the hypergraph representation and the update step.
Hypergraph representation At each round i, the hypergraph is represented by a list Ei of tuples
(v0, d, ṽ1, ṽ2) as described in Section 4.1; each tuple represents the incidence list of v0. Each list Ei is
sorted by v0. Note that each edge e = {v0, v1, v2} needs to be in the incidence list of all its vertices; hence,
all the three orientations of e are present in the list Ei.
Construction of E0 To construct E0, the edge list for the first round, we put together in a list all the
valid orientations of all the edges in the hypergraph. The list is then sorted by v0, and from the sorted
list we can construct the sorted list of incidence lists E0: after grouping the oriented edges by v0, we start
with the empty packed incidence list (v0, 0, 0, 0) and, after performing AddEdge with all the edges in the
group, we append it to E0. The I/O complexity is O(sort(n) + scan(n)) = O(sort(n)).
Round update At the beginning of each round we are given the list Ei of edges that are alive at round
i, and we produce Ei+1. We first scan Ei to find all the tuples L such that Degree(L) = 1; for each tuple,
we perform RetrieveEdge and put the edge in a list Di, which represents all the edges to be removed in
the current round i. The same edge may occur multiple times in Di under different orientations (if more
than one of its vertices have degree 1 in the current round); to remove the duplicates, we sort the oriented
edges by their canonical orientation, keep one orientation for each edge, and store them in a list Pi.

Now we need to remove the edges from the hypergraph. To do so, we generate a degree update list
Ui that contains all the three orientations for each edge in Pi, and sort Ui by v0. Since both Ei and Ui
are sorted by v0, we can scan them both simultaneously joining them by v0; for each tuple Lv0 in Ei, if
no oriented edge starting with v0 is in Ui the tuple is copied to Ei+1, otherwise for each such oriented
edge e, DeleteEdge(Lv0 , e) is called to obtain a new L′v0 which is written to Ei+1 if non-empty. Note that
Ei+1 remains sorted by v0.

For each round, we scan Ei twice and Ui once, and sort Di and Ui. The number of I/Os is then
2 · scan(|Ei|) + scan(|Ui|) + sort(|Di|) + sort(|Ui|). Summing over all rounds, we have

∑
i(2 · scan(|Ei|) +

sort(|Di|) + sort(|Ui|) + scan(|Ui|)) = O(sort(n)) because each edge belongs to at most three lists Di

and three lists Ui. Since the fraction of vertices remaining at each round decreases doubly exponentially
and, thanks to the XOR trick, Ei has exactly a tuple for each vertex alive in the i-th round, the cost of
scanning the lists Ei sums up to O(scan(n)) I/Os. Hence, overall the algorithm takes O(n log n) time and
O(sort(n)) I/Os.

We summarize the result in the following theorem.

Theorem 4.1 A peeling order of a random r-hypergraph with n edges and γn vertices with constant r
and γ > cr, can be computed in the cache-oblivious model in time O(n log n) and with O(sort(n)) I/Os
with high probability.

4.3 Implementation details
We report here the most important optimizations we used in our implementation. The source code used
in the experiments is available at https://github.com/ot/emphf for the reader interested in further
implementation details and in replicating the measurements.
File I/O Instead of managing file I/Os directly, we use a memory-mapped file by employing a C++
allocator that creates a file-backed area of memory. This way we can use the standard STL containers
such as std::vector as if they resided in internal memory. We use madvise to instruct the kernel to
optimize the mapped region for sequential access. We use the madvise system call with the parameter
MADV_SEQUENTIAL on the memory-mapped region to instruct the kernel to optimize for sequential access.
Sorting Our sorting implementation performs two steps: in the first step we divide the domain of the
values into k evenly spaced buckets, scanning the array to find the number of values that belong in each
bucket, and then moving each value to its own bucket. In the second step, each bucket is sorted using
sort of the C++ standard library. The number of buckets is chosen so that with very high probability
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each bucket fits in internal memory; since the graph is random, its edges are uniformly distributed, which
makes uniform bucketing balanced with high probability. To distribute the values into the k buckets,
we use a buffer of size T for each bucket; when the buffer is full, it is flushed to disk. Note that this
algorithm is technically not cache-oblivious, since it works as long as the available memory M is at
least kT ; choosing k to be Θ(S/M), where S is the size of the data to be sorted, requires that M be
Ω(
√
TS). In our implementation we use T ≈ 1MiB, thus for example M = 1GiB is sufficient to sort

≈1TiB of data. When this condition holds, the algorithm performs just three scans of the array and it is
extremely efficient in practice. Furthermore, contrary to existing cache-oblivious sorting implementations,
it is in-place, using no extra disk space.
Reusing memory The algorithm as described in Section 4.2 uses a different list Ei for each round.
Since tuples are appended to Ei+1 at a slower pace than they are read from Ei, we can reuse the same
array. A similar trick can be applied to Di and Ui. Overall, we need to allocate just one array of γn
packed incidence lists, and one for the 3n oriented edges.
Lists compression Reducing the size of the on-disk data structures can significantly improve I/O
efficiency, and hence the running time of the algorithm. The two data structures that take nearly all
the space are the lists of packed incidence lists Ei and the lists of edges Pi. Since the lists are read and
written sequentially, we can (de)compress them on the fly.

Recall that the elements of Ei are tuples of the form (v0, d, ṽ1, ṽ2) sorted by v0. The first components v0
of these tuples are gap-encoded with Elias γ codes. The overall size of the encoding is

∑|Ei|
k=1(2blog gkc+ 1)

bits, where gk is the k-th gap. 3. Since the gaps sum up to γn, by Jensen’s inequality the sum is maximized
when the gaps gk are all equal to γn

|Ei| giving a space bound of 2|Ei|(log γn
|Ei| + 1) bits. Furthermore, this

space bound is always at most 2γn bits because it is maximized when Ei has size γn/2. The degrees d
are encoded instead with unary codes; since the sum of the degrees is 3ni, where ni is the number of
edges alive in round i, the overall size of their encoding is always upper bounded by 3n bits. The other
two components, as well as the nodes in Pi, are represented with a fixed-length encoding using dlog γne
bits each. With γ = 1.23, and thanks to the memory reusing technique described above, the overall disk
usage is approximately (5.46 + 11.46dlog γne)n bits. On our largest inputs, using compression instead of
plain 64-bit words makes the overall algorithm run about 2.5 times faster.
Exploiting the tripartition Many MWHC-based implementations, when generating the r-hypergraph
edges {h0(x), . . . , hr−1(x)}, use random hash functions hi with codomain [i|V |/r, (i+ 1)|V |/r) instead of
[0, |V |), thus yielding a r-partite r-hypergraph. The main advantage is that by construction hi(x) 6= hj(x)
for i 6= j, so the process cannot generate hypergraphs with degenerate edges; this reduces considerably the
number of trials needed to find a peelable hypergraph (in practice, just one trial is sufficient). Botelho et
al. [7] proved that hypergraphs obtained with this process have the same peeling threshold as uniformly
random hypergraphs. Jiang et al. [18] proved that the bound on the number of rounds of the layered
peeling process also holds for random r-partite r-hypergraphs, so we can adopt this approach as well.

An additional advantage of the r-partition is that the first vertex of any 0-orientation is smaller than
the first vertex of any 1-orientation, and so on; in general, if (u0, . . . , ur−1) is an i-orientation, (v0, . . . , vr−1)
is a j-orientation, and i < j, then u0 < v0. We exploit this in our algorithm in the construction of E0:
since our graph is 3-partite, instead of creating a list with every valid orientation of each edge and then
sorting it by v0, we create a list with just the 0-orientations, sort it by v0, and append the obtained packed
incidence lists to E0. Then we go through the sorted list, switch all the oriented edges to 1-orientation,
and repeat the process. The same is done for the 2-orientations.

Thanks to this optimization the amount of memory required in the first step of the algorithm, which
is the most I/O intensive, is reduced to one third.
Avoiding backward scans For MWHC-based functions construction, the final phase that assigns the
uis needs to scan the edges in reverse peeling order. Unfortunately, operating systems and disks are
highly optimized for forward reading, by performing an aggressive lookahead. However, as we noted in
Section 4.2, the ordering of the edges within the layers is irrelevant; thus it is sufficient to scan the layers
in reverse order, but each layer may be safely scanned forward. The number of forward scans is then
bounded by the number of rounds, which is negligible. The performance improvement of the assignment
phase with respect to reading the array backwards is almost ten-fold.

3Elias Gamma code [13] uses 2blog jc+ 1 bits to encode any integer j ≥ 1.
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5 Experimental analysis
Although our code can be easily extended to construct any static function, to evaluate experimentally
the performance of the peeling algorithm we tested it on the task of constructing a minimal perfect hash
function, as discussed in Section 3. In this task, the peeling process largely dominates the running time.
Testing details The tests of MPHF construction were performed on an Intel Xeon i7 E5520 (Nehalem)
at 2.27GHz with 32GiB of RAM, running Linux 3.5.0 x86-64. The storage device is a 3TB Western Digital
WD30EFRX hard drive. Before running each test, the kernel page cache was cleared to ensure that all the
data were read from disk. The experiments were written in C++11 and compiled with g++ 4.8.1 at -O3.

We tested the following algorithms.

• Cache-Oblivious: The cache-oblivious algorithm described in Section 4.

• Standard+XOR: The standard linear-time peeling implemented using the packed incidence list, with
the purpose of evaluating the impact of the XOR-trick by itself.

• cmph: A publicly available, widely used and optimized library for minimal perfect hashing4, im-
plementing the same MWHC-based MPHF construction with the standard in-memory peeling
algorithm.

Datasets We tested the above algorithms on the following datasets.

• URLs: a set of ≈4.8 billion URLs from the ClueWeb09 dataset5 (average string length ≈67 bytes,
summing up to ≈304GiB);

• ngrams: a set of ≈7.6 billion {1, 2, 3}-grams obtained from the Google Books Ngrams English
dataset6 (average string length ≈23 bytes, summing up to ≈168GiB).

Since the strings are hashed in the first place, the nature of the data is fairly irrelevant: the only
aspect that may be relevant is the average string length (that affects the time to load the input from
disk). In fact tests on randomly generated data produced the same results.
Experimental results The running time of the algorithms as the number of keys increases is plotted
in Figure 1; to evaluate the performance in the regime where the working space fits in main memory, the
figure also shows an enlarged version of the first part of the plot.

The first interesting observation is that the cache-oblivious algorithm performs almost as well as cpmh,
with Cache-Oblivious being slightly slower because it has to perform file I/O even when the working space
would fit in memory.

We can also see that the XOR trick pays off, as shown by the performance of Standard+XOR, which
is up to 3 times faster than cmph, and the smaller space usage enables to process up to almost twice the
number of keys for the given memory budget. Both non-external algorithms, though, cease to be useful as
soon as the available memory gets exhausted: the machine, then, starts to thrash because of the random
patterns of access to the swap. In fact, we had to kill the processes after 48 hours. Actually, one can make
a quite precise estimate of when this is going to happen: cpmh occupies 34.62 bytes/key, as estimated by
the authors, whereas Standard+XOR occupies about 26.76 bytes/key, and these figures almost exactly
justify the two points where the construction times slow down and then explode. On the other hand,
Cache-Oblivious scales well with the input size, exhibiting eventually almost linear performance in our
larger input ngrams, while remaining competitive even on small key sets.
Comparison with HEM Finally, we compare our algorithm with HEM [6]. Recall that their technique
consists in splitting the set of keys into several buckets and building a separate MPHF for every bucket;
at query time, a first-level index is used to drive the query to the correct bucket. Choosing a sufficiently
small size for the buckets allows the use of a standard internal memory algorithm to construct the bucket
MPHF. Although technically not a peeling algorithm, this external-memory solution is simple and elegant.

To make a fair comparison, we re-implemented the HEM algorithm using our sort implementation
for the initial bucketing, and the Standard+XOR algorithm to build the bucket MPHFs. The signature

4We used cmph 2.0, available at http://cmph.sourceforge.net/.
5Downloaded from http://lemurproject.org/clueweb09/.
6Downloaded from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.
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Figure 1: Above: construction times on the two datasets. Below: close-up for n up to 1.6 · 109 keys.

function is the same 96-bit hash function used in [6] (which suffice for sets of up to 248 keys), but we
employed 64-bit bucket offsets in place of 32-bit, since our key sets are larger than 232/γ.

The result, as shown in Figure 2, is a construction time between 2 and 6 times smaller than Cache-
Oblivious. However, this efficiency has a cost in term of lookup time (because of the double indirection)
and size (because of the extra space needed for the first-level index). Since, in most applications, MPHFs
are built rarely and queried frequently, the shorter construction time may not be worth the increase in
space and query time.

Indeed, as shown in Table 1, the space loss is 17% to 27%. The variability in space overhead is due to
the fact that in HEM the number of buckets must be a power of 2, hence the actual average bucket size
can vary by a factor of 2 depending on the number of keys. We also include the space taken by cmph on
the largest inputs we were able to construct in-memory. Despite using the same data structure as our
implementation of MWHC, its space occupancy is slightly larger because it uses denser ranking tables.

URLs ngrams
0.76 · 109 keys 4.8 · 109 keys 0.76 · 109 keys 7.6 · 109 keys

MWHC 2.61 b/key 2.61 b/key 2.61 b/key 2.61 b/key
HEM 3.16 b/key 3.31 b/key 3.16 b/key 3.05 b/key
cmph 2.77 b/key - 2.77 b/key -

Table 1: Space comparison of MWCH, HEM, and cmph.

The evaluation of lookup efficiency is much subtler, as it depends on a number of factors, some of
which are subject to hardware architecture. For this reason, we decided to perform the experiments on
three different machines: an Intel Intel i7-4770 (Haswell) at 3.40GHz, the same Intel i7 (Nehalem) machine
used for the construction experiments (see above), and an AMD Opteron 6276 at 2.3GHz.
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Figure 2: Construction time with the Cache-Oblivious algorithm and HEM [6].

For both machines and both datasets we performed lookups of 10M distinct keys, repeated 10 times.
Since lookup times are in the order of less than a microsecond, it is impossible to measure individual
lookups accurately; for this reason, we divided the lookups into 1,525 batches of 216 keys each, and
measured the average lookup time for each batch. Out of these average times, we computed the global
average and the standard deviation. The results in Table 2 show that HEM is slower than MWHC in
all cases. On AMD Opteron the slowdown is the smallest, ranging from 17% to 20%; on the Intel i7
(Nehalem) the range goes up to 19%–26%; on the Intel i7 (Haswell), the most recent and fastest CPU,
the slowdown goes up to 30%–35%, suggesting that as the speed of the CPU increases, the cost of the
causal cache miss caused by the double indirection of HEM becomes more substantial. In all cases, the
standard deviation is negligibly small, making the comparison statistically significant.

We also remark that our implementation of the MWHC lookup (which is used also in HEM) is roughly
twice as fast than cmph despite using a sparser ranking table; this is because to perform the ranking we
adopt a broadword [19] algorithm that counts the number of non-zero pairs in a 64-bit words in just a
few non-branching instructions, rather than a linear bit scan with a loop; the smaller ranking table also
imposes a lower cache pressure. Finally, we use a 64-bit implementation of the Jenkins hash function,
which is faster on long strings than the 32-bit one used in cmph.

URLs ngrams
0.76 · 109 keys 4.8 · 109 keys 0.76 · 109 keys 7.6 · 109 keys

Intel i7 (Haswell)

MWHC 219 ns ± 0.3% 253 ns ± 1.3% 199 ns ± 0.2% 251 ns ± 1.8%
HEM 284 ns ± 0.3% 335 ns ± 1.1% 262 ns ± 0.3% 338 ns ± 0.9%
cmph 466 ns ± 0.3% - 303 ns ± 0.3% -

Intel i7 (Nehalem)

MWHC 365 ns ± 0.1% 433 ns ± 0.1% 334 ns ± 0.1% 422 ns ± 0.2%
HEM 450 ns ± 0.1% 523 ns ± 0.1% 420 ns ± 0.1% 502 ns ± 0.7%
cmph 799 ns ± 0.1% - 532 ns ± 0.1% -

AMD Opteron

MWHC 415 ns ± 0.1% 419 ns ± 0.1% 373 ns ± 0.1% 386 ns ± 0.1%
HEM 484 ns ± 0.1% 493 ns ± 0.1% 442 ns ± 0.2% 463 ns ± 0.1%
cmph 908 ns ± 0.2% - 578 ns ± 0.3% -

Table 2: Lookup-time comparison (with relative standard deviation) of MWCH, HEM, and cmph.
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A Network Model characterized by
a Latent Attribute Structure with Competition
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Abstract
The quest for a model that is able to explain, describe, analyze and simu-

late real-world complex networks is of uttermost practical as well as theoret-
ical interest. In this paper we introduce and study a network model that is
based on a latent attribute structure: each node is characterized by a num-
ber of features and the probability of the existence of an edge between two
nodes depends on the features they share. Features are chosen according
to a process of Indian-Buffet type but with an additional random “fitness”
parameter attached to each node, that determines its ability to transmit its
own features to other nodes. As a consequence, a node’s connectivity does
not depend on its age alone, so also “young” nodes are able to compete and
succeed in acquiring links. One of the advantages of our model for the la-
tent bipartite “node-attribute” network is that it depends on few parameters
with a straightforward interpretation. We provide some theoretical, as well
experimental, results regarding the power-law behavior of the model and the
estimation of the parameters. By experimental data, we also show how the
proposed model for the attribute structure naturally captures most local and
global properties (e.g., degree distributions, connectivity and distance distri-
butions) real networks exhibit.

keyword: Complex network, social network, attribute matrix, Indian Buffet
process

1 Introduction

Complex networks are a unifying theme that emerged in the last decades as one
of the most important topics in many areas of science; the starting point is the
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observation that many networks arising from different types of interactions (e.g., in
biology, physics, chemistry, economics, technology, on-line social activity) exhibit
surprising similarities that are partly still unexplained. The quest for a model that
is able to explain, describe, analyze and simulate those real-world complex networks
is of uttermost practical as well as theoretical interest.

The classical probabilistic model of graphs by Erdős and Rényi [11] soon revealed
itself unfit to describe complex networks because, for example, it fails to produce
a power-law degree distribution. One of the first attempts to try to obtain more
realistic models was [3], where the idea of preferential attachment was first intro-
duced: nodes tend to attach themselves more easily to other nodes that are already
very popular, i.e. with an high number of links. Similar models were proposed
by [1] and [22]. The general approach of these and other attempts is to produce
probabilistic frameworks (typically with one or more parameters) giving rise to net-
works with statistical properties that are compatible with the ones that are observed
in real-world graphs: degree distribution is just one example; other properties are
degree-degree correlation, clustering coefficients, distance distribution etc. [19].

The task of modeling the network is often undertaken directly [3, 23], but recently
some authors proposed to split it into two steps (see, e.g., [24, 25]). This proposal
stems from the observation that many complex networks contain two types of enti-
ties: actors on one hand, and groups (or features) on the other; every actor belongs to
one, or more, groups (or can exhibit one, or more, features), and the common mem-
bership to groups (or the sharing of features) determines a relation between actors.
The idea of a bipartite network, where interpersonal connections follow from inter-
group connections, derives from sociology; a seminal paper presented by Breiger [7]
in 1974 described this dualism between “persons and groups”. This idea has been
proved precious in social networks and their mathematical modelization [25].

In particular, many authors [26] distinguish between two kinds of models: class-
based models – such as [31] – assume that every node belongs to a single class,
while feature-based models use many features to describe each node. A well-known
shortcoming of the first is the proliferation of classes, since dividing a class according
to a new feature leads to two different classes. To overcome this limitation, classi-
cal class-based models have been extended to allow mixed membership, like in [2].
Feature-based models naturally assume this possibility. Within them, some authors
(such as [18]) propose real-valued vectors to associate features to nodes; others in-
stead assume only binary features, in which a node either exhibits a feature or it
does not (see e.g. [26]). This assumption is simple and natural, and it significantly
simplifies the analysis of the model.

A natural model for the evolution of such binary bipartite graphs comes from
Bayesian statistics and it is known as the Indian Buffet process, introduced by Grif-
fiths et al. [14, 15, 16] and, subsequently extended and studied by many authors
[8, 33, 34]. The process defines a plausible way for features to evolve, always accord-
ing to a rich-get-richer principle: because of this, it represents a promising model for
affiliation networks. Since the Indian Buffet process provides a prior distribution in
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Bayesian statistics, these models have been used to reconstruct affiliation networks
with an unknown number of features from data where only friendship relations be-
tween actors are available. An important work in this direction is [26]. However,
the standard Indian Buffet process has a drawback as a model for real networks:
the exchangeability assumption is often untenable in applications.

In this paper we propose and analyze a model that combines two features char-
acterizing the evolution of a network:

1. Behind the adjacency matrix of a network there is a latent attribute structure
of the nodes, in the sense that each node is characterized by a number of
features and the probability of the existence of an edge between two nodes
depends on the features they share. In other words, the adjacency matrix of
a network hides a bipartite network describing the attributes of the nodes.

2. Not all nodes are equally successful in transmitting their own attributes to the
new nodes. Each node n is characterized by a random fitness parameter Rn

describing its ability to transmit the node’s attributes: the greater the value of
the random variable Rn, the greater the probability that a feature of n will also
be a feature of a new node, and so the greater the probability of the creation
of an edge between n and the new node. Consequently, a node’s connectivity
does not depend on its age alone (so also “young” nodes are able to compete
and succeed in acquiring links). We refer to this aspect as competition.

We shape the first aspect by the definition of a model which connects the pair
of attribute-vectors of two nodes, say i and j, to the probability of the existence of
an edge between i and j. Other examples can be found in [26, 27, 28, 30], which are
related to the Bayesian framework based on the standard Indian Buffet model.

We model the second aspect by the definition of a stochastic dynamics for a
bipartite “node-attribute” network, where the probability that a new node exhibits
a certain attribute depends on the ability, represented by some random fitness pa-
rameter, of the previous nodes possessing that attribute in transmitting it. It is
worthwhile to underline that, as in the standard Indian Buffet process, the col-
lection of attributes is potentially unbounded. Thus, we do not need to specify a
maximum number of latent attributes a priori.

We were inspired by the recent generalization of the Indian buffet process pre-
sented in [5]. However, the model presented here is in some sense simpler since the
parameters (that will be introduced and analyzed in the next sections) play a role
that is clearer and more intuitive. Specifically, we have two parameters (α and β)
that control the number of new attributes each new node exhibits (in particular
β > 0 tunes the power-law behaviour of the overall number of different observed
attributes), whereas the random fitness parameters Ri impact on the probability of
the new nodes to inherit the attributes of the previous nodes. With respect to the
model in [5], we lose some mathematical properties, but we will show that some
important results still hold true and they allow us to estimate the parameters and,
in particular, the exponent of the power-law behavior.

3



Regarding the use of fitness parameters, we recall the work by Bianconi and
Barabási [6] that introduced some fitness parameters describing the ability of the
nodes to compete for links. The difference between their model and ours consists in
the fact that in [6] the fitness parameters appear explicitly in the edge-probabilities;
while in our model they affect the evolution of the attribute matrix and then play
an implicit role in the evolution of the connections.

Summing up, the present work have different aims: firstly, we propose a simple
model for the latent bipartite “node-attribute” network, where the role played by
the single parameters is straightforward and easy to be interpreted; secondly, differ-
ently from other network models based on the standard Indian Buffet process, we
take into account the aspect of competition and, like in [5], we introduce random
fitness parameters so that nodes have a different relevance in transmitting their fea-
tures to the next nodes; finally, we provide some theoretical, as well experimental,
results regarding the power-law behavior of the model and the estimation of the
parameters. By experimental data, we will also show how the proposed attribute
structure naturally leads to a complex network model.

The paper is structured as follows. In Section 2, we introduce a model for
the evolution of the attribute matrix and we provide theoretical results and tools
regarding the estimation and the analysis of the quantities characterizing the model.
These methods are then tested by simulations in Section 3. In order to produce a
graph out of the attribute structure, in Section 4 we illustrate different models for
the edge-probabilities that are based on the attribute matrix. The properties of the
generated graphs are studied by simulation in Section 5. Finally, in Section 6 we
analyze a real dataset and, then, in Section 7 we sum up the main novelties and
merits of our work and we illustrate some possible future lines of research.

2 A model for the evolution of the attribute ma-

trix

We assume that the nodes enter the network sequentially so that node i represents
the node that comes into the network at time i. Let X be an unbounded collection
of possible attributes that a node can exhibit. (This means that we do not specify
the total number of possible attributes a priori.) Each node is assumed to have only
a finite number of attributes and different nodes can share one or more attributes.

Let Z be a binary bipartite network where each row Zn represents the attributes
of the node n: Zn,k = 1 if node n has attribute k, Zn,k = 0 otherwise. We assume
that each Zn remains unchanged in time, in the sense that every node decides its own
features/attributes when it arrives and then it will never change them thereafter.
This assumption is quite natural in many contexts, e.g., in genetics.

In all the sequel we postulate that Z is left-ordered. This means that in the first
row the columns for which Z1,k = 1 are grouped on the left and so, if the first node
has N1 features, then the columns of Z with index k ∈ {1, . . . , N1} represent these
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features. The second node could have some features in common with the first node
(those corresponding to indices k such that k = 1, . . . , N1 and Z2,k = 1) and some,
say N2, new features. The latter are grouped on the right of the sets for which
Z1,k = 1, i.e., the columns of Z with index k ∈ {N1 + 1, . . . , N2} represent the new
features brought by the second node. This grouping structure persists throughout
the matrix Z.

Here is an example of a Z matrix with n = 4 nodes; in gray we show the new
features adopted by each node (N1 = 3, N2 = 2, N3 = 3, N4 = 2 in this example);
observe that, for every node i, the i-th row contains 1’s for all the columns with
indices k ∈ {N1 + · · ·+Ni−1 + 1, . . . , N1 + · · ·+Ni} (they represent the new features
brought by i); moreover some of the columns with indices k ∈ {1, . . . , N1+· · ·+Ni−1}
are also 1’s (features that were chosen by previous nodes and that also node i decided
to adopt): 

1 1 1 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 0 0
0 1 1 1 0 1 1 1 0 0
1 1 1 0 1 1 0 1 1 1


We will describe the dynamics using a culinary metaphor (similarly to what

some authors do for other models, see Chinese Restaurant [29], Indian Buffet pro-
cess [15, 16, 33] and their generalizations [4, 5]). We identify the nodes with the
customers of a restaurant and the attributes with the dishes, so that the dishes tried
by a customer represent the attributes that a node exhibits.

Fix α > 0 and β ∈ (−∞, 1]. Also, let Poi(λ) denote the Poisson distribution with
mean λ ≥ 0 (where Poi(0) = δ0). Customer (node) n is attached a random weight
(that we call, in accordance with the usage in Network Theory, fitness parameter)
Rn. We assume that each Rn is independent of R1, . . . , Rn−1 and of the dishes
experimented by customers 1, . . . , n. The fitness parameter Rn affects the choices of
the future customers (those after n), while the choices of customer n are affected by
the fitness parameters and the choices of the previous ones. Indeed, it may be the
case that different customers have different relevance, due to some random cause,
that does not affect their choices but is relevant to the choices of future customers
(i.e., their capacity of being followed).

The dynamics is as follows. Customer (node) 1 tries N1 dishes, where N1 is
Poi(α)-distributed. For each n ≥ 1, let Sn be the collection of dishes experimented
by the first n customers (nodes). For the customers (nodes) following the first one,
we have that:

• Customer n+ 1 selects a subset S∗n of Sn. Each k ∈ Sn is included or not into
S∗n independently of the other members of Sn. The inclusion probability is

Pn(k) =

∑n
i=1 RiZi,k∑n
i=1 Ri

. (2.1)
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where Zi,k = 1 if {customer i has selected dish k} and Zi,k = 0 otherwise. It
is a preferential attachment rule: the larger the weight of a dish k at time n
(given by the numerator of (2.1), i.e., the total value of the random variables
Ri associated to the customers that have chosen it until time n), the greater
the probability that it will be chosen by the future customer n+ 1.

• In addition to S∗n, customer n + 1 also tries Nn+1 new dishes, where Nn+1 is
Poi(Λn)-distributed with

Λn =
α

(
∑n

i=1Ri)
1−β . (2.2)

For each k in Sn+1, the matrix element Zn+1,k is set equal to 1 if customer n+ 1 has
selected dish k, equal to zero otherwise.

Besides the assumption of independence, we also assume that the random pa-
rameters Rn are identically distributed with Rn ≥ v for each n and a certain number
v > 0, and E[R2

n] < +∞.
We set E[Rn] = mR and Ln = card(Sn) =

∑n
i=1Ni, i.e.

Ln = overall number of different dishes experimented by the first n customers

= overall number of different observed attributes for the first n nodes.

In the previous example, we have L1 = 3, L2 = 5, L3 = 8, L4 = 10.
The meaning of the parameters is the following. The random fitness parameters

Rn controls the probability of transmitting the attributes to the new nodes. The
main effect of β is that it regulates the asymptotic behavior of the random variable
Ln (see Theorem 2.1). In particular, β > 0 is the power-law exponent of Ln. The
main effect of α is the following: the larger α, the larger the total number of new
tried dishes by a customer (and so the larger the total number of 1’s in a row of the
binary matrix Z). It is worth to note that β fits the asymptotic behaviour of Ln
(in particular, the power-law exponent of Ln) and, separately, α fits the number of
observed features.

The mathematical formalization of the above model can be performed by means
of random measures [21] with atoms corresponding to the tried dishes (observed
attributes), similarly to [5, 8, 34]. More precisely, besides the sequence of positive
real random variables (Rn), we can define a sequence of random measures (Mn), such
that each Mn+1 is, conditionally on the past (Mi, Ri : i ≤ n), a Bernoulli random
measure with a hazard measure νn, having a discrete part related to the points k in
Sn and their weights Pn(k) and a diffuse part with total mass equal to Λn.

2.1 Theoretical results regarding the estimation of the pa-
rameters α and β

In this section we prove some properties regarding the asymptotic behavior of Ln.
In particular, the first result shows a logarithmic behavior for β = 0 and a power-law
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behavior for β ∈ (0, 1]. These results allow us to define suitable estimators for β
and α.

Theorem 2.1. Using the previous notation and setting Λ0 = α, the following state-
ments hold true:

• a) supn Ln = L < +∞ a.s. for β < 0;

• b) Ln/ln(n)
a.s.−→ α/mR for β = 0;

• c) Ln/n
β a.s.−→ α/(β m1−β

R ) for β ∈ (0, 1].

Proof. Let us prove assertion a), first. Let Fi be the natural σ-field associated
to the model until time i. Since, conditionally on Fi, the distribution of Ni+1 is
Poi(Λi), we have

P (Ni+1 ≥ 1) = E
[
P (Ni+1 ≥ 1 | Fi)

]
≤ E[Λi].

Since Ri ≥ v > 0, we obtain∑
i

P (Ni+1 ≥ 1) ≤ α
∑
i

1

(vi)(1−β)
< +∞

(where the convergence of the series is due to the assumption β < 0). By the
Borel-Cantelli lemma, we conclude that

P
(
Ni > 0 infinitely often

)
= P

(
Ni ≥ 1 infinitely often

)
= 0.

Hence, if β < 0, there is a random index N such that Ln = LN a.s. for all n ≥ N ,
which concludes the proof of a).

The assertion c) is trivial for β = 1 since, in this case, Ln is the sum of n
independent random variables with distribution P(α) and so, by the classical strong
law of large numbers, Ln/n

a.s.−→ α.
Now, let us prove assertions b) and c) for β ∈ [0, 1). Define

λ(β) =
α

mR

if β = 0 and λ(β) =
α

β m1−β
R

if β ∈ (0, 1),

an(β) = log n if β = 0 and an(β) = nβ if β ∈ (0, 1).

We need to prove that

Ln
an(β)

a.s.−→ λ(β).

First, we observe that we can write∑n−1
i=1 Λi

an(β)
= α

∑n−1
i=1 i

β−1
(
Ri

)β−1

an(β)
,
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where, by the strong law of the large numbers,

Ri =

∑i
j=1Rj

i

a.s−→ mR.

Therefore, since
∑n−1

i=1 i
β−1/an(β) converges to 1 when β = 0 and to 1/β when

β ∈ (0, 1), we get ∑n−1
i=1 Λi

an(β)

a.s.−→ λ(β). (2.3)

Next, let Fi be the natural σ-field associated to the model until time i and define

T0 = 0 and Tn =
n∑
i=1

Ni − E[Ni | Fi−1]

ai(β)
=

n∑
i=1

Ni − Λi−1

ai(β)
.

Then, (Tn) is a martingale with respect to (Fn) and

E[T 2
n ] =

n∑
i=1

E
[
(Ni − Λi−1)2

]
ai(β)2

=
n∑
i=1

E
{
E
[
(Ni − Λi−1)2 | Fi−1

]}
ai(β)2

=
n∑
i=1

E[Λi−1]

ai(β)2
.

Since Ri ≥ v > 0, it is easy to verify that E[Λi] = O(i−(1−β)) and so supnE[T 2
n ] =∑∞

i=1
E[Λi−1]
ai(β)2

<∞. Thus, (Tn) converges a.s., and the Kronecker’s lemma implies

1

an(β)

n∑
i=1

ai(β)
(Ni − Λi−1)

ai(β)

a.s.−→ 0,

so finally

lim
n

Ln
an(β)

= lim
n

∑n
i=1Ni

an(β)
= lim

n

∑n
i=1 Λi−1

an(β)
= lim

n

Λ0 +
∑n−1

i=1 Λi

an(β)
= λ(β) a.s. (2.4)

The above result entails that ln(Ln)/ ln(n) is a strongly consistent estimator of
β ∈ [0, 1]. In fact:

• if β = 0 then Ln
a.s.∼ α

mR
ln(n) as n → +∞; hence ln(Ln)

a.s.∼ ln(α/mR) +

ln(ln(n)), therefore ln(Ln)/ ln(n)
a.s.∼ ln(α/mR)/ ln(n) + ln(ln(n))/ ln(n)

a.s.→
0 = β;

• if β > 0, we have Ln
a.s.∼ λ(β)nβ as n → +∞ so ln(Ln)

a.s.∼ ln(λ(β)) + β ln(n),
hence ln(Ln)/ ln(n)

a.s.∼ ln(λ(β))/ ln(n) + β
a.s.→ β.

Remark 2.2. In practice, the value of ln(Ln)/ ln(n) may be quite far from the
limit value β when n is small. Hence, it may be worth trying to fit the power-law
dependence of Ln as a function of n with standard techniques [10] and use the slope

of the regression line β̂n as an effective estimator for β.
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Finally, assuming that β ∈ [0, 1] and mR are known, we can get a strongly
consistent estimator of α, as:

mR
Ln

ln(n)
for β = 0 and m1−β

R β
Ln
nβ

for 0 < β ≤ 1.

In practice, we assume β equal to the estimated value β̂n (as defined before) and
we take mR equal to the estimated value Rn =

∑n
i=1Ri/n, if the random parameters

Ri are known. In Section 3.2, we will discuss the case when the random variables
Ri are unknown.

Remark 2.3. Once more, it may be better in practice to estimate α as

α̂n = mR γ̂n when β = 0

α̂n = β m1−β
R γ̂n when 0 < β ≤ 1,

(2.5)

where γ̂n is the slope of the regression line in the plot
(

ln(n), Ln
)

or in the plot(
nβ, Ln

)
according to whether β = 0 or β ∈ (0, 1].

We complete this section with a central-limit theorem that gives the rate of
convergence of Ln/an(β) to λ(β) when β ∈ [0, 1].

Theorem 2.4. If β ∈ [0, 1], then we have the following convergence in distribution1:√
an(β)

{ Ln
an(β)

− λ(β)
}

d−→ N
(
0, λ(β)

)
.

