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Abstract

We study the statistical properties of various directed networks using ranking
of their nodes based on the dominant vectors of the Google matrix known as
PageRank and CheiRank. On average PageRank orders nodes proportionally
to a number of ingoing links, while CheiRank orders nodes proportionally to
a number of outgoing links. In this way, the ranking of nodes becomes two
dimensional which paves the way for the development of two-dimensional
search engines of a new type. Statistical properties of information flow on
the PageRank—CheiRank plane are analyzed for networks of British, French
and Italian universities, Wikipedia, Linux Kernel, gene regulation and other
networks. A special emphasis is done for British universities networks using
the large database publicly available in the UK. Methods of spam links control
are also analyzed.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.20.Hh

(Some figures may appear in colour only in the online journal)

1. Introduction

During the past decade, modern society has developed enormously large communication
networks. The well-known example is the World Wide Web (WWW) which has started
approaching 10'! webpages [1]. The sizes of social networks like Facebook [2] and
VKONTAKTE [3] have also become enormously large, reaching 600 and 100 millions
user pages, respectively. The information retrieval from such huge databases becomes the
foundation and main challenge for search engines [4, 5]. The fundamental basis of the Google
search engine is the PageRank algorithm [6]. This algorithm ranks all websites in a decreasing
order of components of the PageRank vector (see e.g. detailed description at [7], historical
surveys of PageRank are given at [8, 9]). This vector is a right eigenvector of the Google matrix
at the unit eigenvalue, it is constructed on the basis of the adjacency matrix of the directed
network, its components give a probability of finding a random surfer on a given node.
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The Google matrix G of a directed network with N nodes is given by
G,‘jIOIS,'j-l-(l—Ol)/N, (D)

where the matrix S is obtained by normalizing to unity all columns of the adjacency matrix
A; j, and replacing columns with zero elements by 1/N. An element A;; of the adjacency matrix
is equal to unity, if a node j points to node i and zero otherwise. The damping parameter «
in the WWW context describes the probability (1 — «) for a random surfer to jump to any
node. The value o = 0.85 gives a good classification for the WWW [7] and thus we also use
this value here. A few examples of Google matrix for various directed networks are shown
in figure 1. The matrix G belongs to the class of Perron—Frobenius operators [7], its largest
eigenvalue is A = 1 and other eigenvalues have |A| < «. The right eigenvector at A = 1
gives the probability P(i) to find a random surfer at site i and is called the PageRank. Once
the PageRank is found, all nodes can be sorted by decreasing probabilities P(i). The node
rank is then given by index K (i) which reflects the relevance of the node i. The PageRank
dependence on K is well described by a power law P(K) oc 1/KP» with B, ~ 0.9. This is
consistent with the relation Bi, = 1/(uin — 1) corresponding to the average proportionality of
PageRank probability P(i) to its in-degree distribution w;, (k) oc 1/k*, where k(i) is a number
of ingoing links for a node i [7, 10]. For the WWW, it is established that for the ingoing links
Win & 2.1 (with B, ~ 0.9) while for the out-degree distribution wey; of outgoing links a power
law has the exponent oy & 2.7 [11, 12]. Similar values of these exponents are found for the
WWW British university networks [13], the procedure call network (PCN) of Linux Kernel
software introduced in [14] and for Wikipedia hyperlink citation network of English articles
(see e.g. [15]).

The PageRank gives at the top the most known and popular nodes. However, an example
of the Linux PCN studied in [14] shows that in this case the PageRank puts at the top certain
procedures which are not very important from the software view point (e.g. printk). As a result
it was proposed [14] to use in addition another ranking taking the network with inverse link
directions in the adjacency matrix corresponding to A;; — AT = Aj; and constructing from
it an additional Google matrix G* according to relation (1) at the same «. The eigenvector of
G* with eigenvalue A = 1 then gives a new inverse PageRank P* (i) with ranking index K*(i).
This ranking was named CheiRank [15] to mark that it allows us to chercher I’information
in a new way (which in English means search the information in a new way). Indeed, for
the Linux PCN the CheiRank gives at the top more interesting and important procedures
compared to the PageRank [14] (e.g. start_kernel). While the PageRank ranks the network
nodes in average proportionally to a number of ingoing links, the CheiRank ranks nodes in
average proportionally to a number of outgoing links. The physical meaning of PageRank
vector components is that they give the probability to find a random surfer on a given node
when a surfer follows the given directions of network links. In a similar way, the CheiRank
vector components give the probability to find a random surfer on a given node when a surfer
follows the inverted directions of network links. The inversion of links is a mathematical way
to give a weight to outgoing links. We note that each directed network has both outgoing and
ingoing links, and thus it is important to characterize these two complementary properties
of information flow on directed networks. Since each node belongs both to CheiRank and
PageRank vectors, the ranking of information flow on a directed network becomes two
dimensional. We note that there have been earlier studies of PageRank of the Google matrix
with inverted directions of links [16, 17], but no systematic analysis of statistical properties of
2DRanking was presented there.

