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In past ten years, modern societies developed enormous communication and social networks. Their
classification and information retrieval processing become a formidable task for the society. Due
to the rapid growth of World Wide Web, social and communication networks, new mathematical
methods have been invented to characterize the properties of these networks on a more detailed
and precise level. Various search engines are essentially using such methods. It is highly im-
portant to develop new tools to classify and rank enormous amount of network information in a
way adapted to internal network structures and characteristics. This review describes the Google
matrix analysis of directed complex networks demonstrating its efficiency on various examples
including World Wide Web, Wikipedia, software architecture, world trade, social and citation
networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numer-
ical matrix methods used in this analysis originate from the fields of Markov chains, quantum
chaos and Random Matrix theory.
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“The Library exists ab aeterno.”
Jorge Luis Borges The Library of Babel
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I. INTRODUCTION

On a scale of ten years, modern societies developed
enormous communication and social networks. The
World Wide Web (WWW) alone has about 50 billion in-
dexed web pages, so that their classification and informa-
tion retrieval processing become a formidable task which
the society has to face every day. Various search en-
gines have been developed by private companies such as
Google, Yahoo! and others which are extensively used by
Internet users. In addition, social networks (Facebook,
LiveJournal, Twitter, etc) gained enormous popularity in
the last few years. Active use of social networks spreads
beyond their initial purposes making them important for
political or social events.

To handle such enormous databases, fundamental
mathematical tools and algorithms related to centrality
measures and network matrix properties are actively be-
ing developed. Indeed, the PageRank algorithm, which
was initially at the basis of the development of the
Google search engine (Brin and Page , 1998; Langville
and Meyer, 2006), is directly linked to the mathematical
properties of Markov chains (Markov , 1906) and Perron-
Frobenius operators (Brin and Stuck, 2002; Langville and
Meyer, 2006). Due to its mathematical foundation, this
algorithm determines a ranking order of nodes that can
be applied to various types of directed networks. How-
ever, the recent enormous development of WWW and
communication networks requires the creation of new
tools and algorithms to characterize the properties of
these networks on a more detailed and precise level. For
example, such networks contain weakly coupled or secret
communities which may correspond to very small values
of the PageRank and are hard to detect. It is therefore
highly important to have new methods to classify and
rank enormous amount of network information in a way
adapted to internal network structures and characteris-
tics.

This review describes matrix tools and algorithms
which facilitate classification and information retrieval
from large networks recently created by human activity.
The Google matrix formed by links of the network has
typically a huge size. Thus, the analysis of its spectral
properties including complex eigenvalues and eigenvec-
tors represents a challenge for analytical and numerical
methods. It is rather surprising, but the class of such
matrices, belonging to the class of Markov chains and
Perron-Frobenius operators, was practically not inves-
tigated in physics. Indeed, usually the physical prob-
lems belong to the class of Hermitian or unitary ma-
trices. Their properties had been actively studied in
the frame of Random Matrix Theory (RMT) (Akemann
et al., 2011; Guhr et al., 1998; Mehta, 2004) and quantum
chaos (Haake, 2010). The analytical and numerical tools

developed in these research fields allowed to understand
many universal and peculiar features of such matrices in
the limit of large matrix size corresponding to many-body
quantum systems (Guhr et al., 1998), quantum comput-
ers (Shepelyansky , 2001) and a semiclassical limit of
large quantum numbers in the regime of quantum chaos
(Haake, 2010). In contrast to the Hermitian problem,
the Google matrices of directed networks have complex
eigenvalues. The only physical systems where similar ma-
trices had been studied analytically and numerically cor-
respond to models of quantum chaotic scattering whose
spectrum is known to have such unusual properties as
the fractal Weyl law (Gaspard, 2014; Nonnenmacher and
Zworski , 2007; Shepelyansky , 2008; Sjöstrand , 1990;
Zworski , 1999).

FIG. 1 (Color online) Google matrix of the network
Wikipedia English articles for Aug 2009 in the basis of PageR-
ank index K (and K′). Matrix GKK′ corresponds to x
(and y) axis with 1 ≤ K,K′ ≤ 200 on panel (a), and with
1 ≤ K,K′ ≤ N on panel (b); all nodes are ordered by PageR-
ank index K of matrix G and thus we have two matrix indexes
K,K′ for matrix elements in this basis. Panel (a) shows the
first 200 × 200 matrix elements of G matrix (see Sec. III).
Panel (b) shows density of all matrix elements coarse-grained
on 500×500 cells where its elements, GK,K′ , are written in the
PageRank basis K(i) with indexes i → K(i) (in x-axis) and
j → K′(j) (in a usual matrix representation with K = K′ = 1
on the top-left corner). Color shows the density of matrix ele-
ments changing from black for minimum value ((1−α)/N) to
white for maximum value via green (gray) and yellow (light
gray); here the damping factor is α = 0.85 After (Ermann
et al., 2012a).

In this review we present extensive analysis of a va-
riety of Google matrices emerging from real networks
in various sciences including WWW of UK universities,
Wikipedia, Physical Review citation network, Linux Ker-
nel network, world trade network from the UN COM-
TRADE database, brain neural networks, networks of
DNA sequences and many others. As an example, the
Google matrix of Wikipedia network of English articles
(2009) is shown in Fig. 1. We demonstrate that the anal-
ysis of the spectrum and eigenstates of a Google matrix of
a given network provides a detailed understanding about
the information flow and ranking. We also show that such
type of matrices naturally appear for Ulam networks of
dynamical maps (Frahm and Shepelyansky , 2012b; She-
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pelyansky and Zhirov , 2010a) in the framework of the
Ulam method (Ulam, 1960).

At present, Wikipedia, a free online encyclopaedia,
stores more and more information becoming the largest
database of human knowledge. In this respect it is sim-
ilar to the Library of Babel, described by Jorge Luis
Borges (Borges, 1962). The understanding of hidden re-
lations between various areas of knowledge on the basis of
Wikipedia can be improved with the help of Google ma-
trix analysis of directed hyperlink network of Wikipedia
articles as described in this review.

The RMT and quantum chaos tools, combined with
the efficient numerical methods for large matrix diago-
nalization like the Arnoldi method (Stewart, 2001), al-
low to analyze the spectral properties of such large ma-
trices as an entire Twitter network of 41 millions users
(Frahm and Shepelyansky , 2012b). In 1998 Brin and
Page pointed out that “despite the importance of large-
scale search engines on the web, very little academic re-
search has been done on them” (Brin and Page , 1998).
We hope that this review provides solid mathematical ba-
sis of matrix methods of efficient analysis of directed net-
works emerging in various sciences. The described meth-
ods will find broad interdisciplinary applications in math-
ematics, physics and computer science with the cross-
fertilization of different research fields.

An interested reader can find a general information
about complex networks (see also Sec. II) in well estab-
lished papers, reviews and books (Watts and Strogatz
, 1998), (Albert and Barabási , 2002; Caldarelli, 2003;
Newman , 2003), (Castellano et al., 2009; Dorogovtsev
et al., 2008), (Dorogovtsev, 2010; Fortunato , 2010; New-
man, 2010). Descriptions of Markov chains and Perron-
Frobenius operators are given in (Brin and Page , 1998;
Langville and Meyer, 2006) while properties of Random
Matrix Theory (RMT) and quantum chaos are described
in (Akemann et al., 2011; Guhr et al., 1998; Haake, 2010;
Mehta, 2004).

The data sets of the main part of networks considered
here are available at (FETNADINE database, 2014) from
Quantware group.

II. SCALE-FREE PROPERTIES OF DIRECTED
NETWORKS

The distributions of the number of ingoing or outgoing
links per node for directed networks with N nodes and N`
links are well known as indegree and outdegree distribu-
tions in the community of computer science (Caldarelli,
2003; Donato et al., 2004; Pandurangan et al., 2005). A
network is described by an adjacency matrix Aij of size
N × N with Aij = 1 when there is a link from a node
j to a node i in the network, i. e. “j points to i”, and
Aij = 0 otherwise. Real networks are often characterized
by power law distributions for the number of ingoing and
outgoing links per node win,out(k) ∝ 1/kµin,out with typ-
ical exponents µin ≈ 2.1 and µout ≈ 2.7 for the WWW.

For example, for the Wikipedia network of Fig. 1 one
finds µin = 2.09 ± 0.04, µout = 2.76 ± 0.06 as shown in
Fig. 2 (Zhirov et al., 2010).

FIG. 2 (Color online) Distribution win,out(k) of number of in-
going (a) and outgoing (b) links k for N = 3282257 Wikipedia
English articles (Aug 2009) of Fig. 1 with total number of links
N` = 71012307. The straight dashed fit line shows the slope
with µin = 2.09 ± 0.04 (a) and µout = 2.76 ± 0.06 (b). After
(Zhirov et al., 2010).

Statistical preferential attachment models were ini-
tially developed for undirected networks (Albert and
Barabási , 2000). Their generalization to directed net-
works (Giraud et al., 2009) generates a power law distri-
bution for ingoing links with µin ≈ 2 but the distribution
of outgoing links is more close to an exponential decay.
We will see below that these models are not able to re-
produce the spectral properties of G in real networks.

The most recent studies of WWW, crawled by the
Common Crawl Foundation in 2012 (Meusel et al., 2014)
for N ≈ 3.5× 109 nodes and N` ≈ 1.29× 1011 links, pro-
vide the exponents µin ≈ 2.24, µout ≈ 2.77, even if the
authors stress that these distributions describe probabil-
ities at the tails which capture only about one percent
of nodes. Thus, at present the existing statistical models
of networks capture only in an approximate manner the
real situation in large networks.

III. CONSTRUCTION OF GOOGLE MATRIX AND ITS
PROPERTIES

A. Construction rules

The matrix Sij of Markov transitions (Markov , 1906)
is constructed from the adjacency matrix Aij → Sij by
normalizing elements of each column so that their sum is
equal to unity (

∑
i Sij = 1) and replacing columns with

only zero elements (dangling nodes) by 1/N . Such ma-
trices with columns sum normalized to unity and Sij ≥ 0
belong to the class of Perron-Frobenius operators with
a possibly degenerate unit eigenvalue λ = 1 and other
eigenvalues obeying |λ| ≤ 1 (see Sec. III.B). Then the
Google matrix of the network is introduced as: (Brin
and Page , 1998)

Gij = αSij + (1− α)/N . (1)
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The damping factor α in the WWW context describes
the probability (1−α) to jump to any node for a random
surfer. For WWW the Google search engine uses α ≈
0.85 (Langville and Meyer, 2006). For 0 ≤ α ≤ 1 the
matrix G also belongs to the class of Perron-Frobenius
operators as S and with its columns sum normalized.
However, for α < 1 its largest eigenvalue λ = 1 is not
degenerate and the other eigenvalues lie inside a smaller
circle of radius α, i.e. |λ| ≤ α (Brin and Stuck, 2002;
Langville and Meyer, 2006).

FIG. 3 (Color online) (a) Example of simple network with di-
rected links between 5 nodes. (b) Distribution of 5 nodes from
(a) on the PageRank-CheiRank plane (K,K∗), where the size
of node is proportional to PageRank probability P (K) and
color of node is proportional to CheiRank probability P ∗(K∗),
with maximum at red/gray and minimum at blue/black; the
location of nodes of panel (a) on (Ki,Ki

∗) plane is: (2, 4),
(1, 3), (3, 1), (4, 2), (5, 5) for original nodes i = 1, 2, 3, 4, 5
respectively; PageRank and CheiRank vectors are computed
from the Google matrices G and G∗ shown in Fig. 4 at a
damping factor α = 0.85.

The right eigenvector at λ = 1, which is called the
PageRank, has real nonnegative elements P (i) and gives
the probability P (i) to find a random surfer at site i. The
PageRank can be efficiently determined by the power it-
eration method which consists of repeatedly multiplying
G to an iteration vector which is initially chosen as a
given random or uniform initial vector. Developing the
initial vector in a basis of eigenvectors of G one finds
that the other eigenvector coefficients decay as ∼ λn and
only the PageRank component, with λ = 1, survives in
the limit n → ∞. The finite gap 1 − α ≈ 0.15 between
the largest eigenvalue and other eigenvalues ensures, af-
ter several tens of iterations, the fast exponential con-
vergence of the method also called the “PageRank algo-
rithm”. A multiplication of G to a vector requires only
O(N`) multiplications due to the links and the additional
contributions due to dangling nodes and damping factor
can be efficiently performed with O(N) operations. Since
often the average number of links per node is of the or-
der of a few tens for WWW and many other networks
one has effectively N` and N of the same order of magni-
tude. At α = 1 the matrix G coincides with the matrix
S and we will see below in Sec. VIII that for this case
the largest eigenvalue λ = 1 is usually highly degenerate
due to many invariant subspaces which define many in-

dependent Perron-Frobenius operators with at least one
eigenvalue λ = 1 for each of them.

Once the PageRank is found, e.g. at α = 0.85, all
nodes can be sorted by decreasing probabilities P (i). The
node rank is then given by the index K(i) which reflects
the relevance of the node i. The top PageRank nodes,
with largest probabilities, are located at small values of
K(i) = 1, 2, ....

It is known that the PageRank probability is propor-
tional to the number of ingoing links (Langville and
Meyer, 2006; Litvak et al., 2008), characterizing how
popular or known a given node is. Assuming that the

PageRank probability decays algebraically as Pi ∼ 1/Kβ
i

we obtain that the number of nodes NP with Page-
Rank probability P scales as NP ∼ 1/Pµin with µin =
1 + 1/β so that β ≈ 0.9 for µin ≈ 2.1 being in a agree-
ment with the numerical data for WWW (Donato et al.,
2004; Meusel et al., 2014; Pandurangan et al., 2005) and
Wikipedia network (Zhirov et al., 2010).

In addition to a given directed network with adjacency
matrix A it is useful to analyze an inverse network where
links are inverted and whose adjacency matrix A∗ is the
transpose of A, i.e. A∗ij = Aji. The matrices S∗ and the
Google matrix G∗ of the inverse network are then con-
structed in the same way from A∗ as described above and
according to the relation (1) using the same value of α as
for the G matrix. The right eigenvector of G∗ at eigen-
value λ = 1 is called CheiRank giving a complementary
rank index K∗(i) of network nodes (Chepelianskii, 2010;
Ermann et al., 2012a; Zhirov et al., 2010). The CheiRank
probability P ∗(K∗) is proportional to the number of out-
going links highlighting node communicativity (see e.g.
(Ermann et al., 2012a; Zhirov et al., 2010)). In analogy

with the PageRank we obtain that P ∗ ∼ 1/K∗β with
β = 1/(µout− 1) ≈ 0.6 for typical µout ≈ 2.7. The statis-
tical properties of distribution of nodes on the PageRank-
CheiRank plane are described in (Ermann et al., 2012a)
for various directed networks. We will discuss them be-
low.

FIG. 4 (a) Adjacency matrix A of network of Fig. 3(a) with
indexes used there, (b) adjacency matrix A∗ for the network
with inverted links; matrices S (c) and S∗ (d) corresponding
to the matrices A, A∗; the Google matrices G (e) and G∗

(f) corresponding to matrices S and S∗ for α = 0.85 (only 3
digits of matrix elements are shown).
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For an illustration we consider an example of a simple
network of five nodes shown in Fig. 3(a). The corre-
sponding adjacency matrices A, A∗ are shown in Fig. 4
for the indexes given in Fig. 3(a). The matrices of Markov
transitions S, S∗ and Google matrices are computed as
described above and from Eq. (1). The distribution of
nodes on (K,K∗) plane is shown in Fig. 3(b). After per-
mutations the matrix G can be rewritten in the basis of
PageRank index K as it is done in Fig. 1.

B. Markov chains and Perron-Frobenius operators

Matrices with real non-negative elements and column
sums normalized to unity belong to the class of Markov
chains (Markov , 1906) and Perron-Frobenius operators
(Brin and Stuck, 2002), which have been used in a math-
ematical analysis of dynamical systems. A numerical
analysis of finite size approximants of such operators is
closely linked with the Ulam method (Ulam, 1960) which
naturally generates such matrices for dynamical maps
(Ermann and Shepelyansky , 2010a,b; Shepelyansky and
Zhirov , 2010a). The Ulam method generates Ulam net-
works whose properties are discussed in Sec.VI.

Matrices G of this type have at least (one) unit eigen-
value λ = 1 since the vector eT = (1, . . . , 1) is obvi-
ously a left eigenvector for this eigenvalue. Furthermore
one verifies easily that for any vector v the inequality
‖Gv‖1 ≤ ‖v‖1 holds where the norm is the standard
1-norm. From this inequality one obtains immediately
that all eigenvalues λ of G lie in a circle of radius unity:
|λ| ≤ 1. For the Google matrix G as given in (1) one can
furthermore show for α < 1 that the unity eigenvalue
is not degenerate and the other eigenvalues obey even
|λ| ≤ α (Langville and Meyer, 2006).

It should be pointed out that due to the asymmetry of
links on directed networks such matrices have in general
a complex eigenvalue spectrum and sometimes they are
not even diagonalizable, i.e. there may also be general-
ized eigenvectors associated to non-trivial Jordan blocks.
Matrices of this type rarely appear in physical problems
which are usually characterized by Hermitian or unitary
matrices with real eigenvalues or located on the unitary
circle. The universal spectral properties of such hermi-
tian or unitary matrices are well described by RMT (Ake-
mann et al., 2011; Guhr et al., 1998; Haake, 2010). In
contrast to this non-trivial complex spectra appear in
physical systems only in problems of quantum chaotic
scattering and systems with absorption. In such cases it
may happen that the number of states Nγ , with finite
values 0 < λmin ≤ |λ| ≤ 1 (γ = −2 ln |λ|), can grow alge-
braically Nγ ∝ Nν with increasing matrix size N , with
an exponent ν < 1 corresponding to a fractal Weyl law
proposed first in mathematics (Sjöstrand , 1990). There-
fore most of eigenvalues drop to λ = 0 with N →∞. We
discuss this unusual property in Sec.V.

C. Invariant subspaces

For typical networks the set of nodes can be decom-
posed in invariant subspace nodes and fully connected
core space nodes leading to a block structure of the ma-
trix S in (1) which can be represented as (Frahm et al.,
2011):

S =

(
Sss Ssc
0 Scc

)
. (2)

The core space block Scc contains the links between core
space nodes and the coupling block Ssc may contain links
from certain core space nodes to certain invariant sub-
space nodes. By construction there are no links from
nodes of invariant subspaces to the nodes of core space.
Thus the subspace-subspace block Sss is actually com-
posed of many diagonal blocks for many invariant sub-
spaces whose number can generally be rather large. Each
of these blocks corresponds to a column sum normalized
matrix with positive elements of the same type as G and
has therefore at least one unit eigenvalue. This leads to
a high degeneracy N1 of the eigenvalue λ = 1 of S, for
example N1 ∼ 103 as for the case of UK universities (see
Sec. VIII).

In order to obtain the invariant subspaces, we deter-
mine iteratively for each node the set of nodes that can
be reached by a chain of non-zero matrix elements of
S. If this set contains all nodes (or at least a macro-
scopic fraction) of the network, the initial node belongs
to the core space Vc. Otherwise, the limit set defines a
subspace which is invariant with respect to applications
of the matrix S. At a second step all subspaces with
common members are merged resulting in a sequence of
disjoint subspaces Vj of dimension dj and which are in-
variant by applications of S. This scheme, which can be
efficiently implemented in a computer program, provides
a subdivision over Nc core space nodes (70-80% of N
for UK university networks) and Ns = N −Nc subspace
nodes belonging to at least one of the invariant subspaces
Vj . This procedure generates the block triangular struc-
ture (2). One may note that since a dangling node is
connected by construction to all other nodes it belongs
obviously to the core space as well as all nodes which are
linked (directly or indirectly) to a dangling node. As a
consequence the invariant subspaces do not contain dan-
gling nodes nor nodes linked to dangling nodes.

The detailed algorithm for an efficient computation of
the invariant subspaces is described in (Frahm et al.,
2011). As a result the total number of all subspace nodes
Ns, the number of independent subspaces Nd, the max-
imal subspace dimension dmax etc. can be determined.
The statistical properties for the distribution of subspace
dimensions are discussed in Sec. VIII for UK universities
and Wikipedia networks. Furthermore it is possible to
determine numerically with a very low effort the eigen-
values of S associated to each subspace by separate di-
agonalization of the corresponding diagonal blocks in the
matrix Sss. For this, either exact diagonalization or, in
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rare cases of quite large subspaces, the Arnoldi method
(see the next subsection) can be used.

After the subspace eigenvalues are determined one can
use the Arnoldi method to the projected core space ma-
trix block Scc to determine the leading core space eigen-
values. In this way one obtains accurate eigenvalues
because the Arnoldi method does not need to compute
the numerically very problematic highly degenerate unit
eigenvalues of S since the latter are already obtained from
the separate and cheap subspace diagonalization. Actu-
ally the alternative and naive application of the Arnoldi
method on the full matrix S, without computing the sub-
spaces first, does not provide the correct number N1 of
degenerate unit eigenvalues and also the obtained clus-
tered eigenvalues, close to unity, are not very accurate.
Similar problems hold for the full matrix G (with damp-
ing factor α < 1) since here only the first eigenvector,
the PageRank, can be determined accurately but there
are still many degenerate (or clustered) eigenvalues at (or
close to) λ = α.

Since the columns sums of Scc are less than unity, due
to non-zero matrix elements in the block Ssc, the leading

core space eigenvalue of Scc is also below unity |λ(core)1 | <
1 even though in certain cases the gap to unity may be
very small (see Sec. VIII).

We consider concrete examples of such decompositions
in Sec. VIII and show in this review spectra with sub-
space and core space eigenvalues of matrices S for several
network examples. The mathematical results for proper-
ties of the matrix S are discussed in (Serra-Capizzano ,
2005).

D. Arnoldi method for numerical diagonalization

The most adapted numerical method to determine the
largest eigenvalues of large sparse matrices is the Arnoldi
method (Arnoldi , 1951; Frahm and Shepelyansky , 2010;
Golub and Greif , 2006; Stewart, 2001). Indeed, usually
the matrix S in Eq. (1) is very sparse with only a few tens
of links per node ζ = N`/N ∼ 10. Thus, a multiplication
of a vector by G or S is numerically cheap. The Arnoldi
method is similar in spirit to the Lanzcos method, but
is adapted to non-Hermitian or non-symmetric matrices.
Its main idea is to determine recursively an orthonor-
mal set of vectors ξ0, . . . ξnA−1, which define a Krylov
space, by orthogonalizing Sξk on the previous vectors
ξ0, . . . ξk by the Gram-Schmidt procedure to obtain ξk+1

and where ξ0 is some normalized initial vector. The di-
mension nA of the Krylov space (in the following called
the Arnoldi-dimension) should be “modest” but not too
small. During the Gram-Schmidt procedure one obtains

furthermore the explicit expression: Sξk =
∑k+1
j=0 hjk ξj

with matrix elements hjk, of the Arnoldi representation
matrix of S on the Krylov space, given by the scalar prod-
ucts or inverse normalization constants calculated during
the orthogonalization. In order to obtain a closed repre-
sentation matrix one needs to replace the last coupling

element hnA,nA−1 → 0 which introduces a mathematical
approximation. The eigenvalues of the nA×nA matrix h
are called the Ritz eigenvalues and represent often very
accurate approximations of the exact eigenvalues of S, at
least for a considerable fraction of the Ritz eigenvalues
with largest modulus.

In certain particular cases, when ξ0 belongs to an S in-
variant subspace of small dimension d, the element hd,d−1
vanishes automatically (if d ≤ nA and assuming that
numerical rounding errors are not important) and the
Arnoldi iteration stops at k = d and provides d exact
eigenvalues of S for the invariant subspace. One can
mention that there are more sophisticated variants of the
Arnoldi method (Stewart, 2001) where one applies (im-
plicit) modifications on the initial vector ξ0 in order to
force this vector to be in some small dimensional invari-
ant subspace which results in such a vanishing coupling
matrix element. These variants known as (implicitly)
restarted Arnoldi methods allow to concentrate on cer-
tain regions on the complex plane to determine a few
but very accurate eigenvalues in these regions. However,
for the cases of Google matrices, where one is typically
interested in the largest eigenvalues close to the unit cir-
cle, only the basic variant described above was used but
choosing larger values of nA as would have been possi-
ble with the restarted variants. The initial vector was
typically chosen to be random or as the vector with unit
entries.

Concerning the numerical resources the Arnoldi
method requires ζN double precision registers to store
the non-zero matrix elements of S, nAN registers to
store the vectors ξk and const.×n2A registers to store h
(and various copies of h). The computational time scales
as ζ nANd for the computation of S ξk, with Nd n

2
A for

the Gram-Schmidt orthogonalization procedure (which
is typically dominant) and with const.×n3A for the diag-
onalization of h.

The details of the Arnoldi method are described in
Refs. given above. This method has problems with de-
generate or strongly clustered eigenvalues and therefore
for typical examples of Google matrices it is applied to
the core space block Scc where the effects of the invari-
ant subspaces, being responsible for most of the degen-
eracies, are exactly taken out according to the discussion
of the previous subsection. In typical examples it is pos-
sible to find about nA ≈ 640 eigenvalues with largest |λ|
for the entire Twitter network with N ≈ 4.1 × 107 (see
Sec. X) and about nA ≈ 6000 eigenvalues for Wikipedia
networks with N ≈ 3.2 × 106 (see Sec. IX). For the two
university networks of Cambridge and Oxford 2006 with
N ≈ 2× 105 it is possible to compute nA ≈ 20000 eigen-
values (see Sec. VIII). For the case of the Citation net-
work of Physical Review (see Sec. XII) with N ≈ 4.6×105

it is even possible and necessary to use high precision
computations (with up to 768 binary digits) to deter-
mine accurately the Arnoldi matrix h with nA ≈ 2000
(Frahm et al., 2014b).
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E. General properties of eigenvalues and eigenstates

According to the Perron-Frobenius theorem all eigen-
values λi of G are distributed inside the unitary circle
|λ| ≤ 1. It can be shown that at α < 1 there is only one
eigenvalue λ0 = 1 and all other |λi| ≤ α having a sim-
ple dependence on α: λi → αλi (see e.g. (Langville and
Meyer, 2006)). The right eigenvectors ψi(j) are defined
by the equation

∑
j′

Gjj′ψi(j
′) = λiψi(j) . (3)

Only the PageRank vector is affected by α while other
eigenstates are independent of α due to their orthogonal-
ity to the left unit eigenvector at λ = 1. Left eigenvec-
tors are orthonormal to right eigenvectors (Langville and
Meyer, 2006).

It is useful to characterize the eigenvec-
tors by their Inverse Participation Ratio (IPR)
ξi = (

∑
j |ψi(j)|2)2/

∑
j |ψi(j)|4 which gives an ef-

fective number of nodes populated by an eigenvector
ψi. This characteristics is broadly used for description
of localized or delocalized eigenstates of electrons in a
disordered potential with Anderson transition (see e.g.
(Evers and Mirlin , 2008; Guhr et al., 1998)). We discuss
the specific properties of eigenvectors in next Secs.