Proof. The result for β = 1 follows from the classical central limit theorem, since,
in this case, Ln is the sum of n independent random variables with distribution
P(α). Assume now β ∈ [0, 1). We first prove that

√
an(β)

{∑n
i=1 Λi−1

an(β)
− λ(β)

}
P−→ 0. (2.6)

By some calculations, condition (2.6) is equivalent to∑n−1
i=1

{(∑i
j=1Rj

)β−1 − (mR i)
β−1
}√

an(β)

P−→ 0. (2.7)

1Actually, the convergence is in the sense of the stable convergence, which is stronger than
the convergence in distribution. Indeed, stable convergence is a form of convergence intermediate
between convergence in distribution and convergence in probability.
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Since Rj ≥ v > 0, we have mR ≥ v > 0 and we obtain

E

 ∣∣∣∣∣∣(mR i)
β−1 −

(
i∑

j=1

Rj

)β−1
∣∣∣∣∣∣
 ≤ E

[ ∣∣∣(∑i
j=1 Rj

)1−β − (mR i)
1−β
∣∣∣ ]

(v i)2(1−β)

≤ 1

(v i)2(1−β)

1− β
(v i)β

E

[ ∣∣∣∣∣
i∑

j=1

Rj −mR i

∣∣∣∣∣
]

=
1− β
v2−β

1

i1−β
E
[
|Ri −mR|

]
≤ 1− β

v2−β
1

i1−β

√
V ar[Ri] =

(1− β)
√
V ar[R1]

v2−β
iβ−1

√
i
.

This proves condition (2.7) (and so (2.6)). Indeed, we have

1√
an(β)

E

 ∣∣∣∣∣∣
n−1∑
i=1


(

i∑
j=1

Rj

)β−1

− (mR i)
β−1


∣∣∣∣∣∣
 ≤

1√
an(β)

n−1∑
i=1

E

 ∣∣∣∣∣∣(mR i)
β−1 −

(
i∑

j=1

Rj

)β−1
∣∣∣∣∣∣
 ≤

(1− β)
√
V ar[R1]

v2−β
1√
an(β)

n−1∑
i=1

1

i1−(β−1/2)
→ 0.

Next, define

Tn =
√
an(β)

{ Ln
an(β)

−
∑n

i=1 Λi−1

an(β)

}
=

∑n
i=1(Ni − Λi−1)√

an(β)
.

In view of (2.6), it suffices to show that Tn
d−→ N

(
0, λ(β)

)
.

To this end, for n ≥ 1 and i = 1, . . . , n, define

Tn,i =
Ni − Λi−1√

an(β)
, Gn,0 = F0 and Gn,i = Fi,

where Fi is the natural σ-field associated to the model until time i. Then, we have
E[Tn,i | Gn,i−1] = 0, Gn,i⊂Gn+1,i and Tn =

∑n
i=1 Tn,i. Thus, by a martingale central

limit theorem (see [17]), Tn
d−→ N

(
0, λ(β)

)
provided

(i)
n∑
i=1

T 2
n,i

P−→ λ(β), (ii) max
1≤i≤n

|Tn,i|
P−→ 0, (iii) sup

n
E

[
max
1≤i≤n

T 2
n,i

]
<∞;

10



Let

Di = (Ni − Λi−1)2 and Un =

∑n
i=1

{
Di − E[Di | Fi−1]

}
an(β)

=

∑n
i=1(Di − Λi−1)

an(β)
.

By the same martingale argument used in the proof of the previous theorem and
by Kronecker’s lemma, Un

a.s.−→ 0. Then, by (2.3),

n∑
i=1

T 2
n,i =

∑n
i=1Di

an(β)
= Un +

∑n
i=1 Λi−1

an(β)

a.s.−→ λ(β).

This proves condition (i). As to (ii), fix k ≥ 1 and note that

max
1≤i≤n

T 2
n,i ≤

max1≤i≤kDi

an(β)
+ max

k<i≤n

Di

ai(β)
≤ max1≤i≤kDi

an(β)
+ sup

i>k

Di

ai(β)
for n > k.

Hence, lim supn max1≤i≤n T
2
n,i ≤ lim supn

Dn

an(β)
and condition (ii) follows since

Dn

an(β)
=

∑n
i=1 Di

an(β)
−
∑n−1

i=1 Di

an(β)

a.s.−→ 0.

Finally, condition (iii) is a consequence of

E

[
max
1≤i≤n

T 2
n,i

]
≤
∑n

i=1E[Di]

an(β)
=

∑n
i=1E[Λi−1]

an(β)
=

=
Λ0 +

∑n−1
i=1 E[Λi]

an(β)
≤
α
(
1 +

∑n−1
i=1 (vi)β−1

)
an(β)

.

2.2 Analysis of the random fitness parameters Ri

Now our purpose is to find, under the assumption of our model, a procedure to get
information on the random variables Ri from the data, that typically are the values
of Z1, . . . , Zn, i.e., n rows of the matrix Z, where n is the number of the observed
nodes.

Unfortunately, this goal is not easily tractable as we will point out in the se-
quel. The method we empirically tested extracts from the data, with a maxi-
mum log-likelihood procedure (see Section 3.2), a plausible realization r̂1, . . . , r̂kn
of R1, . . . , Rkn , for a suitable kn; this information could be useful, for instance, to
reconstruct the ranking induced by Ri. Note that we ideally would like to find a
probable realization for all the fitness parameters of the observed nodes (not only
for the first kn nodes), but we do not possess the same amount of information about
all Ri: in particular, while R1 influences all the observed rows of the matrix Z,
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Rn−1 has only influence over Zn. So we cannot expect to find good values for all the
random variables.

With the above purpose in mind, we now give a general expression for the con-
ditional probability of observing Z1 = z1, . . . , Zn = zn given R1, . . . , Rn−1. We refer
to Section 2 for the notation.

The first row Z1 is simply identified by L1 = N1 and so

P (Z1 = z1) = P (N1 = n1 = card{k : z1,k = 1})

= Poi(α){n1} = e−α
αn1

n1!
.

Then the second row is identified by the values Z2,k with k = 1, . . . , L1 = N1

and by N2 and so

P (Z2 = z2|Z1, R1) =

P (Z2,k = z2,k for k = 1, . . . , L1, N2 = n2 = card{k > L1 : z2,k = 1}|Z1, R1) =

L1∏
k=1

P1(k)z2,k(1− P1(k))1−z2,k × Poi(Λ1){n2},

where P1(k) is defined in (2.1) and Λ1 is defined in (2.2).
The general formula is

P (Zj+1 = zj+1|Z1, R1, . . . , Zj, Rj) =

P (Zj+1,k = zj+1,k for k = 1, . . . , Lj,

Nj+1 = nj+1 = card{k > Lj : zj+1,k = 1}|Z1, R1, . . . , Zj, Rj) =

Lj∏
k=1

Pj(k)zj+1,k(1− Pj(k))1−zj+1,k × Poi(Λj){nj+1},

where Pj(k) is defined in (2.1) and Λj is defined in (2.2).
Hence, for n nodes, we can write a formula for the conditional probability of

observing Z1 = z1, . . . , Zn = zn given R1, . . . , Rn−1:

P (Z1 = z1, . . . , Zn = zn|R1, . . . , Rn−1) =

P (Z1 = z1)
n−1∏
j=1

P (Zj+1 = zj+1|Z1, R1, . . . , Zj, Rj).
(2.8)

2.2.1 A Monte Carlo method

The algorithm we applied is essentially a MCMC (Markov Chain Monte Carlo)
method [13], which uses the basic principle of Gibbs sampling [9]: fix all components
of a vector except one and compare the different values of the likelihood obtained
for various values of the non-fixed component.
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The method employs the aforementioned formula (2.8) for the conditional prob-
ability of observing Z1 = z1, . . . , Zn = zn given the values of R1, . . . , Rn−1. Precisely,
using the symbol z in order to denote the matrix with rows z1, . . . , zn and the symbol
r in order to denote a vector of component r1, . . . , rn, set

P (Z = z|R = r) = P (Z1 = z1, . . . , Zn = zn|R1 = r1, . . . , Rn = rn). (2.9)

We want to find a vector r̂ that is a point maximizing the likelihood function (2.9)
corresponding to the observed z. 2

The basic algorithm is described in Alg. 1. It is regulated by these parameters:

• r0 ∈ Rn is the initial guess for r̂;

• J ∈ N+ is the number of “jumps to a new value”, i.e., the number of the new
values analyzed for a certain component at each step;

• σ ∈ R+ is the standard deviation of each “jump”.

Algorithm 1 Basic Monte Carlo algorithm to find r̂.

Input: z1, . . . , zn, the observed features of each of the n observed
nodes, i.e., the first n rows of the attribute matrix Z
Output: r̂, a maximum point for the likelihood function associated
to the input data
Description:

1. r̂ ← r0

2. Repeat the following loop until convergence:

(a) Choose a random node i ∈ {1, . . . , n}
(b) Extract J values h1, . . . , hJ from the normal distribution
N (ri, σ

2); re-sample each hj until hj > 0.

(c) For each value hj, compute

L(hj) = P (Z = z|R1 = r1, . . . , Ri = hj, . . . , Rn = rn)

(d) r̂i ← arg max
h∈{ri,h1,...,hJ}

L(h)

2We point out that our algorithm can not be considered a proper statistical estimation procedure
for the fitness parameters. In particular, although it resembles the Bayesian Maximum a posteriori
estimation (MAP) when the a priori distribution is (improperly) uniform, we do not have a vector
of parameters with a fixed dimension: the number of parameters in our case increases with the
number of observations.
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Ri sampled from a uniform Ri sampled from a uniform discrete

distribution on the interval [0.5, 1.5] distribution on the two values {0.25, 1.75}
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Figure 1: Value of the log-likelihood during the execution of the algorithm, for
different distributions of Ri. The chosen algorithm parameters are σ2 = 1, J = 4
and r0 = 1 (the vector with all 1’s). The matrix Z has 2000 nodes and it was
generated with α = 3 and β = 0.9.

It is worth to note that, given L(ri), it is possible to find L(h) without re-doing
the whole computation. In fact, let us consider the product in eq. (2.8): a change
from ri to h must be taken into account only from the i-th factor onward – that is,
for the factors that come after P (Zi = zi|Z1, R1, . . . , Zi−1, Ri−1). In particular, let
δ = h− ri; then, for each j-th factor, with j ≥ i, we have to:

• add δ to the term
∑j

i=1Ri, inside Λj and Pj(k) (defined in eq. (2.1) and (2.2));

• add δ to the numerator of Pj(k) when k is s.t. zi,k = 1; that is to say, change
the global weight of a feature only if the node we changed has that feature.

Every other term in the equation remains unchanged and does not need to be
computed again. This remark allows us to speed up the implementation consider-
ably.

Figure 1 confirms that the algorithm moves toward a vector r̂ maximizing P (Z =
z|R = r) and shows that the algorithm effectively converges. As a stopping criterion,
we can use the maximum increase in the log-likelihood in the last iterations: when
this is under a certain threshold t, we stop the algorithm. The obtained outputs
will be discussed in details in Section 3.2.

As already said, one point that we need to keep in mind is that we do not possess
the same amount of information about all the random variables Ri: in particular,
while R1 influences all the rows of the matrix Z, Rn−1 has only influence over the
last one. So we cannot expect the output values to be very accurate for the last
segment. For this reason, we also implemented a variant of the algorithm that
considers only the first kn nodes. Thus, we have another algorithm parameter kn
so that the choice of the jumping node at step 2(a) is restricted to i ∈ {1, . . . , kn}
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and, finally, the output will be the corresponding segment of r̂, i.e., r̂1, . . . , r̂kn . This
variant converges faster and moreover it allows to use larger values of the algorithm
parameter J .

Another relevant point is that the parameters α and β enter the expression (2.8).
Therefore, in practice, before applying the algorithm, we need to estimate them. As
shown in Remark 2.2, we are able to estimate β starting from the observed values
of the matrix Z. On the other hand, as shown in Remark 2.3, the estimation of
α presupposes the knowledge of the mean value mR of the fitness parameters Ri

(except for the special case β = 1). Hence, we are in the situation in which, in order
to get information on the fitness parameters by the proposed algorithm, we need to
estimate α and β, but, in order to estimate α, we need to know the mean value mR.
This problem can be partially solved as follows. Since the term P (Z1 = z1) does
not contain the Ris, the research of a vector r̂ that maximizes (2.9) is equivalent to
the research of a vector r̂ maximizing the product

n−1∏
j=1

P (Zj+1 = zj+1|Z1, R1, . . . , Zj, Rj)

in formula (2.8). On the other hand, each term of the above product contains the
inclusion probabilities Pj(k), that are invariant with respect to the normalization of
the Ri’s by their mean value mR, and the Λj’s that have the property

Λj = f(α, β, r) = f(α/(mR)1−β, β, r/mR)

(where r/mR denotes the vector with components ri/mR). Consequently, starting
from the observed values of the matrix Z, we can

• first, estimate β by Remark 2.2;

• then estimate α′ = α/(mR)1−β by Remark 2.3 (i.e., α̂′n equal to γ̂n or β γ̂n
according to the estimated value of β);

• finally, extract a plausible realization r̂
′

= r̂/mR (of the random variables
R′i = Ri/mR) as a maximum point of the corresponding expression of the
likelihood with the estimated value of β and α′.

Therefore, the output of the algorithm will be α′, β and a plausible realization

r̂
′

of the random variables R′i = Ri/mR.

Finally, we highlight that it is possible to experiment other variants of the algo-
rithm, for example, by using a distribution different from the normal for the jumps,
or changing σ during the execution (e.g., reducing it according to some “cooling
schedule”, as it happens in simulated annealing [12]). Additionally, instead of look-
ing for the values on the whole positive real line, we could restrict the research on a
suitable interval (guessed for the particular real case).
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Figure 2: The Z matrix for n = 500, two different values of α (α = 3 and α = 10)
and a fixed β = 0.5. The random variables Ri are uniformly distributed on the
interval [0.25, 1.75].

3 Simulations for the attribute matrix

In this section, we shall present a number of simulations we performed in order to
illustrate the role of the parameters of the model and also to see how good the
proposed tools turn out to be.

3.1 Estimating α and β

Firstly, we aim at pointing out the role played by the model parameters α and β.
Therefore, we fix a distribution for the random fitness parameters with mR = 1 and
we simulate the matrix Z for different values of α and β (fixing one and making
the other one change). More precisely, we assume that the random variables Rn are
uniformly distributed on the interval [0.25, 1.75].

In Figure 2, we visualize the effect of α: a larger α yields a larger number of new
attributes per node.

In Figure 3, instead, we visualize how different positive values of β yield a dif-
ferent power-law (asymptotic) behavior of Ln. Indeed, in this figure, we have the
log-log plot of Ln as a function of n. In the first two panels, we present two different
positive values of β (0.75 and 0.5), showing the correspondence with the power-law
exponent of Ln, estimated by the slope of the regression line. Moreover, in the third
panel, we point out that the parameter α do not affect the power-law exponent of
Ln.
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Figure 4 underlines that the estimator proposed in remark 2.2 works better (i.e.
with a more precision) for large values of β since Ln reaches the power-law behavior
more quickly for larger values of β.

estimate for beta: 0.746 estimate for beta: 0.542 estimate for beta: 0.557

alpha = 3, beta = 0.75 alpha = 3, beta = 0.5 alpha = 10, beta = 0.5

10

100

1000

1 10 100 1 10 100 1 10 100

n

L
n

Figure 3: Correspondence between the parameter β and the power-law exponent of
Ln as a function of n. The estimate of β is the slope of the regression line. Here, we
have 500 nodes, the random variables Ri are uniformly distributed, on the interval
[0.25, 1.75]. Values for α and β are indicated above; we can see how different values
for α do not affect the power-law behaviour.

Similarly, we evaluated the estimator α̂n of α, obtained by using the slope of the
regression line in the plot of Ln as a function of nβ, as said in Remark 2.3 (note that
we have mR = 1 and so α coincides with α′). Results are illustrated in Figure 5 and
show how this estimator yields good results.

We also checked how the shape of the matrix Z is influenced by the distribution
of the random parameters Rn. More precisely, we analyzed the effect of ε on the
shape of Z when the random variables Ri are uniformly distributed on the interval
[ε, 2 − ε], with 0 < ε ≤ 1, so that E[Ri] = mR = 1 and the variance of Ri is
V ar[Ri] = (1 − ε)2/3, which goes to zero as ε → 1. Hence, when ε is smaller, the
variance of the Rn’s is larger, so that also a “young” nodes i have some chance
of transmitting their attributes to the other nodes (recall that a larger Ri makes i
more successful in transmitting its own attributes). This is witnessed (see Figure 6)
by the number of “blackish” vertical lines, that are more or less widespread in the
whole spectrum of nodes; whereas for larger ε they are more concentrated on the
left-hand side (i.e., only the first nodes successfully transmit their attributes).

3.2 Analysis of the random fitness parameters Ri

We proceeded to test empirically how the Monte Carlo method performs in recov-
ering the information on the fitness parameters Ri. We tested its behavior against
various distributions of Ri; specifically, a uniform distribution on an interval, a
two-class uniform distribution, and finally a discrete power-law distribution with 10
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Figure 4: Distribution of the estimator β̂n of β over 1000 experiments, each with
n = 2000 and α = 3. The random variables Ri are uniformly distributed on the
interval [0.25, 1.75]. The red line indicates the true value of β.

classes. In the following of this section we illustrate the details of such experiments,
while, in the next section, we will try to measure the performance of the proposed
technique.

In every experiment, the matrix Z has n = 2 000 nodes and it was generated
with α = 3 and β = 0.9. The Monte Carlo algorithm parameters were set as follows:
σ2 = 1, J = 4 and r0 = 1 (the vector with all 1’s).

For the first experiment, each Ri is sampled from the uniform distribution on the
interval [0.5, 1.5]. We used the previously discussed techniques to find the estimates

of α and β: the estimated values are α̂ = 3.095 and β̂ = 0.893 (note that we have

mR = 1 and so α = α′ and r̂ = r̂
′
). Then, we tried the proposed Monte Carlo

algorithm with the stopping threshold t = 1/4. Results are visualized in Figure 7,
according to two different orderings of the nodes:

i) in the natural order, so that we confirm that our predictions are better for the
first (i.e., the oldest) nodes than for the last (i.e., the youngest) ones;

ii) ordered by their true fitness values, so that we can show that we are, more or
less, able to reconstruct the relative order of the fitness parameters (this fact
will be made clearer in Section 3.3).

In the second experiment, we applied our algorithm to a discrete case: we sam-
pled the fitness parameters Ri from a set of only two values, {0.25, 1.75}, each with
probability 1

2
. We left the parameters of the model and the ones of the algorithm

unaltered (except for moving the stopping threshold t from 1/4 to 1). The estimated
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Figure 5: Distribution of the estimator α̂n of α over 1000 experiments, each with
n = 2000 and β = 0.5. The random variables Ri are uniformly distributed on the
interval [0.25, 1.75] (so mR = 1 and α = α′). The red line indicates the true value
of α.

values for α = 3 and β = 0.9 are, respectively, α̂ = 2.922 (again mR = 1 and so

α = α′ and r̂ = r̂
′
) and β̂ = 0.903. The results of this second experiment are more

encouraging (we will see precise measurements in Section 3.3). In this case, the
output values of the algorithm are closer to the true ones (see Figure 8). Moreover,
we can still observe the same phenomena, i) and ii), described above.

Finally, we applied the algorithm to a third case: we sampled Ri from a nor-
malized power-law discrete distribution, with 10 possible values – specifically, a
normalized discrete Zipf’s law with exponent 2 and number of values 10. We left
both algorithm and model parameters unaltered (and we used 1 as the stopping
threshold t).

The estimated values for α = 3 and β = 0.9 are, respectively, α̂ = 3.595 (again

mR = 1 and so α = α′ and r̂ = r̂
′
) and β̂ = 0.868.

Results for this case show that – despite the fact that we have now a discrete
distribution with more than two values – our approach can recover information
(especially for larger values of fitness), as can be seen in Figure 9 and in Section 3.3.

We conclude this section noting that, for each of the experiments, the Monte
Carlo algorithm looks for the values of the fitness parameters on the whole positive
real line. We would obtain better outputs if we could restrict the research on a
suitable interval for each case, assuming a partial knowledge of the shape of the
distribution.
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Figure 6: Here n = 500, α = 3, β = 0.5 and the random variables Ri are uniformly
distributed on the interval [ε, 2− ε] (so that mR = 1 and V ar[Ri] = (1− ε)2/3), for
different values of ε (ε = 0.25 and ε = 0.75). The figure shows how ε affects the
shape of Z.

3.3 Analysis of the ordering of the nodes

In a real application, we may content ourselves in finding not the realized fitness
parameters themselves but rather their ordering, that is, the ordering of the nodes
from larger to smaller values of the fitness parameter. To evaluate if we can at least
extract values r̂i that respect this ordering, we decided to compare the drawn vector
r̂ with the true realization r by the use of Kendall’s τ and some variants of it.

To keep track of the fact that, as said before, the first nodes contain more
information than the last ones, we evaluated Kendall’s τ not only on the whole
vector but also on a short initial segment of size kn = n/2 or kn =

√
n. Besides

this, we tried to use a variant of Kendall’s τ (proposed in [35]), that we apply in
two separate and different ways:

1. inducing a hyperbolic decay based on the position of the nodes – that is,
weighting more the first (the oldest) nodes, and less the last (the youngest)
ones;

2. inducing a hyperbolic decay based on the true realized values ri – that is,
assigning a higher weight to the nodes with a greater fitness parameter ri.

The results of these measures are summarized in Table 1 for the experiment
with the uniform distribution on an interval, in Table 2 for the experiment with
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Considered nodes Kendall’s τ τ weighted by position τ weighted by value

kn = b
√
nc = 44 .281 .206 .463

kn = n
2

= 1000 .229 .188 .337
kn = n = 2000 .150 .139 .155

Table 1: Comparing orderings induced by the true realization r versus the extracted
one r̂ in the case of the uniform distribution on the interval [0.5, 1.5].

Considered nodes Kendall’s τ τ weighted by position τ weighted by value

kn = b
√
nc = 44 .676 .593 .713

kn = n
2

= 1000 .586 .585 .625
kn = n = 2000 .438 .477 .434

Table 2: Comparing orderings induced by the true realization r versus the extracted
one r̂ in the case of the uniform discrete distribution on the two values {0.25, 1.75}.

Considered nodes Kendall’s τ τ weighted by position τ weighted by value

kn = b
√
nc = 44 .735 .762 .772

kn = n
2

= 1000 .453 .516 .803
kn = n = 2000 .313 .402 .543

Table 3: Comparing orderings induced by the true realization r versus the extracted
one r̂ in the case of the normalized discrete Zipf’s distribution with exponent 2 and
10 values.
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Figure 7: The extracted realization r̂ (in red) versus the true realization r (in
blue), with two different orderings, in the case of uniform distribution on the inter-
val [0.5, 1.5]. The empirical mean of the the first n

2
extracted values is 1.18.

in natural order ordered by value of ri
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Figure 8: The extracted realization r̂ (in red) versus the true realization r (in blue),
with two different orderings, in the case of the uniform discrete distribution on the
two values {0.25, 1.75}. The empirical mean of the the first n

2
extracted values is

1.33.

the uniform discrete distribution on the two values {0.25, 1.75}, and in Table 3 for
the discrete Zipf’s distribution with 10 values and exponent 2. The tables show
that, although we are unable to reconstruct the actual realized values of the fitness
parameters, our approach actually recovers some information about node ranking.
As already seen before, the output of the Monte Carlo algorithm is better for the
discrete cases.

4 From the attribute structure to the graph

We now extend the model to produce a graph out of the attribute structure (that
may itself be latent and unknown). In general, we may assume that the presence of
an edge between two nodes depends on the features that those nodes exhibit, but
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in natural order ordered by the value
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Figure 9: The extracted realization r̂ (in red) versus the true realization r (in
blue), with two different orderings, for the normalized discrete Zipf’s distribution
with exponent 2 and 10 values. The empirical mean of the the first n

2
extracted

values is 1.25.

there are many nuances to this idea and possible approaches.
In general, we postulate that the connections are undirected (we omit self-loops,

i.e., edges of type (i, i)) and we assume that, conditioned on Z (and some other
variables), the probability of having at time n a certain adjacency matrix (symmetric
by assumption) a = (ai,j)1≤i,j≤n (with ai,j ∈ {0, 1}) is

P (A = a|Z, other variables) = P
( ⋂

1≤j<i≤n

{Ai,j = ai,j}|Z, other variables)

=
∏

1≤j<i≤n

P (Ai,j = ai,j|Z, other variables).

4.1 Feature/Feature probability model (FF)

In the first, basic model, we assume that the probability of having an edge (i, j)
depends solely on the features that i and j possess; each pair of feature that node
i and node j exhibit contributes in tuning the edge probability. In other words,
letting Ln be the total number of different features (i.e., columns of Z), we assume
that there is a symmetric feature/feature influence matrix Ξ = (ξh,k)1≤h,k≤Ln that
determines a node-node weight matrix W given by

W = Z · Ξ · ZT

or, more explicitly,

wi,j =
∑
h,k

Zi,hξh,kZj,k.

The probability of the presence of an edge (i, j), then, depends monotonically on
wi,j. The choice of Ξ determines different relations between features and edge prob-
abilities. If ξh,k > 0 (resp., ξh,k < 0), then the simultaneous presence of attributes h
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and k increases (resp., decreases) the edge-probability; if ξh,k = 0, the simultaneous
presence of attributes h and k does not affect the edge-probability. In particular,
if ξh,k = 0 for h 6= k, then the edge-probability is affected only by the presence of
the same attribute in both nodes (positively or negatively affected depending on the
sign of ξh,h).

The actual probabilities are computed as some function applied to the corre-
sponding weight; i.e., some monotone function Φ : R→ [0, 1] is fixed and

P (Ai,j = 1|Z) = Φ(wi,j) = Φ

(∑
h,k

Zi,hξh,kZj,k

)
. (4.1)

4.2 Feature/Feature+BA probability model (FFBA)

A variant of the feature/feature (FF) probability model takes into account the fact
that some edges exist independently of the features that the involved nodes exhibit,
but they are there simply because of the popularity of a node, as in the traditional
“preferential attachment” model by Barabási and Albert [3]. To take this into
consideration, instead of using (4.1), we rather define for 1 ≤ j < i ≤ n

P (Ai,j = 1|Z, Dj(i−1), m(i−1)) = δΦ

(∑
h,k

Zi,hξh,kZj,k

)
+(1−δ)Dj(i− 1)

2m(i− 1)
, (4.2)

where Dj(k) and m(k) are, respectively, the degree of node j and the overall number
of edges just after node k was added. The parameter δ controls the mixture between
the pure feature/feature model and the preferential-attachment model (degenerating
to the first when δ = 1, and to the second when δ = 0).

4.3 Feature/feature+JR probability model (FFJR)

Jackson and Rogers [20] observed that preferential-attachment can be induced also
injecting a “friend-of-friend” approach in the creation of edges. Their behavior can
be mimicked in our model as follows: we first generate a graph with adjacency
matrix A′ using the pure FF model, i.e., letting

P (A′i,j = 1|Z) = Φ(wi,j) = Φ

(∑
h,k

Zi,hξh,kZj,k

)
.

After this, every node i looks at the set of the neighbors of its neighbors, according
to A′. If this set is not empty, it then selects one node from the set uniformly at
random; the resulting node is chosen as an “extra” friend of i with some probability
1− δ (for suitably chosen δ ∈ [0, 1]). The adjacency matrix obtained in this way is
A. Once more, if δ = 0 we have A = A′ so we get back to the pure FF model.
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5 Simulations for the graph structure

The purpose of this collection of experiments is to determine the topology of the
graph generated with the models described above. We fix a priori the number of
nodes n and the (approximate) number of edges m (i.e., density) we aim at; then,
every experiment consists essentially in two phases:

• generating an attribute matrix Z for n nodes (with certain values for the
parameters α and β and with Ri uniformly distributed on the interval [ε, 2−ε]
for a certain ε);

• building the graph according to one of the models described in Section 4.

The second phase needs to fix some further parameters: Ξ (the feature/feature
influence matrix), the function Φ and, for the mixed models (FFBA and FFJR), the
parameter δ.

For the sake of simplicity, throughout this section, we assume that Ξ = I and
we take Φ as a sigmoid function given by

Φ(x) =
1

eK(ϑ−x) + 1
.

In other words, the existence of an edge (i, j) depends simply on the number of
features that i and j share (this is an effect of choosing Ξ = I). More features
induce larger probability: the sigmoid function smoothly increases (from 0 to 1)
around a threshold ϑ, and K > 0 controls its smoothness; when K →∞ we obtain
a step function and edges are chosen deterministically based on whether the two
involved nodes share more than ϑ features or not.

In the experiments, we fix K and determine ϑ on the basis of the desired density
of the graph (or, equivalently, the desired number of edges m); in practice3, this is
obtained by solving numerically the equation

E

[ ∑
1≤j<i≤n

Ai,j

]
=

∑
1≤j<i≤n

Φ

(∑
h,k

Zi,hξh,kZj,k

)
= m

for the indeterminate ϑ (using, for example, Newton’s method). Since Ξ = I the
equation in fact simplifies into∑

1≤j<i≤n

1

eK(ϑ−
∑

h Zi,hZj,h) + 1
= m.

With these assumptions, every experiment depends on the parameters used for
generating Z (i.e., α, β and ε), on K (that controls the smoothness of the sigmoid

3The described method needs some (obvious) adjustments when applied to the mixed models,
to take into account the edges generated by preferential attachment.

25



function) and on δ (for the mixed models). In the graphs produced by each simula-
tion, we took into consideration the degree distribution, the percentage of reachable
pairs (i.e., the fraction of pairs of nodes that are reachable) and the distribution of
distances (lengths of shortest paths); the latter data are computed using a proba-
bilistic algorithm [32].

Some of the results obtained (for n = 2 000 and4 m = 4 000) for the FF model
are shown in Figure 10. For those experiments, the underlying attribute matrix is
generated with β = 0.75 and Ri uniformly distributed on the interval [0.75, 1.25];
we compare α = 3 (resulting in ≈ 1200 features) with α = 10 (≈ 4000 features).
Results regarding mixed models are reported in Figure 11.

The properties of the obtained graphs can be summarized as follows:

• the pure FF model exhibits a behavior that strongly depends on the smooth-
ness parameter K (see Fig. 10):

– for K = 1, the degree distribution is power-law only when α is large (e.g.,
α = 10), whereas the distribution is often non-monotonic for smaller α’s,
especially on large graphs; the fraction of reachable pairs is quite large
(between 40% and 90%);

– for K = 4, degrees are always distributed as a power-law (with exponents
around 3), but the graph becomes largely disconnected (the reachable
pairs are never more than 20%): this is because nodes with the same
degree tend to stick together (assortativity), forming a highly connected
component and leaving the remaining nodes isolated;

– for K →∞, the power-law distribution of degrees is even more clear-cut,
but the number of reachable pairs becomes smaller (no more than 10%);
the exponent of the power-law distribution depends on α, with larger α’s
yielding larger absolute values of the (negative) exponents;

• the FFBA model (see Fig. 11) increases slightly the number of reachable pairs
in all cases; the shape of the power-law distribution is essentially unchanged
with respect to the pure FF model;

• finally, for the FFJR model (see Fig. 11) we observe a reduced connectivity;
this is due to holding the expected number of edges as a constant, while
devoting some of them to closing triangles – an operation that cannot increase
connectivity. The degree distribution seems closer to a power-law with respect
to the pure FF model.

4We observed absolutely analogous phenomena also for larger and denser networks; we hereby
report only the smaller case for the sake of readability of the pictures.
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6 A real dataset

We considered a dataset of scientific papers5 (originally released as part of the
2003 KDD Cup) consisting of 27 770 papers from the “High energy physics (the-
ory) arXiv” database. For each paper (node), we considered as features the words
appearing in its title and abstract, excluding those that are dictionary words6. The
papers are organized in order of publication date.

In Figure 12a the reader can see a fragment of the attribute matrix (for the first
500 nodes and the features they exhibit).

The overall number of features is 21 933, with a matrix density of 0.35 · 10−3

(there are 214 510 ones in the matrix). The estimated values of α′ and β are 15.038
and 0.671, respectively. In particular, we recall that β is the power-law exponent
of the asymptotic behavior of Ln, i.e. the overall number of distinct attributes. We
show the estimate for this real case in Figure 12b. A recostruction of the ordering
of the nodes according to their fitness parameter values is possible, but we lack any
ground truth to compare it to.
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Figure 12: Analysis of the cit-HepTh dataset.

We conclude this section with a comparison between the graph produced by the
FF model using as the underlying matrix the attribute matrix of the cit-HepTh

dataset and the corresponding (symmetrized) citation graph. After some experi-
ments, we observed that we can obtain a good fit with K = 2.5, that produces
a quite similar degree and distance distribution (see Figure 13). It is striking to
observe that the two graphs have such a strong similarity in their topology, albeit

5The dataset is available within the SNAP (Stanford Large Network Dataset Collection) at
http://snap.stanford.edu/data/cit-HepTh.html.

6According to the Unix words dictionary.
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having positively no direct relation with each other (in one case the edges repre-
sent citations, in the other they were obtained by the model basing on the textual
similarity of their abstracts!).

7 Conclusions

In this paper we introduce and study a network model that combines two features:

1. Behind the adjacency matrix of a network there is a latent attribute structure
of the nodes, in the sense that each node is characterized by a number of
features and the probability of the existence of an edge between two nodes
depends on the features they share.

2. Not all nodes are equally successful in transmitting their own attributes to the
new nodes (competition). Each node n is characterized by a random fitness pa-
rameter Rn describing its ability to transmit the node’s attributes: the greater
the value of the random variable Rn, the greater the probability that a feature
of n will also be a feature of a new node, and so the greater the probability of
the creation of an edge between n and the new node. Consequently, a node’s
connectivity does not depend on its age alone (so that also “young” nodes are
able to compete and succeed in acquiring links).

Our work has different merits: firstly, we propose a simple model for the latent
bipartite “node-attribute” network, where the role played by each single parameter
is straightforward and easy to interpret: specifically, we have the two parameters,
α and β, that control the number of new attributes each new node exhibits (in
particular, β > 0 tunes the power-law behavior of the total number of distinct
observed features); whereas the fitness parameters Ri’s impact on the probability of
the new nodes to inherit the attributes of the previous nodes. Secondly, unlike other
network models based on the standard Indian Buffet Process, we take into account
the aspect of competition and, like in [5], we introduce random fitness parameters
so that nodes have a different relevance in transmitting their features to the next
nodes; finally, we provide some theoretical, as well experimental, results regarding
the power-law behavior of the model and the estimation of the parameters. By
experimental data, we also show how the proposed model for the attribute structure
naturally leads to a complex network model.

The comparison with real datasets is promising: our model seems to produce
quite realistic attribute matrices while at the same time capturing most local and
global properties (e.g., degree distributions, connectivity and distance distributions)
real networks exhibit.

Some possible future developments are the following. First, we could introduce
another parameter c ≥ 0 in the model of the node-attribute bipartite network so

28



that the inclusion probabilities are

Pn(k) =

∑n
i=1RiZi,k

c+
∑n

i=1Ri

(we now have c = 0): the bigger c, the smaller the inclusion probabilities and so
the sparser the attributes. This can allow to obtain attribute matrices that are
sparser on the left side. To this purpose, we note that the proofs of the theoretical
results change only slightly and so, from a theoretical point of view, we have no
problem. The problem is, instead, in the fact that we have an additional parameter
to estimate.

Second, a possible variant of the feature/feature (FF) model is to consider, for
each incoming new node i, a feature/feature influence matrix Ξ(i) which depends
on i: for instance, a diagonal matrix with

ξk,k(i) =
1∑i−1

`=1 Z`,k

so that the edge-probability is smaller as the number of nodes with k as a feature is
larger.
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Figure 10: Properties of graphs generated by the FF model. We show the degree distribution in
a log-log plot and the fraction of pairs at distance at most k; in the latter, we highlight the peak
value (fraction of mutually reachable pairs). 33
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Figure 11: Properties of graphs generated by mixed models with K = 1 and
δ = 0.75. We show the degree distribution in a log-log plot and the fraction of
pairs at distance at most k; in the latter, we highlight the peak value, indicating
how many pairs of nodes are mutually reachable. The parameters of the underlying
attribute-matrix model are α = 3 and β = 0.75.
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Figure 13: Comparison of the cit-HepTh dataset versus a graph generated by the
FF model applied to the feature matrix. We show the degree distribution in a log-
log plot, and the fraction of pairs at distance at most k; in the latter, we highlight
the peak value, indicating how many pairs of nodes are mutually reachable.
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Entity-linking is a natural-language–processing task that consists in identifying the entities men-
tioned in a piece of text, linking each to an appropriate itemin some knowledge base; when the
knowledge base is Wikipedia, the problem comes to be known aswikification(in this case, items are
wikipedia articles). One instance of entity-linking can beformalized as an optimization problem on
the underlying concept graph, where the quantity to be optimized is the average distance between
chosen items. Inspired by this application, we define a new graph problem which is a natural variant
of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general
graphs; nonetheless, under some restrictive assumptions,it turns out to be solvable in linear time.
For the general case, we propose two heuristics: one tries toenforce the above assumptions and an-
other one is based on the notion of hitting distance; we show experimentally how these approaches
perform with respect to some baselines on a real-world dataset.