An example of variation of PageRank probability P(K) with K and CheiRank probability
P*(K*) with K* is shown in figure 2, for the WWW network of University of Cambridge in
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Figure 1. Google matrix gallery: all matrices are shown in the basis of PageRank index K (and
K’) of matrix Gggs, which corresponds to x (and y) axis with 1 < K, K’ < N (left column) and
1 < K, K’ <200 (right column); all nodes are ordered by PageRank index K of matrix G and thus
we have two matrix indexes K, K’ for matrix elements in this basis. Left column: coarse-grained
density of Google matrix elements G g written in the PageRank basis K (i) with indexes j — K(i)
(in x-axis) and i — K’ (i) (in a usual matrix representation with K = K’ = 1 on the top-left corner);
the coarse graining is done on 500 x 500 square cells for the networks of University of Cambridge
2006, University of Oxford 2006, Wikipedia English articles, PCN of Linux Kernel V2.6 (from
top to bottom). Right column shows the first 200 x 200 matrix elements of G matrix at « = 0.85
without coarse graining with the same order of panels as in the left column. Color shows the density
of matrix elements changing from black for minimum value ((1 — «)/N to white for maximum
value via green and yellow (density is coarse grained in the left column).
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Figure 2. Dependence of probabilities of PageRank P(K) (red / gray curve) and CheiRank P*(K*)
(blue/black curve) on corresponding ranks K and K* for the network of University of Cambridge
in 2006 (dashed curve) and in 2011 (full curve). The power-law dependences with the exponents
B ~ 0.91, 0.59, corresponding to the relation 8 = 1/(u — 1) with u = 2.1, 2.7, respectively, are
shown by dotted straight lines.

years 2006 and 2011. Other examples for PCN Linux Kernel and Wikipedia can be found in
[14, 15]. Detailed parameters of networks which we analyze in this paper and their sources
are given in the appendix.

A detailed comparative analysis of PageRank and CheiRank two-dimensional
classification was done in [15] for the example of the Wikipedia hyperlink citation network
of English articles. It was shown that CheiRank highlights communicative property of nodes
leading to a new way of two-dimensional ranking. While according to PageRank the top three
countries are (1) USA, (2) UK and (3) France, CheiRank gives (1) India, (2) Singapore and
(3) Pakistan as the most communicative Wikipedia country articles. The top 100 personalities
of PageRank have the following percents in five main category activities: 58 (politics), 10
(religion), 17 (arts), 15 (science) and 0 (sport) [15]. Clearly, the significance of politicians is
overestimated (many of them are USA presidents not broadly known to public). In contrast,
CheiRank gives a more balanced distribution over these categories with 15, 1, 52, 16 and 16,
respectively. It allows us to classify information in a new way finding composers, architects,
botanists and astronomers who are not well known but who, for example, discovered a lot of
Australian butterflies (George Lyell) or many asteroids (Nikolai Chernykh). These two people
appear in the large listings of Australian butterflies and in the listing of asteroids (since they
discovered many of them) and due to that they gain high CheiRank values. In a similar way,
popular singers and musicians have long listings of their songs and music which increase
their outgoing links and CheiRank. This shows that the information retrieval, which uses both
PageRank and CheiRank, allows us to rank nodes not only by an amount of their popularity
(how known is a given node) but also by an amount of their communicative property (how
communicative is a given node). This 2DRanking was also applied to the brain model of the
neuronal network [18] and the business process management network [19], and it was shown
that it gives a new useful way of information treatment in these networks. The 2DRanking in the
PageRank—CheiRank plane also naturally appears for the world trade network corresponding
to import and export trade flows [20]. Thus, the 2DRanking based on PageRank and CheiRank
paves the way for the development of 2D search engines which can become more intelligent
than the present Google search based on the 1D PageRank algorithm.
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In this work, we study the statistical properties of such a 2DRanking using examples of
various real directed networks, including the WWW of British, French and Italian university
networks [21], Wikipedia network [15], Linux Kernel networks [14, 22], gene regulation
networks [23, 24] and other networks. The rest of the paper is organized as follows: in
section 2, we study the properties of node density in the plane of PageRank and CheiRank;
in section 3, the correlator properties between PageRank and CheiRank vectors are analyzed
for various networks; information flow on the plane of PageRank and CheiRank is analyzed
in section 4; the methods of control of SPAM outgoing links are discussed in section 5;
2DRanking applications for the gene regulation networks are considered in section 6 and the
discussion of results is presented in section 7. The parameters of the networks and references
on their sources are given in the appendix.