FIG. 5 (Color online) Dependence of probabilities of PageR-
ank P (red/gray curve) and CheiRank P ∗ (blue/black curve)
vectors on the corresponding rank indexes K and K∗ for net-
works of Wikipedia Aug 2009 (top curves) and University of
Cambridge (bottom curves, moved down by a factor 100).
The straight dashed lines show the power law fits for PageR-
ank and CheiRank with the slopes β = 0.92; 0.58 respectively,
corresponding to β = 1/(µin,out−1) for Wikipedia (see Fig. 2),
and β = 0.75, 0.61 for Cambridge. After (Zhirov et al., 2010)
and (Frahm et al., 2011).

IV. CHEIRANK VERSUS PAGERANK

It is established that ranking of network nodes based
on PageRank order works reliably not only for WWW
but also for other directed networks. As an example it is
possible to quote the citation network of Physical Review
(Radicchi et al., 2009; Redner , 1998, 2005), Wikipedia
network (Aragón et al., 2012; Eom and Shepelyansky ,
2013a; Skiena and Ward, 2014; Zhirov et al., 2010) and
even the network of world commercial trade (Ermann
and Shepelyansky , 2011b). Here we describe the main
properties of PageRank and CheiRank probabilities us-
ing a few real networks. More detailed presentation for
concrete networks follows in next Secs.

A. Probability decay of PageRank and CheiRank

Wikipedia is a useful example of a scale-free network.
An article quotes other Wikipedia articles that generates
a network of directed links. For Wikipedia of English
articles dated by Aug 2009 we have N = 3282257, N` =
71012307 ((Zhirov et al., 2010)). The dependencies of
PageRank P (K) and CheiRank P ∗(K∗) probabilities on
indexes K and K∗ are shown in Fig. 5. In a large range
the decay can be satisfactory described by an algebraic
law with an exponent β. The obtained β values are in
a reasonable agreement with the expected relation β =
1/(µin,out−1) with the exponents of distribution of links
given above. However, the decay is algebraic only on a
tail, showing certain nonlinear variations well visible for
P ∗(K∗) at large values of P ∗.

Similar data for network of University of Cambridge
(2006) with N = 212710, N` = 2015265 (Frahm et al.,
2011) are shown in the same Fig. 5. Here, the exponents
β have different values with approximately the same sta-
tistical accuracy of β.

Thus we come to the same conclusion as (Meusel et al.,
2014): the probability decay of PageRank and CheiRank
is only approximately algebraic, the relation between ex-
ponents β and µ also works only approximately.

B. Correlator between PageRank and CheiRank

Each network node i has both PageRank K(i) and
CheiRank K(i)∗ indexes so that it is interesting to know
what is a correlation between the corresponding vectors
of PageRank and CheiRank. It is convenient to charac-
terized this by a correlator introduced in (Chepelianskii,
2010)

κ = N

N∑
i=1

P (K(i))P ∗(K∗(i))− 1 . (4)
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FIG. 6 (Color online) Correlator κ as a function of the num-
ber of nodes N for different networks: Wikipedia networks,
Phys Rev network, 17 UK universities, 10 versions of Ker-
nel Linux Kernel PCN, Escherichia Coli and Yeast Transcrip-
tion Gene networks, Brain Model Network, C.elegans neural
network and Business Process Management Network. After
(Ermann et al., 2012a) with additional data from (Abel and
Shepelyansky , 2011), (Eom and Shepelyansky , 2013a), (Kan-
diah and Shepelyansky , 2014a), (Frahm et al., 2014b).

FIG. 7 (Color online) Density distribution of network nodes
W (K,K∗) = dNi/dKdK

∗ shown on the plane of PageRank
and CheiRank indexes in logscale (logN K, logN K

∗) for all
1 ≤ K,K∗ ≤ N , density is computed over equidistant grid
in plane (logN K, logN K

∗) with 100 × 100 cells; color shows
average value of W in each cell, the normalization condition
is

∑
K,K∗W (K,K∗) = 1. Density W (K,K∗) is shown by

color with blue (dark gray) for minimum in (a),(b) and white
(a) and yellow (white) (b) for maximum (black for zero).
Panel (a): data for Wikipedia Aug (2009), N = 3282257,
green/red (light gray/dark gray) points show top 100 per-
sons from PageRank/CheiRank, yellow (white) pluses show
top 100 persons from (Hart, 1992); after (Zhirov et al., 2010).
Panel (b): Density distribution W (K,K∗) = dNi/dKdK

∗ for
Linux Kernel V2.4 network with N = 85757, after (Ermann
et al., 2012a).

Even if all the networks from Fig. 6 have similar alge-
braic decay of PageRank probability with K and similar
β ∼ 1 exponents we see that the correlations between

PageRank and CheiRank vectors are drastically different
in these networks. Thus the networks of UK universi-
ties and 9 different language editions of Wikipedia have
the correlator κ ∼ 1 − 8 while all other networks have
κ ∼ 0. This means that there are significant differences
hidden in the network architecture which are no visible
from PageRank analysis. We will discuss the possible ori-
gins of such a difference for the above networks in next
Secs.

C. PageRank-CheiRank plane

A more detailed characterization of correlations be-
tween PageRank and CheiRank vectors can be ob-
tained from a distribution of network nodes on the two-
dimensional plane (2D) of indexes (K,K∗). Two ex-
amples for Wikipedia and Linux networks are shown in
Fig. 7. A qualitative difference between two networks is
obvious. For Wikipedia we have a maximum of density
along the line lnK∗ ≈ 5 + (lnK)/3 that results from
a strong correlation between PageRank and CheiRank
with κ = 4.08. In contrast to that for the Linux net-
work V2.4 we have a homogeneous density distribution
of nodes along lines lnK∗ = lnK + const corresponding
to uncorrelated probabilities P (K) and P ∗(K∗) and even
slightly negative value of κ = −0.034. We note that if
for Wikipedia we generate nodes with independent prob-
abilities distributions P and P ∗, obtained from this net-
work at the corresponding value of N , then we obtain
a homogeneous node distribution in (K,K∗) plane (in
(logK, logK∗) plane it takes a triangular form, see Fig.4
at (Zhirov et al., 2010)).

In Fig. 7(a) we also show the distribution of top 100
persons from PageRank and CheiRank compared with
the top 100 persons from (Hart, 1992). There is a sig-
nificant overlap between PageRank and Hart ranking of
persons while CheiRank generates mainly another listing
of people. We discuss the Wikipedia ranking of historical
figures in Sec. IX.

D. 2DRank

PageRank and CheiRank indexes KiKi
∗ order all net-

work nodes according to a monotonous decrease of cor-
responding probabilities P (Ki) and P ∗(Ki

∗). While top
K nodes are most popular or known in the network, top
K∗ nodes are most communicative nodes with many out-
going links. It is useful to consider an additional ranking
K2, called 2DRank, which combines properties of both
ranks K and K∗ (Zhirov et al., 2010).

The ranking list K2(i) is constructed by increasing
K → K + 1 and increasing 2DRank index K2(i) by one
if a new entry is present in the list of first K∗ < K en-
tries of CheiRank, then the one unit step is done in K∗

and K2 is increased by one if the new entry is present
in the list of first K < K∗ entries of CheiRank. More
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formally, 2DRank K2(i) gives the ordering of the se-
quence of sites, that appear inside the squares
[1, 1; K = k,K∗ = k; ...] when one runs progressively
from k = 1 to N . In fact, at each step k → k + 1
there are tree possibilities: (i) no new sites on two edges
of square, (ii) only one site is on these two edges and it is
added in the listing of K2(i) and (iii) two sites are on the
edges and both are added in the listing K2(i), first with
K > K∗ and second with K < K∗. For (iii) the choice
of order of addition in the list K2(i) affects only some
pairs of neighboring sites and does not change the main
structure of ordering. An illustration example of 2DRank
algorithm is given in Fig.7 at (Zhirov et al., 2010). For
Wikipedia 2DRanking of persons is discussed in Sec. IX.

E. Historical notes on spectral ranking

Starting from the work of Markov (Markov , 1906)
many scientists contributed to the development of spec-
tral ranking of Markov chains. Research of Perron (1907)
and Frobenius (1912) led to the Perron-Frobenius theo-
rem for square matrices with positive entries (see e.g.
(Brin and Stuck, 2002)). Important steps have been
done by researchers in psychology, sociology and math-
ematics including J.R.Seeley (1949), T.-H.Wei (1952),
L.Katz (1953), C.H.Hubbell (1965). The detailed histor-
ical description of spectral ranking research is reviewed
by (Franceschet , 2011) and (Vigna, 2013). In the WWW
context, the Google matrix in the form (1), with regu-
larization of dangling nodes and damping factor α, was
introduced by (Brin and Page , 1998).

A PageRank vector of a Google matrix G∗ with in-
verted directions of links has been considered by (Fogaras
, 2003) and (Hrisitidis et al., 2008), but no systematic sta-
tistical analysis of 2DRanking was presented there. An
important step was done by (Chepelianskii, 2010) who
analyzed λ = 1 eigenvectors of G for directed network
and of G∗ for network with inverted links. The com-
parative analysis of Linux Kernel network and WWW
of University of Cambridge demonstrated a significant
differences in correlator κ values on these networks and
different functions of top nodes in K and K∗. The term
CheiRank was coined in (Zhirov et al., 2010) to have a
clear distinction between eigenvectors of G and G∗. We
note that top PageRank and CheiRank nodes have cer-
tain similarities with authorities and hubs appearing in
the HITS algorithm (Kleinberg , 1999). However, the
HITS is query dependent while the rank probabilities
P (Ki) and P ∗(Ki

∗) classify all nodes of the network.

V. COMPLEX SPECTRUM AND FRACTAL WEYL LAW

The Weyl law (Weyl , 1912) gives a fundamental link
between the properties of quantum eigenvalues in closed
Hamiltonian systems, the Planck constant ~ and the clas-
sical phase space volume. The number of states in this

case is determined by the phase volume of a system
with dimension d. The case of Hermitian operators is
now well understood both on mathematical and physi-
cal grounds (Dimassi and Sjöstrand, 1999; Landau and
Lifshitz, 1989). Surprisingly, only recently it has been
realized that the case of nonunitary operators describing
open systems in the semiclassical limit has a number of
new interesting properties and the concept of the frac-
tal Weyl law (Sjöstrand , 1990; Zworski , 1999) has been
introduced to describe the dependence of number of res-
onant Gamow eigenvalues (Gamow , 1928) on ~.

The Gamow eigenstates find important applications
for decay of radioactive nuclei, quantum chemistry reac-
tions, chaotic scattering and microlasers with chaotic res-
onators, open quantum maps (see (Gaspard, 1998, 2014;
Shepelyansky , 2008) and Refs. therein). The spectrum
of corresponding operators has a complex spectrum λ.
The spread width γ = −2 ln |λ| of eigenvalues λ deter-
mines the life time of a corresponding eigenstate. The
understanding of the spectral properties of related oper-
ators in the semiclassical limit represents an important
challenge.

According to the fractal Weyl law (Lu et al., 2003;
Sjöstrand , 1990) the number of Gamow eigenvalues Nγ ,
which have escape rates γ in a finite band width 0 ≤ γ ≤
γb, scales as

Nγ ∝ ~−d/2 ∝ Nd/2 (5)

where d is a fractal dimension of a classical strange re-
peller formed by classical orbits nonescaping in future
and past times. In the context of eigenvalues λ of the
Google matrix we have γ = −2 ln |λ|. By numerical sim-
ulations it has been shown that the law (5) works for a
scattering problem in 3-disk system (Lu et al., 2003) and
quantum chaos maps with absorption when the fractal
dimension d is changed in a broad range 0 < d < 2 (Er-
mann and Shepelyansky , 2010b; Shepelyansky , 2008).

The fractal Weyl law (5) of open systems with a frac-
tal dimension d < 2 leads to a striking consequence:
only a relatively small fraction of eigenvalues µW ∼
Nγ/N ∝ ~(2−d)/2 ∝ N (d−2)/2 � 1 has finite values of
|λ| while almost all eigenstates of the matrix operator of
size N ∝ 1/~ have λ → 0. The eigenstates with finite
|λ| > 0 are related to the classical fractal sets of orbits
non-escaping neither in the future neither in the past. A
fractal structure of these quantum fractal eigenstates has
been investigated in (Shepelyansky , 2008). There it was
conjectured that the eigenstates of a Google matrix with
finite |λ| > 0 will select interesting specific communities
of a network. We will see below that the fractal Weyl law
can indeed be observed in certain directed networks and
in particular we show in the next section that it naturally
appears for Perron-Frobenius operators of dynamical sys-
tems and Ulam networks.

It is interesting to note that nontrivial complex spec-
tra also naturally appear in systems of quantum chaos in
presence of a contact with a measurement device (Bruzda
et al., 2010). The properties of complex spectra of small
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size orthostochastic (unistochastic) matrices are analyzed
in (Zyczkowski et al., 2003). In such matrices the ele-
ments can be presented in a form Sij = O2

ij (Sij = |Uij |2)
where O is an orthogonal matrix ( U is a unitary matrix).
We will see certain similarities of their spectra with the
spectra of directed networks discussed in Sec. VIII.

Recent mathematical results for the fractal Weyl law
are presented in (Nonnenmacher and Zworski , 2007;
Nonnenmacher et al., 2014).

FIG. 8 Illustration of operation of the Ulam method: the
phase space (x, y) is divided in N = Nx × Ny cells, Nc tra-
jectories start from cell j and the number of trajectories Nij
arrived to a cell i from a cell j is collected after a map iter-
ation. Then the matrix of Markov transitions is defined as
Sij = Nij/Nc, by construction

∑N
i=1 Sij = 1.

VI. ULAM NETWORKS

By construction the Google matrix belongs to the class
of Perron-Frobenius operators which naturally appear in
ergodic theory (Cornfeldet al., 1982) and dynamical sys-
tems with Hamiltonian or dissipative dynamics (Brin and
Stuck, 2002). In 1960 Ulam (Ulam, 1960) proposed a
method, now known as the Ulam method, for a construc-
tion of finite size approximants for the Perron-Frobenius
operators of dynamical maps. The method is based on
discretization of the phase space and construction of a
Markov chain based on probability transitions between
such discrete cells given by the dynamics. Using as an
example a simple chaotic map Ulam made a conjecture
that the finite size approximation converges to the contin-
uous limit when the cell size goes to zero. Indeed, it has
been proven that for hyperbolic maps in one and higher
dimensions the Ulam method converges to the spectrum
of continuous system (Blank et al., 2002; Li , 1976). The
probability flows in dynamical systems have rich and non-
trivial features of general importance, like simple and
strange attractors with localized and delocalized dynam-
ics governed by simple dynamical rules (Lichtenberg and
Lieberman, 1992). Such objects are generic for nonlinear
dissipative dynamics and hence can have relevance for
actual WWW structure. The analysis of Ulam networks,
generated by the Ulam method, allows to obtain a better
intuition about the spectral properties of Google matrix.
The term Ulam networks was introduced in (Shepelyan-

sky and Zhirov , 2010a).

A. Ulam method for dynamical maps

In Fig. 8 we show how the Ulam method works. The
phase space of a dynamical map is divided in equal cells
and a number of trajectories Nc is propagated by a map
iteration. Thus a number of trajectories Nij arrived from
cell j to cell i is determined. Then the matrix of Markov
transition is defined as Sij = Nij/Nc. By construction
this matrix belongs to the class of Perron-Frobenius op-
erators which includes the Google matrix.

The physical meaning of the coarse grain description
by a finite number of cells is that it introduces in the sys-
tem a noise of cell size amplitude. Due to that an exact
time reversibility of dynamical equations of chaotic maps
is destroyed due to exponential instability of chaotic dy-
namics. This time reversibility breaking is illustrated by
an example of the Arnold cat map by (Ermann and Shep-
elyansky , 2012b). For the Arnold cat map on a long torus
it is shown that the spectrum of the Ulam approximate
of the Perron-Frobenius (UPFO) is composed of a large
group of complex eigenvalues with γ ∼ 2h ≈ 2, and real
eigenvalues with |1−λ| � 1 corresponding to a statistical
relaxation to the ergodic state at λ = 1 described by the
Fokker-Planck equation (here h is the Kolmogorov-Sinai
entropy of the map being here equal to the Lyapunov
exponent, see e.g. (Chirikov , 1979)).

For fully chaotic maps the finite cell size, corresponding
to added noise, does not significantly affect the dynam-
ics and the discrete UPFO converges to the limiting case
of continuous Perron-Frobenius operator (Blank et al.,
2002; Li , 1976). The Ulam method finds useful applica-
tions in studies of dynamics of molecular systems and co-
herent structures in dynamical flows (Froyland and Pad-
berg , 2009). Additional Refs. can be found in (Frahm
and Shepelyansky , 2010).

B. Chirikov standard map

However, for symplectic maps with a divided phase
space, a noise present in the Ulam method significantly
affects the original dynamics leading to a destruction of
islands of stable motion and Kolmogorov-Arnold-Moser
(KAM) curves. A famous example of such a map is the
Chirikov standard map which describes the dynamics of
many physical systems (Chirikov , 1979; Chirikov and
Shepelyansky , 2008):

ȳ = ηy +
Ks

2π
sin(2πx) , x̄ = x+ ȳ (mod 1) . (6)

Here bars mark the variables after one map iteration and
we consider the dynamics to be periodic on a torus so
that 0 ≤ x ≤ 1, −1/2 ≤ y ≤ 1/2; Ks is a dimensionless
parameter of chaos. At η = 1 we have area-preserving
symplectic map, considered in this SubSec., for 0 < η < 1
we have a dissipative dynamics analyzed in next SubSec.
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FIG. 9 (Color online) Complex spectrum of eigenvalues λj ,
shown by red/gray dots, for the UPFO of two variants of
the Chirikov standard map (6); the unit circle |λ| = 1 is
shown by a green (light gray) curve, the unit eigenvalue at
λ = 1 is shown as larger red/gray dot. Panel (a) corresponds
to the Chirikov standard map at dissipation η = 0.3 and
Ks = 7; the phase space is covered by 110 × 110 cells and
the UPFO is constructed by many trajectories with random
initial conditions generating transitions from one cell into an-
other (after (Ermann and Shepelyansky , 2010b)). Panel (b)
corresponds to the Chirikov standard map without dissipa-
tion at Ks = 0.971635406 with an UPFO constructed from
a single trajectory of length 1012 in the chaotic domain and
280× 280/2 cells to cover the phase space (after (Frahm and
Shepelyansky , 2010)).

FIG. 10 (Color online) Density plots of absolute values of
the eigenvectors of the UPFO obtained by the generalized
Ulam method with a single trajectory of 1012 iterations of
the Chirikov standard map at Ks = 0.971635406. The phase
space is shown in the area 0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2; the
UPFO is obtained from M ×M/2 cells placed in this area.
Panels represent: (a) eigenvector ψ0 with eigenvalue λ0 = 1;
(b) eigenvector ψ2 with real eigenvalue λ2 = 0.99878108; (c)
eigenvector ψ6 with complex eigenvalue λ6 = −0.49699831 +
i 0.86089756 ≈ |λ6| ei 2π/3; (d) eigenvector ψ13 with complex

eigenvalue λ13 = 0.30580631 + i 0.94120900 ≈ |λ13| ei 2π/5.
Panel (a) corresponds to M = 25 while (b), (c) and (d)
have M = 800. Color is proportional to amplitude with
blue (black) for zero and red (gray) for maximal value. After
(Frahm and Shepelyansky , 2010).

Since the finite cell size generates noise and destroys
the KAM curves in the map (6) at η = 1, one should use
the generalized Ulam method (Frahm and Shepelyansky

, 2010), where the transition probabilities Nij/Nc are col-
lected along one chaotic trajectory. In this construction
a trajectory visits only those cells which belong to one
connected chaotic component. Therefore the noise in-
duced by the discretization of the phase space does not
lead to a destruction of invariant curves, in contrast to
the original Ulam method (Ulam, 1960), which uses all
cells in the available phase space. Since a trajectory is
generated by a continuous map it cannot penetrate inside
the stability islands and on a physical level of rigor one
can expect that, due to ergodicity of dynamics on one
connected chaotic component, the UPFO constructed in
such a way should converge to the Perron-Frobenius oper-
ator of the continuous map on a given subspace of chaotic
component. The numerical confirmations of this conver-
gence are presented in (Frahm and Shepelyansky , 2010).

We consider the map (6) at Ks = 0.971635406 when
the golden KAM curve is critical. Due to the symmetry
of the map with respect to x→ 1−x and y → −y we can
use only the upper part of the phase space with y ≥ 0
dividing it in M ×M/2 cells. At that Ks we find that
the number of cells visited by the trajectory in this half
square scales as Nd ≈ CdM

2/2 with Cd ≈ 0.42. This
means that the chaotic component contains about 40%
of the total area which is in good agreement with the
known result of (Chirikov , 1979).

The spectrum of the UPFO matrix S for the phase
space division by 280× 208/2 cells is shown in Fig. 9(b).
In a first approximation the spectrum λ of S is more
or less homogeneously distributed in the polar angle ϕ
defined as λj = |λj | exp(iϕj). With the increase of ma-
trix size Nd the two-dimensional density of states ρ(λ)
converges to a limiting distribution (Frahm and Shep-
elyansky , 2010). With the help of the Arnoldi method
it is possible to compute a few thousands of eigenvalues
with largest absolute values |λ| for maximal M = 1600
with the total matrix size N = Nd ≈ 5.3× 105.

The eigenstate at λ = 1 is homogeneously distributed
over the chaotic component at M = 25 (Fig. 10) and
higher M values (Frahm and Shepelyansky , 2010). This
results from the ergodicity of motion and the fact that
for symplectic maps the measure is proportional to the
phase space area (Chirikov , 1979; Cornfeldet al., 1982).
Examples of other right eigenvalues of S at real and com-
plex eigenvalues λ with |λ| < 1 are also shown in Fig. 10.
For λ2 the eigenstate corresponds to some diffusive mode
with two nodal lines, while other two eigenstates are lo-
calized around certain resonant structures in phase space.
This shows that eigenstates of the matrix G (and S) are
related to specific communities of a network.

With the increase of number of cells M2/2 there are
eigenvalues which become more and more close to the
unit eigenvalue. This is shown to be related to an al-
gebraic statistics of Poincaré recurrences and long time
sticking of trajectories in a vicinity of critical KAM
curves. At the same time for symplectic maps the mea-
sure is proportional to area so that we have dimension
d = 2 and hence we have a usual Weyl law with Nγ ∝ N .
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More details can be found at (Frahm and Shepelyansky
, 2010, 2013).

FIG. 11 (Color online) Phase space representation of eigen-
states of the UFPO S for N = 110 × 110 cells (color is pro-
portional to absolute value |ψi| with red/gray for maximum
and blue/black for zero). Panel (a) shows an eigenstate with
maximum eigenvalue λ1 = 0.756 of the UFPO of map (6)
with absorption at Ks = 7, a = 2, η = 1, the space re-
gion is (−aKs/4π ≤ y ≤ aKs/4π, 0 ≤ x ≤ 1), the fractal
dimension of the strange repeller set nonescaping in future
is de = 1 + d/2 = 1.769. Panel (b) shows an eigenstate
at λ = 1 of the UFPO of map (6) without absorption at
Ks = 7, η = 0.3, the shown space region is (−1/π ≤ y ≤ 1/π,
0 ≤ x ≤ 1) and the fractal dimension of the strange attractor
is d = 1.532. After (Ermann and Shepelyansky , 2010b).

C. Dynamical maps with strange attractors

The fractal Weyl law (5) has initially been proposed for
quantum systems with chaotic scattering. However, it is
natural to assume that it should also work for Perron-
Frobenius operators of dynamical systems. Indeed, the
mathematical results for the Selberg zeta function in-
dicated that the law (5) should remain valid for the
UFPO (see Refs. at (Nonnenmacher et al., 2014)). A
detailed test of this conjecture (Ermann and Shepelyan-
sky , 2010b) has been performed for the map (6) with
dissipation at 0 < η < 1, when at large Ks the dy-
namics converges to a strange attractor in the range
−2 < y < 2, and for the nondissipative case η = 1
with absorption where all orbits leaving the interval
−aKs/4π ≤ y ≤ aKs/4π are absorbed after one itera-
tion (in both cases there is no modulus in y).

An example of the spectrum of UPFO for the model
with dissipation is shown in Fig. 9(a). We see that now,
in contrast to the symplectic case of Fig. 9(b), the spec-
trum has a significant gap which separates the eigenvalue
λ = 1 from the other eigenvalues with |λ| < 0.7. For the
case with absorption the spectrum has a similar struc-
ture but now with |λ| < 1 for the leading eigenvalue λ
since the total number of initial trajectories decreases
with the number of map iterations due to absorption im-
plying that for this case

∑
i Sij < 1 with S being the

UPFO.
It is established that the distribution of density of

states dW/dγ (or dW/d|λ|) converges to a fixed distri-
bution in the limit of large N or cell size going to zero
(Ermann and Shepelyansky , 2010b) (see Fig.4 there).
This demonstrates the validity of the Ulam conjecture
for considered systems.

Examples of two eigenstates of the UFPO for these
two models are shown in Fig. 11. The fractal struc-
ture of eigenstates is well visible. For the dissipative case
without absorption we have eigenstates localized on the
strange attractor. For the case with absorption eigen-
states are located on a strange repeller corresponding to
an invariant set of nonescaping orbits. The fractal dimen-
sion d of these classical invariant sets can be computed by
the usual box-counting method for dynamical systems. It
is important to note that for the case with absorption it
is more natural to measure the dimension de of the set
of orbits nonescaping in future. Due to the time reversal
symmetry of the continuous map the dimension of the
set of orbits nonescaping in the past is also de. Thus the
phase space dimension 2 is composed of 2 = de + de − d
and de = 1+d/2 where d is the dimension of the invariant
set of orbits nonescaping neither in the future neither in
the past. For the case with dissipation without absorp-
tion all orbits drop on a strange attractor and we have
the dimension of invariant set de = d.

D. Fractal Weyl law for Perron-Frobenius operators

FIG. 12 (Color online) Panel (a) shows the dependence of
the integrated number of states Nγ with decay rates 0 ≤
γ ≤ γb = 16 on the size N of the UFPO matrix S for the
map (6) at Ks = 7. The fits of numerical data, shown by
dashed straight lines, give ν = 0.590, de = 1 + d/2 = 1.643
(at a = 1); ν = 0.772, de = 1 + d/2 = 1.769 (at a = 2);
ν = 0.716, d = 1.532 (at η = 0.3); ν = 0.827, d = 1.723 (at
η = 0.6). Panel (b) shows the fractal Weyl exponent ν as
a function of fractal dimension d of the invariant fractal set
for the map (6) with a strange attractor (η < 1) at Ks =
15 (green/gray crosses), Ks = 12 (red/gray squares), Ks =
10 (orange/gray stars), Ks = 7 blue/black triangles; for a
strange repeller (η = 1) at Ks = 7 (black points) and for a
strange attractor for the Hénon map at standard parameters
a = 1.2; 1.4, b = 0.3 (green diamonds). The straight dashed
line shows the fractal Weyl law dependence ν = d/2. After
(Ermann and Shepelyansky , 2010b).
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The direct verification of the validity of the fractal
Weyl law (5) is presented in Fig. 12. The number of
eigenvalues Nγ in a range with 0 ≤ γ ≤ γb (γ = −2 ln |λ|)
is numerically computed as a function of matrix size
N . The fit of the dependence Nγ(N), as shown in
Fig. 12(a), allows to determine the exponent ν in the
relation Nγ ∝ Nν . The dependence of ν on the fractal
dimension d, computed from the invariant fractal set by
the box-counted method, is shown in Fig. 12(b). The nu-
merical data are in good agreement with the theoretical
fractal Weyl law dependence ν = d/2. This law works
for a variety of parameters for the system (6) with ab-
sorption and dissipation, and also for a strange attractor
in the Hénon map (x̄ = y + 1 − ax2, ȳ = bx). We at-
tribute certain deviations, visible in Fig. 12 especially
for Ks = 7, to the fact that at Ks = 7 there is a small
island of stability at η = 1, which can produce certain
influence on the dynamics.