1 Introduction

Wikipedia1 is a free, collaborative, hypertextual encyclopedia that aims at collecting articles on different
(virtually, all) branches of knowledge. The usage of wikipedia for automatically tagging documents is
a well-known methodology, that includes in particular a task calledwikification [13]. Wikification is a
special instance ofentity-linking: a textual document is given and within the document variousfragments
are identified (either manually or automatically) as being(named) entities(e.g., names of people, brands,
places. . . ); the purpose of entity-linking is assigning a specific reference (a wikipedia article, in the case
of wikification) as a tag to each entity in the document.

Entity-linking happens typically in two stages: in a first phase, every entity is assigned to a set
of items, e.g., wikipedia articles (thecandidate nodesfor that entity); then a second phase consists in
selecting a single node for each entity, from within the set of candidates. The latter task, calledcandidate
selection, is the topic on which this paper focuses.

To provide a concrete example, suppose that the target document contains the entity “jaguar” and the
entity “jungle”. Entity “jaguar” is assigned to a set of candidates that contains (among others) both the
wikipedia article about the feline living in America and theone about the Jaguar car producer. On the
other hand, “jungle” is assigned to the article about tropical forests and to the one about the electronic
music genre. Actually, there are more than 30 candidates for“jaguar”, and more about 20 for “jungle”.

In this paper, we study an instance of the candidate selection problem in which the selection takes
place based on some cost function that depends on the averagedistance between the selected candidates,
where the distance is measured on the wikipedia graph2: the rationale should be clear enough—concepts

∗The second and third authors were supported by the EU-FET grant NADINE (GA 288956).
1http://en.wikipedia.org/
2The undirected graph whose vertices are the wikipedia articles and whose edges represent hyperlinks between them.

http://dx.doi.org/10.4204/EPTCS.159.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/
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appearing in the same text are related, and so we should choose, among the possible candidates for each
entity, those that are more closely related to one another.

Getting back to the example above, there is an edge connecting “jaguar” the feline with “jungle” the
tropical forest, whereas the distance between, say, the feline and the music genre is much larger.

The approach we assume here highlights thecollectivenature of the entity-linking problem, as men-
tioned already in [10]: accuracy of the selection can be improved by a global (rather than local) opti-
mization of the choices. As [10] observes, however, trying to optimize all-pair compatibility is a compu-
tationally difficult problem.

In this paper, we prove that the problem itself, even in the simple instance we take into consideration,
is NP-hard; however, it becomes efficiently solvable under some special assumptions. We prove that,
although these assumptions fail to hold in real-world scenarios, we can still provide heuristics to solve
real instances.

We test our proposals on a real-world dataset showing that one of our heuristics is very effective,
actually more effective than other methods previously proposed in the literature, and more than a simple
greedy approach using the same cost function adopted here.

2 Related Work

Named-entity linking (NEL)- also referred to asnamed entity disambiguationgrounds mentions of en-
tities in text (surface forms) into some knowledge base (e.g. Wikipedia, Freebase). Early approaches to
NEL [13] make use of measures derived from the frequency of the keywords to be linked in the text and in
different Wikipedia pages. These includetf-idf, χ2 andkeyphraseness, which stands for a measure of how
much a certain word is used in Wikipedia links in relation to its frequency in general text. Cucerzan [7]
employed the context in which words appears and Wikipedia page categories in order to create a richer
representation of the input text and candidate entities. These approaches were extended by Milne and
Witten [14] who combined commonness (i.e., prior probability) of an entity with its relatedness to the
surrounding context using machine learning. Further, Bunescu [4] employed adisambiguationkernel
which uses the hierarchy of classes in Wikipedia along with its word contents to derive a finer-grained
similarity measure between the candidate text and its context with the potential named entities to link
to. In this paper we will make use of Kulkarni et al.’s dataset[11]. They propose a general collective
disambiguation approach, under the premise that coherent documents refer to entities from one or a few
related topics. They introduce formulations that account for the trade-off between local spot-to-entity
compatibility and measures of global coherence between entities. More recently, Han et al. [10] propose
a graph-based representation which exploits the global interdependence of different linking decisions.
The algorithm infers jointly the disambiguated named mentions by exploiting the graph.

It is worth to remark that NEL is a task somehow similar to WordSense Disambiguation (deter-
mining the right sense of a word given its context) in which the role of the knowledge base is played
by Wordnet [8]. WSD is a problem that has been extensively studied and its explicitly connection with
NEL was made by Hachey et al [9]. WSD has been an area of intenseresearch in the past, so we will
review here the approaches that are directly relevant to ourwork. Graph-based approaches to word sense
disambiguation are pervasive and yield state of the art performance [15]; however, its use for NEL has
been restricted to ranking candidate named entities with different flavors of centrality measures, such as
in-degree or PageRank [9].

Mihalcea [12] introduced an unsupervised method for disambiguating the senses of words using
random walks on graphs that encode the dependencies betweenword senses.
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Navigli and Lapata [18, 16, 17] present subsequent approaches to WSD using graph connectivity
metrics, in which nodes are ranked with respect to their local importance, which is regarded using cen-
trality measures like in-degree, centrality, PageRank or HITS, among others.

Importantly, even if the experimental section of this paperdeals with a NEL dataset exclusively,
the theoretical findings could be equally applied to WSD-style problems. Ourgreedyalgorithm is an
adaptation of Navigli and Velardi’s Structural Semantic Interconnections algorithms for WSD [18, 6].
The original algorithm receives an ordered list of words to disambiguate. The procedure first selects the
unambiguouswords from the set (the ones with only one synset), and then for every ambiguous word, it
iteratively selects the sense that iscloser to the sense of disambiguated words, and adds the word to the
unambiguous set. This works in the case that a sufficiently connected amount of words is unambiguous;
this is not the case in NEL and in our experimental set-up, where there could potentially exists hundreds
of candidates for a particular piece of text.

3 Problem statement and NP-completeness

In this section we will introduce the general formal definition of the problem, in the formulation we
decided to take into consideration. We will make use of the classical graph notation: in particular, given
an undirected graphG= (V,E), we will denote withG[W] the graph induced by the vertices inW, and
with d(u,v) the distance between the nodesu andv, that is, the number of edges in the shortest path from
u to v (or the sum of the weights of the lightest path, ifG is weighted).

If G is a graph ande is an edge ofG, G− e is the graph obtained by removinge from G; we say
thate is abridge if the number of connected components ofG−e is larger than that ofG. A connected
bridgeless graph is calledbiconnected; a maximal set of vertices ofG inducing a biconnected subgraph
is called abiconnected componentof G.

We call our main problem theMinimum Distance Representative, in short MINDR, and we define it
as follows. Given an undirected graphG= (V,E) (possibly weighted) andk subsets of its set of vertices,
X1, . . . ,Xk⊆V, a feasible solution for MINDR is a sequence of vertices ofG, x1, . . . ,xk, such that for any
i, with 1≤ i ≤ k, xi ∈ Xi (i.e., the solution contains exactly one element from everyset, possibly with
repetitions).

Given the instanceG,{X1, . . . ,Xk}, the measure (thedistance cost) of a solutionS, x1, . . . ,xk, is
f (S) = ∑k

i=1∑k
j=1d(xi ,x j). The goal is finding the solution of minimum distance cost, i.e., a feasible

solutionSsuch thatf (S) is minimum.
We call the restriction of this problem, in which the sets of vertices in input{X1, . . . ,Xk} are disjoint,

M INDIR(Minimum Independent Distance Representative). In this case, for the sake of simplicity, we
will refer to a solution as the multiset composed by its elements.3

3.1 NP-completeness of MIN DR

The MINDIR problem seems to be similar and related to the so-called Maximum Capacity Represen-
tatives [5], in short MAX CRS. The Maximum Capacity Representatives problem is defined as follows:
given some disjoint setsX1, . . . ,Xm and for anyi 6= j, x∈ Xi, andy∈ Xj , a nonnegative capacityc(x,y), a

3We shall make free use of multiset membership, intersectionand union with their standard meaning: in particular, ifA
and B are multisets with multiplicity functiona andb, respectively, the multiplicity functions ofA∪B andA∩B arex 7→
max(a(x),b(x)) andx 7→min(a(x),b(x)), respectively.
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solution is a setS= {x1, . . .xm}, such that, for anyi, xi ∈Xi; such a solution is calledsystem of representa-
tives. The measure of a solution is the capacity of the system of representatives, that is∑x∈S∑y∈Sc(x,y),
and the MAX CRS problem aims atmaximizingit. The MAX CRS problem was introduced by [1], who
showed that it is NP-complete and gave some non-approximability results. Successively, in [19], tight
inapproximability results for the problem were presented.

The MINDIR problem differs from MAX CRS just for in the sense that we are dealing with distances
instead of capacities, and therefore we ask for a minimum instead of a maximum. Nonetheless the fol-
lowing Lemma, whose proof is given in Appendix A, shows that also MINDIR problem is NP-complete.

Lemma 1. TheM INDIR (hence,M INDR) problem is NP-complete.

4 The decomposable case

In this section we study the MINDR problem under some restrictive hypothesis and we will show that in
this case a linear exact algorithm exists.

Even if it may seem that these hypothesis are too strong to make the algorithm useful in practice, in
the next section we will use our algorithm to design an effective heuristic for the general problem. In
particular, we assume that the graphG (possibly weighted) is such that:

• any setXi induces a connected subgraph onG, i.e.,G[Xi] is connected,

• for any i 6= j, for anyx∈ Xi andy∈ Xj , x andy do not belong to the same biconnected component.

The problem, under these further restrictions, will be calleddecomposableM INDR. Note that the second
condition implies that a decomposable MINDR is in fact an instance of MINDIR, because it implies that
no two sets can have nonempty intersection.

Let us consider an instance(G,{X1, . . .Xk}) of decomposable MINDR problem on a graphG =
(V,E).

An edgee= (x,y) ∈ E is calledusefulif it is a bridge,x andy do not belong to the same setXi, and
there are at least two indicesi and j such thatXi andXj are in different components ofG−e (sincee is
a bridge, the graph obtained removing the edgee from G is no more connected).

4.1 Decomposing the problem

The main trick that allows to obtain a linear-time solution for the decomposable case is that we can
actually decompose the problem (hence the name) through useful edges. First observe that, trivially:

Remark 1. Let e= (x,y) be a useful edge and let Zx and Zy be the two connected components of G−e
containing x and y, respectively. In G, all paths from any x′ ∈ Zx to any y′ ∈ Zy must contain e.

Moreover:

Remark 2. Let e= (x,y) be a useful edge. There cannot be an index i such that Xi has a nonempty
intersection with both components of G−e.

In fact, assume by contradiction that one suchXi exists, and letu,w∈ Xi be two vertices living in the
two different components ofG−e: sinceG[Xi] is connected, there must be a path connectingu andw
and made only of elements ofXi; because of Remark 1, this path passes throughe, but this would imply
thatx,y∈ Xi, in contrast with the definition of useful edge.

Armed with the previous observations, we can give the following further definitions. LetYx (respec-
tively, Yy) be the set of setsXi such thatXi ⊆ Zx (respectively,Xi ⊆ Zy); we denote the sets of nodes inYx

andYy by V(Yx)⊆ Zx andV(Yy)⊆ Zy, respectively.
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By virtue of Remark 1, all the paths inG from anyx′ ∈V(Yx) to anyy′ ∈V(Yy) pass throughe. This
implies also that there is no simple cycle in the graph including bothx′ ∈V(Yx) andy′ ∈V(Yy).

Given a solutionS for M INDIR(G,{X1, . . . ,Xk}), and a useful edge(x,y), we have:

∑
xi ,xj∈S

d(xi ,x j) = ∑
xi ,xj∈S∩V(Yx)

d(xi ,x j)+ ∑
xi ,xj∈S∩V(Yy)

d(xi ,x j)+

2 ∑
xi∈S∩V(Yx),xj∈S∩V(Yy)

(d(xi ,x)+d(x,y)+d(y,x j )) .

Indeed all the shortest paths from anyxi ∈ S∩V(Yx) to anyx j ∈ S∩V(Yy) pass through the useful edge
(x,y) by Remark 1. Moreover, since the setsX1, . . . ,Xk are disjoint, we have that|S∩V(Yx)| = |Yx| and
|S∩V(Yy)| = |Yy|, that is, a solution has exactly one element for each set inYx (respectively,Yy). Hence
we can rewrite the last summand of the above equation as follows:

∑
xi∈S∩V(Yx),xj∈S∩V(Yy)

(d(xi ,x)+d(y,x j )+d(x,y)) = |Yy| · ∑
xi∈S∩V(Yx)

d(xi ,x)+

|Yx| · ∑
xj∈S∩V(Yy)

d(y,x j )+

|Yx| · |Yy| ·d(x,y).

By combining the two equations, we can conclude that finding asolution for MINDIR(G,{X1, . . . ,Xk})
can be decomposed into the following two subproblems:

1. findingSx minimizing ∑xi ,xj∈S∩V(Yx)d(xi ,x j)+2∑xi∈S∩V(Yx) |Yy|d(xi ,x) in the instance(G[Zx],Yx);

2. findingSy minimizing ∑xi ,xj∈S∩V(Yy)d(xi ,x j)+2∑xj∈S∩V(Yy) |Yx|d(y,x j) in the instance(G[Zy],Yy).

Note that both instances are smaller than the original one because of the definition of a useful edge.
The idea of our algorithm generalizes this principle; note that the new objective function we must take
into consideration is slightly more complex than the original one: in fact, besides the usual all-pair–
distance cost there is a further summand that is a weighted sum of distances from some fixed nodes (such
asx for the instanceG[Zx],Yx andy for the instanceG[Zy],Yy).

We hence define an extension of the MINDR problem, that we call EXTM INDR (for Extended
Minimum Distance Representatives). In this problem, we are given:

• an undirected graphG= (V,E) (possibly weighted)

• k subsets of its set of vertices,X1, . . . ,Xk ⊆V

• a multisetB of vertices, eachx∈ B endowed with a weightb(x).

A feasible solution for the EXTM INDR is a multisetS= {x1, . . . ,xk} of vertices ofG, such that for any
i, with 1≤ i ≤ k, S∩Xi 6= /0 (i.e., the set contains at least one element from every set). Its cost is

f (S) =
h

∑
i=1

k

∑
j=1

d(xi ,x j)+
k

∑
i=1

∑
z∈B

b(z)d(xi ,z).

The goal is finding the solution of minimum cost, i.e., a feasible solutionSsuch thatf (S) is minimum.
The original version of the problem is obtained by lettingB= /0.

We are now ready to formalize our decomposition through the following Theorem, whose proof is
given in Appendix B.
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Theorem 1. Let us be given a decomposableEXTM INDR instance(G,{X1, . . . ,Xk},B,b) and a useful
edge e= (t0, t1). For every s∈ {0,1}, let Zs be the connected component of G−e containing ts, Ys be the
set of sets Xi such that Xi ⊆ Zs and V(Ys) be the union of those Xi ’s. Let also Bs be the intersection of B
with Zs. Define a new instance Is = (T[Zs],{Xi , i ∈Ys},Bs∪{ts},bs) where

bs(ts) = 2|Y1−s|+ ∑
z∈B1−s

b(z) and bs(z) = b(z), for any z∈ B.

Then the cost f(S) of an optimal solution S of the original problem is equal to

f (S0)+ f (S1)+2|Y0||Y1|d(t0, t1)+ ∑
s∈{0,1}

(

|S∩V(Ys)| · ∑
z∈B∩Z1−s

b(z)d(ts,z)

)

where Ss is an optimal solution for the instance Is.

For completeness, we need to consider the base case of an instance with just one setG,{X1},B,b:
the solution in this case is just one nodex ∈ X1 and the objective function to be minimized is simply
∑z∈Bd(x,z)b(z). The optimal solution can be found by performing a BFS from everyzj ∈B (in increasing
order of j), maintaining for each nodey∈ X1, g(y) = ∑zt∈B,t< j d(x,zt )b(zt), and picking the node having
maximum finalg(y). This process takesO(|B| · |E(G[X1])|). It is worth observing that in our case the
size of the multisetB is always bounded byk. Moreover since∑k

i=1 |E(G[Xi])| ≤ |E(G)|= m, the overall
complexity for all these base cases is bounded byO(k ·m).

4.2 Finding useful edges

For every instance with more than one set, given an useful edge e the creation of the subproblems as
described above is linear, so we are left with the issue of finding useful edges. This task can be seen as
a variant of the standard depth-first search of bridges, as shown in Algorithm 2 and 3, in Appendix C.
Recall that bridges can be found by performing a standard DFSthat numbers the nodes as they are found
(using the global counter visited, and keeping the DFS numbers in the array dfs); every visit returns the
index of the least ancestor reachable through a back edge while visiting the DFS-subtree rooted at the
node where the visit starts from. Every time a DFS returns a value that is larger than the number of the
node currently being visited, we have found a bridge.

The variant consists in returning not just the index of the least ancestor reachable, but also the set
of indicesi that are found while visiting the subtree. If the set of indices and its complement are both
different from /0 then the bridge is useful: at this point, a “rapid ascent” is performed to get out of the
recursive procedure.

4.3 The final algorithm

Combining the observations above, we can conclude that the overall complexity of the algorithm is
O(k ·m). The algorithm is presented in Algorithm 1.

5 The general case

As we observed at the beginning, the MINDR problem is NP-complete in general, although the decom-
posable version turns out to be linear. We want to discuss howwe can deal with a general instance of the
problem. To start with, let us consider a general connected MINDR instance, that is:
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Algorithm 1: DECOMPOSABLEM INDR
Input : A graphG= (V,E), X1 . . . ,Xk ⊆V, a weighted multisetB of nodes inV, where each element inB has a weight

b. G[Xi ] is connected for everyi and moreover for alli 6= j andx∈ Xi , y∈ Xj , the two verticesx andy do not
belong to the same biconnected component ofG.

Output : A solutionS= {x1, . . . ,xk} such that for anyi, with 1≤ i ≤ k, xi ∈ Xi , minimizing
∑h

i=1 ∑k
j=1 d(xi ,x j )+∑k

i=1∑z∈Bb(z)d(xi ,z)
Find a useful edgee= (x,y), if it exists, using Algorithm 2
if the useful edge does not existthen

if k 6= 1 then
Fail!

end
Output the elementx1 ∈ X1 minimizing ∑z∈Bb(z)d(x1,z)

else
Let Zx (respectivelyZy) be the connected component ofT−e containingx (respectivelyy) .
LetYx (respectivelyYy) be the indicesi such thatXi ⊆Yx (Xi ⊆Yy, respectively)
B′← B∪{x} (multiset union) withb(x) = 2|Yy|+∑z∈B∩Zy

b(z)
B′← B′∩Zx (multiset intersection)
S′← DECOMPOSABLEM INDR(T[Zx],Yx,B′)
B′′← B∪{x} (multiset union) withb(y) = 2|Yx|+∑z∈B∩Zx

b(z)
B′′← B′′∩Zy (multiset intersection)
S′′← DECOMPOSABLEM INDR(T[Zy],Yy,B′′)
return S′∪S′′

end

• a connected undirected (possibly weighted) graphG= (V,E),

• k subsets of its set of vertices,X1, . . . ,Xk ⊆V,

with the additional assumption thatG[Xi] is connected for everyi. Recall that a feasible solution is a
sequenceSof vertices ofG, x1, . . . ,xk, such that for anyi, with 1≤ i ≤ k, we havexi ∈ Xi; its (distance)
cost is f (S) = ∑k

i=1∑k
j=1d(xi ,x j).

We shall discuss two heuristics to approach this problem: the first is related to Algorithm 1 in that
it tries to modify the problem to make it into a decomposable one, whereas the second is based on the
notion of hitting distance.

Before describing the two heuristics, let us briefly explainthe rationale behind the additional as-
sumption (i.e., that everyG[Xi] be connected). In our main application (entity-linking) the structure of
the graph within eachXi is not very important, and can actually be misleading: a verycentral node in a
large candidate set may seem very promising (and may actually minimize the distance to the other sets)
but can be blatantly wrong. It is pretty much like the distinction between nepotistic and non-nepotistic
links in PageRank computation: the linkswithin each host are not very useful in determining the impor-
tance of a page—on the contrary, they may be confusing, and are thus often disregarded.

Based on this observation, we can (and probably want to) modify the structure of the graph within
each setXi to avoid this kind of trap. This is done by preserving theexternallinks (those that connect
vertices ofXi to the outside), but at the same time adding or deleting edgeswithin eachXi in a suitable
way. In our experiments, we considered two possible approaches:

• one consists in makingG[Xi] maximally connected, i.e., transforming it into a clique;

• the opposite approach makesG[Xi] minimally connectedby adding the minimum number of edges
needed to that purpose; this can be done by computing the connected components ofG[Xi] and
then adding enough edges to join them in a single connected component.
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Both approaches guarantee thatG[Xi] is connected, so that the two heuristics described below canbe
applied.

5.1 The spanning-tree heuristic

The first heuristic aims at modifying the graphG in such a way that the resulting instance becomes
decomposable. For the moment, let us assume that the setsXi are pairwise disjoint. To guarantee that
the problem be decomposable, we proceed as follows. Define anequivalence relation∼ onV by letting
x∼ y wheneverx andy belong to the sameXi.4 The quotient graphG/ ∼= (V/ ∼,E/ ∼) has vertices
V/ ∼ and an edge between[x] and [y] whenever there is some edge(x′,y′) ∈ E with x′ ∼ x andy′ ∼ y
(here, and in the following,[x] denotes the∼-equivalence class includingx). Thus, there is a surjective
(but not injective) mapι : E→ E/∼.

SinceG is connected, so isG/ ∼, and we perform a breadth-first traversal ofG building a spanning
treeT. Every tree edge is an edge ofG/∼, so its pre-image with respect toι is a nonempty set of edges
in G. Let us arbitrarily choose one edge ofG from ι−1(t) for every tree edget, and letT ′ be the resulting
set of edges ofG.

Define the new graphG′ = (V,E′) whereE′ = T ′∪
⋃k

i=1 E(G[Xi]): this graph cointains all the edges
within each setXi, plus the setT ′ of external edges.

It is easy to see thatG′[Xi] is connected (it is in fact equal toG[Xi]), and moreover all the elements of
T ′ are bridges dividing all theXi ’s in distinct biconnected components. In other words, we have turned
the instance into adecomposableone, where Algorithm 1 can be run.

The non-disjoint case If the setsXi are not pairwise disjoint, we can proceed as follows. Let us define
maximal mutually disjoint sets of indicesI1, . . . , Ih⊆{1, . . . ,k} such that for allt 6= s,∪i∈It Xi∩∪i∈IsXi = /0.

Now, take the new problem instance with the same graph and setsY1, . . . ,Yh whereYt = ∪i∈It Xi: this
instance is disjoint, so the previous construction applies. The only difference is that, at the very last step
of Algorithm 1, when we are left with a graph and asingle Yt , we will not select a singley∈Yt optimizing
the cost function

∑
z∈B

b(z)d(y,z).

Rather, we will choose one elementxi for everyi ∈ It optimizing

∑
i∈It

∑
z∈B

b(z)d(xi ,z).

Discussion Both steps presented above introduce some level of imprecision, that make the algorithm
only a heuristic in the general case. The first approximationis due to the fact that building a tree on
G will produce distances (between vertices living in different Xi) much larger than they are inG; the
second approximation is that when we have non-disjoint sets, we only optimize with respect to bridges,
disregarding the sum of distances of the nodes of different sets. Actually, we should optimize

∑
i∈It

∑ j ∈ Itd(xi ,x j)+∑
i∈It

∑
z∈B

b(z)d(xi ,z).

but this would make the final optimization step NP-complete.

4Note that, since the setsXi are pairwise disjoint,∼ is transitive.
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5.2 The hitting-distance heuristic

The second heuristic we propose is based on the notion ofhitting distance: given a vertexx and a set
of verticesY, define the hitting distance ofx to Y asd(x,Y) = miny∈Y d(x,y). The hitting distance can
be easily found by a breadth-first traversal starting atx and stopping as soon as an element ofY is hit.
Given a general connected instance of MINDR, as described above, we can consider, for everyi and
everyx∈ Xi, the average hitting distance ofx to the other sets:

∑k
j=1d(x,Xj)

k
.

The elementx∗i ∈ Xi minimizing the average hitting distance (or any such an element, if there are many)
is the candidate chosen for the setXi in that solution.

The main problem with this heuristic is related to its locality (optimization is performed separately
for eachXi); moreover the worst-case complexity isO(m∑i |Xi|), that reduces toO(k ·m) only under the
restriction that the setsXi haveO(1) size.

6 Experiments

All our experiments were performed on a snapshot of the English portion of Wikipedia as of late Febru-
ary 2013; the graph (represented in the BVGraph format [3]) was symmetrized and only the largest
component was kept. The undirected graph has 3 685 351 vertices (87.2% of the vertices of the original
graph) and 36 066 162 edges (99.9% of the edges of the original graph). Such a graph will be called the
“Wikipedia graph” and referred to asG throughout this experimental section.

Our experiments use actual real-world entity-linking problems for which we have a human judgment,
and tries the two heuristics proposed in Section 5, as well asa greedy baseline and other heuristics.

The greedy baseline works as follows: it first chooses an index i at random, and draws an element
xi ∈Xi also at random. Then, it selects a vertex ofxi+1 ∈Xi+1,xi+2∈ Xi+2, . . . ,xk ∈Xk,x1∈ X1, . . . ,xi−1 ∈
Xi−1 (in this order) minimizing each time the sum of the distancesto the previously selected vertices;
the greedy algorithm continues doing the same also forxi ∈ Xi to get rid of the only element (the first
one) that was selected completely at random. Moreover we have considered also two other heuristics,
that have been observed to be effective in practice [9]: these aredegreeand PageRank based. They
respectively select the highest degree and the highest PageRank vertex for each set.

The real-world entity-linking dataset has been taken from [11] which contains a larger number of
human-labelled annotations. For retrieving the candidates, we created an index over all Wikipedia pages
with different fields (title, body, anchor text) and used a variant of BM25F [2] for ranking, returning
the top 100 scoring candidate entities. Since the candidateselection method was the same for every
graph-based method employed, there should be no bias in the experimental outcomes.

The problem instances contained in the dataset have 11.73 entities on average (with a maximum of
53), and the average number of candidates per entity is 95.90 (with a maximum of 200). Each of the 100
problem instances in the NEL dataset is annotated, and in particular, for everyi there is a subsetX∗i ⊆ Xi

of fair vertices (that is, vertices that are good candidates for that set): typically|X∗i | = 1. Note that, for
every instance in the NEL dataset, we deleted the setsXi such thatX∗i were not included in the largest
connected component of the Wikipedia graph. The number of setsXi deleted was at maximum 2 (for two
instances). We have not considered instances in which, after these modifications, we have just one setXi:
this situation happened in 5 cases. So the problem set on which we actually ran our algorithm contains
95 instances.



R. Blanco, P. Boldi, A. Marino 39

DISTANCE-COST RATIO VALUE

MAXIMAL M INIMAL MAXIMAL M INIMAL

CONNECTION CONNECTION CONNECTION CONNECTION

Average Average Average Average
HEURISTIC (± Std Error) (± Std Error) (± Std Error) (± Std Error)
Spanning-tree 122.747(±2.812) 130.998 (±2.917) 0.369 (±0.023) 0.360 (±0.023)
Hitting-distance 103.945 (±1.320) 105.797 (±2.322) 0.454 (±0.027) 0.459 (±0.027)
Greedy 101.969 (±0.429) 102.785 (± 0.426) 0.428 (±0.025) 0.426 (±0.026)
Degree based 114.182 (±2.386) 113.285 (±2.305) 0.411 (±0.024) 0.394 (±0.023)
PageRank based 114.894 (±2.452) 112.392 (±2.266) 0.407 (±0.025) 0.398 (±0.023)

GROUND TRUTH 115.117 (±1.782) 119.243 (±1.873)

Table 1: Distance-cost ratio and value.

For every instance, we considered the maximal and minimal connection5 approach, and then ran both
heuristics described in Section 5, comparing them with the greedy baseline, and also with the degree and
PageRank heuristics.

For any instance, when comparing the distance costf of the solutionsSj returned by some algorithm
A j , we have computed thedistance-cost ratioof each algorithmA j , defined as

f (Sj)

min j f (Sj)
·100.

Intuitively this corresponds to the approximation ratio ofeach solution with respect to the best solution
found by all the considered algorithms: hence the best algorithm has minimum distance-cost ratio and it
equals 100.

Besides evaluating the distance cost of the solutions foundby the various heuristics, we can compute
how many of the elements found are fair: we normalize this quantity by k, so that 1.0 means that all the
k candidates selected are fair. We call such a quantity thevalueof a solution.

In the last two columns of Table 1 we report, for each heuristic, the average value (across all the
instances) along with the standard error. For both the connection approaches, we have that the hitting-
distance heuristic outperforms all the other heuristics, and it selects more than 45% of fair candidates.
The variability of the results seems not to differ too much for all the methods. The second best heuristic
is the greedy baseline, that selects almost 42.8% and 42.6% fair candidates respectively in a maximal
and minimal connected scenario.

It is worth observing that the greedy approach comes second (as far as the value is concerned),
and outperforms the baseline techniques (degree and PageRank). The spanning tree heuristic, instead,
perform worse than any other method.

The latter outcome is easily explained by the fact that it transforms completely the topology of
the graph in order to make the instance decomposable, and thedistances between vertices are mostly
scrambled. This interpretation of the bad result obtained can also be seen looking at the distance cost
(central columns of Table 1): the spanning-tree heuristic is the one that is less respectful of distances,
selecting candidates that are far apart from one another.

In the central columns of Table 1, we report also the distance-cost ratio for all the other heuristics.
For both the maximal and the minimal connection approaches,the greedy baseline seems to obtain more

5To obtain the minimal connection of eachG[Xi ], we chose to connect the vertex of maximum degree of its largest component
with an (arbitrary) vertex of each of its remaining components.
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often a minimum distance cost solution. The second best option is the hitting distance heuristic, while
the other methods seems to be more far away from an optimal result.

In the last row of Table 1, we report the distance-cost ratio for the ground-truth solution given by the
fair candidates. It seems that for any instance, the ground truth has distance cost averagely 15%-20%
higher than the best solution we achieve by using the heuristics. This observation suggests that probably
our objective function (that simply aims at minimizing the graph distances) is too simplistic: the distance
cost is an important factor to be taken into account but certainly not the unique one.

It is interesting to remark, though, that the average Jaccard coefficient between the solution found
by the degree based and the hitting-distance heuristic is 0.3 (for both maximal and minimal connection
approaches): this fact means that the degree and distance can be probably used as complementary features
that hint at different good candidates, although we currently do not know how to combine these pieces
of information.

Finally, we remark that we also tried to apply the degree and PageRank based heuristics by using the
same problem set butin the original directed graph; in this case, we did not enforce any connectivity of
the subgraphsG[Xi]: the resulting average values (± standard error) are respectively 0.327 (±0.020) and
0.336 (±0.022), and they are both worse than the values achieved by degree and PageRank heuristics in
Table 1. This fact suggests that our experimental approach (of considering the undirected version and of
enforcing some connectivity on the subgraphs) not only guarantees the applicability of our heuristics in
a more suitable scenario, but also improves the effectiveness of the other existing techniques.

7 Conclusions and future work

Inspired by the entity-linking task in NLP, we defined and studied a new graph problem related to Max-
imum Capacity Representative Set and we proved that this problem is NP-hard in general (although it
remains an open problem to determine its exact approximability). Morevoer, we showed that the problem
can be solved efficiently in some special case, and that we cananyway provide reasonable heuristics for
the general scenario. We tested our proposals on a real-world dataset showing that one of our heuristics
is very effective, actually more effective than other methods previously proposed in the literature, and
more than a simple greedy approach using the same cost function adopted here.

The other heuristic proposed in this paper seem to work poorly (albeit it reduces to a case where we
know how to produce the optimal solution), but we believe that this is just because of the very rough
preprocessing phase it adopts; we plan to devise a more refined way to induce the conditions needed for
Algorithm 1 to work, without having to resort to the usage of aspanning tree—the latter scrambles the
distances too much, resulting in a bad selection of candidates.

Finally, we observed that a distance-based approach is complementary to other methods (e.g., the
local techniques based solely on the vertex degree), hinting at the possibility of obtaining a new, better
cost function that exploits both features at the same time.
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A Proof of Lemma 1

Proof. We reduce MAX CRS to MINDIR. Given an instance of MAX CRS,{X1, . . .Xk} and for anyi 6= j,
x∈ Xi, andy∈ Xj , a nonnegative capacityc(x,y), we construct the instance of MINDIR G,{X1, . . . ,Xk};
the vertices ofG are X1∪ . . . ∪Xk, and for any pairx ∈ Xi, y ∈ Xj , with i 6= j, we add a weighted
edge betweenx and y, i.e., for each pair for which MAX CRS defines a capacity we create a corre-
sponding edge inG. In particular the weight of the edge betweenx andy is set toα − c(x,y), where
α = 2maxz∈Xi ,t∈Xj ,i 6= j c(z, t).

Observe that for any pair of nodesu∈ Xi, v∈ Xj , with i 6= j, d(u,v) in G is equal to the weight of
(u,v), i.e., it is not convenient to pass through other nodes when going fromu to v: in fact, for any path
z1, . . . ,zp from u to v in G, with p≥ 1, we always haveα − c(u,v) ≤ α − c(u,z1)+ . . .+α − c(zp,v),
sinceα − c(u,v) ≤ α and the weight of such a path is at leastp+1

2 α ≥ α . Moreover, observe that any
optimal solution inG has exactly one element for each setXi: thus, we havek(k−1) pairs of elements
(x,y), whose distance is always given by the weight of the single edge(x,y), that isα−c(x,y).

Hence it is easy to see that MAX CRS admits a system of representatives whose capacity is greater
thanh, if and only if MINDIR admits a solutionSsuch thatf (S) is less thank(k−1)α−h.

Since MINDIR is a restriction of MINDR we can conclude that also MINDR is NP-complete.

B Proof of Theorem 1

Proof. We can rewrite the objective function as follows.

∑
xi ,xj∈S

d(xi ,x j)+ ∑
xi∈S

∑
z∈B

d(xi ,z)b(z) = 2|Y0||Y1|d(t0, t1)+ ∑
xi ,xj∈S∩V(Y0)

d(xi ,x j)+ ∑
xi ,xj∈S∩V(Y1)

d(xi ,x j)+

2|Y1| ∑
xi∈S∩V(Y0)

d(xi , t0)+ ∑
xi∈S∩V(Y0)

∑
z∈B

d(xi ,z)b(z)+

2|Y0| ∑
xj∈S∩V(Y1)

d(t1,x j)+ ∑
xi∈S∩V(Y1)

∑
z∈B

d(xi ,z)b(z).

This is because ifz∈ B∩Z1, for any nodexi ∈ S∩V(Y0), we haved(xi ,z) = d(xi , t0) + d(t0,z) (and
analogously, ifz∈ B∩Z0, for any nodexi ∈ S∩V(Y1), we haved(xi ,z) = d(xi , t1)+d(t1,z)). Hence:

∑
xi∈S∩V(Y0)

∑
z∈B

d(xi ,z)b(z) = ∑
xi∈S∩V(Y0)

∑
z∈B∩Z0

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y0)

∑
z∈B∩Z1

d(xi , t0)b(z)+d(t0,z)b(z)

and

∑
xi∈S∩V(Y1)

∑
z∈B

d(xi ,z)b(z) = ∑
xi∈S∩V(Y1)

∑
z∈B∩Z1

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y1)

∑
z∈B∩Z0

d(xi , t1)b(z)+d(t1,z)b(z).

Observe thatt0 or t1 might already belong toB: this is why we assumed thatB is a multiset.
Then, we have that:

f (S0) = ∑
xi ,xj∈S∩V(Y0)

d(xi ,x j)+ ∑
xi∈S∩V(Y0)

∑
z∈B∩Z0

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y0)

d(xi , t0) ·

(

2|Y1|+ ∑
z∈B∩Z1

b(z)

)
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f (S1) = ∑
xi ,xj∈S∩V(Y1)

d(xi ,x j)+ ∑
xi∈S∩V(Y1)

∑
z∈B∩Z1

d(xi ,z)b(z)+ ∑
xi∈S∩V(Y1)

d(xi , t1) ·

(

2|Y0|+ ∑
z∈B∩Z0

b(z)

)

Hence, by addingts to B∩Zs = Bs, with weight equal tobs = 2|Y1−s|+∑z∈B∩Z1−s
b(z), f (S) can be

reduced tof (S0) and f (S1).