2. Node density of 2DRanking

A few examples of the Google matrix for four directed networks are shown in figure 1. There is
a significant similarity in the global structure of G for the Universities of Cambridge and Oxford
with well-visible hyperbolic curves (left column) even if at small scales the matrix elements
are rather different (right column) in these two networks (see figure 1). Such hyperbolic
curves are also visible in the Google matrix of Wikipedia (left column) even if here they are
less pronounced due to much larger averaging inside the cells which contain about 15 times
larger number of nodes (see network parameters in the appendix). We make a conjecture that
the appearance of such curves is related to the existence of certain natural categories existing
in the network, e.g., departments for universities or countries, cities, personalities etc for
Wikipedia. We expect that there are relatively more links inside a given category compared
to links between categories. However, this is only a statistical property, since on small scales
at small K values the hyperbolic curves are not visible (right column in figure 1). Hence,
more detailed studies are required to verify this conjecture. At small scale, the G matrix
of Wikipedia is much more dense compared to the cases of Cambridge and Oxford (right
column). We attribute such an increase of density of significant matrix elements to a stronger
connectivity between nodes with large K in Wikipedia compared to the case of universities
where the links have a more hierarchical structure. Partially this increase of density can be
attributed to a larger number of links per node in the case of Wikipedia, but this increase by
a factor 2.1 is not so strong and cannot explain all the differences of densities at small K
scale. For Wikipedia, there are about 20% of nodes at the bottom of the matrix where there
are almost no links. For PCN of Linux Kernel, this fraction becomes significantly larger with
about 60% of nodes. The hyperbolic curves are still well visible for Linux PCN inside the
remaining 40% of nodes. On a small scale, the density of matrix elements for Linux is rather
small compared to the three previous cases. We attribute this to a much smaller number of
links per node which is by factor 5 smaller for Linux compared to the university networks of
figure 1 (see data in appendix).

The distributions of density of nodes W (K, K*) = dN;/dKdK* in the plane of PageRank
and CheiRank in the logscale are shown for four networks of British universities in figure 3.
Here, dN; is a number of nodes in a cell of size dKdK* (see the detailed description in [15]).
Even if the coarse-grained G matrices for Cambridge and Oxford look rather similar the density
distributions in the (K, K*) plane are rather different, at least at moderate values of K, K*. The
density distributions for all four universities clearly show that nodes with high PageRank have
low CheiRank that corresponds to zero density at low K, K* values. At large K, K* values,
there is a maximum line of density which is located not very far from the diagonal K ~ K*.
The presence of such a line should correspond to significant correlations between P(K (i)) and
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0. S‘Vl n'4 wl /4

Figure 3. Density distribution W (K, K*) = dN;/dKdK* for networks of four British universities in
the plane of PageRank K and CheiRank K* indexes in the logscale (logy K, logy K*). The density
is shown for 100 x 100 equidistant grid in logy, K, logy K* € [0, 1], the density is averaged over
all nodes inside each cell of the grid, the normalization condition is ) x k+ W(K, K*) = 1. Color
varies from black for zero to yellow for maximum density value Wy, with a saturation value of
WSl g O.SWA],I/4 so that the same color is fixed for O.SWA;/4 AR WA'/4 to show low densities
in a better way. The panels show networks of University of Cambridge (2006) with N = 212710
(top left); University of Oxford with N = 200 823 (top right); University of Bath with N = 73491
(bottom left); University of East Anglia with N = 33 623 (bottom right). The axes show logy K in
the x-axis and logy K* in the y-axis, in both axes the variation range is (0, 1).

P*(K*(i)) vectors that will be discussed in more detail in the next section. The presence of
correlations between P (K (i)) and P*(K*(i)) leads to a probability distribution with one main
maximum along a diagonal at K — K* = const. This is similar to the properties of density
distribution for the Wikipedia network discussed in [15] (see also the bottom-right panel in
figure 13).

The density of nodes for Linux networks is shown in figure 4. In these networks, the
density is homogeneous along lines K + K* = const that correspond to absence of correlations
between P(K (i)) and P*(K*(i)). Indeed, in the absence of such correlations the distribution of
nodes in the K, K* plane is given by the product of independent probabilities. In the log-scale
format used in figure 4, this leads to a homogeneous density of nodes in the top-right corner
of the (logy K, log, K*) plane as it was discussed in [15, see right panel in figure 4]. Indeed,
the distributions in figure 4 are very homogeneous inside the top-right triangle. We note that,
a part from fluctuations, the distributions remain rather stable even if the size of the network is
changed by factor 20 from the V2.0 to V2.6 version. The physical reasons for the absence of
correlations between P (i) and P* (i) have been explained in [14] on the basis of the concept of
‘separation of concerns’ used in software architecture. As discussed in [14], a good code should
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Figure 4. Density distribution W (K, K*) = dN;/dKdK* of four Linux Kernel networks shown in
the same frame as in figure 3. The panels show networks for Linux versions V2.0 with N = 14 080
(top left); V2.3 with N = 41117 (top right); V2.4 with N = 85757 (bottom left); V2.6 with
N = 285510 (bottom right). Color panel is the same as in figure 3 with a saturation value of
Wsl/4 = 0.2W}\}/4 so that the same color is fixed for O.ZW}\;/4 <W K W,&/4 to show low densities
in a better way. The axes show logy K in the x-axis and logy K* in the y-axis, in both axes the
variation range is (0, 1).

decrease a number of procedures that have high values of both PageRank and CheiRank; such
procedures will play a critical role in error propagation since they are both popular and highly
communicative at the same time. For example in the Linux Kernel, do_fork(), that creates new
processes, belongs to this class. These critical procedures may introduce subtle errors because
they entangle otherwise independent segments of code. The above observations suggest that
the independence between popular procedures, which have high P(K;) and fulfil important but
well-defined tasks, and communicative procedures, which have high P*(K}) and organize and
assign tasks in the code, is an important ingredient of well-structured software. We discuss the
properties of PageRank—CheiRank correlations in the next section.