The physical origin of the law (5) can be understood in
a simple way: the number of states Nγ with finite values

of γ is proportional to the number of cells Nf ∝ Nd/2 on
the fractal set of strange attractor. Indeed, the results
for the overlap measure show that the eigenstates Nγ
have a strong overlap with the steady state while the
states with λ→ 0 have very small overlap. Thus almost
all N states have eigenvalues λ → 0 and only a small
fraction of states on a strange attractor/repeller Nγ ∝
Nf ∝ Nd/2 � N has finite values of λ. We also checked
that the participation ratio ξ of the eigenstate at λ = 1,
grows as ξ ∼ Nf ∝ Nd/2 in agreement with the fractal
Weyl law (Ermann and Shepelyansky , 2010b).

E. Intermittency maps

The properties of the Google matrix generated by one-
dimensional intermittency maps are analyzed in (Ermann
and Shepelyansky , 2010a). It is found that for such Ulam
networks there are many eigenstates with eigenvalues |λ|
being very close to unity. The PageRank of such networks
at α = 1 is characterized by a power law decay with an
exponent determined by the parameters of the map. It is
interesting to note that usually for WWW the PageRank
probability is proportional to a number of ingoing links
distribution (see e.g. (Litvak et al., 2008)). For the case
of intermittency maps the decay of PageRank is indepen-
dent of number of ingoing links. In addition, for α close
to unity a decay of the PageRank has an exponent β ≈ 1
but at smaller values α ≤ 0.9 the PageRank becomes
completely delocalized. It is shown that the delocaliza-
tion depends on the intermittency exponent of the map.
This indicates that a rather dangerous phenomenon of
PageRank delocalization can appear for certain directed
networks. At the same time the one-dimensional inter-
mittency map still generates a relatively simple structure
of links with a typical number of links per node being
close to unity. Such a case is probably not very typical
for real networks. Therefore it is useful to analyze richer

Ulam networks with a larger number of links per node.

FIG. 13 (Color online) PageRank probability Pj for the
Google matrix generated by the Chirikov typical map at
T = 10, ks = 0.22, η = 0.99 with α = 1 (a), α = 0.95
(b), and α = 0.85 (c). The probability Pj is shown in the
phase space region 0 ≤ x < 2π;−π ≤ y < π which is divided
in N = 3.6 · 105 cells; Pj is zero for blue/black and maximal
for red/gray. After (Shepelyansky and Zhirov , 2010a).

F. Chirikov typical map

With this aim we consider the Ulam networks gener-
ated by the Chirikov typical map with dissipation studied
by (Shepelyansky and Zhirov , 2010a). The map intro-
duced, by Chirikov in 1969 for description of continuous
chaotic flows, has the form:

yt+1 = ηyt + ks sin(xt + θt) , xt+1 = xt + yt+1 . (7)

Here the dynamical variables x, y are taken at integer mo-
ments of time t. Also x has a meaning of phase variable
and y is a conjugated momentum or action. The phases
θt = θt+T are T random phases periodically repeated
along time t. We stress that their T values are chosen and
fixed once and they are not changed during the dynami-
cal evolution of x, y. We consider the map in the region
of Fig. 13 (0 ≤ x < 2π,−π ≤ y < π) with the 2π-periodic
boundary conditions. The parameter 0 < η < 1 gives a
global dissipation. The properties of the symplectic map
at η = 1 have been studied in detail in (Frahm and She-
pelyansky , 2009). The dynamics is globally chaotic for
ks > kc ≈ 2.5/T 3/2 and the Kolmogorov-Sinai entropy is

h ≈ 0.29ks
2/3 (more details about the Kolmogorov-Sinai

entropy can be found in (Brin and Stuck, 2002; Chirikov
, 1979; Cornfeldet al., 1982)). A bifurcation diagram at
η < 1 shows a series of transitions between fixed points,
simple and strange attractors. Here we present results
for T = 10, ks = 0.22, η = 0.99 and a specific random
set of θt given in (Shepelyansky and Zhirov , 2010a).
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FIG. 14 (Color online) Dependence of PageRank probability
Pj on PageRank index j for number of cells in the UFPO
being N = 104, 9 × 104, 3.6 × 105 and 1.44 × 106 (larger
N have more dark and more long curves in (b), (c); in (a)
this order of N is for curves from bottom to top (curves for
N = 3.6×105 and 1.44×106 practically coincide in this panel;
for online version we note that the above order of N values
corresponds to red, magenta, green, blue curves respectively).
Dashed line in (a) shows an exponential Boltzmann decay (see
text, line is shifted in j for clarity). The dashed straight line in
(b) shows the fit Pj ∼ 1/jβ with β = 0.48. Other parameters,
including the values of α, and panel order are as in Fig. 13.
After (Shepelyansky and Zhirov , 2010a).

Due to exponential instability of motion one cell in
the Ulam method gives transitions approximately to
kcl ≈ exp(hT ) other cells. According to this relation
a large number of cells kcl can be coupled at large T
and h. For parameters of Fig. 13 one finds an approxi-
mate power law distribution of ingoing and outgoing links
in the corresponding Ulam network with the exponents
µin ≈ µout ≈ 1.9. The variation of the PageRank vec-
tor with the damping factor α is shown in Fig. 13 on
the phase plane (x, y). For α = 1 the PageRank is con-
centrated in a vicinity of a simple attractor composed of
several fixed points on the phase plane. Thus the dynam-
ical attractors are the most popular nodes from the net-
work view point. With a decrease of α down to 0.95, 0.85
values we find a stronger and stronger delocalization of
PageRank over the whole phase space.

The delocalization with a decrease of α is also well seen
in Fig. 14 where we show Pj dependence on PageRank
index j with a monotonic decreasing probability Pj . At
α = 1 we have an exponential decay of Pj with j that
corresponds to a Boltzmann type distribution where a
noise produced by a finite cell size in the Ulam method
is compensated by dissipation. For α = 0.95 the random
jumps of a network surfer, induced by the term (1 −
α)/N in (1), produce an approximate power law decay
of Pj ∝ 1/jβ with β ≈ 0.48. For α = 0.85 the PageRank
probability is flat and completely delocalized over the
whole phase space.

The analysis of the spectrum of S for the map (7) for
the parameters of Fig. 14 shows the existence of eigenval-
ues being very close to λ = 1, however, there is no exact
degeneracy as it is the case for UK universities which we
will discuss below. The spectrum is characterized by the
fractal Weyl law with the exponent ν ≈ 0.85. For eigen-
states with |λ| < 1 the values of IPR ξ are less than 300
for a matrix size N ≈ 1.4× 104 showing that eigenstates

are localized. However, for the PageRank the compu-
tations can be done with larger matrix sizes reaching a
maximal value of N = 6.4 × 105. The dependence of
ξ on α shows that a delocalization transition of PageR-
ank vector takes place for α < αc ≈ 0.95. Indeed, at
α = 0.98 we have ξ ≈ 30 while at α ≈ 0.8 the IPR
value of PageRank becomes comparable with the whole
system size ξ ≈ 5 × 105 ∼ N = 6.4 × 105 (see Fig.9 at
(Shepelyansky and Zhirov , 2010a)).

The example of Ulam networks considered here shows
that a dangerous phenomenon of PageRank delocaliza-
tion can take place under certain conditions. This delo-
calization may represent a serious danger for efficiency of
search engines since for a delocalized flat PageRank the
ranking of nodes becomes very sensitive to small pertur-
bations and fluctuations.

VII. LINUX KERNEL NETWORKS

Modern software codes represent now complex large
scale structures and analysis and optimization of their ar-
chitecture become a challenge. An interesting approach
to this problem, based on a directed network construc-
tion, has been proposed by (Chepelianskii, 2010). Here
we present results obtained for such networks.

A. Ranking of software architecture

Following (Chepelianskii, 2010) we consider the Pro-
cedure Call Networks (PCN) for open source programs
with emphasis on the code of Linux Kernel (Linux, 2010)
written in the C programming language (Kernighan and
Ritchie, 1978). In this language the code is structured
as a sequence of procedures calling each other. Due to
that feature the organization of a code can be naturally
represented as a PCN, where each node represents a pro-
cedure and each directed link corresponds to a procedure
call. For the Linux source code such a directed network
is built by its lexical scanning with the identification of
all the defined procedures. For each of them a list keeps
track of the procedures calls inside their definition.

An example of the obtained network for a toy code
with two procedures start kernel and printk is shown in
Fig. 15. The in/out-degrees of this model, noted as k and
k̄, are shown in Fig. 15. These numbers correspond to
the number of out/in-going calls for each procedure. The
obtained in/out-degree probability distributions P in(k),
P out(k̄) are shown Fig. 15 for different Linux Kernel re-
leases. These distributions are well described by power
law dependencies P in(k) ∝ 1/kµin and P out(k̄) ∝ 1/k̄µout

with µin = 2.0± 0.02, and µout = 3.0± 0.1. These values
of exponents are close to those found for the WWW (Do-
nato et al., 2004; Pandurangan et al., 2005). If only calls
to distinct functions are counted in the outdegree distri-
bution then the exponent drops to µout ≈ 5 whereas µin

remains unchanged. It is important that the distribu-
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tions for the different kernel releases remain stable even
if the network size increases from N = 2751 for version
V1.0 to N = 285509 for the latest version V2.6.32 taken
into account in this study. This confirms the free-scale
structure of software architecture of Linux Kernel net-
work.

The probability distributions of PageRank and
CheiRank vectors are also well described by power laws
with exponents βin ≈ 1 and βout ≈ 0.5 being in good
agreement with the usual relation β = 1/(µ − 1) (see
Fig.2 in (Chepelianskii, 2010)). For V2.6.32 the top
three procedures of PageRank at α = 0.85 are printk,
memset, kfree with probabilities 0.024, 0.012, 0.011 re-
spectively, while at the top of CheiRank we have
start kernel, btrfs ioctl, menu finalize with respectively
0.000280, 0.000255, 0.000250. These procedures perform
rather different tasks with printk reporting messages and
start kernel initializing the Kernel and managing the
repartition of tasks. This gives an idea that both Page-
Rank and CheiRank order can be useful to highlight en
different aspects of directed and inverted flows on our net-
work. Of course, in the context of WWW ingoing links
related to PageRank are less vulnerable as compared to
outgoing links related to CheiRank, which can be modi-
fied by a user rather easily. However, in other type of net-
works both directions of links appear in a natural manner
and thus both vectors of PageRank and CheiRank play
an important and useful role.

FIG. 15 (Color online) The diagram in the center represents
the PCN of a toy kernel with two procedures written in C-
programming language. The data on panels (a) and (b) show
outdegree and indegree probability distributions P out(k̄) and
P in(k) respectively. The colors correspond to different Kernel
releases. The most recent version 2.6.32, with N = 285509
and an average 3.18 calls per procedure, is represented in
red/gray. Older versions (2.4.37.6, 2.2.26, 2.0.40, 1.2.12, 1.0)
with N respectively equal to (85756, 38766, 14079, 4358,
2751) follow the same behavior. The dashed curve in (a)
shows the outdegree probability distribution if only calls to
distinct destination procedures are kept. After (Chepelian-
skii, 2010).

For the Linux Kernel network the correlator κ (4) be-
tween PageRank and CheiRank vectors is close to zero

(see Fig. 6). This confirms the independence of two vec-
tors. The density distribution of nodes of the Linux Ker-
nel network, shown in Fig. 7(b), has a homogeneous dis-
tribution along lnK+lnK∗ = const lines demonstrating
once more absence of correlations between P (Ki) and
P ∗(Ki

∗). Indeed, such homogeneous distributions ap-
pear if nodes are generated randomly with factorized
probabilities PiPi

∗ (Chepelianskii, 2010; Zhirov et al.,
2010). Such a situation seems to be rather generic
for software architecture. Indeed, other open software
codes also have a small values of correlator, e.g. Open-
Source software including Gimp 2.6.8 has κ = −0.068
at N = 17540 and X Windows server R7.1-1.1.0 has
κ = −0.027 at N = 14887. In contrast to these soft-
ware codes the Wikipedia networks have large values of
κ and inhomogeneous distributions in (K,K∗) plane (see
Figs. 6,7).

The physical reasons for absence of correlations be-
tween P (K) and P ∗(K∗) have been explained in (Chep-
elianskii, 2010) on the basis of the concept of “separation
of concerns” in software architecture (Dijkstra, 1982). It
is argued that a good code should decrease the number
of procedures that have high values of both PageRank
and CheiRank since such procedures will play a critical
role in error propagation since they are both popular and
highly communicative at the same time. For example in
the Linux Kernel, do fork, that creates new processes,
belongs to this class. Such critical procedures may intro-
duce subtle errors because they entangle otherwise inde-
pendent segments of code. The above observations sug-
gest that the independence between popular procedures,
which have high P (Ki) and fulfill important but well de-
fined tasks, and communicative procedures, which have
high P ∗(Ki

∗) and organize and assign tasks in the code,
is an important ingredient of well structured software.

B. Fractal dimension of Linux Kernel Networks

The spectral properties the Linux Kernel network are
analyzed in (Ermann et al., 2011a). At large N the spec-
trum is obtained with the help of Arnoldi method from
ARPACK library. This allows to find eigenvalues with
|λ| > 0.1 for the maximal N at V2.6.32. An exam-
ple of complex spectrum λ of G is shown in Fig. 16(a).
There are clearly visible lines at real axis and polar an-
gles ϕ = π/2, 2π/3, 4π/3, 3π/2. The later are related to
certain cycles in procedure calls, e.g. an eigenstate at
λi = 0.85 exp(i2π/3) is located only on 6 nodes. The
spectrum of G∗ has a similar structure.

The network size N grows with the version number
of Linux Kernel corresponding to its evolution in time.
We determine the total number of states Nλ with 0.1 <
|λ| ≤ 1 and 0.25 < |λ| ≤ 1. The dependence of Nλ on
N , shown in Fig. 16(b), clearly demonstrates the validity
of the fractal Weyl law with the exponent ν ≈ 0.63 for
G (we find ν∗ ≈ 0.65 for G∗). We take the values of ν
for λ = 0.1 where the number of eigenvalues Nλ gives a
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better statistics. Within statistical errors the value of ν is
not sensitive to the cutoff value at small λ. The matrix
G∗ has slightly higher values of ν. These results show
that the PCN of Linux Kernel has a fractal dimension
d = 2ν ≈ 1.26 for G and d = 2ν ≈ 1.3 for G∗.

FIG. 16 (Color online) Panel (a) shows distribution of eigen-
values λ in the complex plane for the Google matrix G of the
Linux Kernel version 2.6.32 with N = 285509 and α = 0.85;
the solid curves represent the unit circle and the lowest limit of
computed eigenvalues. Panel (b) shows dependence of the in-
tegrated number of eigenvalues Nλ with |λ| > 0.25 (red/gray
squares) and |λ| > 0.1 (black circles) as a function of the total
number of processes N for versions of Linux Kernels. The val-
ues of N correspond (in increasing order) to Linux Kernel ver-
sions 1.0, 1.1, 1.2, 1.3, 2.0, 2.1, 2.2, 2.3, 2.4 and 2.6. The power
law Nλ ∝ Nν has fitted values ν|λ|>0.25 = 0.622 ± 0.010 and
ν|λ|>0.1 = 0.630± 0.015. Inset shows data for the Google ma-
trix G∗ with inverse link directions, the corresponding expo-
nents are ν∗|λ|>0.25 = 0.696±0.010 and ν∗|λ|>0.1 = 0.652±0.007.
After (Ermann et al., 2011a).

To check that the fractal dimension of the PCN indeed
has this value the dimension of the network is computed
by another direct method known as the cluster growing
method (see e.g. (Song et al., 2005)). In this method the
average mass or number of nodes 〈Mc〉 is computed as a
function of the network distance l counted from an initial
seed node with further averaging over all seed nodes. For
a dimension d the mass 〈Mc〉 should grow as 〈Mc〉 ∝ ld

that allows to determine the value of d for a given net-
work. It should be noted that the above method should
be generalized for the case of directed networks. For that
the network distance l is computed following only outgo-
ing links. The average of 〈Mc(l)〉 is done over all nodes.
Due to global averaging the method gives the same result
for the matrix with inverted link direction (indeed, the
total number of outgoing links is equal to the number of
ingoing links). However, as established in (Ermann et al.,
2011a), the fractal dimension obtained by this general-
ized method is very different from the case of converted
undirected network, when each directed link is replaced
by an undirected one. The average dimension obtained
with this method for PCN is d = 1.4 even if a certain
20% increase of d appears for the latest Linux versions
V2.6. We attribute this deviation for the version V2.6
to the well known fact that significant rearrangements
in the Linux Kernel have been done after version V2.4

(Linux, 2010).
Thus in view of the above restrictions we consider that

there is a rather good agreement of the fractal dimen-
sion obtained from the fractal Weyl law with d ≈ 1.3
and the value obtained with the cluster growing method
which gives an average d ≈ 1.4. The fact that d is ap-
proximately the same for all versions up to V2.4 means
that the Linux Kernel is characterized by a self-similar
fractal growth in time. The closeness of d to unity signi-
fies that procedure calls are almost linearly ordered that
corresponds to a good code organization. Of course, the
fractal Weyl law gives the dimension d obtained during
time evolution of the network. This dimension is not
necessary the same as for a given version of the network
of fixed size. However, one can expect that the growth
goes in a self-similar way (Dorogovtsev et al., 2008) and
that the static dimension is close to the dimension value
emerging during the time evolution. This can be viewed
as a some kind of ergodicity conjecture. Our data show
that this conjecture works with a good accuracy up to
the Linux Kernel V.2.6.

Thus the results obtained in (Ermann et al., 2011a)
and described here confirm the validity of the fractal
Weyl law for the Linux Kernel network with the expo-
nent ν ≈ 0.65 and the fractal dimension d ≈ 1.3. It is
important to note that the fractal Weyl exponent ν is
not sensitive to the exponent β characterizing the decay
of the PageRank. Indeed, the exponent β remains prac-
tically the same for the WWW (Donato et al., 2004) and
the PCN of Linux Kernel (Chepelianskii, 2010) while the
values of fractal dimension are different with d ≈ 4 for
WWW and d ≈ 1.3 for PCN (see (Ermann et al., 2011a)
and Refs. therein).

The analysis of the eigenstates of G and G∗ shows that
their IPR values remain small (ξ < 70) compared to the
matrix size N ≈ 2.8 × 105 showing that they are well
localized on certain selected nodes.

VIII. WWW NETWORKS OF UK UNIVERSITIES

The WWW networks of certain UK universities for
years between 2002 and 2006 are publicly available at
(UK universities, 2011). Due to their modest size, these
networks are well suitable for a detail study of PageRank,
CheiRank, complex eigenvalue spectra and eigenvectors
(Frahm et al., 2011).

A. Cambridge and Oxford University networks

We start our analysis of WWW university networks
from those of Cambridge and Oxford 2006. For ex-
ample, in Fig. 5 we show the dependence of PageRank
(CheiRank) probabilities P (P ∗) on rank index K (K∗)
for the WWW of Cambridge 2006 at α = 0.85. The
decay is satisfactory described by a power law with the
exponent β = 0.75 (β = 0.61).
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The complex eigenvalue spectrum and the invariant
subspace structure (see section III.C) have been stud-
ied in great detail for the cases of Cambridge 2006 and
Oxford 2006. For Cambridge 2006 (Oxford 2006) the
network size is N = 212710 (200823) and the num-
ber of links is N` = 2015265 (1831542). There are
ninv = 1543(1889) invariant subspaces, with maximal
dimension dmax = 4656(1545), together they contain
Ns = 48239 (30579) subspace nodes leading to 3508
(3275) eigenvalues (of the matrix S) with |λj | = 1 of
which n1 = 1832(2360) are at λj = 1 (about 1% of N).
The last number n1 is larger than the number of invariant
subspaces ninv since each of the subspaces has at least
one unit eigenvalue because each subspace is described
by a full representation matrix of the Perron-Frobenius
type. To determine the complex eigenvalue spectrum one
can apply exact diagonalization on each subspace and the
Arnoldi method on the remaining core space.

FIG. 17 (Color online) Panels (a) and (b) show the com-
plex eigenvalue spectrum λ of matrix S for the University
of Cambridge 2006 and Oxford 2006 respectively. The spec-
trum λ of matrix S∗ for Cambridge 2006 and Oxford 2006
are shown in panels (c) and (d). Eigenvalues λ of the core
space are shown by red/gray points, eigenvalues of isolated
subspaces are shown by blue/black points and the green/gray
curve (when shown) is the unit circle. Panels (e) and (f) show
the fraction j/N of eigenvalues with |λ| > |λj | for the core
space eigenvalues (red/gray bottom curve) and all eigenval-
ues (blue/black top curve) from top row data for Cambridge
2006 and Oxford 2006. After (Frahm et al., 2011).

The spectra of all subspace eigenvalues and nA =

20000 core space eigenvalues of the matrices S and S∗

are shown in Fig. 17. Even if the decay of PageRank and
CheiRank probabilities with rank index is rather similar
for both universities (see Fig.1 in (Frahm et al., 2011))
the spectra of two networks are very different. Thus the
spectrum contains much more detailed information about
the network features compared to the rank vectors.

At the same time the spectra of two universities have
certain similar features. Indeed, one can identify cross
and triple-star structures. These structures are very simi-
lar to those seen in the spectra of random orthostochastic
matrices of small size N = 3, 4 shown in Fig. 18 from (Zy-
czkowski et al., 2003) (spectra of unistochastic matrices
have a similar structure). The spectrum borders, deter-
mined analytically in (Zyczkowski et al., 2003) for these
N values, are also shown. The similarity is more visi-
ble for the spectrum of S∗ case ((c) and (d) of Fig. 17).
We attribute this to a larger randomness in outgoing
links which have more fluctuations compared to ingoing
links, as discussed in (Eom et al. , 2013b). The similar-
ity of spectra of Fig. 17 with those of random matrices
in Fig. 18 indicates that there are dominant triple and
quadruple structures of nodes present in the University
networks which are relatively weakly connected to other
nodes.

FIG. 18 Spectra λ of 800 random orthostochastic matrices of
size N = 3 (a) and N = 4 (b) (Reλ = x, Imλ = y). Thin lines
denote 3- and 4-hypocycloids, while the thick lines represent
the 3-4 interpolation arc. After (Zyczkowski et al., 2003).

The core space submatrix Scc of Eq. (2) does not obey
to the column sum normalization due to non-vanishing el-
ements in the block Ssc which allow for a small but finite
escape probability from core space to subspace nodes.
Therefore the maximum eigenvalue of the core space (of
the matrix Scc) is below unity. For Cambridge 2006

(Oxford 2006) it is given by λ
(core)
1 = 0.999874353718

(0.999982435081) with a quite clear gap 1−λ(core)1 ∼ 10−4

(∼ 10−5).

B. Universal emergence of PageRank

For α = 1 the leading eigenvalue λ = 1 is highly de-
generate due to the subspace structure. This degeneracy
is lifted for α < 1 with a unique eigenvector, the Page-
Rank, for the leading eigenvalue. The question arises how
the PageRank emerges if 1 − α � 1. Following (Frahm
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et al., 2011), an answer is obtained from a formal matrix
expression:

P = (1− α) (I − αS)−1 e/N, (8)

where the vector e has unit entries on each node and I
is the unit matrix. Then, assuming that S is diagonal-
izable (with no nontrivial Jordan blocks) we can use the
expansion:

P =
∑
λj=1

cj ψj +
∑
λj 6=1

1− α
(1− α) + α(1− λj)

cj ψj . (9)

where ψj are the eigenvectors of S and cj coefficients
determined by the expansion e/N =

∑
j cjψj . Thus

Eq. (9) indicates that in the limit α → 1 the Page-
Rank converges to a particular linear combination of the
eigenvectors with λj = 1, which are all localized in one
of the subspaces. For a finite but very small value of

1− α � 1− λ(core)1 the corrections for the contributions

of the core space nodes are ∼ (1− α)/(1− λ(core)1 ). This
behavior is indeed confirmed by Fig. 19 (a) showing the
evolution of the PageRank for different values of 1 − α
for the case of Cambridge 2006 and using a particular
method, based on an alternate combination of the power
iteration method and the Arnoldi method (Frahm et al.,
2011), to determine numerically the PageRank for very
small values of 1− α ∼ 10−8.

However, for certain of the university networks the core

space gap 1 − λ
(core)
1 is particularly small, for example

1−λ(core)1 ∼ 10−17, such that in standard double precision
arithmetic the Arnoldi method, applied on the matrix
Scc, does not allow to determine this small gap. For these
particular cases it is possible to determine rather accu-
rately the core space gap and the corresponding eigen-
vector by another numerical approach called “projected
power method” (Frahm et al., 2011). These eigenvectors,
shown in Fig. 19 (b), are strongly localized on a modest
number of nodes ∼ 102 and with very small but non-
vanishing values on the other nodes. Technically these
vectors extend to the whole core space but practically
they define small quasi-subspaces (in the core space do-
main) where the escape probability is extremely small
(Frahm et al., 2011) and in the range 1− α ∼ 10−8 they
still contribute to the PageRank according to Eq. (9).

FIG. 19 (Color online) (a) PageRank P (K) of Cambridge
2006 for 1 − α = 0.1, 10−3, 10−5, 10−7. (b) First core space

eigenvector ψ
(core)
1 versus its rank index K(core) for the UK

university networks with a small core space gap 1− λ(core)
1 <

10−8. After (Frahm et al., 2011).

FIG. 20 (Color online) (a) Fraction of invariant subspaces F
with dimensions larger than d as a function of the rescaled
variable x = d/〈d〉. Upper curves correspond to Cambridge
(green/gray) and Oxford (blue/black) for years 2002 to 2006
and middle curves (shifted down by a factor of 10) correspond
to the university networks of Glasgow, Cambridge, Oxford,
Edinburgh, UCL, Manchester, Leeds, Bristol and Birkbeck for
year 2006 with 〈d〉 between 14 and 31. Lower curve (shifted
down by a factor of 100) corresponds to the matrix S∗ of
Wikipedia with 〈d〉 = 4. The thick black line is F (x) =
(1 + 2x)−1.5. (b) Rescaled PageRank P Ns versus rescaled
rank index K/Ns for 1 − α = 10−8 and 3974 ≤ Ns ≤ 48239
for the same university networks as in (a) (upper and middle
curves, the latter shifted down and left by a factor of 10). The
lower curve (shifted down and left by a factor of 100) shows
the rescaled CheiRank of Wikipedia P ∗Ns versusK∗/Ns with
Ns = 21198. The thick black line corresponds to a power law
with exponent −2/3. After (Frahm et al., 2011).