C The algorithm for finding useful edges

Algorithm 2: USEFULEDGE

Input : An instanceG,{X1, . . . ,Xk},B,b
Output : A useful edge, or null
Pick a nodeu of the setXi of the instanceG,{X1, . . . ,Xk},B,b
Mark all the nodes as unseen
dfs[]←−1, visited← 0, usefulEdgeFound← f alse, usefulEdge← null
DFS(u,−1)
if usefulEdgeFoundthen

return usefulEdge
else

return null
end

Algorithm 3: DFS
Input : A nodeu, its parentp
Output : A pair (t,Y), wheret is an integer andY is a set of indices
if usefulEdgeFoundthen return null Mark u as seen
dfs[u]← visited
visited← visited+1
furthestAncestor← visited
Y← /0
if t ∈ Xi then Y←Y∪{i} for v∈ N(u) s.t. w6= p do

if v is unseenthen
(t ′,Y′)← DFS(v,u)
if t ′ > dfs[u] and /0 6=Y′ 6= {1, . . . ,k} then

usefulEdgeFound← true
usefulEdge← (u,v)
return null

end
furthestAncestor←min(furthestAncestor, t ′)
Y←Y∪Y′

else
furthestAncestor←min(furthestAncestor,dfs[v])

end
end
return (furthestAncestor,Y)
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Abstract
Wikipedia is a huge global repository of human knowledge that can be leveraged to investi-

gate interwinements between cultures. With this aim, we apply methods of Markov chains

and Google matrix for the analysis of the hyperlink networks of 24 Wikipedia language edi-

tions, and rank all their articles by PageRank, 2DRank and CheiRank algorithms. Using au-

tomatic extraction of people names, we obtain the top 100 historical figures, for each edition

and for each algorithm. We investigate their spatial, temporal, and gender distributions in

dependence of their cultural origins. Our study demonstrates not only the existence of skew-

ness with local figures, mainly recognized only in their own cultures, but also the existence

of global historical figures appearing in a large number of editions. By determining the birth

time and place of these persons, we perform an analysis of the evolution of such figures

through 35 centuries of human history for each language, thus recovering interactions and

entanglement of cultures over time. We also obtain the distributions of historical figures over

world countries, highlighting geographical aspects of cross-cultural links. Considering his-

torical figures who appear in multiple editions as interactions between cultures, we construct

a network of cultures and identify the most influential cultures according to this network.

Introduction
The influence of digital media on collective opinions, social relationships, and information dy-
namics is growing significantly with the advances of information technology. On the other
hand, understanding how collective opinions are reflected in digital media has crucial impor-
tance. Among such a medium, Wikipedia, the open, free, and online encyclopedia, has crucial
importance since it is not only the largest global knowledge repository but also the biggest col-
laborative knowledge platform on the Web. Thanks to its huge size, broad coverage and ease of
use, Wikipedia is currently one of the most widely used knowledge references. However, since
its beginning, there have been constant concerns about the reliability of Wikipedia because of
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its openness. Although professional scholars may not be affected by a possible skewness or bias
of Wikipedia, students and the public can be affected significantly [1, 2]. Extensive studies have
examined the reliability of contents [1–3], topic coverage [4], vandalism [5], and conflict [6–8]
in Wikipedia.

Wikipedia is available in different language editions; 287 language editions are currently ac-
tive. This indicates that the same topic can be described in hundreds of articles written by dif-
ferent language user groups. Since language is one of the primary elements of culture [9],
collective cultural biases may be reflected on the contents and organization of each Wikipedia
edition. Although Wikipedia adopts a “neutral point of view” policy for the description of con-
tents, aiming to provide unbiased information to the public [10], it is natural that each lan-
guage edition presents reality from a different angle. To investigate differences and
relationships among different language editions, we develop mathematical and statistical meth-
ods which treat the huge amount of information in Wikipedia, excluding cultural preferences
of the investigators.

Cultural bias or differences across Wikipedia editions have been investigated in previous re-
search [11–17]. A special emphasis was devoted to persons described in Wikipedia articles [12]
and their ranking [18, 19]. Indeed, human knowledge, as well as Wikipedia itself, was created
by people who are the main actors of its development. Thus it is rather natural to analyze a
ranking of people according to the Wikipedia hyper-link network of citations between articles
(see network data description below). A cross-cultural study of biographical articles was pre-
sented in [20], by building a network of interlinked biographies. Another approach was pro-
posed recently in [21]: the difference in importance of historical figures across Wikipedia
language editions is assessed on the basis of the global ranking of Wikipedia articles about per-
sons. This study, motivated by the question “Is an important person in a given culture also im-
portant in other cultures?”, showed that there are strong entanglements and local biases of
historical figures in Wikipedia. Indeed, the results of the study show that each Wikipedia edi-
tion favors persons belonging to the same culture (language), but also that there are cross-
Wikipedia top ranked persons, who can be signs of entanglement between cultures. These
cross-language historical figures can be used to generate inter-culture networks demonstrating
interactions between cultures [21]. Such an approach provides us novel insights on cross-cul-
tural differences across Wikipedia editions. However, in [21] only 9 Wikipedia editions, mainly
languages spoken in European, have been considered. Thus a broader set of language editions
is needed to offer a more complete view on a global scale.

We note that the analysis of persons’ importance via Wikipedia becomes more and more
popular. This is well visible from the appearance of new recent studies for the English Wikipe-
dia [22] and for multiple languages [23]. The analysis of coverage of researchers and academics
via Wikipedia is reported in [24].

Here we investigate interactions and skewness of cultures with a broader perspective, using
global ranking of articles about persons in 24 Wikipedia language editions. According to Wiki-
pedia [25] these 24 languages cover 59 percent of world population. Moreover, according to
Wikipedia [26], our selection of 24 language editions covers the 68 percent of the total number
of 30.9 millions of Wikipedia articles in all 287 languages. These 24 editions also cover lan-
guages which played an important role in human history including Western, Asian and
Arabic cultures.

On the basis of this data set we analyze spatial, temporal, and gender skewness in Wikipedia
by analyzing birth place, birth date, and gender of the top ranked historical figures in Wikipe-
dia. We identified overall Western, modern, and male skewness of important historical figures
across Wikipedia editions, a tendency towards local preference (i.e. each Wikipedia edition fa-
vors historical figures born in countries speaking that edition’s language), and the existence of
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global historical figures who are highly ranked in most of Wikipedia editions. We also con-
structed networks of cultures based on cross-cultural historical figures to represent interactions
between cultures according to Wikipedia.

To obtain a unified ranking of historical figures for all 24 Wikipedia editions, we introduce
an average ranking which gives us the top 100 persons of human history. To assess the align-
ment of our ranking with previous work by historians, we compare it with the Hart’s list of the
top 100 people who, according to him, most influenced human history [27]. We note that Hart
“ranked these 100 persons in order of importance: that is, according to the total amount of in-
fluence that each of them had on human history and on the everyday lives of other human
beings”.

Methods
In this research, we consider each Wikipedia edition as a network of articles. Each article corre-
sponds to a node of the network and hyperlinks between articles correspond to links of the net-
work. For a given network, we can define an adjacency matrix Aij. If there is a link (one or
more) from node (article) j to node (article) i then Aij = 1, otherwise, Aij = 0. The out-degree
kout(j) is the number of links from node j to other nodes and the in-degree kin(j) is the number
of links to node j from other nodes. The links between articles are considered only inside a
given Wikipedia edition, there are no links counted between editions. Thus each language edi-
tion is analyzed independently from others by the Google matrix methods described below.
The transcriptions of names from English to the other 23 selected languages are harvested
fromWikiData (http://dumps.wikimedia.org/wikidatawiki) and not directly from the text
of articles.

To rank the articles of a Wikipedia edition, we use two ranking algorithms based on the arti-
cles network structure. Detailed descriptions of these algorithms and their use for Wikipedia
editions are given in [18, 19, 28, 29]. The methods used here are described in [21]; we keep the
same notations.

Google matrix
First we construct the matrix Sij of Markov transitions by normalizing the sum of the elements
in each column of A to unity (Sij = Aij/∑i Aij, ∑i Sij = 1) and replacing columns with zero elements
by elements 1/N withN being the matrix size. Then the Google matrix is given by the relation
Gij = αSij + (1 − α)/N, where α is the damping factor [30]. As in [21] we use the conventional
value α = 0.85. It is known that the variation of α in a range 0.5� α< 0.95 does not significantly
affect the probability distribution of ranks discussed below (see e.g. [18, 19, 30]).

PageRank algorithm
PageRank is a widely used algorithm to rank nodes in a directed network. It was originally in-
troduced for Google web search engine to rank web pages of the World Wide Web based on
the idea of academic citations [31]. Currently PageRank is used to rank nodes of network sys-
tems from scientific papers [32] to social network services [33], world trade [34] and biological
systems [35]. Here we briefly outline the iteration method of PageRank computation. The
PageRank vector P(i, t) of a node i at iteration t in a network with N nodes is given by

Pði; tÞ ¼
X

j

GijPðj; t � 1Þ ¼ ð1� aÞ=N þ a
X

j

AijPðj; t � 1Þ=koutðjÞ: ð1Þ
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The stationary state P(i) of P(i, t) is the PageRank of node i. More detailed information
about the PageRank algorithm is described in [30]. Ordering all nodes by their decreasing
probability P(i), we obtain the PageRank ranking index K(i). In qualitative terms, the PageRank
probability of a node is proportional to the number of incoming links weighted according to
their own probability. A random network surfer spends on a given node a time given on aver-
age by the PageRank probability.

CheiRank algorithm
In a directed network, outgoing links can be as important as ingoing links. In this sense, as a
complementary to PageRank, the CheiRank algorithm is defined and used in [18, 28, 36]. The
CheiRank vector P�(i, t) of a node at iteration time t is given by

P�ðiÞ ¼ ð1� aÞ=N þ a
X

j

AjiP
�ðjÞ=kinðjÞ ð2Þ

Same as the case of PageRank, we consider the stationary state P�(i) of P�(i, t) as the CheiR-
ank probability of node i with α = 0.85. High CheiRank nodes in the network have large out-
degree. Ordering all nodes by their decreasing probability P�(i), we obtain the CheiRank rank-
ing index K�(i). The PageRank probability of an article is proportional to the number of in-
coming links, while the CheiRank probability of an article is proportional to the number of
outgoing links. Thus a top PageRank article is important since other articles refer to it, while a
top CheiRank article is highly connected because it refers to other articles.

2DRank algorithm
PageRank and CheiRank algorithms focus only on in-degree and out-degree of nodes, respec-
tively. The 2DRank algorithm considers both types of information simultaneously to rank
nodes with a balanced point of view in a directed network. Briefly speaking, nodes with both
high PageRank and CheiRank get high 2DRank ranking. Consider a node i which is Ki-th
ranked by PageRank and K�i ranked by CheiRank. Then we can assign a secondary ranking
K 0

i ¼ maxfKi;K
�
ig to the node. If K 0

i < K 0
j , then node j has lower 2DRank and vice versa. A de-

tailed illustration and description of this algorithm is given in [18].
We note that the studies reported in [21] show that the overlap between top CheiRank per-

sons of different editions is rather small and due to that the statistical accuracy of this data is
not sufficient for determining interactions between different cultures for the CheiRank list.
Moreover, CheiRank, based on outgoing links only, selects mainly persons from such activity
fields like sports and arts where the historical trace is not so important. Due to these reasons
we restrict our study to PageRank and 2DRank. It can be also interesting to use other algo-
rithms of ranking, e.g. LeaderRank [37], but here we restrict ourselves to the methods which
we already tested, leaving investigation of other raking methods for further studies.

Data preparation
We consider 24 different language editions of Wikipedia: English (EN), Dutch (NL), German
(DE), French (FR), Spanish (ES), Italian (IT), Portuguese (PT), Greek (EL), Danish (DA),
Swedish (SV), Polish (PL), Hungarian (HU), Russian (RU), Hebrew (HE), Turkish (TR), Ara-
bic (AR), Persian (FA), Hindi (HI), Malaysian (MS), Thai (TH), Vietnamese (VI), Chinese
(ZH), Korean (KO), and Japanese (JA). The Wikipedia data were collected in middle February
2013. The overview summary of each Wikipedia is represented in Table 1.

We understand that our selection of Wikipedia editions does not represent a complete view
of all the 287 languages of Wikipedia editions. However, this selection covers most of the

Interactions of Cultures and Top People of Wikipedia

PLOS ONE | DOI:10.1371/journal.pone.0114825 March 4, 2015 4 / 27



largest language editions and allows us to perform quantitative and statistical analysis of im-
portant historical figures. Among the 20 largest editions (counted by their size, taken at the
middle of 2014) we have not considered the following editions: Waray-Waray, Cebuano,
Ukrainian, Catalan, Bokmal-Riksmal, and Finish.

First we ranked all the articles in a given Wikipedia edition by PageRank and 2DRank algo-
rithms, and selected biographical articles about historical figures. To identify biographical arti-
cles, we considered all articles belonging to “Category:living people”, or to “Category:Deaths by
year” or “Category:Birth by year” or their subcategories in the English Wikipedia. In this way,
we obtained a list of about 1.1 million biographical articles. We identified birth place, birth
date, and gender of each selected historical figure based on DBpedia [38] or a manual inspec-
tion of the corresponding Wikipedia biographical article, when for the considered historical
figure no DBpedia data were available. We then started from the list of persons with their bio-
graphical article’s title on the English Wikipedia, and found the corresponding titles in other
language editions using the inter-language links provided by WikiData. Using the correspond-
ing articles, identified by the inter-languages links in different language editions, we extracted
the top 100 persons from the rankings of all Wikipedia articles of each edition. At the end, for
each Wikipedia edition and for each ranking algorithm, we have information about the top 100
historical figures with their corresponding name in the English Wikipedia, their birth place
and date, and their gender. All 48 lists of the top 100 historical figures in PageRank and
2DRank for the 24 Wikipedia editions and for the two ranking algorithms are represented in
[39] and Supporting Information (SI). The original network data for each edition are available
at [39]. The automatic extraction of persons from PageRank and 2DRank listings of articles of
each edition is performed by using the above whole list of person names in all 24 editions. This
method implies a significantly higher recall compared to the manual selection of persons from
the ranking list of articles for each edition used in [21].

We attribute each of the 100 historical figures to a birth place at the country level (actual
country borders), to a birth date in year, to a gender, and to a cultural group. Historical figures
are assigned to the countries currently at the locations where they were born. The cultural
group of historical figures is assigned by the most spoken language of their birth place at the
current country level. For example, if someone was born in “Constantinople” in the ancient
Roman era, since the place is now Istanbul, Turkey, we assign her/his birth place as “Turkey”
and since Turkish is the most spoken language in Turkey, we assign this person to the Turkish

Table 1. Wikipedia hyperlink networks from the 24 considered language editions. Here Na is the number of articles. Wikipedia data were collected in
middle February 2013.

Edition Language Na Edition Language Na

EN English 4212493 RU Russian 966284

NL Dutch 1144615 HE Hebrew 144959

DE German 1532978 TR Turkish 206311

FR French 1352825 AR Arabic 203328

ES Spanish 974025 FA Persian 295696

IT Italian 1017953 HI Hindi 96869

PT Portuguese 758227 MS Malaysian 180886

EL Greek 82563 TH Thai 78953

DA Danish 175228 VI Vietnamese 594089

SV Swedish 780872 ZH Chinese 663485

PL Polish 949153 KO Korean 231959

HU Hungarian 235212 JA Japanese 852087

doi:10.1371/journal.pone.0114825.t001
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cultural group. If the birth country does not belong to any of the 24 cultures (languages) which
we consider, we assign WR (world) as the culture of this person. We would like to point out
that although a culture can not be defined only by language, we think that language is a suitable
first-approximation of culture. All lists of top 100 historical figures with their birth place, birth
date, gender, and cultural group for each Wikipedia edition and for each ranking algorithm are
represented in [39]. A part of this information is also reported in SI.

To apply PageRank and 2DRank methods, we consider each edition as the network of arti-
cles of the given edition connected by hyper-links among the articles (see the details of ranking
algorithms in Section Methods). The full list of considered Wikipedia language editions is
given in Table 1. Table 2 represents the top 10 historical figures by PageRank and 2DRank in
the English Wikipedia. Roughly speaking, top PageRank articles imply highly cited articles in
Wikipedia and top 2DRank articles imply articles which are both highly cited and highly citing
in Wikipedia. In total, we identified 2400 top historical figures for each ranking algorithm.
However, since some historical figures such as Jesus, Aristotle, or Napoleon appear in multiple
Wikipedia editions, we have 1045 unique top PageRank historical figures and 1616 unique top
2Drank historical figures.

We should note that the extraction of persons and their information from aWikipedia edi-
tion is not an easy task even for the English edition, and much more complicated for certain
other language editions. Therefore, the above automatic method based on 1.1 million English
names and their corresponding names seems to us to be the most adequate approach. Of
course, it will miss people who do not have a biographical article on the English Wikipedia.
Cross-checking investigation is done for Korean and Russian Wikipedia, which are native lan-
guages for two authors, by manually selecting top 100 persons from top lists of all articles or-
dered by PageRank and 2DRank in both Wikipedia editions. We find that our automatic
search misses on average only 2 persons from 100 top persons for these two editions (the
missed names are given in SI). The errors appear due to transcription changes of names or
missing cases in our name-database based on English Wikipedia. For Western languages the
number of errors is presumably reduced since transcription remains close to English. Based on
the manual inspection for the Korean and the Russian Wikipedia, we expect that the errors of
our automatic recovery of the top people from the whole articles ordered by PageRank and
2DRank are on a level of two percent.

We also note that our study is in compliance with Wikipedia’s Terms and Conditions.

Table 2. List of top persons by PageRank and 2DRank for the English Wikipedia. All names are
represented by article titles in the English Wikipedia.

Rank PageRank persons 2DRank persons

1st Napoleon Frank Sinatra

2nd Barack Obama Michael Jackson

3rd Carl Linnaeus Pope Pius XII

4th Elizabeth II Elton John

5th George W. Bush Elizabeth II

6th Jesus Pope John Paul II

7th Aristotle Beyoncé Knowles

8th William Shakespeare Jorge Luis Borges

9th Adolf Hitler Mariah Carey

10th Franklin D. Roosevelt Vladimir Putin

doi:10.1371/journal.pone.0114825.t002
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Results
Above we described the methods used for the extraction of the top 100 persons in the ranking
list of each edition. Below we present the obtained results describing the spatial, temporal and
gender distributions of top ranked historical figures. We also determine the global and local
persons and obtain the network of cultures based on the ranking of persons from a given lan-
guage by other language editions of Wikipedia.

Spatial distribution
The birth places of historical figures are attributed to the country containing their geographical
location of birth according to the present geographical territories of all world countries. The
list of countries appeared for the top 100 persons in all editions is given in Table 3. We also

Table 3. List of country code (CC), countries as birth places of historical figures, and language code (LC) for each country. LC is determined by
the most spoken language in the given country. Country codes are based on country codes of Internet top-level domains and language codes are based
on language edition codes of Wikipedia; WR represents all languages other than the considered 24 languages.

CC Country LC CC Country LC CC Country LC

AE United Arab Emirates AR AF Afghanistan FA AL Albania WR

AR Argentina ES AT Austria DE AU Australia EN

AZ Azerbaijan TR BE Belgium NL BG Bulgaria WR

BR Brazil PT BS Bahamas EN BY Belarus RU

CA Canada EN CH Switzerland DE CL Chile ES

CN China ZH CO Colombia ES CU Cuba ES

CY Cyprus EL CZ Czech Rep. WR DE Germany DE

DK Denmark DA DZ Algeria AR EG Egypt AR

ES Spain ES FI Finland WR FR France FR

GE Georgia WR GR Greece EL HK Hong Kong ZH

HR Croatia WR HU Hungary HU ID Indonesia WR

IE Ireland EN IL Israel HE IN India HI

IQ Iraq AR IR Iran FA IS Iceland WR

IT Italy IT JP Japan JA KE Kenya EN

KG Kyrgyzstan WR KH Cambodia WR KO S. Korea KO

KP N. Korea KO KW Kuwait AR KZ Kazakhstan WR

LB Lebanon AR LT Lithuania WR LV Latvia WR

LY Libya AR MK Macedonia WR MM Myanmar WR

MN Mongolia WR MX Mexico ES MY Malaysia MS

NL Netherlands NL NO Norway WR NP Nepal WR

NZ New Zealand EN OM Oman AR PA Panama ES

PE Peru ES PK Pakistan HI PL Poland PL

PS State of Palestine AR PT Portugal PT RO Romania WR

RS Serbia WR RU Russia RU SA Saudi Arabia AR

SD Sudan AR SE Sweden SV SG Singapore ZH

SI Slovenia WR SK Slovakia WR SR Suriname NL

SY Syria AR TH Thailand TH TJ Tajikistan WR

TN Tunisia AR TR Turkey TR TW Taiwan ZH

TZ Tanzania WR UA Ukraine WR UK United Kingdom EN

US United States EN UZ Uzbekistan WR VE Venezuela ES

VN Vietnam VI XX Unknown WR YE Yemen AR

ZA South Africa WR

doi:10.1371/journal.pone.0114825.t003
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attribute each country to one of the 24 languages of the considered editions. This attribution is
done according to the language spoken by the largest part of population in the given country.
Thus e.g. Belgium is attributed to Dutch (NL) since the majority of the population speaks
Dutch. If the main language of a country is not among our 24 languages, then this country is at-
tributed to an additional section WR corresponding to the remaining world (e.g. Ukraine, Nor-
way are attributed to WR). If the birth place of a person is not known, then it is also attributed
to WR. The choice of attribution of a person to a given country in its current geographic terri-
tory, and as a result to a certain language, may have some fluctuations due to historical varia-
tions of country borders (e.g. Immanuel Kant was born in the current territory of Russia and
hence is attributed to Russian language). However, the number of such cases is small, being on
a level of 3.5 percent (see Section “Network of cultures” below). We think that the way in
which a link between person, language and country is fixed by the birth place avoids much larg-
er ambiguity of attribution of a person according to the native language which is not so easy to
fix in an automatic manner.

The obtained spatial distribution of historical figures of Wikipedia over countries is shown
in Fig. 1. This averaged distribution gives the average number of top 100 persons born in a spe-
cific country as birth place, with averaging done over our 24 Wikipedia editions. Thus an aver-
age over the 24 editions gives for Germany (DE) approximately 9.7 persons in the top 100 of
PageRank, being at the first position, followed by USA with approximately 9.5 persons. For

Fig 1. Birth place distribution of top historical figures averaged over 24Wikipedia edition for (A) PageRank historical figures (71 countries) and (B)
2DRank historical figures (91 countries). Two letter country codes are represented in Table 3.

doi:10.1371/journal.pone.0114825.g001
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2DRank we have USA at the first position with an average of 9.8 persons and Germany at the
second with an average of 8.0 persons.

Western (Europe and USA) skewed patterns are observed in both top PageRank historical
figures (Fig. 1. (A)) and top 2DRank historical figures (Fig. 1. (B)). This Western skewed pat-
tern is remarkable since 11 Wikipedia editions of the 24 considered editions are not European
language editions. Germany, USA, Italy, UK and France are the top five birth places of top
PageRank historical figures among 71 countries. On the other hand, USA, Germany, UK, Italy
and Japan are top five birth places of the top 2DRank historical figures among 91 countries.

In Fig. 2 we show the world map of countries, where color indicates the number of persons
from a given country among the 24 × 100 top persons for PageRank and 2DRank. Additional
figures showing these distributions for different centuries are available at [39].

We also observed local skewness in the spatial distribution of the top historical figures for
the PageRank (2DRank) ranking algorithm as shown in Fig. 3A (in Fig. 3B). For example, 47
percent of the top PageRank historical figures in the English Wikipedia were born in USA (25
percent) and UK (22 percent) and 56 percent of the top historical figures in the Hindi Wikipe-
dia were born in India. A similar strong locality pattern of the top historical figures was ob-
served in our previous research [21]. However it should be noted that in the previous study we
considered the native language of the top historical figure as a criterion of locality, while in the
current study we considered ‘birth place’ as criterion of locality.

Regional skewness, the preferences of Wikipedia editions for historical figures who were
born in geographically or culturally related countries, is also observed. For example, 18 (5) of
the top 100 PageRank historical figures in the Korean (Japanese) Wikipedia were born in
China. Also 9 of the top 100 PageRank historical figures in the Persian Wikipedia were born in
Saudi Arabia. The distribution of top persons from each Wikipedia edition over world coun-
tries is shown in Fig. 3A and Fig. 3B. The countries on a horizontal axis are grouped by clusters
of corresponding language so that the links inside a given culture (or language) become
well visible.

To observe patterns in a better way at low numbers of historical figures, we normalized each
column of Fig. 3A and Fig. 3B corresponding to a given country. In this way we obtain a re-
scaled distribution with better visibility for each birth country level as shown in Fig. 3C and
Fig. 3D, respectively. We can observe a clear birth pattern of top PageRank historical figures
born in Lebanon, Libya, Oman, and Tunisia in the case of the Arabic Wikipedia, and historical
figures born in N. Korea appearing not only in the Korean but also in the Japanese Wikipedia.

In the case of the top 2DRank historical figures shown in Fig. 3B and Fig. 3D, we observe
overall patterns of locality and regions being similar to the case of PageRank, but the locality
is stronger.

In short, we observed that most of the top historical figures inWikipedia were born in West-
ern countries, but also that each edition shows its own preference to the historical figures born
in countries which are closely related to the corresponding language edition.

Temporal distribution
The analysis of the temporal distribution of top historical figures is done based on their birth
dates. As shown in Fig. 4A for PageRank, most of historical figures were born after the 17th
century on average, which shows similar pattern with world population growth [40]. However,
there are some distinctive peaks around BC 5th century and BC 1st century for the case of
PageRank because of Greek scholars (Socrates, Plato, andHerodotus), Roman politicians (Julius
Caesar, Augustus) and Christianity leaders (Jesus, Paul the Apostle, andMary (mother of
Jesus)). We also observe that the Arabic and the Persian Wikipedia have more historical figures
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than Western language Wikipedia editions from AD 6th century to AD 12th century. For the
case of 2DRank in Fig. 4B, there is only one small peak around BC 1C, which is also smaller
than the peak in the case of PageRank, and all the distribution is dominated by a strong growth
on the 20th century.

The distributions of the top PageRank historical figures over the 24 Wikipedia editions for
each century are shown in Fig. 4C. The same distribution, but normalized to unity over all

Fig 2. Sum of appearances of historical figures from a given country in the 24 lists of top 100 persons for PageRank (top panel) and 2DRank
(bottom panel).Color changes from zero (white) to maximum (black). Maximal values are 233 appearances for Germany (top) and 236 for USA (bottom).
Values are proportional to the averages per country shown in Fig. 1.

doi:10.1371/journal.pone.0114825.g002
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Fig 3. Birth place distributions over countries of top historical figures from eachWikipedia edition; two letter country codes are represented in
Table 3. Panels: (A) distributions of PageRank historical figures over 71 countries for eachWikipedia edition; (B) distributions of 2DRank historical figures
over 91 countries for eachWikipedia edition; (C) column normalized birth place distributions of PageRank historical figures of panel (A); (D) column
normalized birth place distributions of 2DRank historical figures of panel (B).

doi:10.1371/journal.pone.0114825.g003
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editions for each century, is shown in Fig. 4E. The Persian (FA) and the Arabic (AR) Wikipedia
have more historical figures than other language editions (in particular European language edi-
tions) from the 6th to the 12th century due to Islamic leaders and scholars. On the other hand,
the Greek Wikipedia has more historical figures in BC 5th century because of Greek philoso-
phers. Also most of western-southern European language editions, including English, Dutch,
German, French, Spanish, Italian, Portuguese, and Greek, have more top historical figures be-
cause they have Augustine the Hippo and Justinian I in common. Similar distributions obtained
from 2DRank are shown in Fig. 4D and Fig. 4F respectively.

The data of Figs. 4E, F clearly show well pronounced patterns, corresponding to strong in-
teractions between cultures: from BC 5th century to AD 15th century for JA, KO, ZH, VI; from

Fig 4. Birth date distributions of top historical figures. (A) Birth date distribution of PageRank historical figures averaged over 24Wikipedia editions (B)
Birth date distribution of 2DRank historical figures averaged over 24Wikipedia editions (C) Birth date distributions of PageRank historical figures for each
Wikipedia edition. (D) Birth date distributions of 2DRank historical figures for eachWikipedia edition. (E) Column normalized birth date distributions of
PageRank historical figures for eachWikipedia edition. (F) Column normalized birth date distributions of 2DRank historical figures for eachWikipedia edition.

doi:10.1371/journal.pone.0114825.g004
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AD 6th century to AD 12th century for FA, AR; and a common birth pattern in EN, EL, PT,
IT, ES, DE, NL (Western European languages) from BC 5th century to AD 6th century. In sup-
porting Figure S1 we show distributions of historical figures over languages according to their
birth place. In this case the above patterns become even more pronounced.

At a first glance from Figs. 4E, F we observe for persons born in AD 20th century a signifi-
cantly more homogeneous distribution over cultures compared to early centuries. However, as
noted in [21], each Wikipedia edition favors historical figures speaking the corresponding lan-
guage. We investigate how this preference to same-language historical figures changes in time.
For this analysis, we define two variablesML, C and NL, C for a given language edition L and a
given century C. HereML, C is the number of historical figures born in all countries being at-
tributed to a given language L, and NL, C is the total number of historical figures for a given cen-
tury C and a given language edition L. For example, among the 21 top PageRank historical
figures from the English Wikipedia, who were born in AD 20th century, two historical figures
(Pope John Paul II and Pope Benedict XVI) were not born in English speaking countries. Thus
in this case NEN, 20 = 21 andMEN, 20 = 19. Fig. 5 represents the ratio rL, C =ML, C/NL, C for each
edition and each century. In ancient times (i.e. before AD 5th century), most historical figures
for each Wikipedia edition are not born in the same language region except for the Greek, Ital-
ian, Hebrew, and Chinese Wikipedia. However, after AD 5th century, the ratio of same lan-
guage historical figures is rising. Thus, in AD 20th century, most Wikipedia editions have
significant numbers of historical figures born in countries speaking the corresponding lan-
guage. For PageRank persons and AD 20th century, we find that the English edition has the
largest fraction of its own language, followed by Arabic and Persian editions while other edi-
tions have significantly large connections with other cultures. For the English edition this is re-
lated to a significant number of USA presidents appearing in the top 100 list (see [18, 19]). For
2DRank persons the largest fractions were found for Greek, Arabic, Chinese and Japanese cul-
tures. These data show that even in age of globalization there is a significant dominance of
local historical figures for certain cultures.

Gender distribution
From the gender distributions of historical figures, we observe a strong male-skewed pattern
across many Wikipedia editions regardless of the ranking algorithm. On average, 5.2(10.1) fe-
male historical figures are observed among the 100 top PageRank (2DRank) persons for each
Wikipedia edition. Fig. 6 shows the number of top female historical figures for eachWikipedia
edition. Thai, Hindi, Swedish, and Hebrew have more female historical figures than the average
over our 24 editions in the case of PageRank. On the other hand, the Greek and the Korean ver-
sions have a lower number of females than the average. In the case of 2DRank, English, Hindi,
Thai, and HungarianWikipedia have more females than the average while German, Chinese,
Korean, and Persian Wikipedia have less females than the average. In short, the top historical
figures in Wikipedia are quite male-skewed. This is not surprising since females had little
chance to be historical figures for most of human history. We compare the gender skewness to
other cases such as the number of female editors in Wikipedia (9 percent) in 2011 [41] and the
share of women in parliaments, which was 18.7 percent in 2012 by UN Statistics and indicators
on women and men [42], the male skewness for the PageRank list is stronger in the contents of
Wikipedia [43]. However, the ratio of females among the top historical figures is growing by
time as shown in Fig. 6 C. It is notable that the peak in Fig. 6C at BC 1st is due to “Mary (mother
of Jesus)”. In the 20th century 2DRank gives a larger percentage of women compared to PageR-
ank. This is due to the fact that 2DRank has a larger fraction of singers and artists comparing to
PageRank (see [18, 19]) and that the fraction of women in these fields of activity is larger.
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Fig 5. The locality property of cultures represented by the ratio rL, C =ML, C/NL, C for each edition L and each centuryC. HereML, C is the number of
historical figures born in countries attributed to a given language edition L at century C andNL, C is the total number of historical figures in a given edition at a
given century, regardless of language of their birth countries. Black color (-0.2 in the color bars) shows that there is no historical figure at all for a given edition
and century; blue (0 in the color bars) shows there there are some historical figures but no same language historical figures. Here (A) panel shows PageRank
historical figures, and (B) panel shows 2DRank historical figures.

doi:10.1371/journal.pone.0114825.g005
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Global historical figures
Above we analyzed how top historical figures in Wikipedia are distributed in terms of space,
time, and gender. Now we identify how these top historical figures are distributed in each
Wikipedia edition and which are global historical figures. According to previous research [21],
there are some global historical figures who are recognized as important historical figures
across Wikipedia editions. We identify global historical figures based on the ranking score for a

Fig 6. Number of females of top historical figures from eachWikipedia edition (A) Top PageRank historical figures (B) Top 2DRank historical
figures. (C) The average female ratio of historical figures in given centuries across 24Wikipedia editions.

doi:10.1371/journal.pone.0114825.g006
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given person determined by her number of appearances and ranking index over our 24
Wikipedia editions.

Following [21], the ranking scoreYP, A of a historical figure P is given by

YP;A ¼
X

E

ð101� RP;E;AÞ ð3Þ

Here RP, E, A is the ranking of a historical figure P in Wikipedia edition E by ranking algo-
rithm A. According to this definition, a historical figure who appears more often in the lists of
top historical figures for the given 24 Wikipedia editions or has higher ranking in the lists gets
a higher ranking score. Table 4 represents the top 10 global historical figures for PageRank and
2DRank. Carl Linnaeus is the 1st global historical figure by PageRank followed by Jesus, Aris-
totle. Adolf Hitler is the 1st global historical figure by 2DRank followed byMichael Jackson,
Madonna (entertainer). On the other hand, the lists of the top 10 local historical figures or-
dered by our ranking score for each language are represented in supporting Tables S1–S25
and [39].

The reason for a somewhat unexpected PageRank leader Carl Linnaeus is related to the fact
that he laid the foundations for the modern biological naming scheme so that plenty of articles
about animals, insects and plants point to the Wikipedia article about him, which strongly in-
creases the PageRank probability. This happens for all 24 languages where Carl Linnaeus al-
ways appears on high positions since articles about animals and plants are an important
fraction of Wikipedia. Even if in a given language the top persons are often politicians (e.g. Na-
poleon, Barak Obama at K = 1, 2 in EN), these politicians have mainly local importance and
are not highly ranked in other languages (e.g. in ZH Carl Linnaeus is at K = 1, Napoleon at K =
3 and Barak Obama is at K = 24). As a result when the global contribution is counted over all
24 languages Carl Linnaeus appears on the top PageRank position.

Our analysis suggests that there might be three groups of historical figures. Fig. 7 shows
these three groups of top PageRank historical figures in Wikipedia: (i) global historical figures
who appear in most of Wikipedia editions (NA � 18) and are highly ranked (hKi � 50) for
each Wikipedia such as Carl Linnaeus, Plato, Jesus, and Napoleon (Right-Top of the Fig. 7A);
(ii) local-highly ranked historical figures who appear in a fewWikipedia editions (NA< 18)
but are highly ranked (hKi � 50) in the Wikipedia editions in which they appear, such as
Tycho Brahe, Sejong the Great, and Sun Yat-sen (Left-Top of the Fig. 7A); (iii) locally-low

Table 4. List of global historical figures by PageRank and 2DRank for all 24 Wikipedia editions. All names are represented by the corresponding
article titles in the English Wikipedia. Here, ΘA is the ranking score of algorithm A (3); NA is the number of appearances of a given person in the top 100
rank for all editions.