3. Correlations between PageRank and CheiRank

The correlations between PageRank and CheiRank can be quantitatively characterized by the
correlator

N
k(t) =N PK(®)+ )P (K*(i)) — 1. 2)

i=1
Such a correlator was introduced in [14] for T = 0 and we will use the same notation x =
k(t = 0). This correlator at T = 0 shows if there are correlations and dependences between
PageRank and CheiRank vectors. Indeed, for homogeneous vectors P(K) = P*(K*) = 1/N
we have ¥k = 0 corresponding to absence of correlations. We will see below that the values
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Figure 5. Correlator « as a function of the number of nodes N for different networks: Wikipedia
network, 17 British universities, ten versions of Kernel Linux Kernel PCN, Escherichia Coli
and Yeast transcription gene networks, brain model network and business process management
network. The parameters of networks are given in the appendix.

--=-= V26
---- V24 _
Cambridge
Oxford

Figure 6. Correlator « (7) for two different long and short range of t in the main and inset panel,
respectively. The Kernel Linux PCN V2.6 and V2.4 are shown by dashed curves while universities
networks of Cambridge and Oxford are shown by full curves.

of k are very different for various directed networks. Hence, this new characteristic is able
to distinguish various types of networks even if they have rather similar algebraic decay of
PageRank and CheiRank vectors.

The values of k for networks of various size N are shown in figure 5. The two types of
networks are well visible according to these data. The human created university and Wikipedia
networks have typical values of « in the range 1 < k < 8. Other networks like Linux
PCN, gene transcription networks, brain model and business process management networks
have k = 0.

The dependence of « () on the correlation ‘time’ 7 is shown in figure 6. For the PCN
of Linux there are no correlations at any 7, while for the university networks we find that the
correlator drops to small values with increase of || (e.g. |[t| > 5) even if at certain rather large
values of |t| significant values of correlator x can reappear.
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Figure 7. Histogram of frequency appearance of correlator components x; = NP (K (i))P* (K*(i))
for networks of Wikipedia (black), University of Cambridge in 2006 (green) and in 2011 (red),
and PCN of Linux Kernel V2.6 (blue). For the histogram the whole interval 108 < «; < 102 is
divided into 200 cells of equal size in the logarithmic scale. Curve colors are black, red, green and
blue from left to right at the bottom of the vertical axis.

It is interesting to see what are typical values x; = NP(K (i))P*(K*(i)) of contributions
in the correlator sum (2) at T = 0. The distribution of «; values for a few networks are shown
in figure 7. All of them follow a power law with an exponent a =1.23 for PCN Linux, 0.70
for Wikipedia and 0.76 (2006) and 0.66 (2011) for University of Cambridge. We note that
further studies are required to analytically obtain the values of the exponent a. In the latter two
cases the exponent and the distribution shape remains stable in time; however, in 2011 there
appear few nodes with very large «; values which give a significant increase of the correlator
from « = 1.71 (in 2006) up to k = 30.0 (in 2011). It is possible that such a situation can
appear if it is imposed that practically any page points to the main university page, which may
have a rather high CheiRank due to many outgoing links to other departments and university
divisions. We suppose that these are also the reasons why we have the appearance of large
values of «(7) in university networks. At the same time more detailed studies are required
to clarify the correlation properties on directed networks of a deeper level. We will return in
section 7 to a discussion of university networks collected in 2011.

Another way to analyze the correlations between PageRank and CheiRank is simply
to count the number of nodes A(n) inside a square 1 < K (i), K*(i) < n. For a totally
correlated distribution with K(i) = K*(i) we have A(n)/N = n/N, while in absence of
correlations we should have points homogeneously distributed inside a square n x n that gives
A(n)/N = (n/N)?. The dependence of such point-count correlator A () on size n is displayed
in figure 8 for various networks. These data clearly show that the Linux PCN is uncorrelated
being close to the limiting uncorrelated dependence, while Wikipedia and British university
networks show intermediate strength of correlations being between the two limiting functions
of A(n).