In Fig. 20(b) we show that for several of the univer-
sity networks the PageRank at 1 − α = 10−8 has ac-
tually a universal form when using the rescaled vari-
ables P Ns versus K/Ns with a power law behavior close
to P ∝ K−2/3 for K/Ns < 1. The rescaled data of
Fig. 20 (a) show that the fraction of subspaces with di-
mensions larger than d is well described by the power
law F (x) ≈ (1 + 2x)−1.5 with the dimensionless variable
x = d/〈d〉 where 〈d〉 is an average subspace dimension
computed for WWW of a given university. The tables
of all considered UK universities with the parameters of
their WWW are given in (Frahm et al., 2011). We note
that the CheiRank of S∗ of Wikipedia 2009 also approx-
imately follows the above universal distributions. How-
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ever, for S matrix of Wikipedia the number of subspaces
is small and statistical analysis cannot be performed for
this case.

The origin of the universal distribution F (x) still re-
mains a puzzle. Possible links with a percolation on di-
rected networks (see e.g. (Dorogovtsev et al., 2008)) are
still to be elucidated. It also remains unclear how stable
this distribution really is. It works well for UK university
networks 2002-2006. However, for the Twitter network
(Frahm and Shepelyansky , 2012b) such a distribution
becomes rather approximate. Also for the network of
Cambridge in 2011, analyzed in (Ermann et al., 2012a,
2013b) with N ≈ 8.9 × 105, N` ≈ 1.5 × 107, the num-
ber of subspaces is significantly reduced and a statistical
analysis of their size distribution becomes not relevant.
It is possible that an increase of number of links per node
N`/N from a typical value of 10 for UK universities to
35 for Twitter affects this distribution. For Cambridge
2011 the network entered in a regime when many links
are generated by robots that apparently leads to a change
of its statistical properties.

C. Two-dimensional ranking for University networks

Two-dimensional ranking of network nodes provides
a new characterization of directed networks. Here we
consider a density distribution of nodes (see Sec. IV.C)
in the PageRank-CheiRank plane for examples of two
WWW networks of Cambridge 2006 and ENS Paris 2011
shown in Fig. 21 from (Ermann et al., 2012a).

The density distribution for Cambridge 2006 clearly
shows that nodes with high PageRank have low
CheiRank that corresponds to zero density at low K, K∗

values. At large K, K∗ values there is a maximum line of
density which is located not very far from the diagonal
K ≈ K∗. The presence of correlations between P (Ki)
and P ∗(Ki

∗) leads to a probability distribution with one
main maximum along a diagonal at lnK+lnK∗ = const.
This is similar to the properties of the density distribu-
tion for the Wikipedia network shown in Fig. 7(a).

The 2DRanking might give new possibilities for infor-
mation retrieval from large databases which are growing
rapidly with time. Indeed, for example the size of the
Cambridge network increased by a factor 4 from 2006
to 2011. At present, web robots start automatically to
generate new web pages. These features can be responsi-
ble for the appearance of gaps in the density distribution
in (K,K∗) plane at large K,K∗ ∼ N values visible for
large scale university networks such as ENS Paris in 2011
(see Fig. 21). Such an automatic generation of links can
change the scale-free properties of networks. Indeed, for
ENS Paris a large step in the PageRank distribution ap-
pears (Ermann et al., 2012a) possibly indicating a delo-
calization transition tendency of the PageRank that can
destroy the efficiency of information retrieval from the
WWW.

FIG. 21 (Color online) Density distribution W (K,K∗) =
dNi/dKdK

∗ for networks of Universities in the plane
of PageRank K and CheiRank K∗ indexes in log-scale
(logN K, logN K

∗). The density is shown for 100×100 equidis-
tant grid in logN K, logN K

∗ ∈ [0, 1], the density is averaged
over all nodes inside each cell of the grid, the normalization
condition is

∑
K,K∗W (K,K∗) = 1. Color varies from black

for zero to yellow/gray for maximum density value WM with

a saturation value of W
1/4
s = 0.5W

1/4
M so that the same color

is fixed for 0.5W
1/4
M ≤ W 1/4 ≤ W

1/4
M to show in a better

way low densities. The panels show networks of University of
Cambridge 2006 with N = 212710 (a) and ENS Paris 2011
for crawling level 7 with N = 1820015 (b). After (Ermann
et al., 2012a).

IX. WIKIPEDIA NETWORKS

The free online encyclopedia Wikipedia is a huge repos-
itory of human knowledge. Its size is growing perma-
nently accumulating enormous amount of information
and becoming a modern version of Library of Babel, de-
scribed by Jorge Luis Borges (Borges, 1962). The hyper-
link citations between Wikipedia articles provides an im-
portant example of directed networks evolving in time for
many different languages. In particular, the English edi-
tion of August 2009 has been studied in detail (Ermann
et al., 2012a, 2013b; Zhirov et al., 2010). The effects of
time evolution (Eom et al. , 2013b) and entanglement
of cultures in multilingual Wikipedia editions have been
investigated in (Aragón et al., 2012; Eom and Shepelyan-
sky , 2013a; Eom et al. , 2014).

A. Two-dimensional ranking of Wikipedia articles

The statistical distribution of links in Wikipedia net-
works has been found to follow a power law with the
exponents µin, µout (see e.g. (Capocci et al., 2006; Much-
nik et al., 2007; Zhirov et al., 2010; Zlatic et al., 2006)).
The probabilities of PageRank and CheiRank are shown
in Fig. 5. They are satisfactory described by a power law
decay with exponents βPR,CR = 1/(µin,out − 1) (Zhirov
et al., 2010).

The density distribution of articles over PageRank-
CheiRank plane (logN K, logN K

∗) is shown in Fig. 7(a)
for English Wikipedia Aug 2009. We stress that the den-
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sity is very different from those generated by the product
of independent probabilities of P and P ∗ given in Fig. 5.
In the latter case we obtain a density homogeneous along
lines lnK∗ = − lnK + const being rather similar to the
distribution for Linux network also shown in Fig. 7. This
result is in good agreement with a fact that the correla-
tor κ between PageRank and CheiRank vectors is rather
large for Wikipedia κ = 4.08 while it is close to zero for
Linux network κ ≈ −0.05.

The difference between PageRank and CheiRank is
clearly seen from the names of articles with highest
ranks (ranks of all articles are given in (Zhirov et al.,
2010)). At the top of PageRank we have 1. United
States, 2. United Kingdom, 3. France while for
CheiRank we find 1. Portal:Contents/Outline of knowl-
edge/Geography and places, 2. List of state leaders by
year, 3. Portal:Contents/Index/Geography and places.
Clearly PageRank selects first articles on a broadly
known subject with a large number of ingoing links while
CheiRank selects first highly communicative articles with
many outgoing links. The 2DRank combines these two
characteristics of information flow on directed network.
At the top of 2DRank K2 we find 1. India, 2. Sin-
gapore, 3. Pakistan. Thus, these articles are most
known/popular and most communicative at the same
time.

The top 100 articles in K,K2,K
∗ are determined for

several categories including countries, universities, peo-
ple, physicists. It is shown in (Zhirov et al., 2010) that
PageRank recovers about 80% of top 100 countries from
SJR data base (SJR , 2007), about 75% of top 100 univer-
sities of Shanghai university ranking (Shanghai ranking ,
2010), and, among physicists, about 50% of top 100 No-
bel winners in physics. This overlap is lower for 2DRank
and even lower for CheiRank. However, as we will see
below in more detail, 2DRank and CheiRank highlight
other properties being complementary to PageRank.

Let us give an example of top three physicists among
those of 754 registered in Wikipedia in 2010: 1. Aris-
totle, 2. Albert Einstein, 3. Isaac Newton from PageR-
ank; 1. Albert Einstein, 2. Nikola Tesla, 3. Benjamin
Franklin from 2DRank; 1. Hubert Reeves, 2. Shen Kuo,
3. Stephen Hawking from CheiRank. It is clear that
PageRank gives most known, 2DRank gives most known
and active in other areas, CheiRank gives those who are
known and contribute to popularization of science. In-
deed, e.g. Hubert Reeves and Stephen Hawking are very
well known for their popularization of physics that in-
creases their communicative power and place them at the
top of CheiRank. Shen Kuo obtained recognized results
in an enormous variety of fields of science that leads to
the second top position in CheiRank even if his activity
was about thousand years ago.

According to Wikipedia ranking the top universities
are 1. Harvard University, 2. University of Oxford, 3. Uni-
versity of Cambridge in PageRank; 1. Columbia Univer-
sity, 2. University of Florida, 3. Florida State Univer-
sity in 2DRank and CheiRank. CheiRank and 2DRank

highlight connectivity degree of universities that leads to
appearance of significant number of arts, religious and
military specialized colleges (12% and 13% respectively
for CheiRank and 2DRank) while PageRank has only 1%
of them. CheiRank and 2DRank introduce also a larger
number of relatively small universities who are keeping
links to their alumni in a significantly better way that
gives an increase of their ranks. It is established (Eom
et al. , 2013b) that top 10 PageRank universities from
English Wikipedia in years 2003, 2005, 2007, 2009, 2011
recover correspondingly 9, 9, 8, 7, 7 from top 10 of (Shang-
hai ranking , 2010).

The time evolution of probability distributions of
PageRank, CheiRank and two-dimensional ranking is an-
alyzed in (Eom et al. , 2013b) showing that they become
stabilized for the period 2007-2011.

On the basis of these results we can conclude that the
above algorithms provide correct and important rank-
ing of huge information and knowledge accumulated at
Wikipedia. It is interesting that even Dow-Jones compa-
nies are ranked via Wikipedia networks in a good manner
(Zhirov et al., 2010). We discuss ranking of top people
of Wikipedia a bit later.

B. Spectral properties of Wikipedia network

The complex spectrum of eigenvalues of G for English
Wikipedia network of Aug 2009 is shown in Fig. 22. As
for university networks, the spectrum also has some in-
variant subspaces resulting in degeneracies of the lead-
ing eigenvalue λ = 1 of S (or S∗). However, due to
the stronger connectivity of the Wikipedia network these
subspaces are significantly smaller compared to univer-
sity networks (Eom et al. , 2013b; Ermann et al., 2013b).
For example of Aug 2009 edition in Fig. 22 there are 255
invariant subspaces (of the matrix S) covering 515 nodes
with 255 unit eigenvalues λj = 1 and 381 eigenvalues
on the complex unit circle with |λj | = 1. For the ma-
trix S∗ of Wikipedia there are 5355 invariant subspaces
with 21198 nodes, 5365 unit eigenvalues and 8968 eigen-
values on the unit circle (Ermann et al., 2013b). The
complex spectra of all subspace eigenvalues and the first
nA = 6000 core space eigenvalues of S and S∗ are shown
in Fig. 22. As in the university cases, in the spectrum
we can identify cross and triple-star structures similar
to those of orthostochastic matrices shown in Fig. 18.
However, for Wikipedia (especially for S) the largest
complex eigenvalues outside the real axis are more far
away from the unit circle. For S of Wikipedia the two

largest core space eigenvalues are λ
(core)
1 = 0.999987 and

λ
(core)
2 = 0.977237 indicating that the core space gap

|1 − λ(core)1 | ∼ 10−5 is much smaller than the secondary

gap |λ(core)1 − λ
(core)
2 | ∼ 10−2. As a consequence the

PageRank of Wikipedia (at α = 0.85) is strongly influ-
enced by the leading core space eigenvector and actually
both vectors select the same 5 top nodes.



21

The time evolution of spectra of G and G∗ for English
Wikipedia is studied in (Eom et al. , 2013b). It is shown
that the spectral structure remains stable for years 2007
- 2011.

FIG. 22 (Color online) Complex eigenvalue spectra λ of S
(a) and S∗ (b) for English Wikipedia of Aug 2009 with
N = 3282257 articles and N` = 71012307 links. Red/gray
dots are core space eigenvalues, blue/black dots are subspace
eigenvalues and the full green/gray curve shows the unit cir-
cle. The core space eigenvalues are computed by the projected
Arnoldi method with Arnoldi dimension nA = 6000. After
(Eom et al. , 2013b).

FIG. 23 (Color online) Complex eigenvalue spectrum of the
matrices S for English Wikipedia Aug 2009. Highlighted
eigenvalues represent different communities of Wikipedia and
are labeled by the most repeated and important words follow-
ing word counting of first 1000 nodes. Panel (a) shows com-
plex plane for positive imaginary part of eigenvalues, while
panels (b) and (c) zoom in the negative and positive real
parts. After (Ermann et al., 2013b).

C. Communities and eigenstates of Google matrix

The properties of eigenstates of Gogle matrix of
Wikipedia Aug 2009 are analyzed in (Ermann et al.,
2013b). The global idea is that the eigenstates with large

values of |λ| select certain specific communities. If |λ| is
close to unity then a relaxation of probability from such
nodes is rather slow and we can expect that such eigen-
states highlight some new interesting information even if
these nodes are located on a tail of PageRank. The im-
portant advantage of the Wikipedia network is that its
nodes are Wikipedia articles with a relatively clear mean-
ing allowing to understand the origins of appearance of
certain nodes in one community.

The localization properties of eigenvectors ψi of the
Google matrix can be analyzed with the help of IPR ξ
(see Sec. III.E). Another possibility is to fit a decay of
an eigenstate amplitude by a power law |ψi(Ki)| ∼ Kb

i

where Ki is the index ordering |ψi(j)| by monotonically
decreasing amplitude (similar to P (K) for PageRank).
The exponents b on the tails of |ψi(j)| are found to be
typically in the range −2 < b < −1 (Ermann et al.,
2013b). At the same time the eigenvectors with large
complex eigenvalues or real eigenvalues close to ±1 are
quite well localized on ξi ≈ 102− 103 nodes that is much
smaller than the whole network size N ≈ 3× 106.

To understand the meaning of other eigenstates in the
core space we order selected eigenstates by their decreas-
ing value |ψi(j)| and apply word frequency analysis for
the first 1000 articles with Ki ≤ 1000. The mostly
frequent word of a given eigenvector is used to label
the eigenvector name. These labels with corresponding
eigenvalues are shown in Fig. 23. There are four main
categories for the selected eigenvectors belonging to coun-
tries (red/gray), biology and medicine (orange/very light
gray), mathematics (blue/black) and others (green/light
gray). The category of others contains rather diverse ar-
ticles about poetry, Bible, football, music, American TV
series (e.g. Quantum Leap), small geographical places
(e.g. Gaafru Alif Atoll). Clearly these eigenstates select
certain specific communities which are relatively weakly
coupled with the main bulk part of Wikipedia that gen-
erates relatively large modulus of |λi|.

For example, for the article Gaafu Alif Atoll the eigen-
vector is mainly localized on names of small atolls form-
ing Gaafu Alif Atoll. Clearly this case represents well
localized community of articles mainly linked between
themselves that gives slow relaxation rate of this eigen-
mode with λ = 0.9772 being rather close to unity. An-
other eigenvector has a complex eigenvalue with |λ| =
0.3733 and the top article Portal:Bible. Another two
articles are Portal:Bible/Featured chapter/archives, Por-
tal:Bible/Featured article. These top 3 articles have very
close values of |ψi(j)| that seems to be the reason why
we have ϕ = arg(λi) = 0.3496π being very close to π/3.
Examples of other eigenvectors are discussed in (Ermann
et al., 2013b) in detail.

The analysis performed in (Ermann et al., 2013b)
for Wikipedia Aug 2009 shows that the eigenvectors of
the Google matrix of Wikipedia clearly identify certain
communities which are relatively weakly connected with
the Wikipedia core when the modulus of corresponding
eigenvalue is close to unity. For moderate values of |λ|
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we still have well defined communities which are how-
ever have stronger links with some popular articles (e.g.
countries) that leads to a more rapid decay of such eigen-
modes. Thus the eigenvectors highlight interesting fea-
tures of communities and network structure. However,
a priori, it is not evident what is a correspondence be-
tween the numerically obtained eigenvectors and the spe-
cific community features in which someone has a specific
interest. In fact, practically each eigenvector with a mod-
erate value |λ| ∼ 0.5 selects a certain community and
there are many of them. So it remains difficult to target
and select from eigenvalues λ a specific community one
is interested.

The spectra and eigenstates of other networks like
WWW of Cambridge 2011, Le Monde, BBC and PCN
of Python are discussed in (Ermann et al., 2013b). It is
found that IPR values of eigenstates with large |λ| are
well localized with ξ � N . The spectra of each network
have significant differences from one another.

D. Top people of Wikipedia

There is always a significant public interest to know
who are most significant historical figures, or persons, of
humanity. The Hart list of the top 100 people who, ac-
cording to him, most influenced human history, is avail-
able at (Hart, 1992). Hart “ranked these 100 persons
in order of importance: that is, according to the total
amount of influence that each of them had on human his-
tory and on the everyday lives of other human beings”
(Hart, 1992). Of course, a human ranking can be always
objected arguing that an investigator has its own prefer-
ences. Also investigators from different cultures can have
different view points on a same historical figure. Thus it
is important to perform ranking of historical figures on
purely mathematical and statistical grounds which ex-
clude any cultural and personal preferences of investiga-
tors.

A detailed two-dimensional ranking of persons of En-
glish Wikipedia Aug 2009 has been done in (Zhirov et al.,
2010). Earlier studies had been done in a non-systematic
way without any comparison with established top 100
lists (see these Refs. in (Wikipedia Top 100, 2014; Zhi-
rov et al., 2010)). Also at those times Wikipedia did not
yet entered in its stabilized phase of development.

The top people of Wikipedia Aug 2009 are found to be
1. Napoleon I of France, 2. George W. Bush, 3. Eliza-
beth II of the United Kingdom for PageRank; 1.Michael
Jackson, 2. Frank Lloyd Wright, 3. David Bowie for
2DRank; 1. Kasey S. Pipes, 2. Roger Calmel, 3. Yury
G. Chernavsky for CheiRank (Zhirov et al., 2010). For
the PageRank list of 100 the overlap with the Hart list is
at 35% (PageRank), 10% (2DRank) and almost zero for
CheiRank. This is attributed to a very broad distribution
of historical figures on 2D plane, as shown in Fig. 7, and
a large variety of human activities. These activities are
classified by 5 main categories: politics, religion, arts, sci-

ence, sport. For the top 100 PageRank persons we have
the following distribution over these categories: 58, 10,
17, 15, 0 respectively. Clearly PageRank overestimates
the significance of politicians which list is dominated by
USA presidents not always much known to a broad pub-
lic. For 2DRank we find respectively 24, 5, 62, 7, 2. Thus
this rank highlights artistic sides of human activity. For
CheiRank we have 15, 1, 52, 16, 16 so that the dominant
contribution comes from arts, science and sport. The
interesting property of this rank is that it selects many
composers, singers, writers, actors. As an interesting fea-
ture of CheiRank we note that among scientists it selects
those who are not so much known to a broad public but
who discovered new objects, e.g. George Lyell who dis-
covered many Australian butterflies or Nikolai Chernykh
who discovered many asteroids. CheiRank also selects
persons active in several categories of human activity.

For English Wikipedia Aug 2009 the distribution of
top 100 PageRank, CheiRank and Hart’s persons on
PageRank-CheiRank plane is shown in Fig. 7 (a).

The distribution of Hart’s top 100 persons on (K,K∗)
plane for English Wikipedia in years 2003, 2005, 2007,
Aug 2009, Dec 2009, 2011 is found to be stable for the pe-
riod 2007-2011 even if certain persons change their ranks
(Eom et al. , 2013b). The distribution of top 100 persons
of Wikipedia Aug 2009 remains stable and compact for
PageRank and 2DRank for the period 2007-2011 while for
CheiRank the fluctuations of positions are large. This is
due to the fact that outgoing links are easily modified
and fluctuating.

The time evolution of distribution of top persons over
fields of human activity is established in (Eom et al. ,
2013b). PageRank persons are dominated by politicians
whose percentage increases with time, while the percent
of arts decreases. For 2DRank the arts are dominant but
their percentage decreases with time. We also see the
appearance of sport which is absent in PageRank. The
mechanism of the qualitative ranking differences between
two ranks is related to the fact that 2DRank takes into
account via CheiRank a contribution of outgoing links.
Due to that singers, actors, sportsmen improve their
CheiRank and 2DRrank positions since articles about
them contain various music albums, movies and sport
competitions with many outgoing links. Due to that the
component of arts gets higher positions in 2DRank in
contrast to dominance of politics in PageRank.

The interest to ranking of people via Wikipedia net-
work is growing, as shows the recent study of English
edition (Skiena and Ward, 2014).

E. Multilingual Wikipedia editions

The English edition allows to obtain ranking of histor-
ical people but as we saw the PageRank list is dominated
by USA presidents that probably does not correspond to
the global world view point. Hence, it is important to
study multilingual Wikipedia editions which have now
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287 languages and represent broader cultural views of
the world.

One of the first cross-cultural study was done for 15
largest language editions constructing a network of links
between set of articles of people biographies for each edi-
tion. However, the number of nodes and links in such
a biographical network is significantly smaller compared
to the whole network of Wikipedia articles and thus the
fluctuations become rather large. For example, from the
biographical network of the Russian edition one finds
as the top person Napoleon III (and even not Napoleon
I) (Aragón et al., 2012), who has a rather low importance
for Russia.

Another approach was used in (Eom and Shepelyansky
, 2013a) ranking top 30 persons by PageRank, 2DRank
and CheiRank algorithms for all articles of each of 9 edi-
tions and attributing each person to her/his native lan-
guage. The selected editions are English (EN), French
(FR), German (DE), Italian (IT), Spanish (ES), Dutch
(NL), Russian (RU), Hungarian (HU) and Korean (KO).
The aim here is to understand how different cultures eval-
uate a person? Is an important person in one culture is
also important in the other culture? It is found that lo-
cal heroes are dominant but also global heroes exist and
create an effective network representing entanglement of
cultures.

The top article of PageRank is usually USA or the
name of country of a given language (FR, RU, KO). For
NL we have at the top beetle, species, France. The top
articles of CheiRank are various listings.

The distributions of articles density and top 30 persons
for each rank algorithm are shown in Fig. 24 for four edi-
tions EN, FR, DE, RU. We see that in global the distri-
butions have a similar shape that can be attributed to a
fact that all editions describe the same world. However,
local features of distributions are different corresponding
to different cultural views on the same world (other 5
editions are shown in Fig.2 in (Eom and Shepelyansky ,
2013a)). The top 30 persons for each edition are selected
manually that represents a weak point of this study.

From the lists of top persons, the ”fields” of activ-
ity are identified for each top 30 rank persons in which
he/she is active on. The six activity fields are: politics,
art, science, religion, sport and etc (here “etc” includes
all other activities). As shown in Fig. 25, for PageRank,
politics is dominant and science is secondarily dominant.
The only exception is Dutch where science is the almost
dominant activity field (politics has the same number of
points). In case of 2DRank in Fig. 25, art becomes dom-
inant and politics is secondarily dominant. In case of
CheiRank, art and sport are dominant fields (see Fig.3
in (Eom and Shepelyansky , 2013a)). Thus for exam-
ple, in CheiRank top 30 list we find astronomers who
discovered a lot of asteroids, e.g. Karl Wilhelm Rein-
muth (4th position in RU and 7th in DE), who was a
prolific discoverer of about 400 of them. As a result, his
article contains a long listing of asteroids discovered by
him and giving him a high CheiRank. The distributions

of persons over activity fields are shown in Fig. 25 for 9
languages editions (marked by standard two letters used
by Wikipedia).

FIG. 24 (Color online) Density of Wikipedia articles in the
PageRank-CheiRank plane (K,K∗) for four different lan-
guage Wikipedia editions. The red (gray) points are top
PageRank articles of persons, the green (light gray) squares
are top 2DRank articles of persons and the cyan (dark gray)
triangles are top CheiRank articles of persons. Wikipedia
language editions are English EN (a), French FR (b), Ger-
man DE (c), and Russian RU (d). Color bars show natural
logarithm of density, changing from minimal nonzero density
(dark) to maximal one (white), zero density is shown by black.
After (Eom and Shepelyansky , 2013a).

The change of activity priority for different ranks is
due to the different balance between incoming and out-
going links there. Usually the politicians are well known
for a broad public, hence, the articles about politicians
are pointed by many articles. However, the articles about
politicians are not very communicative since they rarely
point to other articles. In contrast, articles about persons
in other fields like science, art and sport are more com-
municative because of listings of insects, planets, aster-
oids they discovered, or listings of song albums or sport
competitions they gain.

On the basis of this approach one obtains local ranks
of each of 30 persons 1 ≤ KP,E,A ≤ 30 for each edition
E and algorithm A. Then an average ranking score of
a person P is determined as ΘP,A =

∑
E(31 − KP,E,A)

for each algorithm. This method determines the global
historical figures. The top global persons are 1.Napoleon,
2.Jesus, 3.Carl Linnaeus for PageRank; 1.Micheal Jack-
son , 2.Adolf Hitler, 3.Julius Caesar for 2DRank. For
CheiRank the lists of different editions have rather low
overlap and such an averaging is not efficient. The first
positions reproduce top persons from English edition dis-
cussed in Sec. IX.D, however, the next ones are different.
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FIG. 25 (Color online) Distribution of top 30 persons over
activity fields for PageRank (a) and 2DRank (b) for each of 9
Wikipedia editions. The color bar shows the values in percent.
After (Eom and Shepelyansky , 2013a).

FIG. 26 Number of appearances of historical figures of a
given country, obtained from 24 lists of top 100 persons of
PageRank (a) and 2DRank (b), shown on the world map.
Color changes from zero (white) to maximum (black), it corre-
sponds to average number of person appearances per country.
After (Eom et al. , 2014).

Since each person is attributed to her/his native lan-
guage it is also possible for each edition to obtain top
local heroes who have native language of the edition. For
example, we find for PageRank for EN George W. Bush,
Barack Obama, Elizabeth II; for FR Napoleon, Louis XIV
of France, Charles de Gaulle; for DE Adolf Hitler, Martin
Luther, Immanuel Kant; for RU Peter the Great, Joseph
Stalin, Alexander Pushkin. For 2DRank we have for EN
Frank Sinatra, Paul McCartney, Michael Jackson; for FR
Francois Mitterrand, Jacques Chirac, Honore de Balzac;
for DE Adolf Hitler, Otto von Bismarck, Ludwig van
Beethoven; for RU Dmitri Mendeleev, Peter the Great,

Yaroslav the Wise. These ranking results are rather rea-
sonable for each language. Results for other editions and
CheiRank are given in (Eom and Shepelyansky , 2013a).

A weak point of above study is a manual selection of
persons and a not very large number of editions. A sig-
nificant improvement has been reached in a recent study
(Eom et al. , 2014) where 24 editions have been analyzed.
These 24 languages cover 59 percent of world population,
and these 24 editions covers 68 percent of the total num-
ber of Wikipedia articles in all 287 available languages.
Also the selection of people from the rank list of each edi-
tion is now done in an automatic computerized way. For
that a list of about 1.1 million biographical articles about
people with their English names is generated. From this
list of persons, with their biographical article title in the
English Wikipedia, the corresponding titles in other lan-
guage editions are determined using the inter-language
links provided by Wikipedia.