Rank PageRank global figures ΘPR NA 2DRank global figures Θ2D NA

1st Carl Linnaeus 2284 24 Adolf Hitler 1557 20

2nd Jesus 2282 24 Michael Jackson 1315 17

3rd Aristotle 2237 24 Madonna (entertainer) 991 14

4th Napoleon 2208 24 Jesus 943 14

5th Adolf Hitler 2112 24 Ludwig van Beethoven 872 14

6th Julius Caesar 1952 23 Wolfgang Amadeus Mozart 853 11

7th Plato 1949 24 Pope Benedict XVI 840 12

8th William Shakespeare 1861 24 Alexander the Great 789 11

9th Albert Eistein 1847 24 Charles Darwin 773 12

10th Elizabeth II 1789 24 Barack Obama 754 16

doi:10.1371/journal.pone.0114825.t004
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Fig 7. The distribution of 1045 top PageRank persons (A) and 1616 top 2DRank persons (B) as a
function of number of appearances NA of a given person and the rank hKi of this person averaged
overWikipedia editions where this person appeared.

doi:10.1371/journal.pone.0114825.g007
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ranked historical figures who appear in a few Wikipedia editions (NA < 18) and who are not
highly ranked (hKi> 50). Here NA is the number of appearances in different Wikipedia edi-
tions for a given person and hKi is the average ranking of the given persons across Wikipedia
editions for each ranking algorithm. In the case of 2DRank historical figures, due to the absence
of global historical figures, most of them belong to two types of local historical figures (i.e.
local-highly ranked or local-lowly ranked).

Following ranking of persons viaYP, A we determine also the top global female historical
figures, presented in Table 5 for PageRank and 2DRank persons. The full lists of global female
figures are available at [39] (63 and 165 names for PageRank and 2DRank).

The comparison of our 100 global historical figures with the top 100 from Hart’s list [27]
gives an overlap of 43 persons for PageRank and 26 persons for 2DRank. We note that for the
top 100 from the English Wikipedia we obtain a lower overlap of 37 (PageRank) and 4
(2DRank) persons. Among all editions the highest overlaps with the Hart list are 42 (VI), 37
(EN, ES, PT, TR) and 33 (IT), 32 (DE), 31 (FR) for PageRank; while for 2DRank we find 18 (EL)
and 17 (VI). We give the overlap numbers for all editions at [39]. This shows that the consider-
ation of 24 editions provides us the global list of the top 100 persons with a more balanced selec-
tion of top historical figures. Our overlap of the top 100 global historical figures by PageRank
with the top 100 people from Pantheon MIT ranking list [23] is 44 percent, while the overlap of
this Pantheon list with Hart’s list is 43 percent. We note that the Pantheon method is signifi-
cantly based on a number of page views while our approach is based on the network structure of
the whole Wikipedia network. The top 100 persons from [22] are not publicly available but nev-
ertheless we present the overlaps between the top 100 persons from the lists of Hart, Pantheon,

Table 5. List of the top 10 global female historical figures by PageRank and 2DRank for all the 24 Wikipedia editions. All names are represented
by article titles in the English Wikipedia. Here, ΘA is the ranking score of the algorithm A (Eq.3); NA is the number of appearances of a given person in the
top 100 rank for all editions. Here CC is the birth country code and LC is the language code of the given historical figure.

Rank ΘPR NA PageRank female figures CC Century LC

1 1789 24 Elizabeth II UK 20 EN

2 1094 17 Mary (mother of Jesus) IL -1 HE

3 404 12 Queen Victoria UK 19 EN

4 234 6 Elizabeth I of England UK 16 EN

5 128 2 Maria Theresa AT 18 DE

6 100 1 Benazir Bhutto PK 20 HI

7 94 1 Catherine the Great PL 18 PL

8 91 1 Anne Frank DE 20 DE

9 87 1 Indira Gandhi IN 20 HI

10 86 1 Margrethe II of Denmark DK 20 DA

Rank Θ2D NA 2DRank female figures CC Century LC

1 991 14 Madonna (entertainer) US 20 EN

2 664 9 Elizabeth II UK 20 EN

3 580 8 Mary (mother of Jesus) IL -1 HE

4 550 9 Queen Victoria UK 19 EN

5 225 5 Agatha Christie UK 19 EN

6 211 4 Mariah Carey US 20 EN

7 206 7 Britney Spears US 20 EN

8 200 3 Margaret Thatcher UK 20 EN

9 191 2 Martina Navratilova CZ 20 WR

10 175 2 Elizabeth I of England UK 16 EN

doi:10.1371/journal.pone.0114825.t005
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Stony-Brook and our global PageRank and 2DRank lists in Figures S2, S3 (we received the
Stony-Brook list as a private message from the authors of [22]). We have an average overlap be-
tween the 4 methods on a level of 40 percent (2DRank is on average lower by a few percent), we
find a larger overlap between our PageRank list and the Stony-Brook list since the Stony-Brook
method, applied only for the English Wikipedia, is significantly based on PageRank.

We also compared the distributions of our global top 100 persons of PageRank and 2DRank
with the distribution of Hart’s top 100 over centuries and over 24 languages with the additional
WR category (see Figure S4). We find that these 3 distributions have very similar shapes. Thus
the largest number of persons appears in centuries AD 18th, 19th, 20th for the 3 distributions.
Among languages, the main peaks for the 3 distributions appear for EN, DE, IT, EL, AR, ZH.
The deviations from Hart’s distribution are larger for the 2DRank list. Thus the comparison of
distributions over centuries and languages shows that the PageRank list has not only a strong
overlap with the Hart list in the number of persons but that they also have very similar statisti-
cal distributions of the top 100 persons over centuries and languages.

The overlap of the top 100 global persons found here with the previous study [21] gives 54
and 47 percent for PageRank and 2DRank lists, respectively. However, we note that the global
list in [21] was obtained from the top 30 persons in each edition while here we use the top
100 persons.

It is interesting to note that for the top 100 PageRank universities from the English Wikipe-
dia edition the overlap with Shanghai top 100 list of universities is on a even higher level of 75
percent [18].

Finally, we note that the ranking of historical figures using the whole PageRank (or
2DRank) list of all Wikipedia articles of a given edition provides a more stable approach com-
pared to the network of biographical articles used in [20]. Indeed, the number of nodes and
links in such a biographical network is significantly smaller compared to the whole network of
Wikipedia articles and thus the fluctuations become rather large. For example, from the bio-
graphical network of the Russian edition one finds as the top person Napoleon III (and even
not Napoleon I) [20], who has a rather low importance for Russia. In contrast to that the pres-
ent study gives us the top PageRank historical figure of the Russian edition to be Peter the
Great, that has much more historical grounds. In a similar way for FR the results of [20] give at
the first position Adolf Hitler, that is rather strange for the French culture, while we find a natu-
ral result Napoleon.

Network of cultures
We consider the selected top persons from each Wikipedia edition as important historical fig-
ures recognized by people who speak the language of that Wikipedia edition. Therefore, if a top
person from a language edition A appears in another edition B, then we can consider this as a
‘cultural’ influence from culture A to B. Here we consider each language as a proxy for a cultur-
al group and assign each historical figure to one of these cultural groups based on the most spo-
ken language of her/his birth place at the country level. For example, Adolf Hitler was born in
modern Austria and since German language is the most spoken language in Austria, he is con-
sidered as a German historical figure in our analysis. This method may lead to some misguid-
ing results due to discrepancy between territories of country and cultures, e.g. Jesus was born in
the modern State of Palestine (Bethlehem), which is an Arabic speaking country. Thus Jesus is
from the Arabic culture in our analysis while usually one would say that he belongs to the He-
brew culture. Other similar examples we find are: Charlemagne (Belgium—Dutch), Immanuel
Kant (Russia—Russian, while usually he is attributed to DE),Moses (Egypt—Arabic), Cather-
ine the Great (Poland—Polish, while usually she would be attributed to DE or RU).
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In total there are such 36 cases from the global PageRank list of 1045 names (these 36 names
are given in SI). However, in our knowledge, the birth place is the best way to assign a given his-
torical figure to a certain cultural background computationally and systematically and with the
data we have available. In total we have only about 3.4 percent of cases which can be discussed
and where a native speaking language can be a better indicator of belonging to a given culture.
For the global 2DRank list of 1616 names we identified 53 similar cases where an attribution to
a culture via a native language or a birth place could be discussed (about 3.3 percent). These 53
names are given in SI. About half of such cases are linked with birth places in ancient Russian
Empire where people from Belarus, Litvania and Ukraine moved to RU, IL, PL, WR. However,
the percentage of such cases is small and the corresponding errors also remain small.

Based on the above assumption and following the approach developed in [21], we construct
two weighted networks of cultures (or language groups) based on the top PageRank historical
figures and top 2DRank historical figures respectively. Each culture (i.e. language) is repre-
sented as a node of the network, and the weight of a directed link from culture A to culture B is
given by the number of historical figures belonging to culture B (e.g. French) appearing in the
list of top 100 historical figures for a given culture A (e.g. English). The persons in a given edi-
tion, belonging to the language of the edition, are not taken into account since they do not cre-
ate links between cultures. In Table 6 we give the number of such persons for each language.
This table also gives the number of persons of a given language among the top 100 persons of
the global PageRank and 2DRank listings.

For example, there are 5 French historical figures among the top 100 PageRank historical
figures of the English Wikipedia, so we can assign weight 5 to the link from English to French.
Fig. 8A and Fig. 8B represent the constructed networks of cultures defined by appearances of
the top PageRank historical figures and top 2DRank historical figures, respectively. In total we
have two networks with 25 nodes which include our 24 editions and an additional node WR
for all the other world cultures.

The Google matrix Gij for each network is constructed following the standard rules de-
scribed in [21] and in the Methods Section. In a standard way we determine the PageRank
index K and the CheiRank index K� that order all cultures according to decreasing PageRank

Table 6. Numbers of certain historical figures for top 100 list of each language: N1 is the number of historical figures of a given language
among the top 100 PageRank global historical figures; N2 is the number of historical figures of a given language among the top 100 PageRank
historical figures for the given language edition; N3 is the number of historical figures of a given language among the top 100 2DRank global
historical figures; N4 is the number of historical figures of a given language among the top 100 2DRank historical figures for the given language
edition.

Language N1 N2 N3 N4 Language N1 N2 N3 N4

EN 22 47 27 64 RU 2 29 3 27

NL 2 10 4 38 HE 2 17 2 22

DE 20 41 16 55 TR 2 27 2 54

FR 8 33 3 32 AR 8 42 5 69

ES 2 20 5 39 FA 0 46 1 64

IT 11 31 9 43 HI 1 65 0 76

PT 0 19 0 35 MS 0 15 0 40

EL 5 28 2 55 TH 0 46 0 53

DA 0 31 1 48 VI 0 7 0 30

SV 1 26 1 39 ZH 5 43 6 79

PL 1 20 2 26 KO 0 34 0 59

HU 0 18 0 18 JA 0 41 4 80

WR 8 - 7 -

doi:10.1371/journal.pone.0114825.t006
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and CheiRank probabilities (see Methods and Figure S5). The structure of matrix elements
GKK0 is shown in Fig. 9.

To identify which cultures (or language groups) are more influential than others, we calcu-
lated PageRank and CheiRank of the constructed networks of cultures by considering link
weights. Briefly speaking, a culture has high PageRank (CheiRank) if it has many ingoing

Fig 8. Network of cultures obtained from 24Wikipedia languages and the remaining world (WR) consider (A) top PageRank historical figures and
(B) 2DRank historical figures. The link width and darkness are proportional to a number of foreign historical figures quoted in top 100 of a given culture, the
link direction goes from a given culture to cultures of quoted foreign historical figures, links inside cultures are not considered. The size of nodes is
proportional to their PageRank.

doi:10.1371/journal.pone.0114825.g008
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Fig 9. Google matrix of network of cultures shown in Fig. 8 respectively. The matrix elementsGij are
shown by color with damping factor α = 0.85.

doi:10.1371/journal.pone.0114825.g009
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(outgoing) links from (to) other cultures (see Methods). The distribution of cultures on a
PageRank-CheiRank plane is shown in Fig. 10. In both cases of PageRank and 2DRank histori-
cal figures, historical figures of English culture (i.e. born in English language spoken countries)
are the most influential (highest PageRank) and German culture is the second one (Fig. 10A,
B). Here we consider the historical figures for the whole range of centuries. Fig. 10 represents
the detailed features of how each culture is located on the plane of PageRank ranking K and
CheiRank ranking K� based on the top PageRank historical figures (Fig. 10A) and top 2DRank
historical figures (Fig. 10B). Here K indicates the ranking of a given culture ordered by how
many of its own top historical figures appear in other Wikipedia editions, and K� indicates the
ranking of a given culture according to how many of the top historical figures in the considered
culture are from other cultures. As described above, English is on (K = 1, K� = 19) and German
is on (K = 2, K� = 21) in the case of PageRank historical figures (Fig. 10A). In the case of
2DRank historical figures, English is on (K = 1, K� = 14) and German is on (K = 2, K� = 9).

It is important to note that there is a significant difference compared to the previous study
[21]: there, only 9 editions had been considered and the top positions were attributed to the
world node WR which captured a significant fraction of the top persons. This indicated that 9
editions are not sufficient to cover the whole world. Now for 24 editions we see that the impor-
tance of the world node WR is much lower (it moves from K = 1 for 9 editions [21] to K = 4
and 3 in Fig. 10A and Fig. 10B). Thus our 24 editions cover the majority the world. Still it

Fig 10. PageRank ranking versus CheiRank ranking plane of cultures with corresponding indexesK
andK* obtained from the network of cultures based on (A) all PageRank historical figures, (B) all
2DRank historical figures, (C) PageRank historical figure born before AD 19th century, and (D)
2DRank historical figure born before AD 19th century, respectively.

doi:10.1371/journal.pone.0114825.g010
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would be desirable to add a few additional editions (e.g. Ukraine, Baltic Republics, Serbia etc.)
to fill certain gaps.

It is interesting to note that the ranking plane of cultures (K, K�) changes significantly in
time. Indeed, if we take into account only persons born before the 19th century then the rank-
ing is modified with EN going to 4th (Fig. 10C for PageRank figures) and 6th position
(Fig. 10C for 2DRank figures) while the top positions are taken by IT, DE, FR and DE, IT,
AR, respectively.

At the same time, we may also argue that for cultures it is important not only to be cited but
also to be communicative with other cultures. To characterize communicative properties of
nodes on the network of cultures shown in Fig. 8 we use again the concepts of PageRank,
CheiRank and 2DRank for these networks as described in Methods and [21]. Thus, for the net-
work of cultures of Fig. 8, the 2DRank index of cultures highlights their influence in a more bal-
anced way taking into account their importance (incoming links) and communicative
(outgoing links) properties in a balanced manner.

Thus we find for all centuries at the top positions Greek, Turkish and Arabic (for PageRank
persons) and French, Russian and Arabic (for 2DRank persons). For historical figures before
the 19th century, we find respectively Arabic, Turkish and Greek (for PageRank) and Arabic,
Greek and Hebrew (for 2DRank). The high position of Turkish is due to its close links both
with Greek culture in ancient times and with Arabic culture in more recent times. We see also
that with time the positions of Greek in 2DRank improves due to a global improved ranking of
Western cultures closely connected with Greece.

Discussion
By investigating birth place, birth date, and gender of important historical figures determined
by the network structure of Wikipedia, we identified spatial, temporal, and gender skewness in
Wikipedia. Our analysis shows that the most important historical figures across Wikipedia lan-
guage editions were born in Western countries after the 17th century, and are male. Also, each
Wikipedia edition highlights local figures so that most of its own historical figures are born in
the countries which use the language of the edition. The emergence of such pronounced accent
to local figures seems to be natural since there are more links and interactions within one cul-
ture. This is also visible from to the fact that in many editions the main country for the given
language is at the first PageRank position among all articles (e.g. Russia in RU edition) [21].
Despite such a locality feature, there are also global historical figures who appear in most of the
considered Wikipedia editions with very high rankings. Based on the cross-cultural historical
figures, who appear in multiple editions, we can construct a network of cultures which de-
scribes interactions and entanglement between cultures.

It is very difficult to describe history in an objective way and due to that it was argued that
history is “an unending dialogue between the past and present” [44]. In a similar way we can
say that history is an unending dialogue between different cultural groups.

We use a computational and data mining approach, based on rank vectors of the Google
matrix of Wikipedia, to perform a statistical analysis of interactions and entanglement of cul-
tures. We find that this approach can be used for selecting the most influential historical figures
through an analysis of collectively generated links between articles on Wikipedia. Our results
are coherent with studies conducted by historians [27], with an overlap of 43% of important
historical figures. Thus, such a mathematical analysis of local and global historical figures can
be a useful step towards the understanding of local and global history and interactions of world
cultures. Our approach has some limitations, mainly caused by the data source and by the diffi-
culty of defining culture boundaries across centuries. The ongoing improvement of structured
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content in Wikipedia through the WikiData project, eventually in conjunction with additional
manual annotation, should allow to deal with these limitations. Furthermore, it would be useful
to perform comparisons with other approaches to measure the interactions of cultures, such as
the analysis of language crossings of multilingual users [45].

Influence of digital media on information dissemination and social collective opinions
among the public is growing fast. Our research across Wikipedia language editions suggests a
rigorous mathematical way, based on Markov chains and Google matrix, for the identification
of important historical figures and for the analysis of interactions of cultures at different histor-
ical periods and in different world regions. We think that a further extension of this approach
to a larger number of Wikipedia editions will provide a more detailed and balanced analysis of
interactions of world cultures.

Supporting Information
S1 File. Supporting Information file S1 presents Figures S1–S5 with additional information
discussed above in the main part of the paper, lists of top 100 global PageRank and
2DRank names; Tables S1–S25 of top 10 names of given language and remained world
from the global PageRank and 2DRank ranking lists of persons ordered by the scoreYP, A

of Eq.(3). For a reader convenience the lists of all 100 ranked names for all 24 Wikipedia edi-
tions and corresponding network link data for each edition are also given at [39] in addition to
Supporting Information file. All used computational data are publicly available at http://
dumps.wikimedia.org/. All the raw data necessary to replicate the findings and conclusion of
this study are within the paper, supporting information files and this Wikimedia web site.
(PDF)
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1 Additional data

Here we present additional figures and tables for the main part of the paper.
Figure S1 is analogous to Figures 4(C,D,E,F), however, now on the vertical axis we plot

not the edition to which a given historical figure is attributed from top 100 figures of a given
edition but the language, to which this historical figure from the global PageRank (1045 persons)
or 2DRank (1616 persons) lists is attributed according to our procedure according to her/his
country of birth and then to the major language of this country, if a person does not belong
to any of 24 languages then he/she is attributed to the remaining world (WR). The data show
that the separation between language (or culture) groups becomes now more distinct. Indeed,
attribution to a language related to a birth place is more definite compared to the option where
a person appears in one of 24 editions since some global historical figures appear in a few editions
while each person is attributed only one language according to our procedure.

Figure S2 shows overlap between the global list of top 100 global PageRank persons and
list of Hart [23], PageRank list of English Wikipedia from [15], list of Stony-Brook [19], list of
Pantheon MIT project [20].

Figure S3 shows the overlap matrix (in percent) between 5 methods of ranking of top 100
historical figures including Hart, Pantheon, Stony-Brook results and our global PageRank and
2DRank lists. We see that our PageRank has most high correlation with Stony-Brook since the
method of Stony-Brook uses significantly the PageRank method.

Figure S4 shows the number of persons from top 100 lists of Hart and our global PageRank
and 2DRank lists. The panel (A) shows the number of persons at a given century corresponding
to the time dependence and the panel (B) shows distribution of such persons over the language
they are attributed according to our method based on the birth place and dominant language of
a country of birth. We see that the pattern of Hart ranking is well reproduced from our global
ranking, especially for the case of PageRank list.

Figure S5 shows PageRank and CheiRank probabilities for the networks of cultures shown
in Figure 8.

The names of persons from top 100 missed by automatic recovery of persons are: Homer,
Charles Darwin (RU PageRank); Philipp Kirkorov (RU 2DRank); Alexander the Great, Emperor
Gaozu of Han, Homer (KO PageRank); Jinpyeong of Silla, Hyeonjong of Goryeo (KO 2DRank).
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Unfortunately, the name of Homer has been missed in the 1.1 million list of English names,
other names are missed due to incompleteness and modifications of inter-language translations.

Below we give the list of global top 100 PageRank names from 24 Wikipedia editions. The
names are ordered by the ranking score ΘP,A of Eq.(1). In brackets we give country of birth,
century of birth, gender, and language of birth. In the same manner we also give th list of top
100 2DRank names from 24 Wikipedia editions.

We also give 24 names from global 1045 PageRank names and 40 names from 1616 global
2DRank names where a birth place language attribution differs from native language.

We also give the tables of top 10 persons in each language and also world names (tables S1
- S25) extracted from the global PageRank and 2DRank ranking lists of persons ordered by the
score ΘP,A of Eq.(1).

Top 100 of global PageRank names: 1. Carl Linnaeus (SE, 18, M, SV) 2. Jesus (PS, -1, M,
AR) 3. Aristotle (GR, -4, M, EL) 4. Napoleon (FR, 18, M, FR) 5. Adolf Hitler (AT, 19, M,
DE) 6. Julius Caesar (IT, -1, M, IT) 7. Plato (GR, -5, M, EL) 8. William Shakespeare (UK, 16,
M, EN) 9. Albert Einstein (DE, 19, M, DE) 10. Elizabeth II (UK, 20, F, EN) 11. Alexander
the Great (GR, -4, M, EL) 12. Isaac Newton (UK, 17, M, EN) 13. Muhammad (SA, 6, M, AR)
14. Karl Marx (DE, 19, M, DE) 15. Joseph Stalin (GE, 19, M, WR) 16. Augustus (IT, -1, M,
IT) 17. Christopher Columbus (IT, 15, M, IT) 18. Charlemagne (BE, 8, M, NL) 19. Louis XIV
of France (FR, 17, M, FR) 20. George W. Bush (US, 20, M, EN) 21. Immanuel Kant (RU, 18,
M, RU) 22. Barack Obama (US, 20, M, EN) 23. Mary (mother of Jesus) (IL, -1, F, HE) 24.
Vladimir Lenin (RU, 19, M, RU) 25. Wolfgang Amadeus Mozart (AT, 18, M, DE) 26. Paul the
Apostle (TR, 1, M, TR) 27. Charles Darwin (UK, 19, M, EN) 28. Martin Luther (DE, 15, M,
DE) 29. Herodotus (TR, -5, M, TR) 30. Franklin D. Roosevelt (US, 19, M, EN) 31. Galileo
Galilei (IT, 16, M, IT) 32. Pope John Paul II (PL, 20, M, PL) 33. Constantine the Great (RS,
3, M, WR) 34. Benito Mussolini (IT, 19, M, IT) 35. Cicero (IT, -2, M, IT) 36. Ren Descartes
(FR, 16, M, FR) 37. Saint Peter (IL, 1, M, HE) 38. Ludwig van Beethoven (DE, 18, M, DE)
39. George Washington (US, 18, M, EN) 40. Moses (EG, -14, M, AR) 41. Johann Sebastian
Bach (DE, 17, M, DE) 42. Bill Clinton (US, 20, M, EN) 43. Leonardo da Vinci (IT, 15, M, IT)
44. Johann Wolfgang von Goethe (DE, 18, M, DE) 45. Gautama Buddha (NP, -6, M, WR) 46.
Winston Churchill (UK, 19, M, EN) 47. John F. Kennedy (US, 20, M, EN) 48. Charles V, Holy
Roman Emperor (BE, 15, M, NL) 49. Pope Benedict XVI (DE, 20, M, DE) 50. Richard Nixon
(US, 20, M, EN) 51. Sigmund Freud (CZ, 19, M, WR) 52. Ronald Reagan (US, 20, M, EN)
53. Abraham Lincoln (US, 19, M, EN) 54. Saddam Hussein (IQ, 20, M, AR) 55. Ptolemy (EG,
1, M, AR) 56. Richard Wagner (DE, 19, M, DE) 57. Diocletian (HR, 3, M, WR) 58. Queen
Victoria (UK, 19, F, EN) 59. Napoleon III (FR, 19, M, FR) 60. Charles de Gaulle (FR, 19,
M, FR) 61. Mao Zedong (CN, 19, M, ZH) 62. William Herschel (DE, 18, M, DE) 63. Michael
Jackson (US, 20, M, EN) 64. Justinian I (MK, 5, M, WR) 65. Augustine of Hippo (DZ, 4, M,
AR) 66. Ali (SA, 7, M, AR) 67. Jean-Jacques Rousseau (CH, 18, M, DE) 68. Ernst Haeckel
(DE, 19, M, DE) 69. Pliny the Elder (IT, 1, M, IT) 70. Pope Gregory XIII (IT, 16, M, IT) 71.
Confucius (CN, -6, M, ZH) 72. Henry VIII of England (UK, 15, M, EN) 73. Thomas Jefferson
(US, 18, M, EN) 74. Francisco Franco (ES, 19, M, ES) 75. Georg Wilhelm Friedrich Hegel (DE,
18, M, DE) 76. Pierre Andr Latreille (FR, 18, M, FR) 77. Pope Paul VI (IT, 19, M, IT) 78.
Gottfried Wilhelm Leibniz (DE, 17, M, DE) 79. Chiang Kai-shek (CN, 19, M, ZH) 80. John
Herschel (UK, 18, M, EN) 81. Elizabeth I of England (UK, 16, F, EN) 82. J. R. R. Tolkien
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(ZA, 19, M, WR) 83. Socrates (GR, -5, M, EL) 84. Genghis Khan (MN, 12, M, WR) 85. Qin
Shi Huang (CN, -3, M, ZH) 86. Umar (SA, 6, M, AR) 87. Philip II of Spain (ES, 16, M, ES)
88. Frederick the Great (DE, 18, M, DE) 89. Johannes Kepler (DE, 16, M, DE) 90. Emperor
Wu of Han (CN, -2, M, ZH) 91. Friedrich Nietzsche (DE, 19, M, DE) 92. Plutarch (GR, 1, M,
EL) 93. Thomas Edison (US, 19, M, EN) 94. Max Weber (DE, 19, M, DE) 95. Dante Alighieri
(IT, 13, M, IT) 96. Ashoka (IN, -4, M, HI) 97. Tacitus (FR, 1, M, FR) 98. Ernst Mayr (DE,
20, M, DE) 99. Jean-Baptiste Lamarck (FR, 18, M, FR) 100. Elvis Presley (US, 20, M, EN).

Top 100 of global 2DRank names: 1. Adolf Hitler (AT, 19, M, DE) 2. Michael Jackson (US,
20, M, EN) 3. Madonna (entertainer) (US, 20, F, EN) 4. Jesus (PS, -1, M, AR) 5. Ludwig van
Beethoven (DE, 18, M, DE) 6. Wolfgang Amadeus Mozart (AT, 18, M, DE) 7. Pope Benedict
XVI (DE, 20, M, DE) 8. Alexander the Great (GR, -4, M, EL) 9. Charles Darwin (UK, 19,
M, EN) 10. Barack Obama (US, 20, M, EN) 11. Johann Sebastian Bach (DE, 17, M, DE) 12.
Napoleon (FR, 18, M, FR) 13. Pope John Paul II (PL, 20, M, PL) 14. Julius Caesar (IT, -1, M,
IT) 15. Elizabeth II (UK, 20, F, EN) 16. Albert Einstein (DE, 19, M, DE) 17. Augustus (IT,
-1, M, IT) 18. Bob Dylan (US, 20, M, EN) 19. Leonardo da Vinci (IT, 15, M, IT) 20. Mary
(mother of Jesus) (IL, -1, F, HE) 21. Charlemagne (BE, 8, M, NL) 22. William Shakespeare
(UK, 16, M, EN) 23. Elvis Presley (US, 20, M, EN) 24. Queen Victoria (UK, 19, F, EN) 25.
John Lennon (UK, 20, M, EN) 26. George Frideric Handel (DE, 17, M, DE) 27. J. R. R. Tolkien
(ZA, 19, M, WR) 28. Muhammad (SA, 6, M, AR) 29. Joseph Stalin (GE, 19, M, WR) 30. Karl
Marx (DE, 19, M, DE) 31. Benito Mussolini (IT, 19, M, IT) 32. Franklin D. Roosevelt (US,
19, M, EN) 33. Michael Schumacher (DE, 20, M, DE) 34. Paul McCartney (UK, 20, M, EN)
35. Stephen King (US, 20, M, EN) 36. Henry VIII of England (UK, 15, M, EN) 37. Tokugawa
Ieyasu (JP, 16, M, JA) 38. Edgar Allan Poe (US, 19, M, EN) 39. Martin Luther (DE, 15, M,
DE) 40. David Bowie (UK, 20, M, EN) 41. Pope Pius XII (IT, 19, M, IT) 42. Alfred Hitchcock
(UK, 19, M, EN) 43. Friedrich Nietzsche (DE, 19, M, DE) 44. Vladimir Putin (RU, 20, M, RU)
45. Christopher Columbus (IT, 15, M, IT) 46. Elton John (UK, 20, M, EN) 47. Carl Linnaeus
(SE, 18, M, SV) 48. Michelangelo (IT, 15, M, IT) 49. Raphael (IT, 15, M, IT) 50. Roger
Federer (CH, 20, M, DE) 51. Cao Cao (CN, 2, M, ZH) 52. Vincent van Gogh (NL, 19, M, NL)
53. Frdric Chopin (PL, 19, M, PL) 54. Steven Spielberg (US, 20, M, EN) 55. Rembrandt (NL,
17, M, NL) 56. Ali (SA, 7, M, AR) 57. Richard Wagner (DE, 19, M, DE) 58. Che Guevara
(AR, 20, M, ES) 59. Nelson Mandela (ZA, 20, M, WR) 60. Isaac Asimov (RU, 20, M, RU) 61.
Jules Verne (FR, 19, M, FR) 62. Toyotomi Hideyoshi (JP, 16, M, JA) 63. Winston Churchill
(UK, 19, M, EN) 64. Paul the Apostle (TR, 1, M, TR) 65. Hirohito (JP, 20, M, JA) 66. 14th
Dalai Lama (CN, 20, M, ZH) 67. Franz Liszt (AT, 19, M, DE) 68. Genghis Khan (MN, 12,
M, WR) 69. Otto von Bismarck (DE, 19, M, DE) 70. Saint Peter (IL, 1, M, HE) 71. Charlie
Chaplin (UK, 19, M, EN) 72. Liu Bei (CN, 2, M, ZH) 73. Oda Nobunaga (JP, 16, M, JA) 74.
Suleiman the Magnificent (TR, 15, M, TR) 75. Cyrus the Great (IR, -6, M, FA) 76. George W.
Bush (US, 20, M, EN) 77. Agatha Christie (UK, 19, F, EN) 78. Carl Friedrich Gauss (DE, 18,
M, DE) 79. Louis XIV of France (FR, 17, M, FR) 80. Saddam Hussein (IQ, 20, M, AR) 81.
Pablo Picasso (ES, 19, M, ES) 82. Mariah Carey (US, 20, F, EN) 83. Hans Christian Andersen
(DK, 19, M, DA) 84. Plato (GR, -5, M, EL) 85. Britney Spears (US, 20, F, EN) 86. Rafael
Nadal (ES, 20, M, ES) 87. George Harrison (UK, 20, M, EN) 88. Margaret Thatcher (UK, 20,
F, EN) 89. Jorge Luis Borges (AR, 19, M, ES) 90. Salvador Dal (ES, 20, M, ES) 91. Peter the
Great (RU, 17, M, RU) 92. Giuseppe Verdi (IT, 19, M, IT) 93. Sigmund Freud (CZ, 19, M,
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WR) 94. Qin Shi Huang (CN, -3, M, ZH) 95. Kangxi Emperor (CN, 17, M, ZH) 96. Martina
Navratilova (CZ, 20, F, WR) 97. Charles V, Holy Roman Emperor (BE, 15, M, NL) 98. Zhuge
Liang (CN, 2, M, ZH) 99. Constantine the Great (RS, 3, M, WR) 100. Muammar Gaddafi (LY,
20, M, AR)

List of 36 names from the global PageRank list of 1045 names where the birth place in modern
geography of countries differs from native language: Jesus (PS AR), Charlemagne (Belgium NL),
Immanuel Kant (Russia RU), Moses (Egypt AR), Catherine the Great (Poland PL), Mustafa
Kemal Atatürk (Greece EL), Bhumibol Adulyadej (USA EN), Christian V of Denmark (Ger-
many DE), Józef Pilsudski (Litvania WR), Christian IX of Denmark (Germany DE), Philip V of
Spain (France FR), Giuseppe Garibaldi (France FR), Muhammad al-Idrisi (Spain ES), Charles
XIV John of Sweden (France FR), Leonid Brezhnev (Ukraine WR), George I of Greece (Den-
mark DA), Juan Carlos I of Spain (Italy IT), Leon Trotsky (Ukraine WR), Golda Meir (Ukraine
WR), Valéry Giscard d’Estaing (Germany DE), Magnus IV of Sweden (Noroway WR), Christian
I of Denmark (Germany DE), Yitzhak Ben-Zvi (Ukraine WR), Mikhail Bulgakov (Ukraine WR);
Kim Jong-il (Russia RU). Lee Myung-bak (Japan JA), Jangsu of Goguryeo (China ZH); Galyani
Vadhana (UK EN), Abhisit Vejjajiva (UK EN); Matthias Corvinus (Romania WR), Ferenc Kaz-
inczy (Romania WR), György Kulin (Romania WR), Gabriel Bethlen (Romania WR), Endre
Ady (Romania WR), János Arany (Romania WR), Béla Bartók (Romania WR).

List of 53 names from the global 2DRank list of 1616 names where the birth place in modern
geography of countries differs from native language: Jesus (PS AR), Charlemagne (BE NL),
Isaac Asimov (RU RU), Paul the Apostle (TR TR), Peter Paul Rubens (DE DE), Catherine the
Great (PL PL), Julian (emperor) (TR TR), Józef Pilsudski (LT WR), Muhammad Ali of Egypt
(GR EL), Juan Carlos I of Spain (IT IT), Shmuel Yosef Agnon (UA WR), Saint Joseph (PS
AR), Golda Meir (UA WR), Baibars (UA WR), Levi Eshkol (UA WR), Augustine of Hippo (DZ
AR), Yitzhak Ben-Zvi ( UA WR), Natan Yonatan (UA WR), Edward Rydz-migy (UA WR),
Immanuel Kant (RU RU), Pyotr Stolypin (DE DE), Czeslaw Niemen (BY RU), Moses (EG
AR), Albert Camus (DZ AR), Leonid Brezhnev ( UA WR), Aharon Barak (LT WR), George
Orwell (IN HI), Sergei Korolev (UA WR), Garry Kasparov (AZ TR), Ibn ’Abd al-Barr (ES ES),
Georges Simenon (BE NL), Ryszard Kapuściński (BY RU), Mihly Munkácsy ( UA WR), Juliusz
Slowacki (UA WR), Tadeusz Kościuszko ( BY RU), John McCain ( PA ES), Maurice, Prince
of Orange ( DE DE), Zbigniew Herbert (UA WR), Leon Trotsky (UA WR), Charles XIV John
of Sweden ( FR FR). Lee Myung-bak (JA JA), Jangsu of Goguryeo (CN ZH), Gwanggaeto the
Great (CN ZH); Galyani Vadhana (UK EN), Abhisit Vejjajiva (UK EN); Matthias Corvinus
(RO WR), Károly Kós (RO WR), László Németh (RO WR), Sándor Körösi Csoma (RO WR),
János Bolyai (RO WR), György Kulin (RO WR), Ferenc Kazinczy (RO WR), Béla Bartók (RO
WR).
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Figure S1. Birth date distribution of historical figures from the global PageRank list (A,C,

1045 persons) and 2DRank list (B,D, 1616 persons). Each historical figure is attributed to

her/his own language according to her/his birth place as described in the paper (if the birth

place is not among our 24 languages then a person is attributed to the remaining world

(WR)). Color in panels (A,B) shows the total number of persons for a given century, while in

panels (C,D) color shows a percent for a given century (normalized to unity in each column).

This figure give a more distinct separation of cultures (languages) compared to a similar Fig.4

where the distribution over Wikipedia editions is shown on the vertical axis.