4. Information flow of 2DRanking

According to 2DRanking, all network nodes are distributed on a two-dimensional plane
(K, K*). The directed links of the network create an information flow in this plane. To visualize
this flow, we use the following procedure:
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Figure 8. Dependence of the point-count correlation function A(n)/N on n/N for networks of
Wikipedia, British universities and Kernel Linux PCN. The curves in the top panel show the cases
of Wikipedia (solid violet/gray) and four versions of PCN of Linux Kernel with V2.0 (solid black),
V2.3 (dashed red), V2.4 (dot-dashed green) and V2.6 (dotted blue). The curves in the bottom panel
show the cases of British universities with East Anglia (solid black), Bath (dashed red), Oxford
(dot-dashed green) and Cambridge 2006 (dotted blue). Dotted orange curves represent the totally
correlated case with A(n)/N = n/N and the totally uncorrelated one with A(n)/N = (n/N)>.

(a) each node is represented by one point in the (K, K*) plane;

(b) the whole space is divided into equal size cells with indexes (i, i*) with the number of
nodes inside each cell being n; ;+, in figure 9 we use cells of equal size in usual (left
column) and logarithmic (right column) scales;

(c) for each node inside the cell (i, *), pointing to any other cell (7, i*'), we compute the
vector (i’ — i, i* — i*) and average it over all nodes n; ; inside the cell (the weight of links
is not taken into account);

(d) we put an arrow centered at (i, i*) with the modulus and direction given by the average
vector computed in ().

Examples of such average flows for the networks of figure 1 are shown in figure 9. All
flows have a fixed point attractor. The fixed point is located at rather large values K, K* ~ N/4,
that is, due to the fact that in average nodes with maximal values K, K* ~ N point to lower
values. At the same time nodes with very small K, K* ~ 1 still point to some nodes which
have larger values of K, K* that places the fixed point at certain intermediate K, K* values. We
note that the analyzed directed networks have dangling nodes which have no outgoing links,
the fraction of such nodes is especially large for the Linux network. Due to the absence of
outgoing links, we obtain an empty white region in the information flow shown in figure 9.
A more detailed analysis of statistical properties of information flows on the PageRank—
CheiRank plane requires further study.

5. Control of spam links

For many networks, ingoing and outgoing links have their own importance and thus should
be treated on equal grounds by PageRank and CheiRank as described above. However, for
the WWW it is more easy to manipulate outgoing links which are handled by an owner of a
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given webpage, while ingoing links are handled by other users. This requires the introduction
of some level of control on the outgoing links which should be taken into account for the
ratings. Since it is very easy to create links to highly popular sites, we will call ‘spam links’
links for which the destination site is much more popular than the source. A quantitative
measure of popularity can be provided by the PageRank of the sites. We do not think that
spam links are frequent in networks such as procedure calls in the Linux kernel, Wikipedia
and gene regulation. Even for university networks we think that there is not much reason to
put spam links inside the university domain. However, for a large-scale WWW an excessive
number of such spam links can become harmful for the network performance. However,
for WWW networks spam links are probably more widespread. Some websites may try to
improve their rating by carefully choosing their outgoing links. Also it is a common policy
to have links back to a website’s root pages to facilitate navigation. Naturally, a good rating
should not be sensitive to the presence of such links. Thus it is important to treat spam
links appropriately in order to construct a two-dimensional web-search engine. Below we
propose a method for spam links control and test it on an example of the Wikipedia network
which has the largest size among networks analyzed in this paper. We stress that this is done
as a test example and not because we think that there are spam links between Wikipedia
articles.

With this aim, we propose the following filter procedure for computation of CheiRank.
The standard procedure described above is to invert the directions of all links of the network
and then to compute the CheiRank. The filter procedure inverts a link from j to i only if
nP(K(j)) > P(K(i)), where n is some positive filter parameter. After such an inversion of
certain links, while other links remain unchanged, the matrix S* and G* are computed and
the CheiRank vector P*(K*(i)) of G* is determined in a usual way. From the definition it is
clear that for n = 0 there are no inverted links, and thus after filtering P* is the same as the
PageRank vector P. In the opposite limit 7 = oo all links are inverted and P* is then the usual
CheiRank discussed in previous sections. Thus intermediate values of 1 allow us to handle
the properties of CheiRank depending on a wanted strength of filtering. We note that the
proposed filtering procedure is rather generic and can be applied to various types of directed
networks.

The dependence of the fraction f of inverted links (defined as a ratio between the number
of inverted links to the total number of links) on the filter parameter n is shown for various
networks in figure 10. There is a significant jump of f at n ~ 1 for British university networks.
In fact the condition n &~ 1 corresponds approximately to the border relation P(K) ~ P(K")
with K &~ K’ that marks the diagonal of the G matrix shown in figure 1, which has a significant
density of matrix elements. As a result for n > 1, we have a significant increase of inversion
of links leading to a jump of f present in figure 10. The diagonal density is most pronounced
for university networks so that for them the jump of f is mostly sharp.