Using the corresponding articles, identified by the
inter-languages links in different language editions, the
top 100 persons are obtained from the rankings of all
Wikipedia articles of each edition. A birth place, birth
date, and gender of each top 100 ranked person are iden-
tified, based on DBpedia or a manual inspection of the
corresponding Wikipedia biographical article, when for
the considered person no DBpedia data were available.
In this way 24 lists of top 100 persons for each edition
are obtained in PageRank with 1045 unique names and
in 2DRank with 1616 unique names. Each of the 100 his-
torical figures is attributed to a birth place at the country
level, to a birth date in year, to a gender, and to a cultural
language group. The birth place is assigned according to
the current country borders. The cultural group of his-
torical figures is assigned by the most spoken language
of their birth place at the current country level. The
considered editions are: English EN, Dutch NL, German
DE, French FR, Spanish, ES, Italian IT, Potuguese PT,
Greek, EL, Danish DA, Swedish SV, Polish PL, Hun-
garian HU, Russian RU, Hebrew HE, Turkish TR, Ara-
bic AR, Persian FA, Hindi HI, Malaysian MS, Thai TH,
Vietnamese VI, Chinese ZH, Korean KO, Japanese JA
(dated by February 2013). The size of network changes
from maximal value N = 4212493 for EN to minimal one
N = 78953 for TH.

All persons are ranked by their average rank score
ΘP,A =

∑
E(101−KP,E,A) with 1 ≤ KP,E,A ≤ 100 simi-

lar to the study of 9 editions described above. For PageR-
ank the top global historical figures are Carl Linnaeus,
Jesus, Aristotle and for 2DRank we obtain Adolf Hitler,
Michael Jackson, Madonna (entertainer). Thus the av-
eraging over 24 editions modifies the top ranking. The
list of top 100 PageRank global persons has overlap of 43
persons with the Hart list (Hart, 1992). Thus the averag-
ing over 24 editions gives a significant improvement com-
pared to 35 persons overlap for the case of English edition
only (Zhirov et al., 2010). For comparison we note that
the top 100 list of historical figures has been also deter-
mined recently by (Pantheon MIT project, 2014) having
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overlap of 42 persons with the Hart list. This Pantheon
MIT list is established on the basis of number of edi-
tions and number of clicks on an article of a given person
without using rank algorithms discussed here. The over-
lap between top 100 PageRank list and top 100 Pantheon
list is 44 percent. More data are available in (Eom et al.
, 2014).

The fact that Carl Linnaeus is the top historical fig-
ure of Wikipedia PageRank list came out as a surprise for
media and broad public (see (Wikipedia Top 100, 2014)).
This ranking is due to the fact that Carl Linnaeus cre-
ated a classification of world species including, animals,
insects, herbs, trees etc. Thus all articles of these species
point to the article Carl Linnaeus in various languages.
As a result Carl Linnaeus appears on almost top posi-
tions in all 24 languages. Hence, even if a politician, like
Barak Obama, takes the second position in his country
language EN (Napoleon is at the first position in EN) he
is usually placed at low ranking in other language edi-
tions. As a result Carl Linnaeus takes the first global
PageRank position.

The number of appearances of historical persons in 24
lists of top 100 for each edition can be distributed over
present world countries according to the birth place of
each person. This geographical distribution is shown in
Fig. 26 for PageRank and 2DRank. In PageRank the top
countries are DE, USA, IT and in 2DRank US, DE, UK.
The appearance of many UK and US singers improves
the positions of English speaking countries in 2DRank.

FIG. 27 (Color online) Birth date distributions over 35 cen-
turies of top historical figures from each Wikipedia edition
marked by two letters standard notation of Wikipedia. Pan-
els: (a) column normalized birth date distributions of PageR-
ank historical figures; (b) same as (a) for 2DRank historical
figures. After (Eom et al. , 2014).

The distributions of the top PageRank and 2DRank
historical figures over 24 Wikipedia editions for each cen-
tury are shown in Fig. 27. Each person is attributed to
a century according to the birth date covering the range
of 35 centuries from BC 15th to AD 20th centuries. For
each century the number of persons for each century is
normalized to unity to see more clearly relative contribu-
tion of each language for each century.

The Greek edition has more historical figures in BC
5th century because of Greek philosophers. Also most
of western-southern European language editions, includ-
ing English, Dutch, German, French, Spanish, Italian,
Portuguese, and Greek, have more top historical fig-
ures because they have Augustine the Hippo and Jus-

tinian I in common. The Persian (FA) and the Arabic
(AR) Wikipedia have more historical figures comparing
to other language editions (in particular European lan-
guage editions) from the 6th to the 12th century that is
due to Islamic leaders and scholars. The data of Fig. 27
clearly show well pronounced patterns, corresponding to
strong interactions between cultures: from BC 5th cen-
tury to AD 15th century for JA, KO, ZH, VI; from AD
6th century to AD 12th century for FA, AR; and a com-
mon birth pattern in EN,EL,PT,IT,ES,DE,NL (Western
European languages) from BC 5th century to AD 6th
century. A detailed analysis shows that even in BC 20th
century each edition has a significant fraction of persons
of its own language so that even with on going globaliza-
tion there is a significant dominance of local historical fig-
ures for certain cultures. More data on the above points
and gender distributions are available in (Eom et al. ,
2014).

F. Networks and entanglement of cultures

We now know how a person of a given language is
ranked by editions of other languages. Therefore, if a
top person from a language edition A appears in another
edition B, we can consider this as a ’cultural’ influence
from culture A to B. This generates entanglement in a
network of cultures. Here we associate a language edi-
tion with its corresponding culture considering that a
language is a first element of culture, even if a culture is
not reduced only to a language. In (Eom and Shepelyan-
sky , 2013a) a person is attributed to a given language,
or culture, according to her/his native language fixed via
corresponding Wikipedia article. In (Eom et al. , 2014)
the attribution to a culture is done via a birth place of
a person, each language is considered as a proxy for a
cultural group and a person is assigned to one of these
cultural groups based on the most spoken language of
her/his birth place at the country level. If a person does
not belong to any of studied editions then he/she is at-
tributed to an additional cultural group world WR.

After such an attributions of all persons the two net-
works of cultures are constructed based on the top
PageRank historical figures and top 2DRank historical
figures respectively. Each culture (i.e. language) is rep-
resented as a node of the network, and the weight of a
directed link from culture A to culture B is given by the
number of historical figures belonging to culture B (e.g.
French) appearing in the list of top 100 historical figures
for a given culture A (e.g. English).

For example, according to (Eom et al. , 2014), there
are 5 French historical figures among the top 100 PageR-
ank historical figures of the English Wikipedia, so we
can assign weight 5 to the link from English to French.
Thus, Fig. 28(a) and Fig. 28(b) represent the constructed
networks of cultures defined by appearances of the top
PageRank historical figures and top 2DRank historical
figures, respectively.



26

In total we have two networks with 25 nodes which in-
clude our 24 editions and an additional node WR for all
other world cultures. Persons of a given culture are not
taken into account in the rank list of language edition of
this culture. Then following the standard rules (1) the
Google matrix of network of cultures is constructed by
normalization of sum of all elements in each column to
unity. The matrix GKK′ , written in the PageRank in-
dexes K,K ′ is shown in Fig. 29 for persons from PageR-
ank (a) and 2DRank (b) lists. The matrix G∗ is con-
structed in the same way as G for the network with in-
verted directions of links.

FIG. 28 (Color online) Network of cultures, obtained from 24
Wikipedia languages and the remaining world (WR), consid-
ering (a) top 100 PageRank historical figures and (b) top 100
2DRank historical figures. The link width and darkness are
proportional to a number of foreign historical figures quoted
in top 100 of a given culture, the link direction goes from a
given culture to cultures of quoted foreign historical figures,
quotations inside cultures are not considered. The size of
nodes is proportional to their PageRank. After (Eom et al. ,
2014).

FIG. 29 (Color online) Google matrix of network of cultures
shown in Fig 28 (a) and (b) respectively. The matrix elements
Gij are shown by color with damping factor α = 0.85. After
(Eom et al. , 2014).

From the obtained matrix G and G∗ we deter-
mine PageRank and CheiRank vectors and then the
PageRank-CheiRank plane (K,K∗), shown in Fig. 30,
for networks of cultures from Fig. 28. Here K indicates
the ranking of a given culture ordered by how many of
its own top historical figures appear in other Wikipedia
editions, and K∗ indicates the ranking of a given cul-
ture according to how many of the top historical figures
in the considered culture are from other cultures. It is
important to note that for 24 editions the world node
WR appears on positions K = 3 or K = 4, for panels
(a), (b) in Fig. 30, signifying that the 24 editions capture

the main part of historical figures born in these cultures.
We note that for 9 editions in (Eom and Shepelyansky ,
2013a) the node WR was at the top position for PageR-
ank so that a significant fraction of historical figures was
attributed to other cultures.

FIG. 30 (Color online) PageRank-CheiRank plane of cultures
with corresponding indexes K and K∗ obtained from the net-
work of cultures based on (a) top 100 PageRank historical
figures, (b) top 100 2DRank historical figures. After (Eom
et al. , 2014).

From the data of Fig. 30 we obtain at the top positions
of K cultures EN, DE, IT showing that other cultures
strongly point to them. However, we can argue that for
cultures it is also important to have strong communica-
tive property and hence it is important to have 2DRank
of cultures at top positions. On the top 2DRank position
we have Greek, Turkish and Arabic (for PageRank per-
sons) in Fig. 30(a) and French, Russian and Arabic (for
2DRank persons) in Fig. 30(b). This demonstrates the
important historical influence of these cultures both via
importance (incoming links) and communicative (outgo-
ing links) properties present in a balanced manner.

Thus the described research across Wikipedia language
editions suggests a rigorous mathematical way, based on
Markov chains and Google matrix, for recognition of im-
portant historical figures and analysis of interactions of
cultures at different historical periods and in different
world regions. Such an approach recovers 43 percent of
persons from the well established Hart historical study
(Hart, 1992), that demonstrates the reliability of this
method. We think that a further extension of this ap-
proach to a larger number of Wikipedia editions will pro-
vide a more detailed and balanced analysis of interactions
of world cultures.

X. GOOGLE MATRIX OF SOCIAL NETWORKS

Social networks like Facebook, LiveJournal, Twitter,
Vkontakte start to play a more and more important role
in modern society. The Twitter network is a directed
one and here we consider its spectral properties following
mainly the analysis reported in (Frahm and Shepelyansky
, 2012b).
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A. Twitter network

Twitter is a rapidly growing online directed social
network. For July 2009 a data set of this entire net-
work is available with N = 41652230 nodes and N` =
1468365182 links (for data sets see Refs. in (Frahm
and Shepelyansky , 2012b)). For this case the spectrum
and eigenstate properties of the corresponding Google
matrix have been analyzed in detail using the Arnoldi
method and standard PageRank and CheiRank com-
putations (Frahm and Shepelyansky , 2012b). For the
Twitter network the average number of links per node
ζ = N`/N ≈ 35 and the general inter-connectivity be-
tween top PageRank nodes are considerably larger than
for other networks such as Wikipedia (Sec. IX) or UK
universities (Sec. VIII) as can be seen in Figs. 31 and 32.

FIG. 31 (Color online) Panel (a): Google matrix of Twitter,
matrix elements of G are shown in the basis of PageRank in-

dex K of matrix GKK′ . Here, x (and y) axis show K (and K
′
)

with the range 1 ≤ K,K′ ≤ 200. Panel (b) shows the density
of nodes W (K,K∗) of Twitter on PageRank-CheiRank plane
(K,K∗), averaged over 100× 100 logarithmically equidistant
grids for 0 ≤ lnK, lnK∗ ≤ lnN with the normalization condi-
tion

∑
K,K∗W (K,K∗) = 1. The x-axis corresponds to lnK

and the y-axis to lnK∗. In both panels color varies from
blue/black at minimal value to red/gray at maximal value;
here α = 0.85. After (Frahm and Shepelyansky , 2012b).

The decay of PageRank probability can be approxi-
mately described by an algebraic decay with the expo-
nent β ≈ 0.54 while for CheiRank we have a larger value
β ≈ 0.86 (Frahm and Shepelyansky , 2012b) that is op-
posite to the usual situation. The image of top matrix
elements of GKK′ with 1 ≤ K,K;≤ 200 is shown in
Fig. 31. The density distribution of nodes on (K,K∗)
plane is also shown there. It is somewhat similar to those
of Wikipedia case in Fig. 24, may be with a larger density
concentration along the line K ≈ K∗.

However, the most striking feature of G matrix el-
ements is a very strong inteconnectivity between top
PageRank nodes. Thus for Twitter the top K ≤ 1000
elements fill about 70% of the matrix and about 20% for
size K ≤ 104 . For Wikipedia the filling factor is smaller
by a factor 10−20. In particular the number NG of links
between K top PageRank nodes behaves for K ≤ 103

as NG ∼ K1.993 while for Wikipedia NG ∼ K1.469. The
exponent for NG, being close to 2 for Twitter, indicates
that for the top PageRank nodes the Google matrix is
macroscopically filled with a fraction 0.6 − 0.8 of non-
vanishing matrix elements (see also Figs. 31 and 32) and
the very well connected top PageRank nodes can be con-
sidered as the Twitter elite (Kandiah and Shepelyansky
, 2012). For Wikipedia the interconnectivity among top
PageRank nodes has an exponent 1.5 being somewhat re-
duced but still stronger as compared to certain university
networks where typical exponents are close to unity (for
the range 102 ≤ K ≤ 104). The strong interconnectivity
of Twitter is also visible in its global logarithmic density
distribution of nodes in the PageRank-CheiRank plane
(K,K∗) (Fig. 31 (b)) which shows a maximal density
along a certain ridge along a line lnK∗ = lnK+ const.
with a significant large number of nodes at small values
K,K∗ < 1000.

FIG. 32 (Color online) (a) Dependence of the area density
gK = NG/K

2 of nonzero elements of the adjacency matrix
among top PageRank nodes on the PageRank index K for
Twitter (blue/black curve) and Wikipedia (red/gray curve)
networks, data are shown in linear scale. (b) Linear density
NG/K of the same matrix elements shown for the whole range
of K in log-log scale for Twitter (blue curve), Wikipedia (red
curve), Oxford University 2006 (magenta curve) and Cam-
bridge University 2006 (green curve) (curves from top to bot-
tom at K = 100). After (Frahm and Shepelyansky , 2012b).

The decay exponent of the PageRank is for Twit-
ter β = 0.540 (for 1 ≤ K ≤ 106), which indicates a
precursor of a delocalization transition as compared to
Wikipedia (β = 0.767) or WWW (β ≈ 0.9), caused
by the strong interconnectivity (Frahm and Shepelyan-
sky , 2012b). The Twitter network is also character-
ized by a large value of PageRank-CheiRank correlator
κ = 112.6 that is by a factor 30 − 60 larger than this
value for Wikipedia and University networks. Such a
larger value of κ results from certain individual large val-
ues κi = NP (K(i))P ∗(K∗(i)) ∼ 1. It is argued that this
is related to a very strong inter-connectivity between top
K PageRank users of the Twitter network (Frahm and
Shepelyansky , 2012b).
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FIG. 33 (Color online) Spectrum of the Twitter matrix S
(a) and (c), and S∗ (b) and (d). Panels (a) and (b) show
subspace eigenvalues (blue/black dots) and core space eigen-
values (red/gray dots) in λ-plane (green/gray curve shows
unit circle); there are 17504 (66316) invariant subspaces, with
maximal dimension 44 (2959) and the sum of all subspace di-
mensions is Ns = 40307 (180414). The core space eigenvalues
are obtained from the Arnoldi method applied to the core
space subblock Scc of S with Arnoldi dimension nA = 640.
Panels (c) and (d) show the fraction j/N of eigenvalues with
|λ| > |λj | for the core space eigenvalues (red/gray bottom
curve) and all eigenvalues (blue/black top curve) from raw
data ((a) and (b) respectively). The number of eigenvalues
with |λj | = 1 is 34135 (129185) of which 17505 (66357) are
at λj = 1; this number is (slightly) larger than the number of
invariant subspaces which have each at least one unit eigen-
value. Note that in panels (c) and (d) the number of eigen-
values with |λj | = 1 is artificially reduced to 200 in order to
have a better scale on the vertical axis. The correct numbers
of those eigenvalues correspond to j/N = 8.195 × 10−4 (c)
and 3.102 × 10−3 (d) which are strongly outside the vertical
panel scale. After (Frahm and Shepelyansky , 2012b).

The spectra of matrices S and S∗ are obtained with
the help of the Arnoldi method for a relatively modest
Arnoldi dimension due to a very large matrix size. The
largest nA modulus eigenvalues |λ| are shown in Fig. 33.
The invariant subspaces (see Sec. III.C) for the Twitter
network cover about Ns = 4 × 104 (1.8 × 105) nodes for
S (S∗) leading to 1.7 × 104 (6.6 × 104) eigenvalues with
λj = 1 or even 3.4×104 (1.3×105) eigenvalues with |λj | =
1. However, for Twitter the fraction of subspace nodes
g1 = Ns/N ≈ 10−3 is smaller than the fraction g1 ≈ 0.2
for the university networks of Cambridge or Oxford (with
N ≈ 2×105) since the size of the whole Twitter network
is significantly larger. The complex spectra of S and S∗

also show the cross and triple-star structures, as in the
cases of Cambridge and Oxford 2006 (see Fig. 17), even
though for the Twitter network they are significantly less
pronounced.

B. Poisson statistics of PageRank probabilities

From a physical viewpoint one can conjecture that
the PageRank probabilities are described by a steady-
state quantum Gibbs distribution over certain quantum
levels with energies Ei by the identification P (i) =
exp(−Ei/T )/Z with Z =

∑
i exp(−Ei/T ) (Frahm and

Shepelyansky , 2014a). In some sense this conjecture as-
sumes that the operator matrix G can be represented as a
sum of two operators GH and GNH where GH describes a
Hermitian system while GNH represents a non-Hermitian
operator which creates a system thermalization at a cer-
tain effective temperature T with the quantum Gibbs
distribution over energy levels Ei of the operator GH .

FIG. 34 (Color online) Panel (a) shows the dependence of cer-
tain top PageRank levels Ei = − ln(Pi) on the damping factor
α for Twitter network. Data points on curves with one color
corresponds to the same node i; about 150 levels are shown
close to the minimal energy E ≈ 7.5. Panel (b) represents the
histogram of unfolded level spacing statistics for Twitter at
10 < K ≤ 104. The Poisson distribution pPois(s) = exp(−s)
and the Wigner surmise pWig(s) = π

2
s exp(−π

4
s2) are also

shown for comparison. After (Frahm and Shepelyansky ,
2014a).

The identification of PageRank with an energy spec-
trum allows to study the corresponding level statistics
which represents a well known concept in the framework
of Random Matrix Theory (Guhr et al., 1998; Mehta,
2004). The most direct characteristic is the probabil-
ity distribution p(s) of unfolded level spacings s. Here
s = (Ei+1 − Ei)/∆E is a spacing between nearest lev-
els measured in the units of average local energy spac-
ing ∆E. The unfolding procedure (Guhr et al., 1998;
Mehta, 2004) requires the smoothed dependence of Ei
on the index K which is obtained from a polynomial fit
of Ei ∼ ln(Pi) with ln(K) as argument (Frahm and She-
pelyansky , 2014a).

The statistical properties of fluctuations of levels have
been extensively studied in the fields of RMT (Mehta,
2004), quantum chaos (Haake, 2010) and disordered solid
state systems (Evers and Mirlin , 2008). It is known that
integrable quantum systems have p(s) well described by
the Poisson distribution pPois(s) = exp(−s). In con-
trast the quantum systems, which are chaotic in the
classical limit (e.g. Sinai billiard), have p(s) given by
the RMT being close to the Wigner surmise pWig(s) =
π
2 s exp(−π4 s

2) (Bohigas et al., 1984). Also the Ander-
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son localized phase is characterized by pPois(s) while in
the delocalized regime one has pWig(s) (Evers and Mirlin
, 2008).

The results for the Twitter PageRank level statistics
(Frahm and Shepelyansky , 2014a) are shown in Fig. 34.
We find that p(s) is well described by the Poisson distri-
bution. Furthermore, the evolution of energy levels Ei
with the variation of the damping factor α shows many
level crossings which are typical for Poisson statistics.
We may note that here each level has its own index so
that it is rather easy to see if there is a real or avoided
level crossing.

The validity of the Poisson statistics for PageR-
ank probabilities is confirmed also for the networks of
Wikipedia editions in English, French and German from
Fig. 24 (Frahm and Shepelyansky , 2014a). We argue
that due to absence of level repulsion the PageRank or-
der of nearby nodes can be easily interchanged. The ob-
tained Poisson law implies that the nearby PageRank
probabilities fluctuate as random independent variables.

XI. GOOGLE MATRIX ANALYSIS OF WORLD TRADE

During the last decades the trade between countries
has been developed in an extraordinary way. Usually
countries are ranked in the world trade network (WTN)
taking into account their exports and imports measured
in USD (CIA, 2009). However, the use of these quanti-
ties, which are local in the sense that countries know their
total imports and exports, could hide the information of
the centrality role that a country plays in this complex
network. In this section we present the two-dimensional
Google matrix analysis of the WTN introduced in (Er-
mann and Shepelyansky , 2011b). Some previous studies
of global network characteristics were considered in (Gar-
laschelli and Loffredo , 2005; Serrano et al., 2007), degree
centrality measures were analyzed in (De Benedictis and
Tajoli , 2011) and a time evolution of network global char-
acteristics was studied in (He and Deem , 2010). Topo-
logical and clustering properties of multiplex network of
various commodities were discussed in (Barigozzi et al.,
2010), and an ecological ranking based on the nestedness
of countries and products was presented in (Ermann and
Shepelyansky , 2013a).

The money exchange between countries defines a di-
rected network. Therefore Google matrix analysis can be
introduced in a natural way. PageRank and CheiRank
algorithms can be easily applied to this network with
a straightforward correspondence with imports and ex-
ports. Two-dimensional ranking, introduced in Sec. IV,
gives an illustrative representation of global importance
of countries in the WTN. The important element of
Google ranking of WTN is its democratic treatment of
all world countries, independently of their richness, that
follows the main principle of the United Nations (UN).

A. Democratic ranking of countries

The WTN is a directed network that can be con-
structed considering countries as nodes and money ex-
change as links. We follow the definition of the WTN
of (Ermann and Shepelyansky , 2011b) where trade in-
formation comes from (UN COMTRADE, 2011). These
data include all trades between countries for different
products (using Standard International Trade Classifi-
cation of goods, SITC1) from 1962 to 2009.

All useful information of the WTN is expressed via
the money matrix M , which definition, in terms of its
matrix elements Mij , is defined as the money transfer
(in USD) from country j to country i in a given year.
This definition can be applied to a given specific product
or to all commodities, which represent the sum over all
products.

In contrast to the binary adjacency matrix Aij of
WWW (as the ones analyzed in SVIII and SX for ex-
ample) M has weighted elements. This corresponds to
a case when there are in principle multiple number of
links from j to i and this number is proportional to USD
amount transfer. Such a situation appears in Sec. VI
for Ulam networks and Sec. VII for Linux PCN with a
main difference that for the WTN case there is a very
large variation of mass matrix elements Mij , related to
the fact that there is a very strong variation of richness
of various countries.

Google matrices G and G∗ are constructed accord-
ing to the usual rules and relation (1) with Mij and its
transposed: Sij = Mij/mj and Sij = Mji/m

∗
j where

Sij = 1/N and S∗ij = 1/N , if for a given j all elements
Mij = 0 and Mji = 0 respectively. Here mj =

∑
iMij

and m∗j =
∑
iMji are the total export and import mass

for country j. Thus the sum in each column of G or G∗

is equal to unity. In this way Google matrices G and G∗

of WTN allow to treat all countries on equal grounds in-
dependently of the fact if a given country is rich or poor.
This kind of analysis treats in a democratic way all world
countries in consonance with the standards of the UN.

The probability distributions of ordered PageRank
P (K) and CheiRank P ∗(K∗) depend on their indexes in
a rather similar way with a power law decay given by β.
For the fit of top 100 countries and all commodities the
average exponent value is close to β = 1 corresponding
to the Zipf law (Zipf, 1949).

The distribution of countries on PageRank-CheiRank
plane for trade in all commodities in year 2008 is shown
in panels (a) and (b) of Fig. 35 at α = 0.5. Even if
the Google matrix approach is based on a democratic
ranking of international trade, being independent of to-
tal amount of export-import and PIB for a given country,
the top ranks K and K∗ belong to the group of industri-
ally developed countries. This means that these countries
have efficient trade networks with optimally distributed
trade flows. Another striking feature of global distribu-
tion is that it is concentrated along the main diagonal
K = K∗. This feature is not present in other networks
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FIG. 35 (Color online) Country positions in PageRank-
CheiRank plane (K,K∗) for world trade in various commodi-
ties in 2008. Each country is shown by circle with its own flag
(for a better visibility the circle center is slightly displaced
from its integer position (K,K∗) along direction angle π/4).
The panels show the ranking for trade in the following com-
modities: all commodities (a) and (b); and crude petroleum
(c) and (d). Panels (a) and (c) show a global scale with all
227 countries, while (b) and (d) give a zoom in the region of
40×40 top ranks. After (Ermann and Shepelyansky , 2011b).

studied before. The origin of this density concentration
is related to a simple economy reason: for each country
the total import is approximately equal to export since
each country should keep in average an economic balance.
This balance does not imply a symmetric money matrix,
used in gravity model of trade (see e.g. (De Benedictis
and Tajoli , 2011; Krugman et al., 2011)), as can be seen
in the significant broadening of distribution of Fig. 35
(especially at middle values of K ∼ 100).

For a given country its trade is doing well if its K∗ < K
so that the country exports more than it imports. The
opposite relation K∗ > K corresponds to a bad trade
situation (e.g. Greece being significantly above the diag-
onal). We also can say that local minima in the curve
of (K∗ − K) vs. K correspond to a successful trade
while maxima mark bad traders. In 2008 most successful
were China, R of Korea, Russia, Singapore, Brazil, South
Africa, Venezuela (in order ofK forK ≤ 50) while among
bad traders we note UK, Spain, Nigeria, Poland, Czech
Rep, Greece, Sudan with especially strong export drop
for two last cases.

A comparison between local and global rankings of
countries for both imports and exports gives a new tool
to analyze countries economy. For example, in 2008 the
most significant differences between CheiRank and the
rank given by total exports are for Canada and Mexico

with corresponding money export ranks K̃∗ = 11 and 13
and with K∗ = 16 and K∗ = 23 respectively. These vari-
ations can be explained in the context that the export of
these two countries is too strongly oriented on USA. In
contrast Singapore moves up from K̃∗ = 15 export posi-
tion to K∗ = 11 that shows the stability and broadness
of its export trade, a similar situation appears for India
moving up from K̃∗ = 19 to K∗ = 12 (see (Ermann and
Shepelyansky , 2011b) for more detailed analysis).

B. Ranking of countries by trade in products

If we focus on the two-dimensional distribution of
countries in a specific product we obtain a very differ-
ent information. The symmetry approximately visible
for all commodities is absolutely absent: the points are
scattered practically over the whole square N × N (see
Fig. 35). The reason of such a strong scattering is clear:
e.g. for crude petroleum some countries export this prod-
uct while other countries import it. Even if there is some
flow from exporters to exporters it remains relatively low.
This makes the Google matrix to be very asymmetric. In-
deed, the asymmetry of trade flow is well visible in panels
(c) and (d) of Fig. 35.