6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

η(
j)

j

(A)

Hart-Our
Hart-Pantheon

Hart-Stony
Hart-2010

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

η(
j)

j

(B)

Our-Hart
Our-Pantheon

Our-Stony
Our-2010

Figure S2. Dependence of fraction η of overlaped persons on rank index of person j. (A)

Comparison is done of present study (“our”), PageRank list of English Wikipedia of [15]
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Table S1. List of local historical figures for EN category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1861 William Shakespeare 1315 Michael Jackson
2 1789 Elizabeth II 991 Madonna (entertainer)
3 1756 Isaac Newton 773 Charles Darwin
4 1173 George W. Bush 754 Barack Obama
5 1101 Barack Obama 664 Elizabeth II
6 932 Charles Darwin 624 Bob Dylan
7 910 Franklin D. Roosevelt 556 William Shakespeare
8 656 George Washington 555 Elvis Presley
9 596 Bill Clinton 550 Queen Victoria
10 564 Winston Churchill 541 John Lennon

Table S2. List of local historical figures for NL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1476 Charlemagne 569 Charlemagne
2 556 Charles V, Holy Roman Emperor 297 Vincent van Gogh
3 83 Maurice Maeterlinck 294 Rembrandt
4 81 William I of the Netherlands 190 Charles V, Holy Roman Emperor
5 78 Beatrix of the Netherlands 138 Beatrix of the Netherlands
6 61 Baruch Spinoza 98 Baruch Spinoza
7 61 Rembrandt 94 Hugo Claus
8 51 Wilhelmina of the Netherlands 91 Johan Cruyff
9 47 Juliana of the Netherlands 76 Louis Couperus
10 39 Christiaan Huygens 75 Pierre Cuypers
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Table S3. List of local historical figures for DE category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1)

ΘA PageRank local figures ΘA 2DRank local figures

1 2112 Adolf Hitler 1557 Adolf Hitler
2 1847 Albert Einstein 872 Ludwig van Beethoven
3 1730 Karl Marx 853 Wolfgang Amadeus Mozart
4 996 Wolfgang Amadeus Mozart 840 Pope Benedict XVI
5 925 Martin Luther 733 Johann Sebastian Bach
6 700 Ludwig van Beethoven 651 Albert Einstein
7 610 Johann Sebastian Bach 540 George Frideric Handel
8 570 Johann Wolfgang von Goethe 465 Karl Marx
9 528 Pope Benedict XVI 446 Michael Schumacher
10 417 Richard Wagner 344 Martin Luther

Table S4. List of local historical figures for FR category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2208 Napoleon 720 Napoleon
2 1207 Louis XIV of France 268 Jules Verne
3 724 René Descartes 221 Louis XIV of France
4 397 Napoleon III 168 Giuseppe Garibaldi
5 385 Charles de Gaulle 146 Denis Diderot
6 260 Pierre André Latreille 144 Franois Mitterrand
7 167 Tacitus 127 Napoleon III
8 165 Jean-Baptiste Lamarck 121 Nicolas Sarkozy
9 157 Molière 113 Claudius
10 112 Francis I of France 112 Henry IV of France



10

Table S5. List of local historical figures for ES category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 276 Francisco Franco 285 Che Guevara
2 195 Philip II of Spain 216 Pablo Picasso
3 119 Pablo Picasso 206 Rafael Nadal
4 82 Lionel Messi 199 Jorge Luis Borges
5 74 Charles III of Spain 198 Salvador Daĺı

6 72 Teresa of Ávila 178 Hadrian
7 71 Miguel de Cervantes 105 Shakira
8 70 Ferdinand VII of Spain 100 Francisco Goya
9 66 Alfonso X of Castile 95 Juan Perón
10 65 Ferdinand I, Holy Roman Emperor 94 Augusto Pinochet

Table S6. List of local historical figures for IT category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1952 Julius Caesar 689 Julius Caesar
2 1662 Augustus 647 Augustus
3 1476 Christopher Columbus 616 Leonardo da Vinci
4 893 Galileo Galilei 464 Benito Mussolini
5 758 Benito Mussolini 339 Pope Pius XII
6 753 Cicero 330 Christopher Columbus
7 594 Leonardo da Vinci 326 Michelangelo
8 292 Pliny the Elder 322 Raphael
9 288 Pope Gregory XIII 197 Giuseppe Verdi
10 250 Pope Paul VI 172 Galileo Galilei
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Table S7. List of local historical figures for PT category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 91 Getúlio Vargas 109 Ronaldo
2 83 Cristiano Ronaldo 100 Getúlio Vargas
3 74 John VI of Portugal 92 Juscelino Kubitschek
4 71 Luiz Inácio Lula da Silva 91 Rubens Barrichello
5 70 Pedro I of Brazil 90 Joaquim Maria Machado de Assis
6 67 Ferdinand Magellan 89 Fernando Henrique Cardoso
7 66 Maria I of Portugal 82 Lúıs de Camões
8 64 John I of Portugal 80 José Saramago
9 63 Pedro II of Brazil 79 John VI of Portugal
10 62 Juscelino Kubitschek 77 Oscar Niemeyer

Table S8. List of local historical figures for EL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2237 Aristotle 789 Alexander the Great
2 1949 Plato 207 Plato
3 1771 Alexander the Great 167 Aristotle
4 213 Socrates 108 Pericles
5 178 Plutarch 100 Mustafa Kemal Atatürk
6 153 Mustafa Kemal Atatürk 98 Eleftherios Venizelos
7 123 Sophocles 95 Andreas Papandreou
8 93 Aeschylus 94 Muhammad Ali of Egypt
9 86 Euripides 94 Ioannis Kapodistrias
10 84 Ioannis Kapodistrias 93 Plutarch
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Table S9. List of local historical figures for DA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 99 Tycho Brahe 210 Hans Christian Andersen
2 94 Ole Rømer 98 Margrethe II of Denmark
3 93 Christian IV of Denmark 95 N. F. S. Grundtvig
4 86 Margrethe II of Denmark 92 Sren Kierkegaard
5 85 Hans Christian Andersen 89 Christian IV of Denmark
6 84 Frederick IV of Denmark 88 Hans Christian Ørsted
7 80 Frederick II of Denmark 86 Anders Fogh Rasmussen
8 78 John Louis Emil Dreyer 84 Carl Nielsen
9 77 Christian VII of Denmark 83 Christian X of Denmark
10 76 Frederick III of Denmark 82 Niels Bohr

Table S10. List of local historical figures for SV category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2284 Carl Linnaeus 326 Carl Linnaeus
2 125 August Strindberg 151 Ingmar Bergman
3 98 Alfred Nobel 146 Charles XII of Sweden
4 94 Gustav I of Sweden 116 Astrid Lindgren
5 93 Gustav III of Sweden 100 August Strindberg
6 86 Charles XII of Sweden 98 Carl XVI Gustaf of Sweden
7 82 Gustavus Adolphus of Sweden 92 Evert Taube
8 72 Carl XVI Gustaf of Sweden 89 Jan Myrdal
9 71 Charles XI of Sweden 88 Carl Jonas Love Almqvist
10 67 Charles IX of Sweden 83 Gustav I of Sweden
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Table S11. List of local historical figures for PL category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 864 Pope John Paul II 693 Pope John Paul II
2 94 Catherine the Great 296 Frédéric Chopin
3 88 David Ben-Gurion 135 Catherine the Great
4 80 Casimir III the Great 98 David Ben-Gurion
5 72 Nathan Alterman 95 Bolesaw III Wrymouth
6 69 Lech Walesa 94 Andrzej Wajda
7 66 Lech Kaczyński 93 Nathan Alterman
8 63 Frédéric Chopin 91 Gerhart Hauptmann
9 60 Henryk Sienkiewicz 88 Anton Denikin
10 58 Sigismund I the Old 83 Lech Kaczyński

Table S12. List of local historical figures for HU category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 93 János Szentágothai 100 Stephen I of Hungary
2 91 Stephen I of Hungary 99 Sándor Petöfi
3 87 Lajos Kossuth 94 Kati Kovács
4 86 Miklós Réthelyi 93 Miklós Horthy
5 80 Béla IV of Hungary 92 Attila József
6 79 Louis I of Hungary 89 Sándor Weöres
7 75 Sándor Petöfi 86 Theodor Herzl
8 67 Miklós Horthy 83 Lajos Kossuth
9 56 Theodor Herzl 81 Miklós Radnóti
10 53 Andrew II of Hungary 77 János Kodolányi
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Table S13. List of local historical figures for RU category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1123 Immanuel Kant 334 Vladimir Putin
2 1022 Vladimir Lenin 274 Isaac Asimov
3 156 Peter the Great 198 Peter the Great
4 130 Mikhail Gorbachev 171 Vladimir Lenin
5 101 Pyotr Ilyich Tchaikovsky 127 Yuri Gagarin
6 97 Yuri Gagarin 109 Igor Stravinsky
7 97 Alexander Pushkin 100 Menachem Begin
8 91 Vladimir Putin 99 Dmitri Mendeleev
9 89 Nikita Khrushchev 96 Aleksander Griboyedov
10 88 Alexander II of Russia 95 Shimon Peres

Table S14. List of local historical figures for HE category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1094 Mary (mother of Jesus) 580 Mary (mother of Jesus)
2 724 Saint Peter 240 Saint Peter
3 138 John the Baptist 171 John the Baptist
4 99 Yitzhak Rabin 99 Saint George
5 95 Yigal Amir 99 Yitzhak Rabin
6 84 Josephus 96 Ariel Sharon
7 81 Tom Segev 92 Benjamin Netanyahu
8 75 Ariel Sharon 85 Ehud Barak
9 65 Benjamin Netanyahu 82 Roni Dalumi
10 54 Herod the Great 79 Moshe Dayan
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Table S15. List of local historical figures for TR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 973 Paul the Apostle 252 Paul the Apostle
2 925 Herodotus 231 Suleiman the Magnificent
3 133 Strabo 172 Mehmed the Conqueror
4 117 Mehmed the Conqueror 169 Selim I
5 106 Suleiman the Magnificent 142 Abdul Hamid II
6 96 Abdul Hamid II 111 Julian (emperor)
7 93 Pausanias (geographer) 90 Recep Tayyip Erdoğan

8 83 İsmet İnönü 87 Adnan Menderes
9 79 Selim I 85 Lucian
10 79 Hesiod 84 Blent Ecevit

Table S16. List of local historical figures for AR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 2282 Jesus 943 Jesus
2 1735 Muhammad 499 Muhammad
3 629 Moses 291 Ali
4 426 Saddam Hussein 219 Saddam Hussein
5 424 Ptolemy 181 Muammar Gaddafi
6 329 Augustine of Hippo 143 Hannibal
7 328 Ali 128 Saladin
8 196 Umar 128 Anwar Sadat
9 147 Anwar Sadat 117 Hosni Mubarak
10 134 Euclid 108 Yasser Arafat



16

Table S17. List of local historical figures for FA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 110 Zoroaster 229 Cyrus the Great
2 101 Darius I 99 Zoroaster
3 100 Mahmoud Ahmadinejad 98 Mohammad Reza Pahlavi
4 97 Mohammad Reza Pahlavi 97 Mohammad Khatami
5 96 Rez Shh 96 Mir-Hossein Mousavi
6 94 Cyrus the Great 95 Ruhollah Khomeini
7 92 Ferdowsi 94 Naser al-Din Shah Qajar
8 90 Ruhollah Khomeini 93 Ali Khamenei
9 89 Naser al-Din Shah Qajar 92 Mohammad Mosaddegh
10 86 Mohammad Khatami 91 Ardashir I

Table S18. List of local historical figures for HI category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 168 Ashoka 126 Ashoka
2 106 Mahatma Gandhi 108 Akbar
3 100 Benazir Bhutto 99 Indira Gandhi
4 91 Vikramditya 98 Mahadevi Varma
5 90 Shivaji 96 Sanjeev Kumar
6 89 Jawaharlal Nehru 93 Amitabh Bachchan
7 88 Akbar 91 Premchand
8 87 Indira Gandhi 90 Dayananda Saraswati
9 86 Adi Shankara 89 Jaishankar Prasad
10 85 Vishnu Prabhakar 86 Adi Shankara
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Table S19. List of local historical figures for MS category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 96 Mahathir Mohamad 100 Mahathir Mohamad
2 85 Najib Razak 99 Najib Razak
3 84 P. Ramlee 98 Anwar Ibrahim
4 81 Tunku Abdul Rahman 93 Mizan Zainal Abidin of Terengganu
5 79 Abdullah Ahmad Badawi 92 Sudirman Arshad
6 77 Muhyiddin Yassin 91 Tunku Abdul Rahman
7 74 Abdul Razak Hussein 90 Siti Nurhaliza
8 62 Anwar Ibrahim 89 Abdullah Ahmad Badawi
9 58 Hussein Onn 88 Abdul Taib Mahmud
10 37 Mizan Zainal Abidin of Terengganu 84 P. Ramlee

Table S20. List of local historical figures for TH category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 100 Chulalongkorn 100 Sirindhorn
2 97 Vajiravudh 98 Sirikit
3 96 Mongkut 97 Thaksin Shinawatra
4 94 Buddha Yodfa Chulaloke 94 Taksin
5 92 Nangklao 91 Pridi Banomyong
6 91 Thaksin Shinawatra 90 Yingluck Shinawatra
7 90 Damrong Rajanubhab 88 Srinagarindra
8 89 Taksin 86 Samak Sundaravej
9 88 Plaek Phibunsongkhram 82 Vajiralongkorn
10 87 Prajadhipok 80 Chao Keo Naovarat
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Table S21. List of local historical figures for VI category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 91 Ho Chi Minh 98 Ho Chi Minh
2 71 Ngo Dinh Diem 97 Gia Long
3 62 Minh Mng 96 Minh Mng
4 46 Gia Long 94 Nguyen Hue
5 44 Bo i 86 Le Loi
6 22 Le Loi 84 Tran Hung Dao
7 15 Nhat Linh 83 Vo Nguyen Giap
8 N/A N/A 82 Tu Duc
9 N/A N/A 81 Le Thánh Tông
10 N/A N/A 80 Trung Sisters

Table S22. List of local historical figures for ZH category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 375 Mao Zedong 306 Cao Cao
2 285 Confucius 243 14th Dalai Lama
3 244 Chiang Kai-shek 234 Liu Bei
4 197 Qin Shi Huang 192 Qin Shi Huang
5 186 Emperor Wu of Han 191 Kangxi Emperor
6 135 Cao Cao 188 Zhuge Liang
7 129 Hongwu Emperor 179 Qianlong Emperor
8 119 Qianlong Emperor 154 Mao Zedong
9 119 Kangxi Emperor 147 Hongwu Emperor
10 94 Sun Yat-sen 146 Sun Yat-sen
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Table S23. List of local historical figures for KO category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 100 Gojong of the Korean Empire 114 Gojong of the Korean Empire
2 98 Kim Il-sung 106 Kim Il-sung
3 95 Sejong the Great 100 Park Chung-hee
4 94 Park Chung-hee 99 Kim Dae-jung
5 93 Taejong of Joseon 97 Roh Moo-hyun
6 92 Syngman Rhee 95 Sejong the Great
7 91 Yeongjo of Joseon 94 Taejo of Goryeo
8 90 Kim Dae-jung 93 Kim Young-sam
9 89 Seonjo of Joseon 92 Jeongjo of Joseon
10 86 Taejo of Joseon 90 Syngman Rhee

Table S24. List of local historical figures for JA category. Here ΘA is the ranking score of the
algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 154 Toyotomi Hideyoshi 346 Tokugawa Ieyasu
2 153 Tokugawa Ieyasu 266 Toyotomi Hideyoshi
3 108 Hirohito 252 Hirohito
4 97 Oda Nobunaga 233 Oda Nobunaga
5 86 Emperor Meiji 140 Junichiro Koizumi
6 81 Minamoto no Yoritomo 131 Shinzō Abe
7 76 Junichiro Koizumi 112 Tsunku
8 73 Emperor Tenmu 106 Emperor Meiji
9 70 Natsume Sōseki 100 Koxinga
10 69 Akihito 97 Osamu Tezuka
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Table S25. List of local historical figures for WR category. Here ΘA is the ranking score of
the algorithm A defined in Eq.(1).

ΘA PageRank local figures ΘA 2DRank local figures

1 1686 Joseph Stalin 529 J. R. R. Tolkien
2 842 Constantine the Great 477 Joseph Stalin
3 564 Gautama Buddha 276 Nelson Mandela
4 506 Sigmund Freud 241 Genghis Khan
5 405 Diocletian 195 Sigmund Freud
6 351 Justinian I 191 Martina Navratilova
7 219 J. R. R. Tolkien 186 Constantine the Great
8 203 Genghis Khan 173 Justinian I
9 138 Avicenna 127 Nikola Tesla
10 129 Rumi 123 Kublai Khan
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Abstract

Understanding the correlation between two different scores for the same set of items is a common problem in
information retrieval, and the most commonly used statistics that quantifies this correlation is Kendall’s τ . However,
the standard definition fails to capture that discordances between items with high rank are more important than those
between items with low rank. Recently, a new measure of correlation based on average precision has been proposed to
solve this problem, but like many alternative proposals in the literature it assumes that there are no ties in the scores.
This is a major deficiency in a number of contexts, and in particular while comparing centrality scores on large graphs,
as the obvious baseline, indegree, has a very large number of ties in web and social graphs. We propose to extend
Kendall’s definition in a natural way to take into account weights in the presence of ties. We prove a number of
interesting mathematical properties of our generalization and describe an O(n logn) algorithm for its computation.
We also validate the usefulness of our weighted measure of correlation using experimental data.

1 Introduction
In information retrieval, one is often faced with different scores1 for the same set of items. This includes the lists of
documents returned by different search engines and their associated relevance scores, the lists of query recommendation
returned by different algorithms, and also the score associated to each node of a graph by different centrality measures
(e.g., indegree and Bavelas’s closeness [1]).

In most of the literature, the scores are assumed to be without ties, thus inducing a ranking of the elements. At
that point, correlation statistics such as Spearman’s rank correlation coefficient [24] and Kendall’s τ [12] can be used
to evaluate the similarity of the rankings. Spearman’s correlation coefficient is equivalent to the traditional linear
correlation coefficient computed on ranks of items. Kendall’s τ , instead, is proportional to the number of pairwise
adjacent swaps needed to convert one ranking into the other.

For a number of reasons, Kendall’s τ has become a standard statistic to compare the correlation between two ranked
lists. Such reasons include fast computation (O(n log n), where n is the length of the list, using Knight’s algorithm [14]),
and the existence of a variant that takes care of ties [13].

The explicit treatment of ties is of great importance when comparing global exogenous relevance scores in large
collections of web documents. The baseline of such scores is indegree—the number of documents containing hypertex-
tual link to a given document. More sophisticated approaches include Katz’s index [10], PageRank [21], and countless
variants. Due to the highly skewed indegree distribution, a very large number of documents share the same indegree,
and the same happens of many other scores: it is thus of uttermost importance that the evaluation of correlation takes
into account ties as first-class citizens.

On the other hand, Kendall’s τ has some known problems that motivated the introduction of several weighted
variants. In particular, a striking difference often emerges between the anecdotal evidence of the top elements by
different scores being almost identical, and the τ value being quite low. This is due to a known phenomenon: the scores
of important items tend to be highly correlated in all reasonable rankings, whereas most of the remaining items are
ranked in slightly different ways, introducing a large amount of noise, yielding a low τ value.

∗Sebastiano Vigna has been supported by the EU-FET grant NADINE (GA 288956).
1We purposely and consistently use “score” to denote real numbers associated to items, and “rank” to denote ordinal positions. The two terms

are used somewhat interchangeably in the literature, but in this paper the distinction is important as we assume that scores of different items can be
identical.
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This problem motivates the definition of correlation statistics that consider more important correlation between
highly ranked items. In particular, recently Yilmaz, Aslam and Robertson introduced a statistics, named AP (average
precision) correlation [27], which aims at considering more important swaps between highly ranked items. The need
for such a measure is very well motivated in the introduction of their paper, and we will not repeat here their detailed
discussion.

In this paper, we aim at providing a measure of correlation in the same spirit of the definition oh Yilmaz, Aslam and
Robertson, but taking smoothly ties into account. We will actually define a general notion of weighting for Kendall’s τ ,
and develop its mathematical properties. Since it is important that such a statistics is computable on very large data sets,
we will provide a generalization of Knight’s algorithm that can be applied whenever the weighting depends additively
or multiplicatively on a weight assigned to each item. The same algorithm can be used to compute AP correlation in
time O(n log n).

All data and software used in this paper are available as part of the LAW software library under the GNU General
Public License.2

2 Related work
Shieh [23] wrote the one of the first papers proposing a generic weighting of Kendall’s τ . She assumes from the very
start that there are no ties, and assign to the exchange between i and j a weight wij . Her motivation is the fidelity
evaluation of software packages for structural engineering, in which a set of variables is ranked in two different ways,
and one would like to emphasize agreement on the most important ones. In particular, she concentrates on weights
given by the product of two weights associated with the elements participating in the exchange. Our work can be seen
as a generalization of her approach, albeit we combine weights differently.

Kumar and Vassilvitskii [16] study a definition that extends Shieh’s taking into account position weights and sim-
ilarity between elements. Again, they assume that ties are broken arbitrarily, which is an unacceptable assumption if
large sets of elements have the same score. Fagin, Kumar and Sivakumar [6] use instead penalty weights to apply
Kendall’s τ just to the top k elements of two ranked lists (with no ties). Exchanges partially or completely outside the
top k elements obtain different weights.

Finally, the recent quoted work of Yilmaz, Aslam and Robertson [27] on AP correlation is the closest to ours in
motivation and methodology, albeit targeted at ranked lists with no ties.

We remark that analogous research exists in association with Spearman’s correlation: Iman and Conover [9], for
example, study the usage of Savage scores [22] instead of ranks when comparing ranked lists. Savage scores for a
ranked list of n elements are given by

∑n
j=i 1/j, where i is the rank (starting at one) of an element. Spearman’s

correlation applied to Savage scores considers more important elements at the top of a ranked list.
Recently, Webber, Moffat and Zobel [26] have described a similarity measure for indefinite rankings—rankings

that might have different lengths and contain different elements. Their work has some superficial resemblance with
the approach of [16, 27] and our work, as it give preminence to differences at the top of ranked lists, but it is not
technically a correlation index, as it is based on measuring overlaps of infinite lists, rather than on exchanges. Thus, the
basic condition for a correlation index (i.e., that inverting the list one obtains the minimum possible correlation, usually
standardized to−1), is not even expressible in their framework. Moreover, their measure, being defined on infinite lists,
needs the fundamental assumption that the weight function applied to overlaps must be summable; in particular, they
make importance decrease exponentially. As we will discuss in Section 4.2, and verify experimentally in Section 6,
such a choice is a reasonable framework for very short lists, or when only very first elements are relevant (e.g., because
one is modelling user behavior), but it would completely flatten the results of our correlation index on large examples,
depriving it from its discriminatory power, even if the weight function would decrease just quadratically.

A fascinating proposal, entirely orthogonal to the ones we discussed, is the idea of weighting Kemeny’s distance
between permutations proposed by Farnoud and Milenkovic [7]. In this proposal, Kemeny’s distance between two
permutations π and σ is characterized as the minimum number of adjacent transpositions (i.e., transpositions of the
form (i i+1)) that turn π into σ. At this point, one can define a weight associated to each adjacent transposition, and by
assigning larger weights to adjacent transpositions with smaller indices one can make differences in the top part of the
permutations more important than differences in the bottom part. The right notion of weighted distance turns out to be
the minimum sum of weights of a sequence of adjacent transposition that turn π into σ. The interesting property of this
approach is that avoids the need for a ground truth (an intrinsic notion of importance of an element), which is necessary,

2http://law.di.unimi.it/
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implicitly or explicitly, to weigh an exchange in the approaches of [23, 27] and in the one discussed in this paper. The
main drawback, presently, is that even in the presence of weighting functions that are monotonically decreasing in i the
time necessary to compute the distance is O(n2) instead of O(n log n). It is also necessary more tuning to extend the
distance to the case of ties, and to turn in this case the distance into a proper correlation index with range in [−1 . . 1].

3 Motivation
The need for weighted correlation measures in the case of ranked list has been articulated in detail in previous work.
Here we will focus on the case of centrality measures for graphs. Consider the graph of English Wikipedia3, which
has about four million nodes and one hundred million arcs. In this graph, 99.95% of the nodes have the same indegree
of some other node—for example, more than a half million node has indegree one. It is clearly mandatory, when
computing the correlation of other scores with indegree, that ties are taken into consideration in a systematic way (e.g.,
not broken arbitrarily).

We will consider four other commonly used scores based on the adjacency matrix A of the Wikipedia graph. One is
PageRank [21], which is defined by

1/n
∑
k≥0

(αĀ)k,

where α ∈ [0 . . 1) is a damping factor and Ā is a stochasticization of A: every row not entirely made of zeroes is
divided by its sum, so to have `1 norm one.

The other index we consider is Katz’s [10], which is defined by

1
∑
k≥0

(αA)k,

where α ∈ [0 . . 1/λ) is an attenuation factor depending on λ, the dominant eigenvalue of A [19]. In both cases, we take
α in the middle of the allowed interval (using different values does not change the essence of what follows, unless they
are extreme).

A different kind of score is provided by Bavelas’s closeness. The closeness of x is defined by

1∑
d(y,x)<∞ d(y, x)

,

where d(−,−) denotes the usual graph distance. Note that we have to eliminate nodes at infinite distance to avoid
zeroing all scores. By definition the closeness of a node with indegree zero is zero. Finally, we consider harmonic
centrality [2], a modified version of Bavelas’s closeness designed for directed graphs that are not strongly connected;
the harmonic centrality of x is defined by ∑

y 6=x

1

d(y, x)
.

These scores provide an interesting mix: indegree is an obvious baseline, and entirely local. PageRank and Katz
are similar in their definition, but the normalization applied to A makes the scores quite different (at least in theory).
Finally, closeness and harmonic centrality are of a completely different nature, having no connection with dominant
eigenvectors or Markov chains.

Our first empirical observation is that, looking just at the very top pages of Wikipedia (Table 1; entries in boldface
are unique to the list they belong to, here and in the following), we perceive these scores as almost identical, except for
closeness, which displays almost random values. The latter behavior is a known phenomenon: nodes that are almost
isolated obtain a very high closeness score (this is why harmonic centrality was devised). We note also that harmonic
centrality has a slightly different slant, as it is the only ranking including Latin, Europe, Russia and the Catholic Church
in the top 20.

The problem is that these facts are not reflected in any way in the values of Kendall’s τ shown in Table 3. If we
exclude closeness, with the exception of the correlation between indegree and Katz, all other correlation value fail to
surpass the 0.9 threshold, usually considered the threshold for considering two rankings equivalent [25]. Actually, they

3More precisely, a specific snapshot of Wikipedia that will be made public by the author. The graph does not contain template pages.
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Indegree PageRank Katz Harmonic Closeness
United States United States United States United States Kharqan Rural District
List of sovereign states Animal List of sovereign states United Kingdom Talageh-ye Sofla
Animal List of sovereign states United Kingdom World War II Talageh-ye Olya
England France France France Greatest Remix Hits (Whigfield album)
France Germany Animal Germany Suzhou HSR New Town
Association football Association football World War II Association football Suzhou Lakeside New City
United Kingdom England England English language Mepirodipine
Germany India Association football China List of MPs . . . M–N
Canada United Kingdom Germany Canada List of MPs . . . O–R
World War II Canada Canada India List of MPs . . . S–T
India Arthropod India Latin List of MPs . . . U–Z
Australia Insect Australia World War I List of MPs . . . J–L
London World War II London England List of MPs . . . C
Japan Japan Italy Italy List of MPs . . . F–I
Italy Australia Japan Russia List of MPs . . . A–B
Arthropod Village New York City Europe List of MPs . . . D–E
Insect Italy English language Australia Esmaili-ye Sofla
New York City Poland China European Union Esmaili-ye Olya
English language English language Poland Catholic Church Levels of organization (ecology)
Village Nationa Reg. of Hist. Places World War I London Jacques Moeschal (architect)

Table 1: Top 20 pages of the English version of Wikipedia following five different centrality measures.

are below the threshold 0.8, under which we are supposed to see considerable changes. The correlation of closeness
with harmonic centrality, moreover, is even more pathological: it is the largest correlation.

An obvious observation is that, maybe, the score is lowered by a large discordance in the rest of the rankings.
Table 2 tries to verify this intuition by listing the top pages that are associated with the Wordnet category “scientist” in
the Yago2 ontology data [8]. These pages have considerably lower score (their rank is below 300), yet the first three
rankings are almost identical. Harmonic centrality is still slightly different (Linnaeus is absent, and actually ranks 21),
which tells us that the Kendall’s τ is not giving completely unreasonable data. Nonetheless, closeness continues to
provide apparently random results.

We have actually to delve deep into Wikipedia, beyond rank 100 000 using the category “cocktail” to see that, finally,
things settle down (Table 5). While closeness still displays a few quirks, the rankings start to stabilize.

To understand what happens in the very low-rank region, in Table 4 we provide Kendall’s τ as in Table 3, but
restricting the computation to nodes of indegree 1 and 2. As it is immediately evident, after stabilization the low-rank
region is fraught with noise and all correlation values drop significantly.

The very high correlation between closeness and harmonic centrality is, actually, not strange: on the nodes reachable
from giant connected component of our Wikipedia snapshot (89% of the nodes) they agree almost exactly, as closeness
is the reciprocal of a denormalized arithmetic mean, whereas harmonic centrality is the reciprocal of a denormalized
harmonic mean [2]. Even if the remaining 11% of the nodes is completely out of place, making closeness useless,
Kendall’s τ tells us that it should be interchangeable with harmonic centrality. At the same time, Kendall’s τ tells us
that indegree is very different from PageRank, which again goes completely against our empirical evidence.

In the rest of the paper, we will try to approach in a systematic manner these problems by defining a new weighted
correlation index for scores with ties.

4 Definitions and Tools
In his 1945 paper about ranking with ties [13], Kendall, starting from an observation of Daniels [4], reformulates his
correlation index using a definition similar in spirit to that of an inner product, which will be the starting point of our
proposal: we consider two real-valued vectors r and s (to be thought as scores) with indices in [n]; then, let us define

〈r, s〉 :=
∑
i<j

sgn(ri − rj) sgn(si − sj),
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Indegree PageRank Katz Harmonic Closeness
Carl Linnaeus Carl Linnaeus Carl Linnaeus Aristotle Noël Bernard (botanist)
Aristotle Aristotle Aristotle Albert Einstein Charles Coquelin
Thomas Jefferson Thomas Jefferson Thomas Jefferson Thomas Jefferson Markku Kivinen
Margaret Thatcher Charles Darwin Albert Einstein Charles Darwin Angiolo Maria Colomboni
Plato Plato Charles Darwin Thomas Edison Om Prakash (historian)
Charles Darwin Albert Einstein Karl Marx Alexander Graham Bell Michel Mandjes
Karl Marx Karl Marx Plato Nikola Tesla Kees Posthumus
Albert Einstein Pliny the Elder Margaret Thatcher William James F. Wolfgang Schnell
Vladimir Lenin Vladimir Lenin Vladimir Lenin Isaac Newton Christof Ebert
Sigmund Freud Johann Wolfgang von Goethe Isaac Newton Karl Marx Reese Prosser
J. R. R. Tolkien Margaret Thatcher Ptolemy Charles Sanders Peirce David Tulloch
Johann Wolfgang von Goethe Ptolemy Johann Wolfgang von Goethe Noam Chomsky Kim Hawtrey
Spider-Man Sigmund Freud Pliny the Elder Enrico Fermi Patrick J. Miller
Pliny the Elder Isaac Newton Benjamin Franklin Ptolemy Mikel King
Benjamin Franklin Benjamin Franklin J. R. R. Tolkien John Dewey Albert Perry Brigham
Leonardo da Vinci J. R. R. Tolkien Thomas Edison Johann Wolfgang von Goethe Gordon Wagner (economist)
Isaac Newton Immanuel Kant Sigmund Freud Bertrand Russell George Henry Chase
Ptolemy Leonardo da Vinci Immanuel Kant Plato Charles C. Horn
Immanuel Kant Pierre André Latreille Leonardo da Vinci John von Neumann Paul Goldstene
George Bernard Shaw Thomas Edison Noam Chomsky Vladimir Lenin Robert Stanton Avery

Table 2: Top 20 pages of Wikipedia following five different centrality measures and restricting pages to Yago2 Wordnet
category “scientist”. The global rank of these items is beyond 300.

Ind. PR Katz Harm. Cl.
Indegree 1 0.75 0.90 0.62 0.55
PageRank 0.75 1 0.75 0.61 0.56
Katz 0.90 0.75 1 0.70 0.62
Harmonic 0.62 0.61 0.70 1 0.92
Closeness 0.55 0.56 0.62 0.92 1

Table 3: Kendall’s τ between Wikipedia centrality measures.

where

sgn(x) :=


1 if x > 0;
0 if x = 0;
−1 if x < 0.

Indices of score vectors in summations belong to [n] throughout the paper. Note that

〈r, αs〉 = 〈αr, s〉 = sgn(α)〈r, s〉,

which reminds of the analogous property for inner products, and that 〈r,−〉 = 〈−, r〉 = 0 if r is constant. Following
the analogy, we can define

‖r‖ :=
√
〈r, r〉,

so
‖αr‖ = | sgn(α)| · ‖r‖.

The norm thus defined measures the “untieness” of r: it is zero if and only if r is a constant vector, and it has maximum
value

√
n(n− 1)/2 when all components of r are distinct.

We can now define Kendall’s τ between two vectors r and s with nonnull norm as a normalized inner product, in a
way formally identical to cosine similarity:

τ(r, s) :=
〈r, s〉
‖r‖ · ‖s‖

. (1)

We recall that if r and s have no ties, the definition reduces to the classical “normalized difference of concordances and
discordances”, as the denominator is exactly n(n−1)/2. The definition above is exactly that proposed by Kendall [13],
albeit we use a different formalism.

The form of (1) suggests that to obtain a weighted correlation index it would be natural to define a weighted inner
product

〈r, s〉w :=
∑
i<j

sgn(ri − rj) sgn(si − sj)w(i, j),
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Ind. PR Katz Harm. Cl.
Indegree 1 0.31 0.63 0.24 0.06
PageRank 0.31 1 0.27 0.10 0.10
Katz 0.63 0.27 1 0.50 0.20
Harmonic 0.24 0.10 0.50 1 0.65
Closeness 0.06 0.10 0.20 0.65 1

Table 4: Kendall’s τ between Wikipedia centrality measures, restricted to nodes of indegree 1 and 2.

where w(−,−) : [n] × [n] → R≥0 is some nonnegative weight function. We would have then a new norm ‖r‖w =√
〈r, r〉w and a new correlation index

τw(r, s) :=
〈r, s〉w

‖r‖w · ‖s‖w
.

Note that still 〈r,−〉w = 〈−, r〉w = 0 if r is constant.
We say that two score vectors r and s are equivalent if sgn(ri − rj) = sgn(si − sj), opposite if sgn(ri − rj) =

− sgn(si − sj) for all i and j.

Lemma 1 We have ∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j) ≤ ‖r‖w‖s‖w. (2)

A sufficient condition for equality to hold is that the two vectors are equivalent or opposite.

Proof. Let Rij = | sgn(ri − rj)| and Sij = | sgn(si − sj)|. Then,(∑
i<j

RijSijw(i, j)
)2

=
(∑
i<j

R2
ijS

2
ijw(i, j)2

)
+
( ∑

i<j,k<`
i6=k∨j 6=`

RijSijRk`Sk`w(i, j)w(k, `)
)

≤
(∑
i<j

R2
ijS

2
ijw(i, j)2

)
+
( ∑

i<j,k<`
i6=k∨j 6=`

R2
ijS

2
k`w(i, j)w(k, `)

)
=
(∑
i<j

R2
ijw(i, j)

)(∑
i<j

S2
ijw(i, j)

)
= ‖r‖2w‖s‖2w.

Note that if the vectors are equivalent or opposite then

RijSijRk`Sk` = R2
ijS

2
k`

for all i, j, k and `, so we obtain equality.

We now prove a fundamental Cauchy–Schwartz-like inequality:

Theorem 1 |〈r, s〉w| ≤ ‖r‖w‖s‖w. A sufficient condition for equality to hold is that the two vectors are equivalent or
opposite. The condition is necessary if w is strictly positive and |〈r, s〉w| 6= 0.