It is also convenient to consider another condition for link inversion defined not for
P(K;) but directly in the plane (K, K’') defined by the condition: links are inverted only if
K(j) < ngK(i) (where node j points to node i, j — i). In a first approximation, we can
assume that the links are homogeneously distributed in the plane of transitions from K to K.
This density is similar to the density distribution of Google matrix elements Gg ¢ shown in
figure 1. For the homogeneous distribution, the fraction f of inverted links is given by an area
nk /2 of a triangle, whose height is 1 and the basis is 5k, for nx < 1. In a similar way, we have
f =1—1/2nk for ng > 1. We can generalize this distribution assuming that there are only
links with 1 < K’ < aN, that is, approximately the case for Linux network where a = 0.4 (see
figure 1 bottom row), and that inside this interval the density of links decreases as 1/(K")".
Then after computing the area we obtain the expression for the fraction of inverted links valid
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Figure 10. Fraction f of inverted links as a function of filter parameter n for various studied
networks. Top panel: Wikipedia (violet/gray curve) and four versions of Kernel Linux PCN with
V2.0 (solid black curve), V2.3 (dashed red curve), V2.4 (dot-dashed green curve) V2.6 (dotted
blue curve). Bottom panel shows data for British university networks with East Anglia (solid black
curve), Bath (dashed red curve), Oxford (dot-dashed green curve) and Cambridge 2006 (dotted

blue curve).
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shown as a function of filter parameter ng for Linux networks versions shown by different curves.
Gray curves from left to right are the theory curves with a = 1, v = 0 (dashed); a = 0.4, v =0
(dotted) and a = 0.4, v = 0.8 (full) (see text).
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The comparison of this theoretical expression with the numerical data for Linux PCN is shown
in figure 11. It shows that the data for Linux are well described by the theory (3) with a = 0.4
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Figure 12. Density distribution W (K, K*) = dN;/dKdK* for Wikipedia in the plane of PageRank
and filtered CheiRank indexes, (logy K, logy K*), in a equidistant 100 x 100 lattice with
logy K, logy K* € [0, 1]. The filter parameter is n = 10 (left-top panel), 100 (right-top panel),
1000 (left-bottom panel), 10° where all links are inverted (right-bottom panel). The color panel is
the same as in figure 3 with the saturation value Wsl/4 = O.SW[:,M. The axes show: logy K in the
x-axis, logy K* in the y-axis, in both axes the variation range is (0, 1).

and v = 0.8. The last value takes into account the fact that the density of links decreases with
PageRank index K’ as it is well visible in figure 1.

The variation of nodes density in the plane of PageRank and filtered CheiRank (K, K*)
for the Wikipedia network is shown in figure 12 with the filtering by n for P(K) and P(K")
values. At moderate values n = 10 the density is concentrated near the diagonal, with further
increase of n = 100, 1000 a broader density distribution appears at large K values which goes
to smaller and smaller K until the limiting distribution without filtering is established at very
large n. The top 100 Wikipedia articles obtained with filtered CheiRank at the above values
of n are given at [25]. We also give there top articles in 2DRank which gives articles in order
of their appearance on the borders of a square of increasing size in (K, K*) plane (see the
detailed description in [15]). These data clearly show that filtering eliminates articles with
many outgoing links and gives a significant modification of top CheiRank articles. Thus the
described method can be efficiently used for control of spam links present in the WWW.

6. 2DRanking of gene regulation networks

The method of 2DRanking described above is rather generic and can be applied to various
types of directed networks. Here, we apply it to gene regulation networks of Escherichia Coli
and Yeast with the network links taken from [24]. Such transcription regulation networks
control the expression of genes and have important biological functions [23].
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Figure 13. Distribution of nodes in the plane of PageRank K and CheiRank K* for Escherichia
Coli and Yeast transcription networks on left and right panels, respectively (network data are taken
from [24]). The nodes with the five top probability values of PageRank, CheiRank and 2DRank
are labeled by their corresponding node names; they correspond to five lowest index values.

The distribution of nodes in PageRank—CheiRank plane is shown in figure 13. The top
five nodes in CheiRank probability value (lowest CheiRank indexes) are those which send
many outgoing orders, the top five in PageRank probability value are those which obtain many
incoming signals and the top five indexes in 2DRank (with five lowest 2DRank index values)
combine these two functions. For these networks the correlator « is close to zero (even slightly
negative), which indicates the statistical independence between outgoing and ingoing links
quite similarly to the case of the PCN for the Linux Kernel. This may indicate that a slightly
negative correlator « is a generic property for the data flow network of control and regulation
systems. We use these networks here to show that the general methods proposed above can
be applied to these directed networks as well. Whether the obtained ratings can bring deep
insights into the functioning of gene regulation can only be assessed by experts in the field.
However, we hope that such an analysis will prove to be useful for a better understanding of
gene regulation networks.