FIG. 36 (Color online) Spindle distribution for WTN of all
commodities for all countries in the period 1962 - 2009 shown
in the plane of ((K∗ −K)/N, (K∗ + K)/N) (coarse-graining
inside each of 76×152 cells); data from the UN COMTRADE
database. After (Ermann and Shepelyansky , 2011b).

The same comparison of global and local rankings done
before for all commodities can be applied to specific prod-
ucts obtaining even more strong differences. For example
for crude petroleum Russia moves up from K̃∗ = 2 export
position to K∗ = 1 showing that its trade network in this
product is better and broader than the one of Saudi Ara-
bia which is at the first export position K̃∗ = 1 in money
volume. Iran moves in opposite direction from K̃∗ = 5
money position down to K∗ = 14 showing that its trade
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network is restricted to a small number of nearby coun-
tries. A significant improvement of ranking takes place
for Kazakhstan moving up from K̃∗ = 12 to K∗ = 2.
The direct analysis shows that this happens due to an un-
usual fact that Kazakhstan is practically the only coun-
try which sells crude petroleum to the CheiRank leader
in this product Russia. This puts Kazakhstan on the sec-
ond position. It is clear that such direction of trade is
more of political or geographical origin and is not based
on economic reasons.

The same detailed analysis can be applied to all specific
products given by SITC1. For example for trade of cars
France goes up from K̃∗ = 7 position in exports to K∗ =
3 due to its broad export network.

C. Ranking time evolution and crises

The WTN has evolved during the period 1962 - 2009.
The number of countries is increased by 38%, while the
number of links per country for all commodities is in-
creased in total by 140% with a significant increase from
50% to 140% during the period 1993 - 2009 corresponding
to economy globalization. At the same time for a specific
commodity the average number of links per country re-
mains on a level of 3-5 links being by a factor 30 smaller
compared to all commodities trade. During the whole
period the total amount MT of trade in USD shows an
average exponential growth by 2 orders of magnitude.

A statistical density distribution of countries in the
plane (K∗ − K,K∗ + K) in the period 1962 - 2009 for
all commodities is shown in Fig. 36. The distribution has
a form of spindle with maximum density at the vertical
axis K∗ − K = 0. We remind that good exporters are
on the lower side of this axis at K∗ −K < 0, while the
good importers (bad exporters) are on the upper side at
K∗ −K > 0.

The evolution of the ranking of countries for all com-
modities reflects their economical changes. The countries
that occupy top positions tend to move very little in their
ranks and can be associated to a solid phase. On the
other hand, the countries in the middle region of K∗+K
have a gas like phase with strong rank fluctuations.

Examples of ranking evolution K and K∗ for Japan,
France, Fed R of Germany and Germany, Great Britain,
USA, and for Argentina, India, China, USSR and Rus-
sian Fed are shown in Fig. 37. It is interesting to note
that sharp increases in K mark crises in 1991, 1998 for
Russia and in 2001 for Argentina (import is reduced in
period of crises). It is also visible that in recent years the
solid phase is perturbed by entrance of new countries like
China and India. Other regional or global crisis could be
highlighted due to the big fluctuations in the evolution
of ranks. For example, in the range 81 ≤ K +K∗ ≤ 120,
during the period of 1992 - 1998 some financial crises as
Black Wednesday, Mexico crisis, Asian crisis and Russian
crisis are appreciated with this ranking evolution.

FIG. 37 (Color online) Time evolution of CheiRank and
PageRank indexes K, K∗ for some selected countries for all
commodities. The countries shown panels (a) and (b) are:
Japan (jp-black), France (fr-red), Fed R of Germany and Ger-
many (de - both in blue), Great Britain (gb - green), USA
(us - orange) [curves from top to bottom in 1962 in (a)]. The
countries shown panels (c) and (d) are: Argentina (ar - vi-
olet), India (in - dark green), China (cn - cyan), USSR and
Russian Fed (ru - both in gray) [curves from top to bottom
in 1975 in (c)]. After (Ermann and Shepelyansky , 2011b).

D. Ecological ranking of world trade

Interesting parallels between multi-product world
trade and interactions between species in ecological sys-
tems has been traced in (Ermann and Shepelyansky ,
2013a). This approach is based on analysis of strength
of transitions forming the Google matrix for the multi-
product world trade network.

Ecological systems are characterized by high complex-
ity and biodiversity (May, 2001) linked to nonlinear dy-
namics and chaos emerging in the process of their evo-
lution (Lichtenberg and Lieberman, 1992). The inter-
actions between species form a complex network whose
properties can be analyzed by the modern methods of
scale-free networks. The analysis of their properties uses
a concept of mutualistic networks and provides a detailed
understanding of their features being linked to a high
nestedness of these networks (Bastolla et al., 2009; Bur-
gos et al., 2007, 2008; Saverda et al., 2011). Using the UN
COMTRADE database we show that a similar ecological
analysis gives a valuable description of the world trade:
countries and trade products are analogous to plants and
pollinators, and the whole trade network is characterized
by a high nestedness typical for ecological networks.

An important feature of ecological networks is that
they are highly structured, being very different from ran-
domly interacting species (Bascompte et al., 2003). Re-
cently is has been shown that the mutualistic networks
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between plants and their pollinators (Bascompte et al.,
2003; Memmott et al., 2004; Olesen et al., 2007; Rezende
et al., 2007; Vázquez and Aizen , 2004) are characterized
by high nestedness which minimizes competition and in-
creases biodiversity (Bastolla et al., 2009; Burgos et al.,
2007, 2008; Saverda et al., 2011).

FIG. 38 (Color online) Nestedness matrices for the plant-
animal mutualistic networks on top panels, and for the WTN
of countries-products on middle and bottom panels. Panels
(a) and (b) represent data of ARR1 and WES networks from
(Rezende et al., 2007). The WTN matrices are computed with
the threshold µ = 10−3 and corresponding ϕ ≈ 0.2 for years
2008 (c,d) and 1968 (e,f) and 2008 for import (c,e) and export
(d,f) panels. Red/gray and blue/black represent unit and zero
elements respectively; only lines and columns with nonzero
elements are shown. The order of plants-animals, countries-
products is given by the nestedness algorithm (Rodŕıguez-
Gironés et al., 2006), the perfect nestedness is shown by
green/gray curves for the corresponding values of ϕ. After
(Ermann and Shepelyansky , 2013a).

The mutualistic WTN is constructed on the basis of
the UN COMTRADE database from the matrix of trade
transactions Mp

c′,c expressed in USD for a given prod-

uct (commodity) p from country c to country c′ in a
given year (from 1962 to 2009). For product classifica-
tion we use 3–digits SITC Rev.1 discussed above with the
number of products Np = 182. All these products are
described in (UN COMTRADE, 2011) in the commod-
ity code document SITC Rev1. The number of coun-
tries varies between Nc = 164 in 1962 and Nc = 227
in 2009. The import and export trade matrices are de-

fined as M
(i)
p,c =

∑Nc

c′=1M
p
c,c′ and M

(e)
p,c =

∑Nc

c′=1M
p
c′,c

respectively. We use the dimensionless matrix elements
m(i) = M (i)/Mmax and m(e) = M (e)/Mmax where for a

given year Mmax = max{max[M
(i)
p,c],max[M

(e)
p,c ]}. The

distribution of matrix elements m(i), m(e) in the plane
of indexes p and c, ordered by the total amount of im-
port/export in a decreasing order, are shown and dis-
cussed in (Ermann and Shepelyansky , 2013a). In global,
the distributions of m(i), m(e) remain stable in time es-
pecially in a view of 100 times growth of the total trade
volume during the period 1962-2009. The fluctuations of
m(e) are larger compared to m(i) case since certain prod-
ucts, e.g. petroleum, are exported by only a few countries
while it is imported by almost all countries.

To use the methods of ecological analysis we construct
the mutualistic network matrix for import Q(i) and ex-
port Q(e) whose matrix elements take binary value 1 or
0 if corresponding elements m(i) and m(e) are respec-
tively larger or smaller than a certain trade threshold
value µ. The fraction ϕ of nonzero matrix elements varies
smoothly in the range 10−6 ≤ µ ≤ 10−2 and the further
analysis is not really sensitive to the actual µ value inside
this broad range.

In contrast to ecological systems (Bastolla et al., 2009)
the world trade is described by a directed network and
hence we characterize the system by two mutualistic ma-
trices Q(i) and Q(e) corresponding to import and export.
Using the standard nestedness BINMATNEST algorithm
(Rodŕıguez-Gironés et al., 2006) we determine the nest-
edness parameter η of the WTN and the related nest-
edness temperature T = 100(1 − η). The algorithm re-
orders lines and columns of a mutualistic matrix concen-
trating nonzero elements as much as possible in the top
left corner and thus providing information about the role
of immigration and extinction in an ecological system.
A high level of nestedness and ordering can be reached
only for systems with low T . It is argued that the nested
architecture of real mutualistic networks increases their
biodiversity.

The nestedness matrices generated by the BIN-
MATNEST algorithm (Rodŕıguez-Gironés et al., 2006)
are shown in Fig. 38 for ecology networks ARR1 (Npl =
84, Nanim = 101, ϕ = 0.043, T = 2.4) and WES
(Npl = 207, Nanim = 110, ϕ = 0.049, T = 3.2) from
(Rezende et al., 2007). Using the same algorithm we
generate the nestedness matrices of WTN using the mu-
tualistic matrices for import Q(i) and export Q(i) for the
WTN in years 1968 and 2008 using a fixed typical thresh-
old µ = 10−3 (see Fig. 38). As for ecological systems, for
the WTN data we also obtain rather small nestedness
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FIG. 39 (Color online) Top 20 EcoloRank countries as a func-
tion of years for the WTN import (a) and export (b) panels.
The ranking is given by the nestedness algorithm for the trade
threshold µ = 10−3; each country is represented by its corre-
sponding flag. As an example, dashed lines show time evo-
lution of the following countries: USA, UK, Japan, China,
Spain. After (Ermann and Shepelyansky , 2013a).

temperature (T ≈ 6/8 for import/export in 1968 and
T ≈ 4/8 in 2008 respectively). These values are by a fac-
tor 9/4 of times smaller than the corresponding T values
for import/export from random generated networks with
the corresponding values of ϕ.

The small value of nestedness temperature obtained
for the WTN confirms the validity of the ecological anal-
ysis of WTN structure: trade products play the role of
pollinators which produce exchange between world coun-
tries, which play the role of plants. Like in ecology the
WTN evolves to the state with very low nestedness tem-
perature that satisfies the ecological concept of system

FIG. 40 (Color online) Top 20 countries as a function of years
ranked by the total monetary trade volume of the WTN in
import (a) and export (b) panels respectively; each country is
represented by its corresponding flag. Dashed lines show time
evolution of the same countries as in Fig. 39. After (Ermann
and Shepelyansky , 2013a).

stability appearing as a result of high network nested-
ness (Bastolla et al., 2009).

The nestedness algorithm creates effective ecological
ranking (EcoloRanking) of all UN countries. The evo-
lution of 20 top ranks throughout the years is shown in
Fig. 39 for import and export. This ranking is quite dif-
ferent from the more commonly applied ranking of coun-
tries by their total import/export monetary trade volume
(CIA, 2009) (see corresponding data in Fig. 40) or the
democratic ranking of WTN based on the Google matrix
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FIG. 41 (Color online) Top 10 ranks of trade products as a
function of years for the WTN. Panel (a): ranking of prod-
ucts by monetary trade volume. Panels (b), (c): ranking
is given by the nestedness algorithm for import (b) and ex-
port (c) with the trade threshold µ = 10−3. Each product is
shown by its own symbol with short name written at years
1968, 2008; symbol color marks 1st SITC digit; SITC codes
of products and their names are given in (UN COMTRADE,
2011) and Table 2 in (Ermann and Shepelyansky , 2013a).
After (Ermann and Shepelyansky , 2013a).

analysis discussed above. Indeed, in 2008 China is at the
top rank for total export volume but it is only at 5th
position in EcoloRank (see Fig. 39, Fig. 40). In a similar
way Japan moves down from 4th to 17th position while
USA raises up from 3rd to 1st rank.

The same nestedness algorithm generates not only the
ranking of countries but also the ranking of trade prod-
ucts for import and export which is presented in Fig. 41.
For comparison we also show there the standard ranking
of products by their trade volume. In Fig. 41 the color
of symbol marks the 1st SITC digit described in figure,
(UN COMTRADE, 2011) and Table 2 in (Ermann and

Shepelyansky , 2013a).

The origin of such a difference between EcoloRanking
and trade volume ranking of countries is related to the
main idea of mutualistic ranking in ecological systems:
the nestedness ordering stresses the importance of mu-
tualistic pollinators (products for WTN) which generate
links and exchange between plants (countries for WTN).
In this way generic products, which participate in the
trade between many countries, become of primary impor-
tance even if their trade volume is not at the top lines
of import or export. In fact such mutualistic products
glue the skeleton of the world trade while the nestedness
concept allows to rank them in order of their importance.
The time evolution of this EcoloRanking of products of
WTN is shown in Fig. 41 for import/export in compari-
son with the product ranking by the monetary trade vol-
ume (since the trade matrix is diagonal in product index
the ranking of products in the latter case is the same for
import/export). The top and middle panels have dom-
inate colors corresponding to machinery (SITC Rev. 1
code 7; blue) and mineral fuels (3; black) with a moderate
contribution of chemicals (5; yellow) and manufactured
articles (8; cyan) and a small fraction of goods classified
by material (6; green). Even if the global structure of
product ranking by trade volume has certain similarities
with import EcoloRanking there are also important new
elements. Indeed, in 2008 the mutualistic significance
of petroleum products (code 332), machindus (machines
for special industries code 718) and medpharm (medical-
pharmaceutic products code 541) is much higher com-
pared to their volume ranking, while petroleum crude
(code 331) and office machines (code 714) have smaller
mutualistic significance compared to their volume rank-
ing.

The new element of EcoloRanking is that it differenti-
ates between import and export products while for trade
volume they are ranked in the same way. Indeed, the
dominant colors for export (Fig. 41 bottom panel) cor-
respond to food (SITC Rev. 1 code 0; red) with contri-
bution of black (present in import) and crude materials
(code 2; violet); followed by cyan (present in import)
and more pronounced presence of finnotclass (commodi-
ties/transactions not classified code 9; brown). Ecol-
oRanking of export shows a clear decrease tendency of
dominance of SITC codes 0 and 2 with time and increase
of importance of codes 3,7. It is interesting to note that
the code 332 of petroleum products is vary vulnerable in
volume ranking due to significant variations of petroleum
prices but in EcoloRanking this product keeps the stable
top positions in all years showing its mutualistic struc-
tural importance for the world trade. EcoloRanking of
export shows also importance of fish (code 031), cloth-
ing (code 841) and fruits (code 051) which are placed on
higher positions compared to their volume ranking. At
the same time roadvehic (code 732), which are at top vol-
ume ranking, have relatively low ranking in export since
only a few countries dominate the production of road
vehicles.
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It is interesting to note that in Fig. 41 petroleum crude
is at the top of trade volume ranking e.g. in 2008 (top
panel) but it is absent in import EcoloRanking (middle
panel) and it is only on 6th position in export EcoloRank-
ing (bottom panel). A similar feature is visible for years
1968, 1978. On a first glance this looks surprising but
in fact for mutualistic EcoloRanking it is important that
a given product is imported from top EcoloRank coun-
tries: this is definitely not the case for petroleum crude
which practically is not produced inside top 10 import
EcoloRank countries (the only exception is USA, which
however also does not export much). Due to that reason
this product has low mutualistic significance.

The mutualistic concept of product importance is at
the origin of significant difference of EcoloRanking of
countries compared to the usual trade volume ranking
(see Fig. 39, Fig. 40). Indeed, in the latter case China
and Japan are at the dominant positions but their trade is
concentrated in specific products which mutualistic role
is relatively low. In contrast USA, Germany and France
keep top three EcoloRank positions during almost 40
years clearly demonstrating their mutualistic power and
importance for the world trade.

Thus our results show the universal features of eco-
logic ranking of complex networks with promising future
applications to trade, finance and other areas.

E. Remarks on world trade and banking networks

The new approach to the world trade, based on the
Google matrix analysis, gives a democratic type of rank-
ing being independent of the trade amount of a given
country. In this way rich and poor countries are treated
on equal democratic grounds. In a certain sense PageR-
ank probability for a given country is proportional to its
rescaled import flows while CheiRank is proportional to
its rescaled export flows inside of the WTN.

The global characteristics of the world trade are ana-
lyzed on the basis of this new type of ranking. Even if all
countries are treated now on equal democratic grounds
still we find at the top rank the group of industrially de-
veloped countries approximately corresponding to G-20
and recover 74% of countries listed in G-20. The Google
matrix analysis demonstrates an existence of two solid
state domains of rich and poor countries which remain
stable during the years of consideration. Other countries
correspond to a gas phase with ranking strongly fluc-
tuating in time. We propose a simple random matrix
model which well describes the statistical properties of
rank distribution for the WTN (Ermann and Shepelyan-
sky , 2011b).

The comparison between usual ImportRank–Export-
Rank (see e.g. (CIA, 2009)) and our PageRank–
CheiRank approach shows that the later highlights the
trade flows in a new useful manner which is comple-
mentary to the usual analysis. The important differ-
ence between these two approaches is due to the fact

that ImportRank–ExportRank method takes into ac-
count only global amount of money exchange between
a country and the rest of the world while PageRank–
CheiRank approach takes into account all links and
money flows between all countries.

The future developments should consider a matrix with
all countries and all products which size becomes signif-
icantly larger (N ∼ 220 × 104 ∼ 2 × 106) comparing to
a modest size N ≈ 227 considered here. However, some
new problems of this multiplex network analysis should
be resolved combining a democracy in countries with vol-
ume importance of products which role is not democratic.
It is quite possible that such an improved analysis will
generate an asymmetric ranking of products in contrast
to their symmetric ranking by volume in export and im-
port. The ecological ranking of the WTN discussed in the
previous SubSec. indicates preferences and asymmetry of
trade in multiple products (Ermann and Shepelyansky ,
2013a).

It is also important to note that usually in economy re-
searchers analyze time evolution of various indexes study-
ing their correlations. The results presented above for the
WTN show that in addition to time evolution there is also
evolution in space of the network. Like for waves in an
ocean time and space are both important and we think
that time and space study of trade captures important
geographical factors which will play a dominant role for
analysis of contamination propagation over the WTN in
case of crisis. We think that the WTN data capture many
essential elements which will play a rather similar role for
financial flows in the interbank payment networks. We
expect that the analysis of financial flows between bank
units would prevent important financial crisis shaking the
world in last years. Unfortunately, in contrast to WWW
and UN COMTRADE, the banks keep hidden their fi-
nancial flows. Due to this secrecy of banks the society
is still suffering from financial crises. And all this for a
network of very small size estimated on a level of 50 thou-
sands bank units for the whole world being by a factor
million smaller than the present size of WWW (e.g. Fed-
wire interbank payment network of USA contains only
6600 nodes (Soramaki et al., 2007)). In a drastic contrast
with bank networks the WWW provided a public access
to its nodes changing the world on a scale of 20 years. A
creation of the World Bank Web (WBW) with informa-
tion accessible for authorized investigators would allow
to understand and control financial flows in an efficient
manner preventing the society from bank crises. We note
that the methods of network analysis and ranking start
to attract interest of researchers in various banks (see e.g.
(Craig and von Peter, 2010; Garratt et al., 2011)).
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XII. NETWORKS WITH NILPOTENT ADJACENCY
MATRIX

A. General properties

In certain networks (Frahm et al., 2012a, 2014b) it is
possible to identify an ordering scheme for the nodes such
that the adjacency matrix has non-vanishing elements
Amn only for nodes m < n providing a triangular ma-
trix structure. In these cases it is possible to provide a
semi-analytical theory (Frahm et al., 2012a, 2014b) which
allows to simplify the numerical calculation of the non-
vanishing eigenvalues of the matrix S introduced in Sec.
III.A. It is useful to write this matrix in the form

S = S0 + (1/N) e dT (10)

where the vector e has unit entries for all nodes and the
dangling vector d has unit entries for dangling nodes and
zero entries for the other nodes. The extra contribution
e dT /N just replaces the empty columns (of S0) with
1/N entries at each element. For a triangular network
structure the matrix S0 is nilpotent, i.e. Sl0 = 0 for some

integer l > 0 and Sl−10 6= 0. Furthermore for the network
examples studied previously (Frahm et al., 2012a, 2014b)
we have l� N which has important consequences for the
eigenvalue spectrum of S.

There are two groups of (right) eigenvectors ψ of S
with eigenvalue λ. For the first group the quantity
C = dT ψ vanishes and ψ is also an eigenvector of S0

and if S0 is nilpotent we have λ = 0 (there are also
many higher order generalized eigenvectors associated to
λ = 0). For the second group we have C 6= 0, λ 6= 0
and the eigenvector is given by ψ = (λ11− S0)−1 C e/N .
Expanding the matrix inverse in a finite geometric series
(for nilpotent S0) and applying the condition C = dT ψ
on this expression one finds that the eigenvalue must be
a zero of the reduced polynomial of degree l:

Pr(λ) = λl −
l−1∑
j=0

λl−1−j cj = 0 , cj = dT Sj0 e/N .

(11)
This shows that there are at most l non-vanishing eigen-

values of S with eigenvectors ψ ∝
∑l−1
j=0 λ

−j−1 v(j) where

v(j) = Sj0 e/N for j = 0, . . . , l − 1. Actually, the vectors

v(j) generate an S-invariant l-dimensional subspace and
from S v(j) = cj v

(0) + v(j+1) (using the identification

v(l) = 0) one obtains directly the l × l representation
matrix S̄ of S with respect to v(j) (Frahm et al., 2012a).
Furthermore, the characteristic polynomial of S̄ is indeed
given by the reduced polynomial (11) and the sum rule∑l−1
j=0 cj = 1 ensures that λ = 1 is indeed a zero of Pr(λ)

(Frahm et al., 2012a). The corresponding eigenvector

(PageRank P at α = 1) is given by P ∝
∑l−1
j=0 v

(j). The

remaining N − l (generalized) eigenvectors of S are as-
sociated to many different Jordan blocks of S0 for the
eigenvalue λ = 0.

These l non-vanishing complex eigenvalues can be nu-
merically computed as the zeros of the reduced polyno-
mial by the Newton-Maehly method, by a numerical di-
agonalization of the “small” representation matrix S̄ (or
better a more stable transformed matrix with identical
eigenvalues) or by the Arnoldi method using the uniform
vector e as initial vector. In the latter case the Arnoldi
method should theoretically (in absence of rounding er-
rors) exactly explore the l-dimensional subspace of the
vectors v(j) and break off after l iterations with l exact
eigenvalues.

However, numerical rounding errors may have a strong
effect due to the Jordan blocks for the zero eigenvalue
(Frahm et al., 2012a). Indeed, an error ε appearing in a
left bottom corner of a Jordan matrix of size D with zero
eigenvalue leads to numerically induced eigenvalues on a
complex circle of radius

|λε| = ε1/D . (12)

Such an error can become significant with |λ| > 0.1 even
for ε ∼ 10−15 as soon as D > 15. We call this phe-
nomenon the Jordan error enhancement. Furthermore,
also the numerical determination of the zeros of Pr(λ)
for large values of l ∼ 102 can be numerically rather
difficult. Thus, it may be necessary to use a high preci-
sion library such as the GNU GMP library either for the
determination of the zeros of Pr(λ) or for the Arnoldi
method (Frahm et al., 2014b).

B. PageRank of integers

A network for integer numbers (Frahm et al., 2012a)
can be constructed by linking an integer number n ∈
{1, . . . , N} to its divisors m different from 1 and n it-
self by an adjacency matrix Amn = M(n,m) where the
multiplicity M(n,m) is the number of times we can di-
vide n by m, i.e. the largest integer such that mM(n,m)

is a divisor of n, and Amn = 0 for all other cases. The
number 1 and the prime numbers are not linked to any
other number and correspond to dangling nodes. The
total size N of the matrix is fixed by the maximal con-
sidered integer. According to numerical data the num-
ber of links N` =

∑
mnAmn is approximately given

by N` = N (a` + b` lnN) with a` = −0.901 ± 0.018,
b` = 1.003± 0.001.

The matrix elements Amn are different from zero only
for n ≥ 2m and the associated matrix S0 is therefore
nilpotent with Sl0 = 0 and l = [log2(N)] � N . This tri-
angular matrix structure can be seen in Fig. 42(a) which
shows the amplitudes of S. The vertical green/gray lines
correspond to the extra contribution due to the dangling
nodes. These l non-vanishing eigenvalues of S can be effi-
ciently calculated as the zeros of the reduced polynomial
(11) up to N = 109 with l = 29. For N = 109 the largest
eigenvalues are λ1 = 1, λ2,3 ≈ −0.27178 ± i 0.42736,
λ4 ≈ −0.17734 and |λj | < 0.1 for j ≥ 5. The de-
pendence of the eigenvalues on N seems to scale with
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the parameter 1/ ln(N) for N → ∞ and in particular
γ2(N) = −2 ln |λ2(N)| ≈ 1.020+7.14/ lnN (Frahm et al.,
2012a). Therefore the first eigenvalue is clearly separated
from the second eigenvalue and one can chose the damp-
ing factor α = 1 without any problems to define a unique
PageRank.

FIG. 42 (Color online) Panel (a): the Google matrix of in-
tegers, the amplitudes of matrix elements Smn are shown by
color with blue/black for minimal zero elements and red/gray
for maximal unity elements, with 1 ≤ n ≤ 31 correspond-
ing to x−axis (with n = 1 corresponding to the left column)
and 1 ≤ m ≤ 31 for y−axis (with m = 1 corresponding to
the upper row). Panel (b): the full lines correspond to the
dependence of PageRank probability P (K) on index K for
the matrix sizes N = 107, 108, 109 with the PageRank evalu-
ated by the exact expression P ∝

∑l−1
j=0 v

(j). The green/gray
crosses correspond to the PageRank obtained by the power
method for N = 107; the dashed straight line shows the Zipf
law dependence P ∼ 1/K. After (Frahm et al., 2012a).

FIG. 43 (Color online) Panel (a): comparison of the first

three PageRank approximations P (i) ∝
∑i−1
j=0 v

(j) for i =

1, 2, 3 and the exact PageRank dependence P (K). Panel (b):
comparison of the dependence of the rescaled probabilities nP
and nP (3) on n. Both panels correspond to the case N = 107.
After (Frahm et al., 2012a).

The large values of N are possible because the vector
iteration v(j+1) = S0 v

(j) can actually be computed with-
out storing the N` ∼ N lnN non-vanishing elements of
S0 by using the relation:

v(j+1)
n =

[N/n]∑
m=2

M(mn,m)

Q(mn)
v(j)mn , if n ≥ 2 (13)

and v
(j+1)
1 = 0 (Frahm et al., 2012a). The initial vec-

tor is given by v(0) = e/N and Q(n) =
∑n−1
m=2M(n,m)

is the number of divisors of n (taking into account the
multiplicity). The multiplicity M(mn, n) can be recalcu-
lated during each iteration and one needs only to store
N(� N`) integer numbers Q(n). It is also possible to re-
formulate (13) in a different way without using M(mn, n)
(Frahm et al., 2012a). The vectors v(j) allow to compute
the coefficients cj = dT v(j) in the reduced polynomial

and the PageRank P ∝
∑l−1
j=0 v

(j). Fig. 42(b) shows the

PageRank for N ∈ {107, 108, 109} obtained in this way
and for comparison also the result of the power method
for N = 107.