Proof. The first two statements are immediate from Lemma 1, as

|〈r, s〉w| ≤
∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j)

and in the case of equivalent or opposite vectors we have equality. On the other hand, if we let Rij = sgn(ri − rj) and
Sij = sgn(si − sj) the chain of equalities and inequalities at the beginning of the proof of Lemma 1 continues to be
true. To have equality, however, assuming that w is strictly positive we must have

RijSijRk`Sk`w(i, j)w(k, `) = R2
ijS

2
k`w(i, j)w(k, `)
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for all i, j, k and `, that is,
RijSijRk`Sk` = R2

ijS
2
k`.

Now, since |〈r, s〉w| 6= 0 there must be a pair ı̄, ̄ such that Rı̄̄ 6= 0 and Sı̄̄ 6= 0. Letting σ = Rı̄̄Sı̄̄ we have

Rk`Sk` = σS2
k`

and
RijSij = σR2

ij

for all i, j, k and `. In particular, ifRk` = 0 we have necessarily Sk` = 0, and vice versa. IfRk` 6= 0, then Sk` = σRk`,
which completes the proof.

Another application of Lemma 1 gives the triangular inequality:

Theorem 2 ‖r + s‖w ≤ ‖r‖w + ‖s‖w.

Proof.

‖r + s‖2w = 〈r + s, r + s〉w
=
∑
i<j

sgn(ri + si − rj − sj)2w(i, j)

=
∑
i<j

| sgn(ri + si − rj − sj)|2w(i, j)

≤
∑
i<j

(| sgn(ri − rj)|+ | sgn(si − sj)|)2w(i, j)

= 〈r, r〉w + 〈s, s〉w + 2
∑
i<j

| sgn(ri − rj) sgn(si − sj)|w(i, j)

≤ ‖r‖2w + ‖s‖2w + 2‖r‖w‖s‖w
= (‖r‖w + ‖s‖w)2.

The triangular inequality has a nice combinatorial interpretation: adding score vectors can only decrease the amount of
“untieness”. There is no way to induce in a sum vector more untieness than the amount present in the summands.

Finally, an easy application of Theorem 1 shows that τw is sensible and works as expected:

Theorem 3 Let w : [n] × [n] → R be a nonnegative weight function. The following properties hold for every score
vector t and for every r, s with nonnull norm:

• if t is constant, ‖t‖w = 0;

• −1 ≤ τw(r, s) ≤ 1;

• if r and s are equivalent, τw(r, s) = 1;

• if r and s are opposite, τw(r, s) = −1;

Moreover, if w is strictly positive:

• if ‖t‖w = 0, t is constant;

• if τw(r, s) = 1, r and s are equivalent;

• if τw(r, s) = −1, r and s are opposite.

As a result, if w is strictly positive and we obtain correlation ±1 the equivalence classes formed by tied scores are
necessarily in a size-preserving bijection that is monotone decreasing on the scores.
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Indegree PageRank Katz Harmonic Closeness
Martini (cocktail) Martini (cocktail) Irish coffee Irish coffee Magie Noir
Piña colada Caipirinha Caipirinha Caipirinha Batini (drink)
Mojito Mojito Martini (cocktail) Kir (cocktail) Scorpion bowl
Caipirinha Piña colada Piña colada Martini (cocktail) Poinsettia (cocktail)
Cuba Libre Irish coffee Kir (cocktail) Piña colada Irish coffee
Irish coffee Kir (cocktail) Mojito Mojito Caipirinha
Singapore Sling Cosmopolitan (cocktail) Mai Tai Beer cocktail Kir (cocktail)
Manhattan (cocktail) Manhattan (cocktail) Cuba Libre Shaken, not stirred Martini (cocktail)
Windle (sidecar) IBA Official Cocktail Singapore Sling Pisco Sour Piña colada
Cosmopolitan (cocktail) Beer cocktail Long Island Iced Tea Mai Tai Mojito
Mai Tai Mai Tai Shaken, not stirred Spritz (alcoholic beverage) Beer cocktail
IBA Official Cocktail Singapore Sling Beer cocktail Long Island Iced Tea Shaken, not stirred
Kir (cocktail) Cuba Libre Manhattan (cocktail) Sazerac Mai Tai
Shaken, not stirred Tom Collins Cosmopolitan (cocktail) Fizz (cocktail) Spritz (alcoholic beverage)
Beer cocktail Long Island Iced Tea Windle (sidecar) Flaming beverage Pisco Sour
Pisco Sour Sour (cocktail) Pisco Sour Cuba Libre Long Island Iced Tea
Long Island Iced Tea Shaken, not stirred White Russian (cocktail) Wine cocktail Sazerac
Sour (cocktail) Negroni IBA Official Cocktail Singapore Sling Flaming beverage
White Russian (cocktail) Flaming beverage Moscow mule Moscow mule Fizz (cocktail)
Vesper (cocktail) Lillet Vesper (cocktail) White Russian (cocktail) Wine cocktail

Table 5: Top 20 pages of Wikipedia following five different centrality measures and restricting pages to Yago2 Wordnet
category “cocktail”. The global rank of these items is beyond 100 000.

4.1 Decoupling rank and weight
The reader has probably already noticed that the dependence on the weight on the indices associated to the elements has
no meaning: a trivial request (see, for instance [11]) on a correlation measure is that, like Kendall’s τ , it is invariant by
isomorphism, that is, it does not change if we permute the indices of the vector. This currently doesn’t happen because
we are using the numbering of the element as ground truth to weigh the correlation between r and s. While there is
nothing bad in principle (we can stipulate that elements are indexed in order of importance using some external source
of information), we think that a more flexible approach decouples the problem of the ground truth from the problem of
weighting. We thus define the ranked-weight product

〈r, s〉ρ,w :=
∑
i<j

sgn(ri − rj) sgn(si − sj)w(ρ(i), ρ(j)),

where ρ : [n] → [n] ∪ {∞} is a ranking function associating with each index a rank, the highest rank being zero. We
admit the possibility of rank∞, given that the weight function provides a meaningful value in such a case, to include
also the case of partial ground truths. The definition of the ranked-weighted product induces, as in (1), a correlation
index τρ,w, and the machinery we developed applies immediately, as w(ρ(−), ρ(−)) is just a different weight function.

What if there is no ground truth to rely on? Our best bet is to use the rankings induced by the vectors r and s. Let
us denote by ρr,s the ranking defined by ordering elements lexicographically with respect to r and then s in case of a
tie (in descending order), and analogously for ρs,r (if two elements are at a tie in both vectors, their can be placed in
any order, as their rank does not influence the value of τρ,w). We define

τw,•(r, s) :=
τρr,s,w(r, s) + τρs,r,w(r, s)

2
. (3)

The same approach has been used in [27] to make AP correlation symmetric. This is the definition used in the rest of
the paper.

4.2 Choosing a weighting scheme
There are of course many ways to choose w. For computational reasons, we will see that it is a good idea to restrict
to a class of weighting schemes in which w is obtained by combining additively or multiplicatively a one-argument
weighting function f : [n]→ R≥0 applied to each element of a pair.

Shieh [23], for instance, combines weights multiplicatively, without giving a motivation. We have, however, two
important motivations for adding weights. First and foremost, unless weights are scaled in some way that depends on n
(which we would like to avoid), the largest weight will be some constant, and then weight will decrease monotonically
with importance. As a result, an exchange between the first and the last element would be assigned an extremely low

8



weight. Second, adding weights paves the way to a natural measure for top k correlation [6] by assigning rank∞ to
elements after the first k. The definition of such a measure in the multiplicative case is quite contrived and ends up
being case-by-case.

For what matters f , we are particularly interested in the hyperbolic weight function.

f(r) :=
1

r + 1
.

This function gives more importance to elements of high rank, and weights zero only pairs in which both index have
infinite rank. Using a hyperbolic weight has a number of useful features. First, it reminds the well-motivated weight
given to exchanges by AP correlation. Second, it guarantees that as n grows the mass of weight grows indefinitely.
Using a function with quadratic decay, for instance, might end up in making the influence of low-rank element vanish
too quickly, as it is summable. For the opposite reason, a logarithmic decay might fail to be enough discriminative to
provide additional information with respect to the standard τ .

We try to make this intuition more concrete in Figure 1, where we display a number of scatter plots showing the
correlation between Kendall’s τ and the additive weighted τ defined by (3) under different weighting schemes. The left
half of the plots correlates all permutations on 12 elements with the identity permutation. The right half correlates all
score vectors made of 15 values with skewed distribution (there are t+ 1 elements with score 0 ≤ t ≤ 4) with the same
vector in descending order. A visual examination of the plots suggests, indeed, that logarithmic weighting restricts too
much the possible divergence from Kendall’s τ , whereas quadratic weighting ends up in providing answers that are too
uncorrelated. We will return to these consideration in Section 6.

5 Computing τρ,w

Our motivations come from the study of web and social graphs. It is thus essential that our new correlation measure
can be evaluated efficiently. We now describe a generalization of Knight’s algorithm [14] that makes it is possible to
compute τρ,w in timeO(n log n) under some assumptions onw. Our first observation is that, similarly to the unweighted
case, each pair of indices i, j with i < j belongs to one of five subsets; it can be

• a joint tie, if ri = rj and si = sj ;

• a left tie, if ri = rj and si 6= sj ;

• a right tie, if ri 6= rj and si = sj ;

• a concordance, if sgn(ri − rj) sgn(si − sj) = 1;

• a discordance, if sgn(ri − rj) sgn(si − sj) = −1.

Let J , L, R, C and D be the overall weight of joint ties, left ties, right ties, concordances and discordances,
respectively. Clearly,

J + L+R+ C +D =
∑
i<j

w(ρ(i), ρ(j)) = T.

The first requirement for our technique to work is that T can be computed easily. This is possible if weights are
computed additively or multiplicatively from some single-argument function f . In the additive case,

T =
∑
i<j

(
f(ρ(i)) + f(ρ(j))

)
= (n− 1)

∑
i

f(ρ(i)). (4)

Also the multiplicative case is easy, as

2T = 2
∑
i<j

f(ρ(i))f(ρ(j)) =

(∑
i

f(ρ(i))

)2

−
∑
i

f(ρ(i))2. (5)

The same observation leads to a simple O(n log n) algorithm to compute L: sort the indices in [n] by r, and for each
block of consecutive k > 1 elements with the same score apply (4) or (5) restricting the indices to the subset. In the
same way one can compute R and J .
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Figure 1: Scatter plots between Kendall’s τ and the additive weighted τ . The rows, from top to bottom, represent
logarithmic, hyperbolic and quadratic weighting. The plots are generated correlating a permutation of 12 elements
versus the identity permutation (left), or a permuted set of scores with skewed distribution w.r.t. the same scores in
descending order (right).
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We now observe that, as in the unweighted case,

〈r, s〉ρ,w = C −D = T − (L+R− J)− 2D.

This can be easily seen from the fact that C is given by the total weight T , minus the weight of discordances D, minus
the number of ties, joint or not, which is L + R − J (we must avoid to count twice the weight of joint ties, hence the
−J term). In particular,

〈r, r〉ρ,w = T − L 〈s, s〉ρ,w = T −R,

as in this case there are just concordances and all ties are joint.
We are left with the computation of D. The core of Knight’s algorithm is an exchange counter: an O(n log n)

algorithm that given a list of elements and an order� on the elements of the list computes the number of exchanges that
are necessary to �-sort the list. The algorithm is a modified MergeSort [15]4: during the merging phase, whenever an
element is moved from the second list to the temporary result list the current number of elements of the first list is added
to the number of exchanges. The number of discordances is then equal to the number of exchanges (as we evaluate
whether there is a discordance on i and j only for i < j).

Our goal is to make this computation weighted: for this to happen, it must be possible to keep track incrementally
of a residual weight r associated with the first list, and obtain in constant time the weight of the exchanges generated
by the movement of an element from the second list.

If weights are computed multiplicatively or additively starting from a single-argument function f this is not difficult:
it is sufficient to let r be the sum of the values of f applied to the elements currently in the first list. In the additive case,
moving an element i from the second list increases the weight of exchanges by the residual r plus the weight f(ρ(i))
multiplied by the length of the first list. In the multiplicative case, we must instead use the weight f(ρ(i)) multiplied
by the residual r. When we move an element from the first list we update the residual by subtracting its weight.

The resulting recursive procedure (for the additive case) is Algorithm 1. The final layout of the computation of τρ,w
is thus as follows:

• Consider a list L initially filled with the integers [0 . . n).

• Sort stably L using r as primary key and s as secondary key.

• Compute T and L using L to enumerate elements in the order defined by r and s.

• Apply Algorithm 1 to L using s to define the order �, thus computing D and sorting L by s.

• Compute R using L to enumerate elements in the order defined by s.

• Compute T and put everything together.

The running time of the computation is dominated by the sorting phases, and it is thus O(n log n).

5.1 The asymmetric case and AP Correlation
It is easy to adapt Algorithm 1 for the case in which w(i, j) is given by a combination of two different one-argument
functions, one, f , for the left index and one, g, for the right index. The only modification of Algorithm 1 is the
replacement of f with g at line 14, so that we combine the residual computed with f with a weight computed with g.

The formulae for computing T can be updated easily for the additive case:

T =
∑
i<j

(
f(ρ(i)) + g(ρ(j))

)
=
∑
i 6=0

i(f(ρ(n− 1− i)) + g(ρ(i)))

and for the multiplicative case:

T =
∑
i<j

f(ρ(i))g(ρ(j)) =
∑
i

f(ρ(i))
∑
i<j

g(ρ(j)).

4In principle, any stable algorithm that sorts by comparison could be used. This is particularly interesting as entirely on-disk algorithms, such as
polyphase merge [15], could be used to count exchanges using constant core memory.
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Algorithm 1 A generalization of Knight’s algorithm for weighing exchanges.

Input: A list L , a comparison function � for the elements of L , a rank function ρ, and a single-argument weight
function f that will be combined additively. e is a global variable initialized to 0 that will contain the weight of
exchanges after the call weigh(0, |L |). The procedure works on a sublist specified by its starting index 0 ≤ s < |L |
and its length `. T is a temporary list.
Output: the sum of f(ρ(−)) on the specified sublist.

0 function weigh(s : integer, ` : integer)
1 if ` = 1 then return f(ρ(L [s])) fi
2 `0 ← b`/2c
3 `1 ← `− `0
4 m← s+ `0
5 r ← weigh(s, `0)
6 w ← weigh(m, `1) + r
7 i, j, k ← 0
8 while j < `0 and k < `1 do
9 if L [s+ j] � L [m+ k] then
10 T [i] = L [s+ j++]
11 r ← r − f(ρ(T [i]))
12 else
13 T [i] = L [m+ k++]
14 e← e+ f(ρ(T [i])) · (`0 − j) + r
15 fi
16 i++
17 od
18 for k = `0 − j − 1, . . . , 0 do
19 L [s+ i+ k]← L [s+ j + k]
20 od
21 for k = 0, . . . , i− 1 do L [s+ k]← T [k] od
22 return w
23 end

Both formulae can be computed in linear time using a suitable loop.
Given this setup, it is easy to compute AP correlation: as it can be easily checked from the very definition [27], the

AP correlation of r w.r.t. s, where both vectors have no ties, is simply τw,ρs(r, s), where ρs is the ranking induced by
s and the weight function w is computed additively from two weight functions f(r) = 0, g(r) = 1/r. In this case,
T = n− 1, J = L = R = 0 (we are under the assumption that there are no ties) and Algorithm 1 can be considerably
simplified, as the residual r is always zero.5

Algorithm 2 makes explicit the change to the selection statement of Algorithm 1 that is sufficient to compute AP
correlation. Since keeping track of the residual is no longer necessary, the recursive function can be further simplified
to a recursive procedure that does not return a value. The value e computed by the modified algorithm is all we need to
compute AP correlation using the formula (T − 2e)/T .

5Of course, it is possible to forget that we are computing AP correlation and use the weight matrix just described combined with the machinery
of Section 4 to define an “AP correlation with ties”. In this case, J , L and R should be computed using the formulae for the asymmetric case, and
the probabilistic interpretation would be lost. Such an index would probably give a notion of correlation very similar to τh, but we find more natural
and more in line with Kendall’s original definition to introduce the weighted τ as a symmetric index in which both ends of an exchange are relevant
in computing the exchange weight.
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Algorithm 2 The replacement for lines 9–15 of Algorithm 1 to compute AP correlation.
9 if L [s+ j] � L [m+ k] then
10 T [i] = L [s+ j++]
11 else
12 T [i] = L [m+ k++]
13 e← e+ (`0 − j)/ρ(T [i])
14 fi

Ind. PR Katz Harm. Cl.
Indegree 1 0.95 0.98 0.90 0.27
PageRank 0.95 1 0.96 0.92 0.65
Katz 0.98 0.96 1 0.93 0.26
Harmonic 0.90 0.92 0.93 1 0.28
Closeness 0.27 0.65 0.26 0.28 1

Table 6: τh on Wikipedia.

6 Experiments
We now return to our main motivation—understanding the correlation between centralities on large graph. In this
section, we gather the results of a number of computational experiment that help to corroborate our intuition that τh, the
additive hyperbolic weighted τ , works as expected. We will find also an interesting surprise along the way.

Note that judging whether a new measure is useful for such a purpose is a difficult task: to be interesting, a new mea-
sure must highlight features that were previously undetectable or badly evaluated, but those are exactly those features
on which a systematic assessment is problematic.

Table 6 reports the value of τh on the Wikipedia graph. We finally see data corresponding to the empirical evidence
discussed in Section 3: indegree, Katz and PageRank are almost identical, harmonic centrality is highly correlated but
definitely less than the previous triple, which matches our empirical observations. Closeness is not close to any ranking
(and in particular, not to harmonic centrality) due to its pathological behavior.

There is of course a value that immediately stands out: the suspiciously high correlation (0.65) between closeness
and PageRank. We reserve discussing this value for later.

In Table 7 we show the same data for logarithmic and quadratic weights. The intuition we gathered from Figure 1 is
fully confirmed: logarithmic weights provides results almost indistinguishable from Kendall’s τ (compare with Table 3),
and quadratic weighs make the influence of the tail so low that all non-pathological scores collapse.

To gather a better understanding of the behavior of τh we extended our experiments to two very different datasets:
the Hollywood co-starship graph, an undirected graph (2 million nodes, 229 million edges) with an edge between two
persons appearing in the Internet Movie Data Base if they ever worked together, and a host graph (100 million nodes,
2 billion arcs) obtained from a large-scale crawl gathered by the Common Crawl Foundation6 in the first half of 2012.7

As (unavoidably anecdotal) empirical evidence we report the top 20 nodes for both graphs.
Table 8 should be compared with Table 10. PageRank and harmonic centrality turns to be less correlated to indegree

than Katz in Table 8, and indeed we find many quirk choices in the very top PageRank actors (Ron Jeremy is a famous
porn star; Lloyd Kaufman is an independent horror/splatter filmmaker and Debbie Rochon an actress working with
him). Harmonic centrality provides unique names such as Malcolm McDowell, Robert De Niro, Anthony Hopkins and
Sylvester Stallone, and drops all USA presidents altogether. Kendall’s τ values, instead, suggest that PageRank and
harmonic centrality are entirely uncorrelated (whereas we find several common items), and that harmonic and closeness
centrality should be extremely similar.

We see analogous results comparing Table 9 with Table 11. Here τh separates in a very strong way harmonic
centrality from the first three, and indeed we see a significant difference in the lists, with numerous sites that have
a high indegree and appear in at least two of the three lists because of technical or political reasons (gmpg.org,

6http://commoncrawl.org/
7The crawl contains 3.53 billion web documents; we are using the associated host graph, which has a node for each host and an arc between two

hosts x and y if some page in x points to some page in y. More information about the graph can be found in [18], and the complete host ranking can
be accessed at http://wwwranking.webdatacommons.org/.
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Ind. PR Katz Harm. Cl.
Indegree 1 0.76 0.90 0.63 0.55
PageRank 0.76 1 0.76 0.62 0.56
Katz 0.90 0.76 1 0.70 0.62
Harmonic 0.63 0.62 0.70 1 0.91
Closeness 0.55 0.56 0.62 0.91 1

Ind. PR Katz Harm. Cl.
Indegree 1 1.00 1.00 1.00 0.22
PageRank 1.00 1 1.00 1.00 0.85
Katz 1.00 1.00 1 1.00 0.18
Harmonic 1.00 1.00 1.00 1 0.07
Closeness 0.22 0.85 0.18 0.07 1

Table 7: The logarithmic (top) and quadratic (bottom) additive τ on Wikipedia.

Ind. PR Katz Harm. Cl.
Indegree 1 0.42 0.93 0.55 0.43
PageRank 0.42 1 0.36 0.10 0.18
Katz 0.93 0.36 1 0.61 0.49
Harmonic 0.55 0.10 0.61 1 0.86
Closeness 0.43 0.18 0.49 0.86 1

Ind. PR Katz Harm. Cl.
Indegree 1 0.90 0.98 0.91 0.10
PageRank 0.90 1 0.88 0.81 0.64
Katz 0.98 0.88 1 0.92 0.11
Harmonic 0.91 0.81 0.92 1 0.18
Closeness 0.10 0.64 0.11 0.18 1

Table 8: Kendall’s τ (top) and τh (bottom) on the Hollywood co-starship graph.

rtalabel.org, staff.tumblr.com, miibeian.gov.cn, phpbb.com) disappearing altogether in favor of sites such as
apple.com, amazon.com, myspace.com, microsoft.com, bbc.co.uk, nytimes.com and guardian.co.uk, which do not
appear in any other list. If we look at Kendall’s τ , we should expect PageRank and Katz to give very different rankings,
whereas more than half of their top 20 elements are in common.

6.1 PageRank and closeness
It is now time to examine the mysteriously high τh between PageRank and closeness we found in all our graphs. When
we first computed our correlation tables, we were puzzled by its value. The phenomenon is interesting for three reasons:
first, it has never been reported—using standard, unweighted indices this correlation is simply undetectable; second, it
was known for techniques based on singular vectors [17]; third, we know exactly the cause of this correlation, because
the only real difference between harmonic and closeness centrality is the score assigned to nodes unreachable from the
giant component. We thus expect to discover an unsuspected correlation between the way PageRank and closeness rank
these nodes.

To have a visual understanding of what is happening, we created Figure 2, 3 and 4 in the following way: first, we
isolated the nodes that are unreachable from the giant component (in the case of Hollywood, which is undirected, these
nodes form separate components), omitting nodes which have indegree zero, modulo loops (as all measures give the
lowest score to such nodes); then, we sorted the nodes in order of decreasing closeness rank, and plotted for each node
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Ind. PR Katz Harm. Cl.
Indegree 1 0.71 0.89 0.61 0.54
PageRank 0.71 1 0.66 0.50 0.50
Katz 0.89 0.66 1 0.69 0.59
Harmonic 0.61 0.50 0.69 1 0.86
Closeness 0.54 0.50 0.59 0.86 1

Ind. PR Katz Harm. Cl.
Indegree 1 0.91 0.96 0.72 0.20
PageRank 0.91 1 0.90 0.81 0.69
Katz 0.96 0.90 1 0.78 0.15
Harmonic 0.72 0.81 0.78 1 0.35
Closeness 0.20 0.69 0.15 0.35 1

Table 9: Kendall’s τ (top) and τh (bottom) on the on the Common Crawl host graph.

Indegree PageRank Katz Harmonic Closeness
Shatner, William Jeremy, Ron Shatner, William Sheen, Martin Östlund, Claes Göran
Flowers, Bess Hitler, Adolf Sheen, Martin Clooney, George Östlund, Catarina
Sheen, Martin Kaufman, Lloyd Hanks, Tom Jackson, Samuel L. von Preußen, Oskar Prinz
Reagan, Ronald (I) Bush, George W. Williams, Robin (I) Hopper, Dennis von Preußen, Georg Friedrich
Clooney, George Reagan, Ronald (I) Clooney, George Hanks, Tom von Mannstein, Robert Grund
Jackson, Samuel L. Clinton, Bill (I) Reagan, Ronald (I) Stone, Sharon (I) von Mannstein, Concha
Williams, Robin (I) Sheen, Martin Willis, Bruce Brosnan, Pierce von der Busken, Mart
Hanks, Tom Rochon, Debbie Jackson, Samuel L. Hitler, Adolf van der Putten, Thea
Jeremy, Ron Kennedy, John F. Stone, Sharon (I) McDowell, Malcolm de la Bruheze, Joel Albert
Hitler, Adolf Hopper, Dennis Freeman, Morgan (I) Williams, Robin (I) de la Bruheze, Emile
Willis, Bruce Nixon, Richard Flowers, Bess De Niro, Robert te Riele, Marloes
Clinton, Bill (I) Estevez, Joe Brosnan, Pierce Willis, Bruce de Reijer, Eric
Freeman, Morgan (I) Shatner, William Douglas, Michael (I) Hopkins, Anthony des Bouvrie, Jan
Hopper, Dennis Jackson, Samuel L. Madonna (I) Madonna (I) de Klijn, Judith
Stone, Sharon (I) Stewart, Jon (I) Travolta, John Lee, Christopher (I) de Freitas, Luís (II)
Madonna (I) Carradine, David (I) Hopper, Dennis Douglas, Michael (I) de Freitas, Luís (I)
Bush, George W. Asner, Edward Ford, Harrison (I) Sutherland, Donald (I) Zuu, Winnie Otondi
Harris, Sam (II) Zirnkilton, Steven Asner, Edward Freeman, Morgan (I) Zuu, Emmanuel Dahngbay
Brosnan, Pierce Colbert, Stephen MacLaine, Shirley Stallone, Sylvester Zilbersmith, Carla
Travolta, John Madsen, Michael (I) Clinton, Bill (I) Ford, Harrison (I) Zilber, Mac

Table 10: Top 20 pages of the Hollywood co-starship graph.

its rank following the other measures (we average ranks on block of nodes so to contain the number of points in the
plots). A point of high abscissa in the figures implies a high rank.

All three pictures show clearly that PageRank assigns a preposterously high rank to to nodes belonging to compo-
nents that are unreachable from the giant component. This behavior is actually related to PageRank’s insensitivity to
size: for instance, in a graph made of two components, one of which is a 3-clique and the other a k-clique, the PageRank
score of all nodes is 1/(3 + k), independently of k. This explains why small dense components end up being so highly
ranked. The same phenomenon is at work when the community around Lloyd Kaufman’s production company (very
small and very dense) is attributed such a great importance that its elements make their way to the very top ranks (even
if Kaufman himself has indegree rank 219 and Debbie Rochon 1790).

We remark that the gap in rank is lower in the case of Wikipedia, but this is fully in concordance with the higher
baseline value of Kendall’s τ .

7 Conclusions
In this paper, motivated by the need to understand similarity between score vectors, such as those generated by centrality
measures on large graphs, we have defined a weighted version of Kendall’s τ starting from its 1945 definition for scores
with ties. We have developed the mathematical properties of our generalization following a mathematical similarity
with internal products, and showing that for a wide range of weighting schemes our new measure behaves as expected,
providing a correlation index between -1 and 1, and hitting boundaries only for opposite or equivalent scores.
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Indegree PageRank Katz Harmonic Closeness
wordpress.org gmpg.org wordpress.org youtube.com 0–p.com
youtube.com wordpress.org youtube.com en.wikipedia.org 0-0-0-0-0-0-0.indahiphop.ru
gmpg.org youtube.com gmpg.org twitter.com 0-0-1.i.tiexue.net
en.wikipedia.org livejournal.com en.wikipedia.org google.com 0-00cigarettes.info
tumblr.com tumblr.com tumblr.com wordpress.org 0-0mos00.hi5.com
twitter.com en.wikipedia.org twitter.com flickr.com 0-0new0-0.hi5.com
google.com twitter.com google.com facebook.com 0-0sunny0-0.hi5.com
flickr.com networkadvertising.org flickr.com apple.com 0-1.i.tiexue.net
rtalabel.org promodj.com rtalabel.org vimeo.com 0-1.sxsy.co
wordpress.com skriptmail.de wordpress.com creativecommons.org 0-2.paparazziwannabe.com
mp3shake.com parallels.com mp3shake.com amazon.com 0-311.cn
w3schools.com tistory.com w3schools.com adobe.com 0-360.rukazan.ru
domains.lycos.com google.com creativecommons.org myspace.com 0-5days.com
staff.tumblr.com miibeian.gov.cn staff.tumblr.com w3.org 0-5days.net
club.tripod.com phpbb.com domains.lycos.com bbc.co.uk 0-5kalibr.pdj.ru
creativecommons.org blog.fc2.com club.tripod.com nytimes.com 0-9-0-4-4-9.promoradio.ru
vimeo.com tw.yahoo.com vimeo.com yahoo.com 0-9-0-9.dbass.ru
miibeian.gov.cn w3schools.com miibeian.gov.cn microsoft.com 0-9-0-9.promodj.ru
facebook.com wordpress.com facebook.com guardian.co.uk 0-9-1125.i.tiexue.net
phpbb.com domains.lycos.com phpbb.com imdb.com 0-9-7-16.software.informer.com

Table 11: Top 20 hosts of the Common Crawl host graph.
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Figure 2: Ranks of components unreachable from the giant component of the Wikipedia graph.

We have then proposed families of weighting schemes that are intuitively appealing, and showed that they can be
computed in time O(n log n) using a generalization of Knight’s algorithm, which makes them suitable for large-scale
applications. The fact that the main cost of the algorithm is a modified stable sort makes it possible to apply standard
techniques to run the algorithm exploiting multicore parallelism, or in distributed environment such as MapReduce [5].
The algorithm can be also used to compute AP correlation [27].

In search for a confirmation of our mathematical intuition, we have then applied our measure of choice τh (which
uses additive hyperbolic weights) to diverse graph such as Wikipedia, the Hollywood co-starship graph and a large host
graph, finding that, contrarily to Kendall’s τ , τh provides results that are consistent with an anecdotal examination of
lists of top elements.

Our measure was also able to discover a previously unnoticed correlation between PageRank and closeness on
small components that are unreachable from the giant component, providing a quantifiable account of the strong bias
of PageRank towards small-sized dense communities. This bias might well be the cause of the repeatedly assessed
better performance of indegree w.r.t. PageRank in ranking documents [20, 3], as in all our experiments the τh between
PageRank and indegree is above 0.9.

A generalization similar to the one described in this paper can be also applied to Goodman–Kruskal’s γ, which in
the notation of Section 5 is just (C −D)/(C +D). The problem with γ is that the ranking of ties is only implicit (they
are simply not counted). Thus, the value of w on tied pairs does not appear at all in the above formula. This “forgetful”
behavior can lead to unnatural results, and suggests the Kendall’s τ is a better candidate for this approach.
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Figure 3: Ranks of components unreachable from the giant component of the Hollywood.
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Figure 4: Ranks of components unreachable from the giant component of the Common Crawl host graph.

We remark that an interesting application of additive hyperbolic weighting is that of measuring the correlation
between top k lists. By assuming that the rank function ρ returns ∞ after rank k, we obtain a correlation index that
weighs zero pairs outside the top k, weights only “by one side” pairs with just one element outside the top k, and
weights fully pairs whose elements are within the top k. Formula (3) could provide then in principle a finer assessment
than, for instance, the modified Kendall’s τ proposed in [6], as the position of each element inside the list, beside the
fact that it appears in the top k or not, would be a source of weight. We leave the analysis of such a correlation measure
for future work.
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ABSTRACT
The “Local Ranking Problem” (LRP) is related to the com-
putation of a centrality-like rank on a local graph, where the
scores of the nodes could significantly differ from the ones
computed on the global graph. Previous work has studied
LRP on the hyperlink graph but never on the BrowseGra-
ph, namely a graph where nodes are webpages and edges
are browsing transitions. Recently, this graph has received
more and more attention in many different tasks such as
ranking, prediction and recommendation. However, a web-
server has only the browsing traffic performed on its pages
(local BrowseGraph) and, as a consequence, the local com-
putation can lead to estimation errors, which hinders the
increasing number of applications in the state of the art.
Also, although the divergence between the local and global
ranks has been measured, the possibility of estimating such
divergence using only local knowledge has been mainly over-
looked. These aspects are of great interest for online service
providers who want to gauge their ability to correctly assess
the importance of their resources only based on their local
knowledge, and by taking into account real user browsing
fluxes that better capture the actual user interest than the
static hyperlink network. We study the LRP problem on a
BrowseGraph from a large news provider, considering as su-
bgraphs the aggregations of browsing traces of users coming
from different domains. We show that the distance between
rankings can be accurately predicted based only on structu-
ral information of the local graph, being able to achieve an
average rank correlation as high as 0.8.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
E.1 [Data Structures]: Graphs and Networks

Keywords
Local Ranking Problem, BrowseGraph, PageRank, Centra-
lity Algorithms, Domain-specific Browsing Graphs
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1. INTRODUCTION
The ability to identify the online resources that are percei-

ved as important by the users of a website is crucial for online
service providers. Metrics to estimate the importance of the
page from the structure of online links between them are
widely used: algorithms that compute the centrality of the
nodes in a network, such as PageRank [24], HITS [17] and
SALSA [19], have been employed extensively in the last two
decades in a vast variety of applications. Born and spread
in conjunction with the growth of the Web, they can de-
termine a value of importance of a page from the complex
network of links that surrounds it. More recently, centrality
metrics have been applied to browsing graphs, (also referred
to as BrowseGraphs [22, 28, 27]) where nodes are webpa-
ges and edges represent the transitions made by the users
who navigate the links between them. Differently from the
hyperlink networks, this data source provides the analyst a
way of studying directly the dynamics of the navigational
patterns of users who consume online content. Also, unlike
hyperlinks, browsing traces account for the variation of con-
sumption patterns in time, for instance in the case of online
news were articles tend to become rapidly stale. Compa-
rative studies have shown that centrality-based algorithms
applied over BrowseGraphs provide higher-quality rankings
compared to standard hyperlink graphs [23, 22].

Most centrality measures aim at estimating the impor-
tance of a node, using information coming from the global
knowledge of the graph topology—potentially the addition
of new nodes and edges, can have a cascade effect on the
centrality values of all other nodes in the network. This
fact entails high computational and storage cost for big ne-
tworks. More critically, there are some situations in which
a global computation on the entire graph is unfeasible, for
example when the information about the entire network is
unavailable or if only an estimation for specific web pages
is required. This is an important limitation in many real-
world scenarios, where the graphs at hand are often very
large (Web scale) and, most importantly, their topology is
not fully known. This practical issue raises the problem of
how well one can estimate the actual centrality value of a
node by knowing only a local portion of the graph. This is
known as the Local Ranking Problem (LRP) [10].

One of the questions behind LRP is whether it is possi-
ble to estimate efficiently the PageRank score of a web page
using only a small subgraph of the entire Web [9]. In other
words, if one starts from a small graph around a page of
interest and extends it with external nodes and arcs (i.e.,
those belonging to the whole graph), how fast will one ob-



serve the computed scores converging to the real values of
PageRank?

We extend this line of work in the context of browsing
graphs. For the first time we study the LRP on the Brow-
seGraph and shed some light on the bias that PageRank
incurs, when estimating the centrality score of nodes in a
BrowseGraph, when only partial information about the gra-
ph is available. To achieve that, we monitor the browsing
traffic of the news portal and we extract different browsing
subgraphs induced by the browsing traces of users coming
from different domains, such as search engines (e.g., Google,
Yahoo, Bing) and social networks (e.g., Facebook, Twitter,
Reddit). In this setting, the local BrowseGraphs are the
subgraphs induced by the different domains, and the glo-
bal BrowseGraph is the one built using indistinctly all the
navigation logs of the news portal. We describe and eval-
uate models that tell apart a subgraph from the others just
by looking at the behavior of a random surfer that naviga-
tes through their links. The results show how it is possible
to recognize the graph using only the very first few nodes
visited by the users, because the graphs are very different
among them (even if they are extracted from the same big
log of the news portal). The implication of this experiment
is two-fold: first it highlights how navigation patters of the
users differ among these subgraphs. Second, we learn that
it is possible to infer the user domain of origin from the very
first browsing steps. This capability enables several types
of services, including user profiling [12], web site optimiza-
tion [31], user engagement estimation [18], and cold-start
recommendation [27], even when the referrer URL is not
available (e.g.when the user comes from mobile social media
applications or URL shortening services).

Once we show that the subgraphs are different enough, we
proceed to perform more involved experiments that we call
“Growing Balls”. We examine the behavior of the PageRank
computed on the local and the global graphs. In order to
study how the local PageRank converges to the global one,
we apply some strategies of incremental addition (“growing”)
of external nodes to these subgraphs (“balls”).