7. Discussion

Above we presented extensive studies of statistical properties of 2DRanking based on
PageRank and CheiRank for various types of directed networks. All studied networks are
of a free-scale type with an algebraic distribution of ingoing and outgoing links with a usual
value of exponents. In spite of that their statistical characteristics related to PageRank and
CheiRank are rather different. Some networks have high correlators between PageRank and
CheiRank (e.g. Wikipedia, British universities), while others have practically zero correlators
(PCN of Linux Kernel, gene regulation networks). The distribution of nodes in PageRank—
CheiRank plane also varies significantly between different types of networks. Thus 2DRanking
discussed here gives more detailed classification of information flows on directed networks.
We think that 2DRanking gives new possibilities for information retrieval from large
databases which are growing rapidly with time. Indeed, for example the size of the Cambridge
network increased by a factor 4 from 2006 to 2011 (see appendix and figure 2). At present,
web robots start automatically generating new webpages. These features can be responsible
for the appearance of gaps in the density distribution in the (K, K*) plane at large K, K* ~ N
values visible for large-scale university networks of Cambridge and ENS Paris in 2011 (see
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Figure 14. Density distribution W (K, K*) = dN;/dKdK* shown in the same frame as in
figure 3 for networks collected in 2011: University of Cambridge (top left), University of Bologna
(top right), ENS Paris for crawling level 5 (bottom left) and 7 (bottom right). The color panel is
the same as in figure 3 with the saturation value WSI = O.SWA',/ 4. The axes show: logy K in the

x-axis, logy K* in the y-axis, is both axes the variation range is (0, 1).
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Figure 15. Dependence of probabilities of PageRank P(K) (red/ gray curve) and CheiRank P* (K*)
(blue/black curve) on corresponding ranks K and K* for the networks of ENS Paris (crawling
levels 3,5,7) and the University of Bologna.

figure 14). Such an automatic generation of links can change the scale-free properties of
networks. Indeed, for ENS Paris we observe the appearance of a large step in the PageRank
distribution P(K) shown in figure 15. This step for P(K) remains not sensitive to the deepness
of crawling which goes on a level of 3,5 and 7 links. However, the CheiRank distribution
changes with the deepness level becoming more and more flat (see figure 15). Such a tendency
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in a modification of network statistical properties is visible in 2011 for large-size university
networks, while networks of moderate size, like the University of Bologna 2011 (see data in
figures 14 and 15), are not yet affected. A sign of ongoing changes is a significant growth of
the correlator value x which increases up to a very large value (30 for Cambridge 2011 and 63
for ENS Paris). There is a danger that automatic generation of links can lead to a delocalization
transition of PageRank that can destroy efficiency of information retrieval from the WWW.
We note that it is known that PageRank delocalization can appear in certain models of Markov
chains and Ulam networks [26, 27] (see e.g. in [26] figure 1 (right-top panel) and figure 6
directly showing the delocalization of PageRank vector). Such a delocalization of PageRank
would make the ranking of nodes inefficient due to high sensitivity of ranking to fluctuations
that would create a very dangerous situation for the WWW information retrieval and ranking.
We also note that the spectrum of the Google matrix of British universities networks has been
recently analyzed in [28]. The spectrum and eigenstates analysis can be a sensitive tool for
location of precursors of a delocalization transition.

Our studies of 2DRanking pave the way to the development of two-dimensional search
engines which will use the advantages of both PageRank and CheiRank. Indeed, the Google
search engine uses as the fundamental mathematical basis the one-dimension ranking related
to PageRank [7]. Of course, there are various other important elements used by the Google
search which remain the company secret, and not only PageRank order matters for the Google
ranking. However, the mathematical aspects of these additional elements are not really known
(e.g. they are not described in [7]). At the same time, the size of databases generated by
the modern society continues its enormous growth. Due to that, the information retrieval and
ordering of such datasets becomes of primary importance and new mathematical tools should
be developed to operate and characterize efficiently their information flows and ranking. Here
we proposed and analyzed the properties of the new two-dimensional search engine, which we
call Dvvadi from Russian ‘dva (two)’ and ‘dimension’ that will use the complementary ranking
abilities of both PageRank and CheiRank. Now the procedure of ordering of all network nodes
uses not one but two vectors of the Google matrix of a network. The computational efforts are
twice as expensive but for that we obtain a new quality, since now the nodes are ranked in the 2D
plane not only by their degree of popularity but also by their degree of communicability. Thus
for the Wikipedia network the top three articles in PageRank probability are three countries
(most popular), while the top three articles in CheiRank probability are three listings of
knowledge, state leaders and geographical places (most communicative). Hence, we can rank
the nodes of the network in a new two-dimensional manner which highlight complementary
properties of node popularity and communicability. Thus, the Dvvadi search can present
nodes not in a line but on a 2D plane characterizing these two complementary properties of
nodes. Examples of such 2D representation of nodes selected from Wikipedia articles by a
specific subject are shown in figure 16: we determine global K and K* indexes of all articles,
select a specific subject (e.g. countries) and then represent countries in the local index K
and K* corresponding to their appearance in the global order via PageRank and CheiRank.
For countries, we see a clear tendency that the countries on the top of PageRank probability
(low K) have relatively high CheiRank index (high K*) (e.g. US, UK, France) while small
countries in the region K ~ 50, K* =~ 10 have another tendency (e.g. Singapore). We attribute
this to specific routes of cultural and industrial development of the world: e.g. Singapore was
a colony of UK and became a strong trade country and due to that has historically many
links pointing to the UK and other developed countries. For universities we also see that
those at the top of PageRank (Harvard, Oxford and Cambridge) are not very communicative
having high K* values, while Columbia and Berkeley are more balanced, and Florida and
FSU are very communicative probably due to the initial location of the Wikimedia Foundation
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Figure 16. Examples of Dvvadi search analysis of Wikipedia articles shown on the 2D plane of
PageRank K and CheiRank K* local indexes for specific subjects (articles): countries marked by
their flag (top left), universities (top right), physicists (bottom left), Nobel laureates in physics
(bottom right), circles mark the node location; high resolution figures and listings of names with
local (K, K*) values in 100 x 100 square are available at [25] (listings with global ranking are
available at [15]).