Actually Fig. 43 shows that in the sum P ∝
∑l−1
j=0 v

(j)

already the first three terms give a quite satisfactory ap-
proximation to the PageRank allowing a further analyt-
ical simplified evaluation (Frahm et al., 2012a) with the
result P (n) ≈ CN/(bn n) for n � N , where CN is the
normalization constant and bn = 2 for prime numbers
n and bn = 6 − δp1,p2 for numbers n = p1 p2 being a
product of two prime numbers p1 and p2. The behavior
P (n)n ≈ CN/bn, which takes approximately constant
values on several branches, is also visible in Fig. 43 with
CN/bn decreasing if n is a product of many prime num-
bers. The numerical results up to N = 109 show that
the numbers n, corresponding to the leading PageRank
values for K = 1, 2, . . . , 32, are n = 2, 3, 5, 7, 4, 11,
13, 17, 6, 19, 9, 23, 29, 8, 31, 10, 37, 41, 43, 14, 47, 15,
53, 59, 61, 25, 67, 12, 71, 73, 22, 21 with about 30% of
non-primes among these values (Frahm et al., 2012a).

A simplified model for the network for integer numbers
with M(n,m) = 1 if m is divisor of n and 1 < m < n
has also been studied with similar results (Frahm et al.,
2012a).

C. Citation network of Physical Review

Citation networks for Physical Review and other scien-
tific journals can be defined by taking published articles
as nodes and linking an article A to another article B if A
cites B. PageRank and similar analysis of such networks
are efficient to determine influential articles (Newman ,
2001; Radicchi et al., 2009; Redner , 1998, 2005).

In citation network links go mostly from newer to older
articles and therefore such networks have, apart from the
dangling node contributions, typically also a (nearly) tri-
angular structure as can be seen in Fig. 44 which shows a
coarse-grained density of the corresponding Google ma-
trix for the citation network of Physical Review from the
very beginning until 2009 (Frahm et al., 2014b). How-
ever, due to the delay of the publication process in certain
rare instances a published paper may cite another paper
that is actually published a little later and sometimes
two papers may even cite mutually each other. There-
fore the matrix structure is not exactly triangular but
in the coarse-grained density in Fig. 44 the rare “future
citations” are not well visible.

The nearly triangular matrix structure implies large
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dimensional Jordan blocks associated to the eigenvalue
λ = 0. This creates the Jordan error enhancement (12)
with severe numerical problems for accurate computa-
tion of eigenvalues in the range |λ| < 0.3− 0.4 when us-
ing the Arnoldi method with standard double-precision
arithmetic (Frahm et al., 2014b).

FIG. 44 (Color online) Different representations of the Google
matrix structure for the Physical Review network until 2009.
(a) Density of matrix elements Gtt′ in the basis of the publi-
cation time index t (and t′). (b) Density of matrix elements in
the basis of journal ordering according to: Phys. Rev. Series I,
Phys. Rev., Phys. Rev. Lett., Rev. Mod. Phys., Phys. Rev. A,
B, C, D, E, Phys. Rev. STAB and Phys. Rev. STPER.
and with time index ordering inside each journal. Note
that the journals Phys. Rev. Series I, Phys. Rev. STAB and
Phys. Rev. STPER are not clearly visible due to a small num-
ber of published papers. Also Rev. Mod. Phys. appears only
as a thick line with 2-3 pixels (out of 500) due to a limited
number of published papers. The different blocks with tri-
angular structure correspond to clearly visible seven journals
with considerable numbers of published papers. Both pan-
els show the coarse-grained density of matrix elements on
500 × 500 square cells for the entire network. Color shows
the density of matrix elements (of G at α = 1) changing from
blue/black for minimum zero value to red/gray at maximum
value. After (Frahm et al., 2014b).

One can eliminate the small number of future cita-
tions (12126 which is 0.26 % of the total number of links
N` = 4691015) and determine the complex eigenvalue
spectrum of a triangular reduced citation network using
the semi-analytical theory presented in previous subsec-
tion. It turns out that in this case the matrix S0 is nilpo-
tent Sl0 = 0 with l = 352 which is much smaller than the
total network size N = 463348. The 352 non-vanishing
eigenvalues can be determined numerically as the zeros
of the polynomial (11) but due to an alternate sign prob-
lem with a strong loss of significance it is necessary to
use the high precision library GMP with 256 binary dig-
its (Frahm et al., 2014b).

The semi-analytical theory can also be generalized to
the case of nearly triangular networks, i.e. the full cita-
tion network including the future citations. In this case
the matrix S0 is no longer nilpotent but one can still gen-
eralize the arguments of previous subsection and discuss
the two cases where the quantity C = dT ψ either van-

ishes (eigenvectors of first group) or is different from zero
(eigenvectors of second group). The eigenvalues λ for the
first group, which may now be different from zero, can be
determined by a quite complicated but numerically very
efficient procedure using the subspace eigenvalues of S
and degenerate subspace eigenvalues of S0 (due to ab-
sence of dangling node contributions the matrix S0 pro-
duces much larger invariant subspaces than S) (Frahm
et al., 2014b). The eigenvalues of the second group are
given as the complex zeros of the rational function:

R(λ) = 1− dT 11

λ11− S0
e/N = 1−

∞∑
j=0

cjλ
−1−j (14)

with cj given as in (11) and now the series is not finite
since S0 is not nilpotent. For the citation network of
Physical Review the coefficients cj behave as cj ∝ ρj1
where ρ1 ≈ 0.902 is the largest eigenvalue of the ma-
trix S0 with an eigenvector non-orthogonal to d. There-
fore the series in (14) converges well for |λ| > ρ1 but
in order to determine the spectrum the rational func-
tion R(λ) needs to be evaluated for smaller values of
|λ|. This problem can be solved by interpolating R(λ)
with (another) rational function using a certain number
of support points on the complex unit circle, where (14)
converges very well, and determining the complex zeros,
well inside the unit circle, of the numerator polynomial
using again the high precision library GMP (Frahm et al.,
2014b). In this way using 16384 binary digits one may
obtain 2500 reliable eigenvalues of the second group.

FIG. 45 (Color online) (a) Most accurate spectrum of eigen-
values for the full Physical Review network; red/gray dots rep-
resent the core space eigenvalues obtained by the rational in-
terpolation method with the numerical precision of p = 16384
binary digits, nR = 2500 eigenvalues; green (light gray) dots
show the degenerate subspace eigenvalues of the matrix S0

which are also eigenvalues of S with a degeneracy reduced by
one (eigenvalues of the first group); blue/black dots show the
direct subspace eigenvalues of S. (b) Spectrum of numerically
accurate 352 non-vanishing eigenvalues of the Google matrix
for the triangular reduced Physical Review network deter-
mined by the Newton-Maehly method applied to the reduced
polynomial (11) with a high-precision calculation of 256 bi-
nary digits; note the absence of subspace eigenvalues for this
case. In both panels the green/gray curve represents the unit
circle. After (Frahm et al., 2014b).
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The numerical high precision spectra obtained by the
semi-analytic methods for both cases, triangular reduced
and full citation network, are shown in Fig. 45. One
may mention that it is also possible to implement the
Arnoldi method using the high precision library GMP
for both cases and the resulting eigenvalues coincide very
accurately with the semi-analytic spectra for both cases
(Frahm et al., 2014b).

When the spectrum of G is determined with a good
accuracy we can test the validity of the fractal Weyl law
(5) changing the matrix size Nt by considering articles
published from the beginning to a certain time moment
t measured in years. The data presented in Fig. 46 show
that the network size grows approximately exponentially
as Nt = 2(t−t0)/τ with the fit parameters t0 = 1791,
τ = 11.4. The time interval considered in Fig. 46 is
1913 ≤ t ≤ 2009 since the first data point corresponds to
t = 1913 with Nt = 1500 papers published between 1893
and 1913. The results, for the number Nλ of eigenvalues
with |λi| > λ, show that its growth is well described
by the relation Nλ = a (Nt)

ν for the range when the
number of articles becomes sufficiently large 3 × 104 ≤
Nt < 5× 105. This range is not very large and probably
due to that there is a certain dependence of the exponent
ν on the range parameter λc. At the same time we note
that the maximal matrix size N studied here is probably
the largest one used in numerical studies of the fractal
Weyl law. We have 0.47 < ν < 0.6 for all λc ≥ 0.4
that is definitely smaller than unity and thus the fractal
Weyl law is well applicable to the Phys. Rev. network.
The value of ν increases up to 0.7 for the data points
with λc < 0.4 but this is due to the fact here Nλ also
includes some numerically incorrect eigenvalues related
to the numerical instability of the Arnoldi method at
standard double-precision (52 binary digits) as discussed
above.

We conclude that the most appropriate choice for the
description of the data is obtained at λc = 0.4 which from
one side excludes small, partly numerically incorrect, val-
ues of λ and on the other side gives sufficiently large val-
ues of Nλ. Here we have ν = 0.49± 02 corresponding to
the fractal dimension d = 0.98 ± 0.04. Furthermore, for
0.4 ≤ λc ≤ 0.7 we have a rather constant value ν ≈ 0.5
with df ≈ 1.0. Of course, it would be interesting to ex-
tend this analysis to a larger size N of citation networks
of various type and not only for Phys. Rev. We expect
that the fractal Weyl law is a generic feature of citation
networks.

Further studies of the citation network of Physical
Review concern the properties of eigenvectors (different
from the PageRank) associated to relatively large com-
plex eigenvalues, the fractal Weyl law, the correlations
between PageRank and CheiRank (see also subsection
IV.C) and the notion of “ImpactRank” (Frahm et al.,
2014b). To define the ImpactRank one may ask the ques-
tion how a paper influences or has been influenced by
other papers. For this one considers an initial vector v0,
localized on a one node/paper. Then the modified Google

matrix G̃ = γ G + (1 − γ) v0 e
T (with a damping factor

γ ∼ 0.5−0.9) produces a “PageRank” vf by the propaga-
tor vf = (1−γ)/(1−γG) v0. In the vector vf the leading
nodes/papers have strongly influenced the initial paper
represented in v0. Doing the same for G∗ one obtains a
vector v∗f where the leading papers have been influenced
by the initial paper represented in v0. This procedure
has been applied to certain historically important papers
(Frahm et al., 2014b).

FIG. 46 (Color online) Data for the whole CNPR at differ-
ent moments of time. Panel (a) (or (c)): shows the num-
ber Nλ of eigenvalues with λc ≤ λ ≤ 1 for λc = 0.50 (or
λc = 0.65) versus the effective network size Nt where the
nodes with publication times after a cut time t are removed
from the network. The green/gray line shows the fractal
Weyl law Nλ = a (Nt)

ν with parameters a = 0.32 ± 0.08
(a = 0.24 ± 0.11) and ν = 0.51 ± 0.02 (b = 0.47 ± 0.04) ob-
tained from a fit in the range 3 × 104 ≤ Nt < 5 × 105. The
number Nλ includes both exactly determined invariant sub-
space eigenvalues and core space eigenvalues obtained from
the Arnoldi method with double-precision (52 binary digits)
for nA = 4000 (red/gray crosses) and nA = 2000 (blue/black
squares). Panel (b): exponent b with error bars obtained from
the fit Nλ = a (Nt)

ν in the range 3× 104 ≤ Nt < 5× 105 ver-
sus cut value λc. Panel (d): effective network size Nt versus
cut time t (in years). The green/gray line shows the expo-

nential fit 2(t−t0)/τ with t0 = 1791 ± 3 and τ = 11.4 ± 0.2
representing the number of years after which the size of the
network (number of papers published in all Physical Review
journals) is effectively doubled. After (Frahm et al., 2014b).

In summary, the results of this section show that the
phenomenon of the Jordan error enhancement (12), in-
duced by finite accuracy of computations with a finite
number of digits, can be resolved by advanced numerical
methods described above. Thus the accurate eigenvalues
λ can be obtained even for the most difficult case of quasi-
triangular matrices. We note that for other networks like
WWW of UK universities, Wikipedia and Twitter the
triangular structure of S is much less pronounced (see
e.g. Fig. 1) that gives a reduction of Jordan blocks so
that the Arnoldi method with double precision computes
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accurate values of λ.

XIII. RANDOM MATRIX MODELS OF MARKOV
CHAINS

A. Albert-Barabási model of directed networks

There are various preferential attachment models gen-
erating complex scale-free networks (see e.g. (Albert and
Barabási , 2002; Dorogovtsev, 2010)). Such undirected
networks are generated by the Albert-Barabási (AB) pro-
cedure (Albert and Barabási , 2000) which builds net-
works by an iterative process. Such a procedure has
been generalized to generate directed networks in (Gi-
raud et al., 2009) with the aim to study properties of the
Google matrix of such networks. The procedure is work-
ing as follows: starting from m nodes, at each step m
links are added to the existing network with probability
p, orm links are rewired with probability q, or a new node
with m links is added with probability 1− p− q. In each
case the end node of new links is chosen with preferen-
tial attachment, i.e. with probability (ki+1)/

∑
j(kj+1)

where ki is the total number of ingoing and outgoing links
of node i. This mechanism generates directed networks
having the small-world and scale-free properties, depend-
ing on the values of p and q. The results are averaged
over Nr random realizations of the network to improve
the statistics.

The studies (Giraud et al., 2009) are done mainly for
m = 5, p = 0.2 and two values of q corresponding to
scale-free (q = 0.1) and exponential (q = 0.7) regimes
of link distributions (see Fig. 1 in (Albert and Barabási
, 2000) for undirected networks). For the generated di-
rected networks at q = 0.1, one finds properties close to
the behavior for the WWW with the cumulative distri-
bution of ingoing links showing algebraic decay P in

c (k) ∼
1/k and average connectivity 〈k〉 ≈ 6.4. For q = 0.7 one
finds P in

c (k) ∼ exp(−0.03k) and 〈k〉 ≈ 15. For outgoing
links, the numerical data are compatible with an expo-
nential decay in both cases with P out

c (k) ∼ exp(−0.6k)
for q = 0.1 and P out

c (k) ∼ exp(−0.1k) for q = 0.7. It is
found that small variations of parameters m, p, q near the
chosen values do not qualitatively affect the properties of
G matrix.

It is found that the eigenvalues of G for the AB model
have one λ = 1 with all other |λi| < 0.3 at α = 0.85
(see Fig. 1 in (Giraud et al., 2009)). This distribution
shows no significant modification with the growth of ma-
trix size 210 ≤ N ≤ 214. However, the values of IPR ξ
are growing with N for typical values |λ| ∼ 0.2. This
indicates a delocalization of corresponding eigenstates at
large N . At the same time the PageRank probability
is well described by the algebraic dependence P ∼ 1/K
with ξ being practically independent of N .

These results for directed AB model network shows
that it captures certain features of real directed networks,
as e.g. a typical PageRank decay with the exponent

β ≈ 1. However, the spectrum of G in this model is
characterized by a large gap between λ = 1 and other
eigenvalues which have λ ≤ 0.35 at α = 1. This feature
is in a drastic difference with spectra of such typical net-
works at WWW of universities, Wikipedia and Twitter
(see Figs. 17,22,32). In fact the AB model has no sub-
spaces and no isolated or weakly coupled communities.
In this network all sites can be reached from a given site
in a logarithmic number of steps that generates a large
gap in the spectrum of Google matrix and a rapid re-
laxation to PageRank eigenstate. In real networks there
are plenty of isolated or weakly coupled communities and
the introduction of damping factor α < 1 is necessary to
have a single PageRank eigenvalue at λ = 1. Thus the
results obtained in (Giraud et al., 2009) show that the
AB model is not able to capture the important spectral
features of real networks.

Additional studies in (Giraud et al., 2009) analyzed the
model of a real WWW university network with rewiring
procedure of links, which consists in randomizing the
links of the network keeping fixed the number of links
at any given node. Starting from a single network, this
creates an ensemble of randomized networks of same size,
where each node has the same number of ingoing and out-
going links as for the original network. The spectrum of
such randomly rewired networks is also characterized by
a large gap in the spectrum of G showing that rewiring
destroys the communities existing in original networks.
The spectrum and eigenstate properties are studied in
the related work on various real networks of moderate
size N < 2 × 104 which have no spectral gap (Georgeot
et al., 2010).

B. Random matrix models of directed networks

Above we saw that the standard models of scale-free
networks are not able to reproduce the typical properties
of spectrum of Google matrices of real large scale net-
works. At the same time we believe that it is important
to find realistic matrix models of WWW and other net-
works. Here we discuss certain results for certain random
matrix models of G.

Analytical and numerical studies of random unis-
tochastic or orthostochastic matrices of size N = 3 and 4
lead to triplet and cross structures in the complex eigen-
value spectra (Zyczkowski et al., 2003) (see also Fig. 18).
However, the size of such matrices is too small.

Here we consider other examples of random matrix
models of Perron-Frobenius operators characterized by
non-negative matrix elements and column sums normal-
ized to unity. We call these models Random Perron-
Frobenius Matrices (RPFM). A number of RPFM, with
arbitrary size N , can be constructed by drawing N2 in-
dependent matrix elements 0 ≤ Gij ≤ 1 from a given dis-
tribution p(Gij) with finite variance σ2 = 〈G2

ij〉 − 〈Gij〉2
and normalizing the column sums to unity (Frahm et al.,
2014b). The average matrix 〈Gij〉 = 1/N is just a pro-
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jector on the vector e (with unity entries on each node,
see also Sec. XII.A) and has the two eigenvalues λ1 = 1
(of multiplicity 1) and λ2 = 0 (of multiplicity N − 1).
Using an argument of degenerate perturbation theory on
δG = G− 〈G〉 and known results on the eigenvalue den-
sity of non-symmetric random matrices (Akemann et al.,
2011; Guhr et al., 1998; Mehta, 2004) one finds that an ar-
bitrary realization of G has the leading eigenvalue λ1 = 1
and the other eigenvalues are uniformly distributed on
the complex unit circle of radius R =

√
Nσ (see Fig. 47).

FIG. 47 (Color online) Panel (a) shows the spectrum
(red/gray dots) of one realization of a full uniform RPFM
with dimension N = 400 and matrix elements uniformly
distributed in the interval [0, 2/N ]; the blue/black circle
represents the theoretical spectral border with radius R =
1/
√

3N ≈ 0.02887. The unit eigenvalue λ = 1 is not
shown due to the zoomed presentation range. Panel (c)
shows the spectrum of one realization of triangular RPFM
(red/gray crosses) with non-vanishing matrix elements uni-
formly distributed in the interval [0, 2/(j− 1)] and a triangu-
lar matrix with non-vanishing elements 1/(j − 1) (blue/black
squares); here j = 2, 3, . . . , N is the index-number of non-
empty columns and the first column with j = 1 corresponds
to a dangling node with elements 1/N for both triangular
cases. Panels (b), (d) show the complex eigenvalue spectrum
(red/gray dots) of a sparse RPFM with dimension N = 400
andQ = 20 non-vanishing elements per column at random po-
sitions. Panel (b) (or (d)) corresponds to the case of uniformly
distributed non-vanishing elements in the interval [0, 2/Q]
(constant non-vanishing elements being 1/Q); the blue/black
circle represents the theoretical spectral border with radius
R = 2/

√
3Q ≈ 0.2582 (R = 1/

√
Q ≈ 0.2236). In panels

(b), (d) λ = 1 is shown by a larger red dot for better visi-
bility. The unit circle is shown by green/gray curve (panels
(b), (c), (d)). After (Frahm et al., 2014b).

Choosing different distributions p(Gij) one obtains dif-
ferent variants of the model (Frahm et al., 2014b), for

example R = 1/
√

3N using a full matrix with uniform

Gij ∈ [0, 2/N ]. Sparse models with Q � N non-
vanishing elements per column can be modeled by a dis-
tribution where the probability of Gij = 0 is 1 − Q/N
and for non-zero Gij (either uniform in [0, 2/Q] or con-
stant 1/Q) is Q/N leading to R = 2/

√
3Q (for uniform

non-zero elements) or R = 1/
√
Q (for constant non-zero

elements). The circular eigenvalue density with these
values of R is also very well confirmed by numerical
simulations in Fig. 47. Another case is a power law
p(G) = D/(1 + aG)−b (for 0 ≤ G ≤ 1) with D and
a to be determined by normalization and the average
〈Gij〉 = 1/N . For b > 3 this case is similar to a full ma-

trix with R ∼ 1/
√
N . However for 2 < b < 3 one finds

that R ∼ N1−b/2.
The situation changes when one imposes a triangu-

lar structure on G in which case the complex spectrum
of 〈G〉 is already quite complicated and, due to non-
degenerate perturbation theory, close to the spectrum
of G with modest fluctuations, mostly for the smallest
eigenvalues (Frahm et al., 2014b). Following the above
discussion about triangular networks (with Gij = 0 for
i ≥ j) we also study numerically a triangular RPFM
where for j ≥ 2 and i < j the matrix elements Gij are
uniformly distributed in the interval [0, 2/(j−1)] and for
i ≥ j we have Gij = 0. Then the first column is empty,
that means it corresponds to a dangling node and it needs
to be replaced by 1/N entries. For the triangular RPFM
the situation changes completely since here the average
matrix 〈Gij〉 = 1/(j − 1) (for i < j and j ≥ 2) has
already a nontrivial structure and eigenvalue spectrum.
Therefore the argument of degenerate perturbation the-
ory which allowed to apply the results of standard full
non-symmetric random matrices does not apply here. In
Fig. 47 one clearly sees that for N = 400 the spectra
for one realization of a triangular RPFM and its average
are very similar for the eigenvalues with large modulus
but both do not have at all a uniform circular density
in contrast to the RPRM models without the triangu-
lar constraint discussed above. For the triangular RPFM
the PageRank behaves as P (K) ∼ 1/K with the rank-
ing index K being close to the natural order of nodes
{1, 2, 3, . . .} that reflects the fact that the node 1 has the
maximum of N − 1 incoming links etc.

The above results show that it is not so simple to pro-
pose a good random matrix model which captures the
generic spectral features of real directed networks. We
think that investigations in this direction should be con-
tinued.

C. Anderson delocalization of PageRank?

The phenomenon of Anderson localization of electron
transport in disordered materials (Anderson , 1958) is
now a well-known effect studied in detail in physics (see
e.g. (Evers and Mirlin , 2008)). In one and two dimen-
sions even a small disorder leads to an exponential local-
ization of electron diffusion that corresponds to an insu-
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lating phase. Thus, even if a classical electron dynam-
ics is diffusive and delocalized over the whole space, the
effects of quantum interference generates a localization
of all eigenstates of the Schödinger equation. In higher
dimensions a localization is preserved at a sufficiently
strong disorder, while a delocalized metallic phase ap-
pears for a disorder strength being smaller a certain crit-
ical value dependent on the Fermi energy of electrons.
This phenomenon is rather generic and we can expect
that a somewhat similar delocalization transition can ap-
pear in the small-world networks.

FIG. 48 (Color online) (a) The red/gray and blue/black
curves represent the Poisson and Wigner surmise distribu-
tions. Diamonds, triangles, circles and black disks repre-
sent respectively the level spacing statistics p(s) at W/V =
4, 3, 2, 1; p` = 0.02, L = 32000; averaging is done over 60 net-
work realizations. (b) Stars give dependence of p` on a disor-
der strength W/V at the critical point when η`(W, p`) = 0.8,
and p` = 0.005, 0.01, 0.02, 0.04 at fixed L = 8000; the straight
line corresponds to p` = pc = 1/4`1 ≈ (W/V )2/400; the
dashed curve is drown to adapt an eye. After (Chepelianskii
and Shepelyansky , 2001).

Indeed, it is useful to consider the 1D Anderson model
on a ring with a certain number of shortcut links, de-
scribed by the Schödinger equation

εnψn + V (ψn+1 + ψn−1) + V
∑
S

(ψn+S + ψn−S) = Eψn ,

(15)
where εn are random on site energies homogeneously dis-
tributed within the interval −W/2 ≤ εn ≤ W/2, and
V is the hopping matrix element. The sum over S is
taken over randomly established shortcuts from a site
n to any other random site of the network. The num-
ber of such shortcuts is Stot = p`L, where L is the
total number of sites on a ring and p` is the density
of shortcut links. This model had been introduced in
(Chepelianskii and Shepelyansky , 2001). The numeri-
cal study, reported there, showed that the level-spacing
statistics p(s) for this model has a transition from the
Poisson distribution pPois(s) = exp(−s), typical for the
Anderson localization phase, to the Wigner surmise dis-
tribution pWig(s) = πs/2 exp(−πs2/4), typical for the
Anderson metallic phase (Evers and Mirlin , 2008; Guhr
et al., 1998). The numerical diagonalization was done
via the Lanczos algorithm for the sizes up to L = 32000
and the typical parameter range 0.005 ≤ p` < 0.1 and

1 ≤ W/V ≤ 4. An example, of the variation of p`(s)
with a decrease of W/V is shown in Fig. 48(a). We see
that the Wigner surmise provides a good description of
the numerical data at W/V = 1, when the maximal local-
ization length `1 ≈ 96(V/W )2 ≈ 96 in the 1D Anderson
model (see e.g. (Evers and Mirlin , 2008)) is much smaller
than the system size L.

To identify a transition from one limiting case pPois(s)
to another pWig(s) it is convenient to introduce the
parameter ηs =

∫ s0
0

(p(s) − pWig(s))ds/
∫ s0
0

(pPois(s) −
pWig(s))ds, where s0 = 0.4729... is the intersection point
of pPois(s) and pWig(s). In this way ηs varies from 1 (for
p(s) = pPois(s)) to 0 (for p(s) = pWig(s) ) (see e.g. (She-
pelyansky , 2001)). From the variation of ηs with system
parameters and size L, the critical density p` = pc can be
determined by the condition ηs(pc,W/V ) = ηc = 0.8 =
const. being independent of L. The obtained dependence
of pc on W/V obtained at a fixed critical point ηc = 0.8 is
shown in Fig. 48(b). The Anderson delocalization tran-
sition takes place when the density of shortcuts becomes
larger than a critical density p` > pc ≈ 1/(4`1) where
`1 ≈ 96(V/W )2 is the length of Anderson localization
in 1D. A simple physical interpretation of this result is
that the delocalization takes place when the localization
length `1 becomes larger than a typical distance 1/(4p`)
between shortcuts. The further studies of time evolution
of wave function ψn(t) and IPR ξ variation also confirmed
the existence of quantum delocalization transition on this
quantum small-world network (Giraud et al., 2005).

Thus the results obtained for the quantum small-world
networks (Chepelianskii and Shepelyansky , 2001; Giraud
et al., 2005) show that the Anderson transition can take
place in such systems. However, the above model repre-
sents an undirected network corresponding to a symmet-
ric matrix with a real spectrum while the typical directed
networks are characterized by asymmetric matrix G and
complex spectrum. The possibility of existence of local-
ized states of G for WWW networks was also discussed
by (Perra et al., 2009) but the fact that in a typical case
the spectrum of G is complex has not been analyzed in
detail.

