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GENERAL PROBLEM, TASK

I Characterize information diffusion, or information spreading
by investigating online social networks

I Create an online, social network based recommendation
system
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SOCIAL EFFECTS

I Social influence: Action of
individuals induce their
friends to act in a similar way

I Homophily: The tendency of
individuals to associate and
bond with similar others

I Burst: Herding, following the
crowd

Influence

HomophilyBurst

I N. Christakis and J. Fowler, “The spread of obesity in a large social network over 32 years,” New England
Journal of Medicine, 357(4):370–379, 2007.

I M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a Feather: Homophily in Social Networks,” in
Annual Review of Sociology, 27:415–444, 2001.

I A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence probabilities in social networks,” in
WSDM, pp. 241–250, ACM, 2010.

I F. Bonchi, “Influence propagation in social networks: A data mining perspective,” IEEE Intelligent
Informatics Bulletin, 12(1):8–16, 2011.
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LAST.FM

I About Last.fm
I Leading online service in music based

social networking
I "Scrobbling": collecting listening activity

of users
I Recommendation system for users
I Social network

I Influences
I People often share their musical taste
I They recommend each other new artists,

albums, tracks
I Directed influences
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DATASET

I Available for us under NDA for Last.fm
I Selection criteria

I User location is stated in UK
I Age between 14 and 50, inclusive
I Profile displays scrobbles publicly

(privacy constraint)
I Daily average activity between 5 and 500

I Size
I 71, 000 users, 285, 241 edges
I Scrobbles between 01 January 2010 and

31 December 2011 (2 year)
I 979, 391, 001 scrobbles, 57, 274, 158

1st-time scrobbles
I 2, 073, 395 artists
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GENERAL TASK

I User-user social network, with (scrobble) time series
I Justify the existence of influences, i.e. correlation between

individuals and the listening behavior of their contacts
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ARTIST SUBGRAPHS

I For artist a in time t

G(a, t) = {subgraph of users who listened to a before t}

I Main result:
I Increased edge density in G(a, t)
I The number of edges m(a, t) is

power-law function of the
number of nodes n(a, t) in the
subgraph with exponent ≈ 1.535
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MEASUREMENTS
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I Larger graphs are denser
I But small artist subgraphs are much denser than random

subgraphs



Introduction Experimental results Influence based recommendation Influence recommender experiments Summary

FUTURE WORK

I Modeling densification law
I Analogies from statistical

physics
I 2nd order phase transition (?)
I Problem: both endpoints refer

to ordered states
I Finite size scaling (larger data
→ Twitter)
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TEMPORAL INFLUENCE

I User u is influenced by user v
I User u scrobbles a at the first time at t
I If v scrobbles a at time t−∆t
I Compute ∆t in case of friends and

all user pairs
I CDF(t) = fraction of influences with

delay ∆t ≤ t among all influences
I Friends vs. all pairs
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CDF CURVES
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EFFECTIVITY CURVE
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Eff(∆t) =
CDFF(∆t)− CDFA(∆t)

CDFF(∆t)
∼ log(∆t)

I Others propose exponential decay:
I A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence probabilities in social networks,” in

WSDM, pp. 241–250, ACM, 2010.
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RECOMMENDER SYSTEMS

I Predict the ’rating’ or ’preference’ that
user would give to an item (̂r)

I Top-k recommendation task: retrieve the
best k items for the user u in time t

1. Compute r̂(u, a, t) for all artists
2. Order the artists
3. Return the top-k elements in the list
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MAIN IDEAS

I Recommend artists scrobbled by her
friends in the recent past

I Monotonically decreasing (logarithmic)
dependence on time: Γ(∆t(v,u, a))

I Dependence of observed influence in the
past: ω(v,u, t)

I Score is the product of the two, for all
friends

r̂(u, a, t) =
∑

v∈n(u)

Γ(∆t(v,u, a))ω(v,u, t)
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INFLUENCE RECOMMENDER

r̂(u, a, t) =
∑

v∈n(u)

Γ(∆t(v,u, a))ω(v,u, t)
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INFLUENCE RECOMMENDER

I Influence function:

Γ(∆t(v,u, a)) = 1− C · log(∆t),

I Strength between user pairs:
1. ω(v,u, 0) = 0
2. ω(v,u, t0) = ω(u, v, t0) = 1
3. ω(v,u, t)← ω(v,u, t) + (1− C · log(∆t))

I in case of time frame τ :

C = 1/ log τ
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DYNAMIC POPULARITY BASED RECOMMENDATION

I Measure the popularity of an artist in [t− τ, t]
I Recommend based on popularity scores
I Dynamic popularity based recommender⇒ global effects
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FACTOR MODEL BASED RECOMMENDATION

I Factor model based recommenders became popular
during the Netflix Prize competition1

I r̂ = Uu · Ia

I A successful factor based
recommender is described by
Simon Funk2

I Optimize MSE by applying
SGD method

1
R. Bell and Y. Koren, “Lessons from the Netflix prize challenge,” 2007.

2
“Netflix update: Try this at home http://sifter.org/s̃imon/journal/20061211.html,” 2006
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FACTOR MODEL BASED RECOMMENDATION

I Iterate through the dataset
I At each record take a learning step
I Prediction: r̂ = Uu · Ia
I Error: δ = r− r̂
I Objective function (with regularization rate α):

F =
1
2
δ2 + α ·

(
||Uu||2 + ||Ia||2

)
=

=
1
2

(r−Uu · Ia)
2 + α ·

(
||Uu||2 + ·||Ia||2

)
I Learning steps based on the gradient of F (learning rate: λ):

∆Uu = λ · δ · Ia − λ · α ·Uu

∆Ia = λ · δ ·Uu − λ · α · Ia
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FACTOR MODEL BASED RECOMMENDATION

I Weekly trained models and computed top-k
recommendations

I Train data: all scrobbles before the given week + negative
scrobbles (3X)

I Factor model⇒ homophily
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FUTURE WORK

I Present influence recommender:
I heuristic weighted network learning /
I no artist based learning part /

I Influence + factor model→ learn how
I likely influences user v with artist a user u
I influencable is user u in case of artist a

I Use SGD method to learn user and artist factors

r̂(u, a, t) =
1

deg(u)

∑
v∈n(u)

Γ(∆t(v,u, a)) · (Uv · Ia + ...)
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EVALUATION OF TOP-k RECOMMENDATION

I Influence scores rapidly change in time→ separate
evaluation for each individual scrobble

I Create a top-k list recommendation in case of each new
user-artist scrobble (u, a, t)

I Measure the goodness of this returned list
I The lower is the rank of a in the returned list, the better is

our prediction
I Discounted cumulative gain with threshold K

DCG@K(a) =

0 if rank (a) > K;
1

log2(rank(a) + 1)
otherwise.
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EVALUATION OF TOP-k RECOMMENDATION

D
C

G

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

rank
1 10 100 1,000

F2

DCG@K(a) =

0 if rank (a) > K;
1

log2(rank(a) + 1)
otherwise.



Introduction Experimental results Influence based recommendation Influence recommender experiments Summary

EVALUATION OF TOP-k RECOMMENDATION

I Compute DCG@K score for all 1st-time scrobble in the 2nd
year

I Compute time-averages over DCG@K scores
I Always use the 1st year as a training set
I Every recommender can use all scrobbles before the

evaluated one as training data
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COMBINATION
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COMBINATION
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CONCLUSIONS

I 70,000 users, 979,391,001 scrobbles,
57,274,158 1st-time scrobbles

I Basic influence measurements
(densification law, artist subgraphs)

I Influence based recommender system
I Lightweight, fast, easy to implement

influence recommender
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CONCLUSIONS

I Baseline recommenders that take
homophily and global effects into account

I Strong, never vanishing improvement of
baseline methods by combining them
with influence based recommendation

I Results confirm the existence of social
influence
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TWITTER

I Tweets, retweets, topics over a social
network

I Evolution of one topic (e.g. #occupy, ...) ⇔
evolution of a popular artist

I Set of retweets⇔ evolution of an artist
I In case of a retweet we only know the

original tweet source(!)
I ⇒ Last.fm measurements can be repeated

with Twitter datasets
I Last.fm: influence pairs↔ Twitter: large

retweet cascades
I Temporal evolution of retweet cascades
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