at Florida. For physicists, we see that links to many scientific fields (like Shen Kuo) or
popularization of science (like Hawking and Feynman) place those people at the top positions
of CheiRank. In a similar way, for the Nobel laureates in physics we see that CheiRank stresses
the communicative aspects: e.g. Feynman, due to his popularization of physics; Salam, due to
the institute with his name at Trieste, with a broad international activity; Raman, due to the
Raman effect.

On the basis of the above results, we think that PageRank—CheiRank classification of
network nodes on 2D plane will allow us to analyze the information flows on directed networks
in a better way. It is also important to note that 2DRanking is very natural for financial and
trade networks. Indeed, the world trade usually uses the import and export ranking which
is analogous to PageRank and CheiRank, as it is shown in [20]. We think that such Dvvadi
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Table A1l. Linux Kernel network parameters

Version N MNiinks K

V1.0 2752 5933 k=-0.11
V1.1 4247 9710 « =-0.083
V12 4359 10215  « =-0.048
V1.3 10233 24343 k= -0.102
V2.0 14 080 34551 « =-0.037
V2.1 26 268 59230 « =-0.058
V2.2 38767 87480 k= —0.022
V2.3 41117 89355 « =-0.081
V24 85757 195106 « = —0.034
V2.6 285510 588861 « =0.022

Table A2. British universities network parameters

University N Mlinks K

RGU (Abardeen) 1658 15295 «=1.03
Uwic (Wales) 5524 111733 «=0.82
NTU (Nottingham) 6999 143358 « =0.50
Liverpool 11590 141447 « =1.49
Hull 16 176 236525 k=531
Keele 16 530 117944 « =3.24
UCE (Birmingham) 18 055 351227 k =1.67
Kent 31972 277044 k =2.65
East Anglia 33623 325967 «k =5.50
Sussex 54759 804246 «k=17.29
York 59 689 414200 « =8.13
Bath 73 491 541351 « =3.97
Glasgow 90 218 544774 k =2.22
Manchester 99930 1254939 « =3.47
UCL (London) 128450 1397261 « =233
Oxford 200823 1831542 «k =4.66

Cambridge (2006) 212710 2015265 « =1.71

engine/motor [25] will find useful applications for the treatment of enormously large databases
created by modern society.
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Appendix

We list below the directed networks used in this work giving for them number of nodes N,
number of links Mjns and correlator between PageRank and CheiRank . Additional data can
be find at [25].

Linux Kernel PCNs are taken from [14] (see also [22]) with the parameters for various
kernel versions shown in table A1l.

Web networks of British universities dated by year 2006 are taken from [21] and are
shown in table A2.



J. Phys. A: Math. Theor. 45 (2012) 275101 L Ermann et al

We also developed a special code with which we performed crawling of university web
networks in January—March 2011 with the parameters given below: University of Cambridge
(2011) with N = 898262, Njjns = 15027630, « = 30.0; Ecole Normale Supérieure, Paris
(ENS 2011) with N = 28 144, Njjnxs = 971 856, k = 1.67 (crawling deepness level of three
links), N = 129910, Njns = 2111944, ¢k = 16.2 (crawling deepness level of five links),
N = 1820015, Minks = 25706373, k = 63.6 (crawling deepness level of seven links);
University of Bologna with N = 339 872, Mjnks = 16345488, k = 2.63.

The data for the hyperlink network of Wikipedia English articles (2009) are taken from
[15] with N = 3282257, Nijinks = 71012307, « = 4.08.

Transcription gene networks are taken from [24]. We have for them: Escherichia Coli
with N = 423, Ny = 519, k = —0.0645; Yeast with N = 690, Mjjpxs = 1079, k = —0.0497,
for all links the weight is taken to be the same.

Business process management network is taken from [19] with N = 175, Ny = 240,
k = 0.164.

Brain model network is taken from [18] with N = 10 000, Mus = 1960 108, « = —0.054
(unweighted), k = —0.065 (weighted).
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