Finally, we build on these findings by setting up a predic-
tion experiment that, for the first time, tackles the task of
estimating the reliability of the PageRank computed locally.
We measure how much the local PageRank diverges from the
global one using only structural features of the local graph,
usually available to the local service provider.
To sum up, the main contributions of this work are the
following:

• We study the LRP on a large-scale BrowseGraph built
from a very popular news website. To the best of our
knowledge we are the first to tackle this problem on the
increasingly popular BrowseGraph [27, 28, 12, 22]. We
present an analysis of the convergence of the PageRank
on the local graph to the global one, by incrementally
expanding the local graph in a snowball fashion.

• We tackle the problem of discovering the referrer do-
main of a user session, when this information is mis-
sing or hidden. We show that this is possible using
a random surfer model, that is able to tell the refer-
rer domain with high accuracy, just after the very first
browsing transitions.

• We show that an accurate estimation of the distance
between the local and global PageRank can be obtai-

ned looking at the structural properties of the local
graph, such as degree distribution or assortativity.

The remainder of the paper is organized as follows. In
§2, we overview relevant prior work in the area and in §3
we describe our dataset and the extraction of the browsing
graphs. In §4 we analyze the (sub-)graphs and we highli-
ght their differences. In §5 we study the LRP problem on
the BrowseGraph and compare the approximation accura-
cy of different graph expansion strategies. In §6 we present
the prediction experiment of the PageRank errors of the lo-
cal graph. Last, in §7 we wrap up and highlight possible
extensions to the work.

2. RELATED WORK
This work encompasses two main different research areas

that we introduce shortly. Our focus is the Local Ranking
Problem but our contribution relates also to previous work
on browsing log data, especially the ones that investigate or
make use of centrality-based algorithms.

Local Ranking Problem
The Local Ranking Problem (LRP) was first introduced by
Chen et al. [10] in 2004, who addressed the problem to ap-
proximate/update the PageRank of individual nodes, wi-
thout performing a large-scale computation on the entire
graph. They proposed an approach that can tackle this pro-
blem by including a moderate number of nodes in the local
neighborhood of the original nodes. Furthermore, Davis and
Dhillon [14] estimated the global PageRank values of a local
network using a method that scales linearly with the size of
the local domain. Their goal was to rank webpages in order
to optimize their crawling order, something similar to what
was done by Cho et al. [13] who instead selected the top-
ranked pages first. However, this latter strategy results to
be in contrast with Boldi et al. [6], as they found that craw-
ling first the pages with highest global PageRank actually
perform worse, if the purpose is fast convergence to the real
(global) rank values. In this work, we partial expand the
local graph with the neighboring nodes with highest (local)
PageRank showing an initial improvement on the conver-
gence speed. In 2008 the problem was reconsidered by Bar-
Yossef and Mashiach [3], where they simplified the problem
calculating a local Reverse PageRank proving that it is more
feasible and computationally cheaper, as the reverse natural
graphs tend to have low in-degree maintaining a fast Page-
Rank convergence. Bressan and Pretto [9] proved that, in
the general case, an efficient local ranking algorithm does not
exist, and in order to compute a correct ranking it is necessa-
ry to visit at least a number of nodes linear in the size of the
input graph. They also raised some of the research questions
tackled in our paper that we discuss in Section 6.1. They
reinforce their findings in later work [8], where they summa-
rized two key factors necessary for efficient local PageRank
computations: exploring the graph non-locally and accepting
a small probability error. These two constraints are also con-
sidered in this paper in order to perform our experiments on
the browsing graphs. When one wants to estimate PageRa-
nk in a local graph, the problem of the missing information
is tackled in various ways. In [3, 9] for example, the authors
make use of a model called link server (also known as remote
connectivity server [5]), that responds to any query about a
given node with all the in-coming and out-going edges and



relative nodes. This approach, with the knowledge about
the LRP, allows to estimate the PageRank ranking, or even
the score, with the relative costs. A similar problem was stu-
died by Andersen et al. [2], where their goal was to compute
the PageRank contributions in a local graph motivated by
the problem of detecting link-spam: given a page, its Page-
Rank contributors are the pages that contribute most to its
rank; contributors are used for spam detection since you can
quickly identify the set of pages that contribute significantly
to the PageRank of a suspicious page.

The problem we consider here is different and largely une-
xplored, because we are studying the PageRank of the dif-
ferent subgraphs based on user browsing patterns.

BrowseGraph
In recent years a large number of studies of user browsing
traces have been conducted. Specifically, in the last years
there was a surge of interest in the BrowseGraph, a graph
where the nodes are web pages and the edges represent the
transitions from one page to another made by the navigation
of the users. Characterizing the browsing behavior of users
is a valuable source of information for a number of different
tasks, ranging from understanding how people’s search be-
haviors differ [32], ranking webpages through search trails [1,
33] or recommending content items using past history [29].
A comparison between the standard hyperlink graph, based
on the structure of the network, with the browse graph built
by the users’ navigation patterns, has been made by Liu et
al. [22, 23]. They compared centrality-based algorithms like
PageRank [24], TrustRank [15], and BrowseRank [22], on
both types of graphs. The results agree on the higher qua-
lity of ranking based on the browse graph, because it is a
more reliable source; they also tried out a combination of
the two graphs with very interesting outcomes. The user
browsing graph and related PageRank-like algorithms ha-
ve been exploited to rank different types of items including
images [28, 12], photostreams [11], and predicting users de-
mographic [16] or optimizing web crawling [21]. Trevisiol
et al. [28] made a comparison between different ranking te-
chniques applied to the Flickr BrowseGraph. Chiarandini
et al. [12] found strong correlations between the type of
user’s navigation and the type of external Referrer URL.
Hu et al. [16] have shown that demographic information of
the users (e.g., age and gender) can be identified from their
browsing traces with good accuracy. The BrowseGraph has
been used also for recommending sequences of photos that
users often like to navigate in sequence, following a colla-
borative filtering approach [11]. In order to implement an
efficient news recommender the user’s taste have to be con-
sidered as they might change over time. Indeed, studying
the users browsing patterns, Liu et al. [20] showed that mo-
re recent clicks have a considerably higher value to predict
future actions than the historical browsing record. Finally,
Trevisiol et al. [27] exploited the BrowseGraph in order to
build some user models in the news domain, and recommend
the next article the user is going to visit. They introduced
the concept of ReferrerGraph, that is a BrowseGraph built
with sessions that are generated by the same referrer do-
main. Even if the purposes of our work are very different,
we construct the ReferrerGraphs in the same way in order
to be in-line with their investigation.

To the best of our knowledge there is no work in the sta-
te of the art that tackles the Local Ranking Problem on a

browsing graphs with the prediction task that we perform
and describe in this paper.

3. DATASET
For the purpose of this study, we took a sample of Ya-

hoo News network’s1 user-anonymized log data collected in
2013. In this section we summarize how we built the dataset
and the graphs, but the reader may refer to the aforemen-
tioned paper for further details. The data is comprised by
a large number of pageviews, which are represented as plain
text files that contain a line for each HTTP request satisfied
by the Web server. For each pageview in the dataset, we
gathered the following fields:

〈BCookie, T ime,ReferrerURL,CurrentURL,UserAgent〉

The BCookie is an anonymized identifier computed from the
browser cookie. This information allowed us to re-construct
the navigation session of the different users. CurrentURL
and ReferrerURL represent, respectively, the current page
the user is visiting and the page the user visited before
arriving at the destination page. Note that the Referrer
URL could belong to any domain, e.g., it may be exter-
nal to the Yahoo News network. The User-Agent identifies
the user’s browser, an information that we used to filter
out Web crawlers, and Timestamp indicates when the page
was visited. All the data were anonymized and aggregated
prior to building the browsing graphs. After applying the
filtering steps described above, our sample contains appro-
ximately 3.8 million unique pageviews and 1.88 billion user
transitions.

3.1 Session Identification and Characteristics
The BrowseGraph is a graph whose nodes are web pages,

and whose edges are the browsing transitions made by the
users. To build it we extract the transitions of users from
page to page, and in order to preserve the user behavior (that
could vary over time), we group pageviews into sessions. We
split the activity of a single user, taking the BCookie as an
identifier, into different sessions when either of these two
conditions holds:

• Timeout: the inactivity between two pageviews is
longer than 25 minutes.

• External URL: if a user leaves the news platform and
returns from an external domain, the current session
ends even if previous visits are within the 25 minute
threshold.

Moreover, each news article of the dataset is annotated with
a high-level category manually assigned by the editors.

3.2 Subgraphs Based on Session Referrer URL
We aim to compare the PageRank scores of the nodes be-

tween the full BrowseGraph, computed with all the Yahoo
News logs, and a subgraph that represents the local graph.
This is a way to simulate a real-world scenario in which a
service provider knowns only the users navigation logs in-
side its network (subgraph) while the external navigations
are unknown (full BrowseGraph). Since it is not possible
to use the full Web browsing log, we perform a simulation

1We considered a number of different subdomains like Yahoo
news, finance, sports, movies, travel, celebrity, etc.



Subgraphs Nodes Edges Density %GCC

Google 142, 646 779, 185 3.8 · 10−5 0.93
Yahoo 101, 116 404, 378 3.9 · 10−5 0.95
Bing 61, 531 255, 464 6.7 · 10−5 0.91
Homepage 60, 287 335, 836 9.2 · 10−5 0.99
Facebook 21, 060 70, 266 1.5 · 10−4 0.95
Twitter 4, 206 7, 080 4.0 · 10−4 0.87
Reddit 2, 445 4, 868 8.1 · 10−4 0.95

Table 1: Size of the extracted subgraphs. Note that there
is not a strict relation between the size of the subgraph and
the amount of browsing traffic generated in it.

using different subgraphs extracted from the same Browse-
Graph that represent the local graphs of different providers.
In order to do that, we extract from the BrowseGraph of
the Yahoo News dataset various subgraphs built with ses-
sions of users generated by the same Referrer URL. It has
been shown [27] that a BrowseGraphs constructed in this
way contain very different users sessions in terms of content
consumed (nodes visited). In particular we consider users
accessing the news portal directly from the homepage, that
is the main entry point for regular news consumption, and in
addition, from a number of domains that fall outside the Ya-
hoo News network: search engines (Google, Yahoo, Bing),
and social networks (Facebook, Twitter, Reddit). For each
source domain we extract a subgraph from the overall Brow-
seGraph, by considering only the browsing sessions whose
initial Referrer URL matches that domain. For example, if
a user clicks on a link referring to our network that has been
posted on Twitter, her Referrer URL will be the Twitter
page where she found the link. Next, we consider all the fol-
lowing pageviews belonging to the same session of the user,
as being a part of the twitter-subgraph, given that all of them
have been reached through Twitter. We applied the same
procedure for all the sources defined before, and finally, we
obtained a weighted graph for each different external URL,
where the Weight accounts for the number of times a user
has navigated from the source page to the destination page.
On Table 1 a summary with the size of the graphs (in terms
of number of nodes and edges) and with their structure is
shown. It is interesting to see that all the graphs, even pre-
senting very different size, are very well connected (%GCC
between 0.87 and 0.99).

4. REFERRER GRAPHS ANALYSIS
In this section we describe some analysis on these Refer-

rerGraphs, proving that they are consistently different not
only in term of nodes and content but also in term of navi-
gation patterns of the users. We also propose an experiment
to understand how much the graphs are distinguishable.

4.1 Subgraphs comparison
We consider the seven subgraphs extracted from the main

news portal graph with the procedure discussed in §3. Brow-
sing patterns generated by different types of audiences, can
lead to different pieces of news pages to emerge as the most
central ones in the BrowseGraph. To check that, we ran the
PageRank algorithm on each of the (weighted) subgraphs,
and for every pair of subgraphs we compared the scores ob-

tained on their common nodes, using Kendall’s τ distance.
The intersection between the node sets of the networks is
always large enough to allow us to compute the τ on the in-
tersection only (> 1000 nodes in the case with less overlap).
Kendall’s τ will provide a clear measure of how much the
importance of the same set of nodes varies among different
subgraphs. When the ranking between two subgraphs differs
greatly (i.e., low Kendall’s τ), it is an indication that they
either show different content (i.e., webpages) or that the
collective browsing behaviour in the two graphs privileged
different sets of pages.

Table 2 reports on the cross-distance among the subgra-
phs and also with respect to the full graph using Kendall’s
τ . Interestingly, most of the similarity values tend to be
very low (<0.3), confirming the hypothesis that the user’s
interests are tightly related to the domain where they come
from. Some of these similarities, however, are considerably
higher, remarkably the ones between the three subgraphs
that are originated from search engines traffic, i.e., Bing,
Google and Yahoo, which yield the most similar rankings of
pages (>0.5). However, for the purpose of this work we ex-
pect to find a difference among the subgraphs in order to use
them as local BrowseGraph and study the LRP with the full
graph (i.e., BrowseGraph made with the entire news log).

4.2 Random Surfer
In §4.1 we showed how users coming from different sour-

ces (i.e., referrer domains) behave differently in terms of
content discovery and, as a consequence, the importance
of the news articles vary significantly among the different
BrowseGraphs. It has been shown how the referrer domain
might be extremely useful to characterize user sessions [12],
to estimate user engagement [18] or to perform cold-start
recommendation [27]. However, the user’s referrer URL is
not always visible and, in many cases, it is hidden or ma-
sked by services or clients. For instance, any Twitter or mail
client (i.e., third-party application) shows an empty refer-
rer URL in the web logs. A similar situation happens with
the widespread URL-shortening services (e.g., Bitly.com),
that mask the original Web page the user is coming from.
Nonetheless, in all these cases, a provider could make use of
her knowledge of the user’s trail, to identify automatically
the source where the user started her navigation in the local
graph. As we have shown, the referrer URL might be use-
ful to characterize the interest of the users, especially in the
case where the users are unknown (i.e., the user profile is
not available). Thus, being able to identify the referrer URL
when it is not available, is an advantage for the content pro-
vider. In this section we want to understand if it is feasible
to detect the referrer URL of a user while he browses and
how many browsing steps are required to be able to do so
accurately. Moreover, if we find that the user sessions are
easily distinguishable, it means that the subgraphs are dif-
ferent enough to be considered, in our experiment, as local
BrowseGraphs of different service providers.

Therefore, we consider the following scenario: a content
provider is observing a user surfing the pages of its web ser-
vice, but it is unaware of the user’s referrer URL. In terms
of our experimental dataset, this scenario maps into the pro-
blem of observing a browsing trace left by a random surfer
on one of the referrer-based subgraphs, and having to iden-
tify which graph it is. Intuitively, the larger the number of
page visits (or steps) the surfer will make, the more distinc-



Full Facebook Google Bing Yahoo Reddit Homepage Twitter

Full 1.0000 0.1791 0.3931 0.3278 0.3548 0.0656 0.2797 0.0764
Facebook 0.1791 1.0000 0.3146 0.4111 0.3430 0.2616 0.4070 0.3026
Google 0.3931 0.3146 1.0000 0.5815 0.5860 0.1088 0.4217 0.1297
Bing 0.3278 0.4111 0.5815 1.0000 0.6624 0.1469 0.5238 0.1688
Yahoo 0.3548 0.3430 0.5860 0.6624 1.0000 0.1245 0.4632 0.1386
Reddit 0.0656 0.2616 0.1088 0.1469 0.1245 1.0000 0.1534 0.2309
Homepage 0.2797 0.4070 0.4217 0.5238 0.4632 0.1534 1.0000 0.1523
Twitter 0.0764 0.3026 0.1297 0.1688 0.1386 0.2309 0.1523 1.0000

Table 2: Kendall’s τ correlations between PageRank values (α = 0.85) between the common nodes of the subgraphs.

Algorithm 1: RandomSurfer(k, α, steps, G)

logPr ← initialize vector with size Gk.length();
n ← total number of nodes;
xj ← choose (random) starting node ∈ Gk;

/* For each step, compute a random walk in Gk, and
compare the probability to be in all the other G */
for s← 1 to steps do

/* Pick the next node of Gk with random walk */
xk = next node( Gk, xj );

for i← 0 to G.length() do
〈kout〉 ← get_outdegree(np);
if 〈kout〉 == 0 then

logPr[ i ] ← logPr[ i ] + log(1/n);
else

pi(x) = (1− α)/n;
Pdxj ← get_prob_distribution(Gi, xj);

Sxj ← get_successors(Gi, xj);

if xk ∈ Sxj then
pi(x)← pi(x) + α ∗ Pdxj (xk);

logPr[ i ] ← logPr[ i ] + log(pi(x));

return logPr

tive its trace will be, and the easier the identification of the
graph. Algorithm 1 shows the pseudocode that describes
the process to compute the random surfer experiment.

Formally, observing the sequence of the surfer’s visited
nodes x = (x1, x2, . . . , xs) and computing the probability
pi(x) that the surfer has gone through them given that it is
surfing Gi, we need to deduce what is Gi (e.g., by maximum
log-likelihood). With this goal in mind, we sort the indices
of the subgraphs i1, i2, . . . so that pi1(x) ≥ pi2(x) ≥ . . . and
stop as soon as the gap between log pi1(x) and log pi2(x) is
large enough (e.g., log pi1(x) − log pi2(x) ≥ log 2), with a
maximum of 20 steps that we consider as a representation
of a long user session.

In this set of experiments, we considered the seven URL-
referral subgraphs G1, . . . , G7, one at a time. For each
subgraph Gi, we simulated a random surfer moving around
in Gi (i.e., calling the function RandomSurfer(i, α, steps,
G)), computing at each step (i.e., page visited) the probabi-
lity of the surfer to navigate in each subgraph G1, . . .G7: we
expect that the probability corresponding to Gi will increase
at each step, and will eventually dominate all the others.

To estimate the number of steps required to identify cor-
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Figure 1: Random Surfer Experiment. On the y-axis: log-
ratio of the probabilities (as explained in the text). X-axis:
number of browsing steps performed by the surfer.

rectly the graph that the surfer is browsing, we measure the
difference between log-probabilities for the correct graph Gi

and for the graph with the largest log-probability among
the other ones. As with PageRank we introduced a certain
damping factor (α = 0.85); this is necessary to avoid being
stuck in terminal components of the graph. Recall that α is
the balancing parameter that determines the probability of
following in the random walk, instead of teleporting. The
results are shown in Figure 1, averaged over 100 executions.
The values on the y-axis represent the difference between
the log-probabilities (i.e., the logarithm of their ratio): in
general, we can observe that the very first steps are enough
to understand correctly (and with a huge margin) in which
graph the surfer is moving. The inset of Figure 1 displays the
first 20 steps and the relative probability to identify the cor-
rect graph. Almost all the referrer domains are recognizable
at the first step. This translates into a strong advantage for
the service provider as it can identify from where the users
are coming from, even if they use clients or services that
masquerade it. With this information the service provider
can personalize the content of the web pages for any users
with respect to the referrer.



Interestingly, the plot reveals that some surfers are easier
to single out than others; we read this as yet another confir-
mation that the subgraphs have a distinguished structural
difference, or (if you prefer) that users have a markedly dif-
ferent behavior depending on where they come from. This
experiment does not only showed that is possible to detect
from which referrer domain the surfer is coming from, but
that the graphs are quite different and that they can be used
for our study.

5. PAGERANK ON THE BROWSEGRAPH
Next, we study the convergence of the PageRank ranking

between the local BrowseGraphs (ReferrerGraphs) and the
full BrowseGraph. We want to understand how different are
the ranking computed using less or more knowledge about
the full graph. We present an experiment, called “Growing
Balls”, that compute the distance between the rankings ex-
panding at each step the known nodes (and edges) with the
neighbors of the subgraphs.

5.1 “Growing Balls” Experiment
We first focus on the study of the Local Ranking Problem

on browsing graphs. An important question related to this
problem is how much the PageRank node values vary, when
new nodes and edges are added to the local graph. A natural
way to determine this is to expand incrementally the graph
by adding new nodes and edges in a Breadth-First Search
(BFS) fashion, and comparing the PageRank computed on
the expanded graph with the one on the global graph.

More formally, given a graph H which is a subgraph of the
full graph G, we simulate a growth sequence H0, H1 . . . Hn

in the following way:

• H0 ←− H;

• VHk+1 ←− {Γout(VHk ) ∪ VHk}, with Vx being the set
of vertices of a graph, and Γ being the vertex neighbo-
rhood function;

• EHk+1 ←− {(v1, v2)|v1 ∈ VHk+1 ∧ v2 ∈ VHk+1}, with
Ex being the set of edges of a graph.

Using the standard graph terminology, we refer to the va-
rious steps of this expansion as “balls”, where the ball H0

is the initial subgraph and subsequent balls are obtained by
adding all the outgoing arcs that depart from the nodes in
the current ball and end in nodes that are not in the ball.
Observe that, depending on how it is built, H0 may not be an
induced subgraph of G, but H1, · · · , Hn are always induced
subgraphs, by definition of the expansion algorithm.

Using the Kendall’s τ function, we measure the difference
between the local PageRank computed for each ball Hi, and
the global PageRank computed on G. The main objective
is to understand how much the ranking gets close the global
one at each consecutive step, and whether the ranking values
are able to converge even if we just consider a piece of the
information contained in the whole graph.

To check the dependency of results from the initial graph
selected, we consider three different sets of initial subgraphs,
that we will study separately. We describe them next.

• Referrer-based (RB). The seven browsing subgra-
phs built by referrer URL: Facebook, Twitter, Reddit,
Homepage, Yahoo, Google and Bing;

• Same size referrer-based (SRB). To measure how
much the different sizes of the graphs impact on the ob-
served behavior, we fix a number of nodes and extract
a portion of each subgraph in order to obtain exactly
the same size for all networks. The selection is perfor-
med with several attempts of BFS expansion, starting
from a random node in each graph, until the resulting
graphs have very similar size (±9.4%): other ways of
selecting subgraphs would end up with disconnected
samples, which of course would void the purpose of
this experiment. With this procedure instead, we are
able to compare the graphs on equal grounds and at
the same time control for the effect of size (about 3K
nodes and 20K edges).

• Random (R). To check whether the observed beha-
vior has to do with the user behavior underlying the
graph under examination (e.g., the particular struc-
ture of the graph determined by the sessions of users
coming from Twitter), we take a set of seven random
graphs each of them reflecting the size of each of the
referrer-based subgraphs. Thus, we can explore the be-
havior of browsing graphs, that preserve the size of the
graphs originated by specific types of users, but that
are “artificial” in the sense that destroy any connection
with the behavior connected to a particular user class.
To make sure that the size is the same, we start from a
BFS exploration and we prune the last level to match
exactly the size we need.

The results related to the RB case are shown in Figure 2
(left). The convergence happens relatively quickly, as the
value τ approaches 1 in the first 3 iterations. The curves re-
lated to different subgraphs are shifted with respect to each
other, apparently mainly due to their different size, the big-
gest networks starting from higher τ values and converging
faster than the smaller ones. To determine the dependency
on the graph size, we repeat the same experiment for the
SRB case. The results for this case are shown in Figure 2
(center). Even if the curves resulted to be more flattened
(confirming that the initial size has indeed a role in the con-
vergence), we still observe noticeable differences between the
curves for the first two expansion levels. This means that
different subgraphs are substantially different from one ano-
ther in terms of their structure: even after forcing them to
have the same size, the convergence rates observed on the
different graphs varies. At the first iteration, for instance,
all the subgraphs in SRB have Kendall’s τ between 0.3 and
0.5, whereas the ones in RB are between 0.4 and 0.6. Mo-
reover in SRB the biggest networks starting from higher τ
values are not converging faster. This intuition is confirmed
by repeating the experiment on graphs selected with the R
startegy. Results, displayed in Figure 2 (right), show that
convergence in this case is much slower and the difference
between the curves is less prominent.

Summarizing, with the previous experiment, we show that
the Growing Balls on random subgraphs behave differen-
tly, especially when considering the number of iterations
required in order to converge.

5.2 Growing Balls with Selection of Nodes
Besides the selection of the initial graph, the rank conver-

gence depends also on the way the growing balls are built
at each iteration. How does the expansion influence conver-
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Figure 2: Growing Balls experiment on: (left) original subgraphs built based on the referrer URL, (center) seven subsubgraphs
with very similar size, (right) eight subgraphs random selected from the full graph, where each of them has the same size of
one of the original.

gence if only few more representative nodes are selected? To
what extent a higher volume of selected nodes helps a quic-
ker convergence or adds more noise? At a first glance, one
may argue that using all the nodes is equivalent to injecting
all the available information, so the convergence to the val-
ues of PageRank computed on the full graph G should be
faster. On the other hand, instead, one may observe that
we are introducing a huge number of nodes in each iteration
(as the growth is at each step larger), adding also the ones
that are less important and this can induce an incorrect Pa-
geRank for some time, until all the graph becomes known.
In order to shed light on this aspect, we introduce a variant
in the growing-balls expansion algorithm, and we select only
the nodes with highest PageRank.

More formally, consideringHk as the subgraph at iteration
k and VHk its set of nodes, we select all the external nodes in
Y = {VG\VHk}, that are connected through outgoing arcs
from the nodes in VHk . We then compute the PageRank
values on the subgraph Hk extended with the nodes Y , and
obtain a ranked list of nodes. Among all the nodes in Y
we select the top n% with largest PageRank value, and only
those ones will be added to Hk in order to build Hk+1 and
advance to the next iteration.

We conducted experiments with this partial expansion at
different percentages: 5%, 10%, 30%, 50%, and 100%, and
then we computed the average Kendall’s τ value for each
one of the percentages. The results are shown in Figure 3.
Remarkably, the figure highlights how expanding the gra-
ph by adding fewer nodes, although the most representative
ones, leads to PageRank values that are closer to the global
ones in the first iterations. Since we are expanding the lo-
cal graph with a small (highly-central) number of nodes, we
could argue that they initially help to boost the local Pa-
geRank scores. However, given that we keep on expanding
using a few nodes at each iteration, the nodes that have not
been added before exclude a large number of nodes among
which there might also be highly central ones. This might
explain why in the first iteration(s) the convergence rate is

high, but on the limit the final convergence values result in
a low Kendall’s τ . Contrarily, in the long run, expansions
that include the highest number of nodes present convergen-
ce values closer to 1. This is somehow expected, given that
at each iteration any subgraph H closer in size to the full
graph G will include almost every node and arc.

Nonetheless, the main significant outcome of this expe-
riment is that it is possible to obtain a yet satisfactory
PageRank convergence, with few but very representative
nodes. For situations in which including additional pieces
of information, in terms of node/arc insertions, implies a
non-negligible cost, requesting just a little amount of well-
selected information allows to obtain good approximations
while minimizing the costs.

6. PAGERANK PREDICTION
In the previous section we have shown how the approxi-

mation to the global PageRank varies with the expansion
of the initial subgraph. The ranking of the nodes conver-
ges quite fast on all the subgraphs: they differ in terms of
their content, although they are similar in terms of structu-
re in that all of them are built based on users’ navigational
patterns. Building upon the findings about how local and
global PageRank computed on the BrowseGraphs relate to
each other, we designed an experiment to assess how well a
learned model could perform in predicting this relationship.

We address the problem of predicting the Kendall’s τ be-
tween the local and the global PageRank, only considering
information available on the local graph such as topologi-
cal features. This is an extremely common situation given
that, in general, the information pertaining the local gra-
ph is the only one that is readily available, and usually of
a limited size. Computing this distance accurately has a
high value for service providers, since it translates directly
into an estimation of the reliability of the PageRank sco-
res computed on their local subgraphs. As a direct con-
sequence one can apply, with different levels of confiden-
ce, methods for optimizing web sites [31], studying user en-
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Figure 3: Growing Balls using only the nodes with hig-
hest PageRank. The plot shows the average values of the
Kendall-τ at each step computed for all the subgraph.

gagement [18], characterizing user’s session [12] or content
recommendation [27].

6.1 Prediction of Kendall τ Distance
We have seen that the deviation of the local PageRank wi-

th respect to the global one can be relevant, depending on
factors such as the size of the local graph and the different
behavior of the users who browse it (see §5.1 and particularly
Figure 2). Recall that we compute the distance comparing
the rankings with Kendall’s τ , since we are interested in ob-
taining a ranking as close as possible to the one computed on
the entire graph. Although we have previously shown how
to expand the view on the local graphs with nodes residing
at the border, this practice might not always be possible in
a real-world scenario, since service providers often can have
access only to the browsing data within their domain.

Previous work on local ranking on graphs raised several
questions related to this scenario, highlighting practical ap-
plications of the local rank estimation non only for web pa-
ges but also in social networks [9]. Critically, so far it is
not clear whether there are some topological properties of
the local graph that make the local ranking problem easier
or harder, and if these properties can be exploited by lo-
cal algorithms to improve the quality of the local ranking.
We explore this research direction by studying a fundamen-
tal aspect that is at the base of the open questions in this
area, namely the possibility of estimating the deviation of
the local PageRank from the global one, using the structural
information of the local network. The intuition is that, some
structural properties of the graph could be good proxies for
the τ value difference, computed between local and global
ranks. Being able to estimate the Kendall’s τ distance be-
tween the subgraph available to the service provider and the
global graph, implies the ability to estimate the reliability
of the current ranking using only information of the local
subgraph.

To verify this hypothesis we resort to regression analysis.
Starting from the seven subgraphs in the dataset, we build
a training set using the jackknife approach, by removing
nodes in bulks (1%, 5%, 10%, 20%) and computing the τ
value between the full subgraph and their reduced versions.
Then, for each instance in the training set, we compute 62
structural graph metrics [30, 4] belonging to the following
categories:

• Size and connectivity (S). Statistics on the size and
basic wiring properties, such as number of nodes and
edges, graph density, reciprocity, number of connected
components, relative size of the biggest component.

• Assortativity (A). The tendency of node with a cer-
tain degree, to be linked with nodes with similar de-
gree. We computed different combinations that take
into account the in/out/full degree of the target no-
de vs. the in/out/full degree of the nodes that are
connected with it.

• Degree (D). Statistics (average, median, standard
deviation, etc.) on the degree distribution of nodes.

• Weighted degree (W). Same as degree, but con-
sidering the weight on edges, that usually referred as
node strength. As the edges are the transitions made
by the users during the navigation, the weight stand
for the number of times the users have navigated the
transition.

• Local Pagerank (P). Statistics on the distribution
of the PageRank values computed on the local graph.

• Closeness centralization (C). Statistics on the di-
stances (number of hops), that separate a node to
the others in the graph, in the spirit of the closeness
centralization [30].

We employed different regression algorithms, although we
report the performance using random forests [7], which per-
formed better in this scenario than other approaches like
support vector regression [25]. We computed the mean squa-
re error (MSE) across all examples in all sampled subgra-
phs. The random forest regression has been computed over
a five-fold cross validation averaged over 10 iterations. The
mean square residuals that we obtained is very low, around
2.4 · 10−6. Results, computed for the full set of features
and for each category separately, are given in Table 3. The
most predictive feature category is the weighted degree, whi-
ch yields a performance that is better (or comparable) than
the model using all the features, whereas the assortativi-
ty features seem to be the ones that have the less predictive
power on their own. This might be due to the fact the model
with 62 features is too complex for the amount of training
data available. On the other hand, the weighted degree that
is the best performing class of features, contains the stati-
stics of the degree distribution on the weighted edges. In
Figure 4 the features included in weighted degree are ranked
by their discriminative power in predicting the Kendall τ
distance using the permutation test proposed by Strobl et
al. [26]. These features, which are based on the distribution
of the out- and in-degree of the nodes, are straightforward
to compute from the local graph—a very affordable task for
service providers.



Feature Class No. Features MSE

weighted degree 15 2.2 · 10−6

degree 15 2.9 · 10−6

local PageRank 10 3.3 · 10−6

size and connectivity 9 3.4 · 10−6

closeness 5 4.1 · 10−6

assortativity 8 9.3 · 10−6

ALL features 62 2.4 · 10−6

Table 3: MSE of cross validation. Average differences are
statistically significant with respect to weighted degree and
ALL features (t-test, p<0.01).
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Figure 4: The 15 features of weighted degree, the most pre-
dictive class, sorted by importance. Note that some of them
do not have any contribution to the Kendall-τ prediction,
therefore just few features are necessary in order to estimate
the distance.

We then use the learned model to predict the τ values of
the seven subgraphs. When we applied the predictive mo-
dels learned in the subsamples to regressing the full graphs,
the MSE, is less than 0.026 on average, which, even if relati-
vely low, it is higher than the cross-validated performance in
the sub-samples. However, the model was able to rank the
seven different subgraphs by their Kendall’s τ almost perfec-
tly. When using all the features the Spearman’s correlation
coefficient between the true order and the predicted one is
0.85 (high correlation), and when we used the most predicti-
ve features (weighted degree) the correlation was as high as
0.80 (moderate high correlation). Overall, the final rankings
are just one swap away (Kendall’s τ is over 0.70 in this case).
This kind of information can be very helpful when compa-
ring different local sub-domains to determine which one has
pages that better estimate the global PageRank.

7. CONCLUSION
In this paper we tackled the Local Ranking Problem, i.e.,

how to estimate the PageRank values of nodes when a por-
tion of the graph is not available, which arises commonly in

real use cases of PageRank. We investigated this problem
for a novel environment, namely estimating PageRank on a
large user-generated browsing graph from a large news pro-
vider. The peculiar characteristic of this graph is that it
is built from user’s navigation patterns, where nodes repre-
sent web pages and edges are the transitions made by the
users themselves. Moreover, the information about the do-
main of origin of the users (namely the referrer URL of their
sessions), is also available.

We built a set of ReferrerGraphs including the browsing
subgraphs based on different referrer URLs, and then we
studied their difference in terms of user navigation patterns.
We found that all of the browsing patterns initiated from
different domains exhibit remarkable differences in terms of
which pages users visited next. The referrer URL (or do-
main) has been found to be extremely useful for characte-
rizing the user behavior [12] or for recommendation of con-
tent [27]. With this observation in mind and motivated by
the cases where the domain from where the user is coming
is not available, such as Facebook and Twitter clients or
URL shortening services, we performed a series of experi-
ments with the aim of predicting from which referrer URL
the user joined the network, i.e., if a model can predict re-
liably where the user is entering our network. In general,
just a few steps (i.e., visited pages) suffice to recognize the
referrer URL correctly because the surfing behavior is very
distinctive of the domain the user is coming from.

Then, using the ReferrerGraphs, we performed several ex-
periments using a very large network of sites (with almost
two billions of user transitions) to assess to what extent
the browsing patterns information can be generalized, if one
is only provided with information from smaller subgraphs.
First, we computed the PageRank of the subgraphs and on
their step-by-step BFS expansion, measuring the distance in
terms of Kendall’s τ with the PageRank computed on the
full graph. To control for the subgraph size and type, and
to study the impact of the expansion strategy on the Pa-
geRank convergence, we used two flavors of BFS and three
different sets of initial subgraphs. We found that expanding
the local graph with few nodes of largest value of PageRank
leads to a faster (74% at the first expansion step), althou-
gh less accurate convergence in the long run. On the other
hand, adding more nodes lead to a slower converge rate in
the first steps (65%). Therefore, in all the cases where a
strong convergence with the values of the global PageRank
is not required, selecting few specific nodes is enough to si-
gnificantly improve the PageRank values of the local nodes,
without having to request and process a larger amount of
data.

Finally, we considered the case of a service provider that
wants to estimate the reliability of the scores of PageRa-
nk computed on its local BrowseGraph, with respect to the
ones computed on the global graph. Therefore, we perfor-
med another experiment trying to predict the value of the
Kendall’s τ between the local and the global PageRank, on-
ly considering information available on the local graph. We
explored six different sets of topological and structural fea-
tures of the browse graph, namely size and connectivity,
assortativity, degree, weighted degree, local PageRank and
closeness. Then we computed those features on a training
set that we obtained by applying a jackknife sampling of our
subgraphs, and we ran a regression on the Kendall’s τ of the
PageRank of the full subgraph and the various samplings.



We found that a random forest ensemble built on weighted
degree, outperforms all the other in terms of mean square er-
ror. When applying the regression to the task of predicting
the τ value of the global graph with the eight subgraphs at
hand, we were able to reproduce quite well the ranking of
their estimated τ values with their actual ranking, up to a
Spearman’s coefficient of 0.8.

Future Work. We envision different routes worth being
taken into consideration for future work. One line of re-
search we plan to investigate deals with the problem of user
browsing prediction. In other words, what extent it may be
possible to identify what are the most common patterns of
topical behavior in the network and also, to build per-user
browsing models to predict what would be the page to be
visited next. Further, motivated by real use case scenarios,
we considered subgraphs determined by the referrer URL of
user sessions; we believe that interesting analytical results
could be found, when considering other types of subgraphs,
such as networks induced by nodes that belong to the same
topical area.
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