Above we saw certain indications on a possibility of
Anderson type delocalization transition for eigenstates
of the G matrix. Our results clearly show that certain
eigenstates in the core space are exponentially localized
(see e.g. Fig 19(b)). Such states are localized only on
a few nodes touching other nodes of network only by an
exponentially small tail. A similar situation would ap-
pear in the 1D Anderson model if an absorption would
be introduced on one end of the chain. Then the eigen-
states located far away from this place would feel this
absorption only by exponentially small tails so that the
imaginary part of the eigenenergy would have for such
far away states only an exponentially small imaginary
part. It is natural to expect that such localization can
be destroyed by some parameter variation. Indeed, cer-
tain eigenstates with |λ| < 1 for the directed network
of the AB model have IPR ξ growing with the matrix
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size N (see Sec. XIII.A and (Giraud et al., 2009)) even if
for the PageRank the values of ξ remain independent of
N . The results for the Ulam network from Figs. 13, 14
provide an example of directed network where the PageR-
ank vector becomes delocalized when the damping factor
is decreased from α = 0.95 to 0.85 (Zhirov et al., 2010).
This example demonstrates a possibility of PageRank de-
localization but a deeper understanding of the conditions
required for such a phenomenon to occur are still lack-
ing. The main difficulty is an absence of well established
random matrix models which have properties similar to
the available examples of real networks.

Indeed, for Hermitian and unitary matrices the theo-
ries of random matrices, mesoscopic systems and quan-
tum chaos allow to capture main universal properties of
spectra and eigenstates (Akemann et al., 2011; Evers and
Mirlin , 2008; Guhr et al., 1998; Haake, 2010; Mehta,
2004). For asymmetric Google matrices the spectrum is
complex and at the moment there are no good random
matrix models which would allow to perform analytical
analysis of various parameter dependencies. It is possi-
ble that non-Hermitian Anderson models in 1D, which
naturally generates a complex spectrum and may have
delocalized eigenstates, will provide new insights in this
direction (Goldsheid and Khoruzhenko , 1998).

XIV. OTHER EXAMPLES OF DIRECTED NETWORKS

In this section we discuss additional examples of real
directed networks.

A. Brain neural networks

In 1958 John von Neumann traced first parallels be-
tween architecture of the computer and the brain (von
Neumann , 1958). Since that time computers became
an unavoidable element of the modern society forming a
computer network connected by the WWW with about
4× 109 indexed web pages spread all over the world (see
e.g. http://www.worldwidewebsize.com/). This number
starts to become comparable with 1010 neurons in a hu-
man brain where each neuron can be viewed as an inde-
pendent processing unit connected with about 104 other
neurons by synaptic links (see e.g. (Sporns , 2007)).
About 20% of these links are unidirectional (Felleman
and van Essen , 1991) and hence the brain can be viewed
as a directed network of neuron links. At present, more
and more experimental information about neurons and
their links becomes available and the investigations of
properties of neuronal networks attract an active inter-
est (see e.g. (Bullmore and Sporns , 2009; Zuo et al.,
2012)). The fact that enormous sizes of WWW and brain
networks are comparable gives an idea that the Google
matrix analysis should find useful application in brain
science as it is the case of WWW.

First applications of methods of Google matrix meth-

ods to brain neural networks was done in (Shepelyan-
sky and Zhirov , 2010b) for a large-scale thalamocor-
tical model (Izhikevich and Edelman , 2008) based on
experimental measures in several mammalian species.
The model spans three anatomic scales. (i) It is based
on global (white-matter) thalamocortical anatomy ob-
tained by means of diffusion tensor imaging of a human
brain. (ii) It includes multiple thalamic nuclei and six-
layered cortical microcircuitry based on in vitro label-
ing and three-dimensional reconstruction of single neu-
rons of cat visual cortex. (iii) It has 22 basic types of
neurons with appropriate laminar distribution of their
branching dendritic trees. According to (Izhikevich and
Edelman , 2008) the model exhibits behavioral regimes
of normal brain activity that were not explicitly built-in
but emerged spontaneously as the result of interactions
among anatomical and dynamic processes.

FIG. 49 (Color online) (a) Spectrum of eigenvalues λ for the
Google matrices G and G∗ at α = 0.85 for the neural network
of C.elegans (black and red/gray symbols). (b) Values of IPR
ξi of eigenvectors ψi are shown as a function of correspond-
ing Reλ (same colors). After (Kandiah and Shepelyansky ,
2014a).

The model studied in (Shepelyansky and Zhirov ,
2010b) contains N = 104 neuron with N` = 1960108.
The obtained results show that PageRank and CheiRank
vectors have rather large ξ being comparable with the
whole network size at α = 0.85. The corresponding
probabilities have very flat dependence on their indexes
showing that they are close to a delocalized regime. We
attribute these features to a rather large number of links
per node ζ ≈ 196 being even larger than for the Twitter
network. At the same time the PageRank-CheiRank cor-
relator is rather small κ = −0.065. Thus this network is
structured in such a way that functions related to order
signals (outgoing links of CheiRank) and signals bringing
orders (ingoing links of PageRank) are well separated and
independent of each other as it is the case for the Linux
Kernel software architecture. The spectrum of G has a
gapless structure showing that long living excitations can
exist in this neuronal network.

Of course, model systems of neural networks can pro-
vide a number of interesting insights but it is much more

http://www.worldwidewebsize.com/
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important to study examples of real neural networks. In
(Kandiah and Shepelyansky , 2014a) such an analysis is
performed for the neural network of C.elegans (worm).
The full connectivity of this directed network is known
and well documented at WormAtlas (Altun et al., 2012).
The number of linked neurons (nodes) is N = 279 with
the number of synaptic connections and gap junctions
(links) between them being N` = 2990.

FIG. 50 (Color online) PageRank - CheiRank plane (K,K∗)
showing distribution of neurons according to their rank-
ing. (a): soma region coloration - head (red/gray), mid-
dle (green/light gray), tail (blue/dark gray). (b): neuron
type coloration - sensory (red/gray), motor (green/light gray),
interneuron (blue/dark gray), polymodal (purple/light-dark
gray) and unknown (black). The classifications and colors
are given according to WormAtlas (Altun et al., 2012). After
(Kandiah and Shepelyansky , 2014a).

The Google matrix G of C.elegans is constructed using
the connectivity matrix elements Sij = Ssyn,ij + Sgap,ij ,
where Ssyn is an asymmetric matrix of synaptic links
whose elements are 1 if neuron j connects to neuron i
through a chemical synaptic connection and 0 otherwise.
The matrix part Sgap is a symmetric matrix describing
gap junctions between pairs of cells, Sgap,ij = Sgap,ji = 1
if neurons i and j are connected through a gap junc-
tion and 0 otherwise. Then the matrices G and G∗ are
constructed following the standard rule (1) at α = 0.85.
The connectivity properties of this network are similar to
those of WWW of Cambridge and Oxford with approxi-
mately the same number of links per node.

The spectra of G and G∗ are shown in Fig. 49 with
corresponding IPR values of eigenstates. The imaginary
part of λ is relatively small |Im(λ)| < 0.2 due to a large
fraction of symmetric links. The second by modulus
eigenvalues are λ2 = 0.8214 for G and λ2 = 0.8608 for
G∗. Thus the network relaxation time τ = 1/| lnλ2| is
approximately 5, 6.7 iterations of G,G∗. Certain IPR val-
ues ξi of eigenstates of G,G∗ have rather large ξ ≈ N/3
while others have ξ located only on about ten nodes.

We have a large value ξ ≈ 85 for PageRank and a more
moderate value ξ ≈ 23 for CheiRank vectors. Here we
have the algebraic decay exponents being β ≈ 0.33 for
P (K) and β ≈ 0.50 for P ∗(K∗). Of course, the network
size is not large and these values are only approximate.
However, they indicate an interchange between PageR-
ank and CheiRank showing importance of outgoing links.

It is possible that such an inversion is related to a signifi-
cant importance of outgoing links in neural systems: in a
sense such links transfer orders, while ingoing links bring
instructions to a given neuron from other neurons. The
correlator κ = 0.125 is small and thus, the network struc-
ture allows to perform a control of information flow in a
more efficient way without interference of errors between
orders and executions. We saw already in Sec. VII.A that
such a separation of concerns emerges in software archi-
tecture. It seems that the neural networks also adopt
such a structure.

We note that a somewhat similar situation appears for
networks of Business Process Management where Princi-
pals of a company are located at the top CheiRank posi-
tion while the top PageRank positions belong to company
Contacts (Abel and Shepelyansky , 2011). Indeed, a case
study of a real company structure analyzed in (Abel and
Shepelyansky , 2011) also stress the importance of com-
pany managers who transfer orders to other structural
units. For this network the correlator is also small being
κ = 0.164. We expect that brain neural networks may
have certain similarities with company organization.

Each neuron i belongs to two ranks Ki and K∗i and
it is convenient to represent the distribution of neurons
on PageRank-CheiRank plane (K,K∗) shown in Fig. 50.
The plot confirms that there are little correlations be-
tween both ranks since the points are scattered over
the whole plane. Neurons ranked at top K positions
of PageRank have their soma located mainly in both ex-
tremities of the worm (head and tail) showing that neu-
rons in those regions have important connections coming
from many other neurons which control head and tail
movements. This tendency is even more visible for neu-
rons at top K∗ positions of CheiRank but with a pref-
erence for head and middle regions. In general, neurons,
that have their soma in the middle region of the worm,
are quite highly ranked in CheiRank but not in PageR-
ank. The neurons located at the head region have top po-
sitions in CheiRank and also PageRank, while the middle
region has some top CheiRank indexes but rather large
indexes of PageRank (Fig. 50 (a)). The neuron type col-
oration (Fig. 50 (b)) also reveals that sensory neurons are
at top PageRank positions but at rather large CheiRank
indexes, whereas in general motor neurons are in the op-
posite situation.

Top nodes of PageRank and CheiRank favor important
signal relaying neurons such as AV A and AV B that in-
tegrate signals from crucial nodes and in turn pilot other
crucial nodes. Neurons AV AL,AV AR, AV BL,AV BR
and AV EL,AV ER are considered to belong to the rich
club analyzed in (Towlson et al., 2013). The top neurons
in 2DRank are AVAL, AVAR, AVBL, AVBR, PVCR that
corresponds to a dominance of interneurons. More details
can be found in (Kandiah and Shepelyansky , 2014a).

The technological progress allows to obtain now more
and more detailed information about neural networks
(see e.g. (Bullmore and Sporns , 2009; Towlson et al.,
2013; Zuo et al., 2012)) even if it is not easy to get infor-
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mation about link directions. In view of that we expect
that the methods of directed network analysis described
here will find useful future applications for brain neural
networks.

B. Google matrix of DNA sequences

The approaches of Markov chains and Google matrix
can be also efficiently used for analysis of statistical prop-
erties of DNA sequences. The data sets are publicly avail-
able at (Ensemble Genome database, 2011). The analysis
of Poincaré recurrences in these DNA sequences (Frahm
and Shepelyansky , 2012c) shows their similarities with
the statistical properties of recurrences for dynamical tra-
jectories in the Chirikov standard map and other sym-
plectic maps (Frahm and Shepelyansky , 2010). Indeed,
a DNA sequence can be viewed as a long symbolic tra-
jectory and hence, the Google matrix, constructed from
it, highlights the statistical features of DNA from a new
viewpoint.

An important step in the statistical analysis of DNA
sequences was done in (Mantegna et al., 1995) apply-
ing methods of statistical linguistics and determining
the frequency of various words composed of up to 7 let-
ters. A first order Markovian models have been also pro-
posed and briefly discussed in this work. The Google
matrix analysis provides a natural extension of this ap-
proach. Thus the PageRank eigenvector gives most fre-
quent words of given length. The spectrum and eigen-
states of G characterize the relaxation processes of differ-
ent modes in the Markov process generated by a symbolic
DNA sequence. Thus the comparison of word ranks of
different species allows to identify their proximity.

FIG. 51 (Color online) DNA Google matrix of Homo sapi-
ens (HS) constructed for words of 6-letters length. Matrix
elements GKK′ are shown in the basis of PageRank index K
(and K′). Here, x and y axes show K and K′ within the range
1 ≤ K,K′ ≤ 200 (a) and 1 ≤ K,K′ ≤ 1000 (b). The element
G11 at K = K′ = 1 is placed at top left corner. Color marks
the amplitude of matrix elements changing from blue/black
for minimum zero value to red/gray at maximum value. After
(Kandiah and Shepelyansky , 2013).

The statistical analysis is done for DNA sequences of
the species: Homo sapiens (HS, human), Canis familiaris

(CF, dog), Loxodonta africana (LA, elephant), Bos Tau-
rus (bull, BT), Danio rerio (DR, zebrafish) (Kandiah and
Shepelyansky , 2013). For HS DNA sequences are rep-
resented as a single string of length L ≈ 1.5 · 1010 base
pairs (bp) corresponding to 5 individuals. Similar data
are obtained for BT (2.9 · 109 bp), CF (2.5 · 109 bp), LA
(3.1 ·109 bp), DR (1.4 ·109 bp). All strings are composed
of 4 letters A,G,G, T and undetermined letter Nl . The
strings can be found from (Kandiah and Shepelyansky ,
2013).

For a given sequence we fix the words Wk of m letters
length corresponding to the number of states N = 4m.
We consider that there is a transition from a state j to
state i inside this basis N when we move along the string
from left to right going from a word Wk to a next word
Wk+1. This transition adds one unit in the transition
matrix element Tij → Tij + 1. The words with letter
Nl are omitted, the transitions are counted only between
nearby words not separated by words with Nl. There are
approximately Nt ≈ L/m such transitions for the whole
length L since the fraction of undetermined letters Nl is

small. Thus we have Nt =
∑N
i,j=1 Tij . The Markov ma-

trix of transitions Sij is obtained by normalizing matrix
elements in such a way that their sum in each column is
equal to unity: Sij = Tij/

∑
i Tij . If there are columns

with all zero elements (dangling nodes) then zeros of such
columns are replaced by 1/N . Then the Google matrix
G is constructed from S by the standard rule (1). It is
found that the spectrum of G has a significant gap and
a variation of α in a range (0.5, 1) does not affect signif-
icantly the PageRank probability. Thus all DNA results
are shown at α = 1.

FIG. 52 (Color online) Integrated fraction Ng/N
2 of Google

matrix elements with Gij > g as a function of g. (a) Vari-
ous species with 6-letters word length: elephant LA (green),
zebrafish DR(black), dog CF (red), bull BT (magenta), and
Homo sapiens HS (blue) (from left to right at y = −5.5). (b)
Data for HS sequence with words of length m = 5 (brown), 6
(blue), 7 (red) (from right to left at y = −2); for comparison
black dashed and dotted curves show the same distribution
for the WWW networks of Universities of Cambridge and Ox-
ford in 2006 respectively. After (Kandiah and Shepelyansky ,
2013).
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FIG. 53 (Color online) Integrated fraction Ns/N of sum of

ingoing matrix elements with
∑N
j=1Gi,j ≥ gs. Panels (a) and

(b) show the same cases as in Fig. 52 in same colors. The
dashed and dotted curves are shifted in x-axis by one unit
left to fit the figure scale. After (Kandiah and Shepelyansky
, 2013).

FIG. 54 (Color online) Dependence of PageRank probability
P (K) on PageRank index K. (a) Data for different species
for word length of 6-letters: zebrafish DR (black), dog CF
(red), Homo sapiens HS (blue), elephant LA (green) and bull
BT (magenta) (from top to bottom at x = 1). (b) Data
for HS (full curve) and LA (dashed curve) for word length
m = 5 (brown), 6 (blue/green), 7 (red) (from top to bottom
at x = 1). After (Kandiah and Shepelyansky , 2013).

The image of matrix elements GKK′ is shown in Fig. 51
for HS with m = 6. We see that almost all matrix is full
that is drastically different from the WWW and other
networks considered above. The analysis of statistical
properties of matrix elements Gij shows that their in-
tegrated distribution follows a power law as it is seen
in Fig. 52. Here Ng is the number of matrix elements
of the matrix G with values Gij > g. The data show
that the number of nonzero matrix elements Gij is very
close to N2. The main fraction of elements has values
Gij ≤ 1/N (some elements Gij < 1/N since for cer-
tain j there are many transitions to some node i′ with
Ti′j � N and e.g. only one transition to other i′′ with
Ti′′j = 1). At the same time there are also transition
elements Gij with large values whose fraction decays in
an algebraic law Ng ≈ AN/gν−1 with some constant A
and an exponent ν. The fit of numerical data in the

range −5.5 < log10 g < −0.5 of algebraic decay gives
for m = 6: ν = 2.46 ± 0.025 (BT), 2.57 ± 0.025 (CF),
2.67 ± 0.022 (LA), 2.48 ± 0.024 (HS), 2.22 ± 0.04 (DR).
For HS case we find ν = 2.68 ± 0.038 at m = 5 and
ν = 2.43± 0.02 at m = 7 with the average A ≈ 0.003 for
m = 5, 6, 7. There are visible oscillations in the algebraic
decay of Ng with g but in global we see that on average
all species are well described by a universal decay law
with the exponent ν ≈ 2.5. For comparison we also show
the distribution Ng for the WWW networks of Univer-
sity of Cambridge and Oxford in year 2006. We see that
in these cases the distribution Ng has a very short range
in which the decay is at least approximately algebraic
(−5.5 < log10(Ng/N

2) < −6). In contrast to that for
the DNA sequences we have a large range of algebraic
decay.

Since in each column we have the sum of all elements
equal to unity we can say that the differential fraction
dNg/dg ∝ 1/gν gives the distribution of outgoing matrix
elements which is similar to the distribution of outgoing
links extensively studied for the WWW networks. In-
deed, for the WWW networks all links in a column are
considered to have the same weight so that these ma-
trix elements are given by an inverse number of outgo-
ing links with the decay exponent ν ≈ 2.7. Thus, the
obtained data show that the distribution of DNA ma-
trix elements is similar to the distribution of outgoing
links in the WWW networks. Indeed, for outgoing links
of Cambridge and Oxford networks the fit of numerical
data gives the exponents ν = 2.80 ± 0.06 (Cambridge)
and 2.51± 0.04 (Oxford).

As discussed above, on average the probability of
PageRank vector is proportional to the number of ingoing
links that works satisfactory for sparse G matrices. For
DNA we have a situation where the Google matrix is al-
most full and zero matrix elements are practically absent.
In such a case an analogue of number of ingoing links is

the sum of ingoing matrix elements gs =
∑N
j=1Gij . The

integrated distribution of ingoing matrix elements with
the dependence of Ns on gs is shown in Fig. 53. Here Ns
is defined as the number of nodes with the sum of ingoing
matrix elements being larger than gs. A significant part
of this dependence, corresponding to large values of gs
and determining the PageRank probability decay, is well
described by a power law Ns ≈ BN/gµ−1s . The fit of data
at m = 6 gives µ = 5.59 ± 0.15 (BT), 4.90 ± 0.08 (CF),
5.37± 0.07 (LA), 5.11± 0.12 (HS), 4.04± 0.06 (DR). For
HS case at m = 5, 7 we find respectively µ = 5.86± 0.14
and 4.48 ± 0.08. For HS and other species we have an
average B ≈ 1.

For WWW one usually have µ ≈ 2.1. Indeed, for the
ingoing matrix elements of Cambridge and Oxford net-
works we find respectively the exponents µ = 2.12± 0.03
and 2.06± 0.02 (see curves in Fig. 53). For ingoing links
distribution of Cambridge and Oxford networks we ob-
tain respectively µ = 2.29 ± 0.02 and µ = 2.27 ± 0.02
which are close to the usual WWW value µ ≈ 2.1. In
contrast the exponent µ for DNA Google matrix elements
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gets significantly larger value µ ≈ 5. This feature marks
a significant difference between DNA and WWW net-
works.

The PageRank vector can be obtained by a direct di-
agonalization. The dependence of probability P on in-
dex K is shown in Fig. 54 for various species and dif-
ferent word length m. The probability P (K) describes
the steady state of random walks on the Markov chain
and thus it gives the frequency of appearance of various
words of length m in the whole sequence L. The frequen-
cies or probabilities of words appearance in the sequences
have been obtained in (Mantegna et al., 1995) by a direct
counting of words along the sequence (the available se-
quences L were shorted at that times). Both methods are
mathematically equivalent and indeed our distributions
P (K) are in good agreement with those found in (Man-
tegna et al., 1995) even if now we have a significantly
better statistics.

FIG. 55 (Color online) PageRank proximity K − K plane
diagrams for different species in comparison with Homo sapi-
ens: (a) x-axis shows PageRank index Khs(i) of a word i
and y-axis shows PageRank index of the same word i with
Kbt(i) of bull, (b) Kcf (i) of dog, (c) Kla(i) of elephant and
(d) Kdr(i) of zebrafish; here the word length is m = 6. The
colors of symbols marks the purine content in a word i (frac-
tions of letters A or G in any order); the color varies from
red/gray at maximal content, via brown, yellow, green, light
blue, to blue/black at minimal zero content. After (Kandiah
and Shepelyansky , 2013).

The decay of P with K can be approximately described
by a power law P ∼ 1/Kβ . Thus for example for HS
sequence at m = 7 we find β = 0.357 ± 0.003 for the fit
range 1.5 ≤ log10K ≤ 3.7 that is rather close to the
exponent found in (Mantegna et al., 1995). Since on
average the PageRank probability is proportional to the
number of ingoing links, or the sum of ingoing matrix

elements of G, one has the relation between the exponent
of PageRank β and exponent of ingoing links (or matrix
elements): β = 1/(µ− 1). Indeed, for the HS DNA case
at m = 7 we have µ = 4.48 that gives β = 0.29 being
close to the above value of β = 0.357 obtained from the
direct fit of P (K) dependence. The agreement is not so
perfect since there is a visible curvature in the log-log
plot of Ns vs gs and also since a small value of β gives
a moderate variation of P that produces a reduction of
accuracy of numerical fit procedure. In spite of this only
approximate agreement we conclude that in global the
relation between β and µ works correctly.

It is interesting to plot a PageRank index Ks(i) of a
given species s versus the index Khs(i) of HS for the same
word i. For identical sequences one should have all points
on diagonal, while the deviations from diagonal charac-
terize the differences between species. The examples of
such PageRank proximity K − K diagrams are shown
in Fig. 55 for words at m = 6. A visual impression is
that CF case has less deviations from HS rank compared
to BT and LA. The non-mammalian DR case has most
strong deviations from HS rank.

The fraction of purine letters A or G in a word of
m = 6 letters is shown by color in Fig. 55 for all words
ranked by PageRank index K. We see that these letters
are approximately homogeneously distributed over the
whole range of K values. To determine the proximity
between different species or different HS individuals we
compute the average dispersion

σ(s1, s2) =

√√√√ 1

N

N∑
i=1

(
Ks1(i)−Ks2(i)

)2
(16)

between two species (individuals) s1 and s2. Comparing
the words with length m = 5, 6, 7 we find that the scaling
σ ∝ N works with a good accuracy (about 10% when N
is increased by a factor 16). To represent the result in a
form independent of m we compare the values of σ with
the corresponding random model value σrnd. This value
is computed assuming a random distribution of N points
in a square N ×N when only one point appears in each
column and each line (e.g. at m = 6 we have σrnd ≈ 1673
and σrnd ∝ N). The dimensionless dispersion is then
given by ζ(s1, s2) = σ(s1, s2)/σrnd. From the ranking of
different species we obtain the following values at m = 6:
ζ(CF,BT ) = 0.308; ζ(LA,BT ) = 0.324, ζ(LA,CF ) =
0.303; ζ(HS,BT ) = 0.246, ζ(HS,CF ) = 0.206,
ζ(HS,LA) = 0.238; ζ(DR,BT ) = 0.425, ζ(DR,CF ) =
0.414, ζ(DR,LA) = 0.422, ζ(DR,HS) = 0.375 (other m
have similar values). According to this statistical analy-
sis of PageRank proximity between species we find that ζ
value is minimal between CF and HS showing that these
are two most similar species among those considered here.
The comparison of two HS individuals gives the value
ζ(HS1, HS2) = 0.031 being significantly smaller then
the proximity correlator between different species (Kan-
diah and Shepelyansky , 2012).

The spectrum of G is analyzed in detail in (Kandiah
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and Shepelyansky , 2012). It is shown that it has a rel-
atively large gap due to which there is a relatively rapid
relaxation of probability of a random surfer to the PageR-
ank values.

FIG. 56 (Color online) Distribution of nodes in the
PageRank-CheiRank plane (K,K∗) for Escherichia Coli v1.1
(a), and Yeast (b) gene transcription networks on (network
data are taken from (Milo et al., 2002; Shen-Orr et al., 2002)
and (Alon, 2014)). The nodes with five top probability values
of PageRank, CheiRank and 2DRank are labeled by their cor-
responding operon (node) names; they correspond to 5 lowest
values of indexes K,K2,K

∗. After (Ermann et al., 2012a).

C. Gene regulation networks

At present the analysis of gene transcription regula-
tion networks and recovery of their control biological
functions becomes an active research field of bioinfor-
matics (see e.g. (Milo et al., 2002)). Here, following
(Ermann et al., 2012a), we provide two simple examples
of 2DRanking analysis for gene transcriptional regulation
networks of Escherichia Coli (N = 423, N` = 519 (Shen-
Orr et al., 2002)) and Yeast (N = 690, N` = 1079 (Milo
et al., 2002)). In the construction of G matrix the outgo-
ing links to all nodes in each column are taken with the
same weight, α = 0.85.

The distribution of nodes in PageRank-CheiRank
plane is shown in Fig. 56. The top 5 nodes, with their
operon names, are given there for indexes of PageRank
K, CheiRank K∗ and 2DRank K2. This ranking se-
lects operons with most high functionality in commu-
nication (K∗), popularity (K) and those that combines
these both features (K2). For these networks the corre-
lator κ is close to zero (κ = −0.0645 for Escherichia Coli
and κ = −0.0497 for Yeast, see Fig. 6)) that indicates
the statistical independence between outgoing and ingo-
ing links being quite similarly to the case of the PCN for
the Linux Kernel. This may indicate that a slightly neg-
ative correlator κ is a generic property for the data flow
network of control and regulation systems. A similar sit-
uation appears for networks of business process manage-
ment and brain neural networks. Thus it is possible that
the networks performing control functions are character-
ized in general by small correlator κ values. We expect
that 2DRanking will find further useful applications for
large scale gene regulation networks.

D. Networks of game go

The complexity of the well-known game go is such
that no computer program has been able to beat a good
player, in contrast with chess where world champions
have been bested by game simulators. It is partly due
to the fact that the total number of possible allowed po-
sitions in go is about 10171, compared to e.g. only 1050

for chess (Tromp and Farnebäck , 2007).

It has been argued that the complex network analysis
can give useful insights for a better understanding of this
game. With this aim a network, modeling the game of
go, has been defined by a statistical analysis of the data
bases of several important historical professional and am-
ateur Japanese go tournaments (Georgeot and Giraud ,
2012). In this approach moves/nodes are defined as all
possible patterns in 3 × 3 plaquettes on a go board of
19×19 intersections. Taking into account all possible ob-
vious symmetry operations the number of non-equivalent
moves is reduced to N = 1107. Moves which are close in
space (typically a maximal distance of 4 intersections) are
assumed to belong to the same tactical fight generating
transitions on the network.

Using the historical data of many games, the tran-
sition probabilities between the nodes may be deter-
mined leading to a directed network with a finite size
Perron-Frobenius operator which can be analyzed by
tools of PageRank, CheiRank, complex eigenvalue spec-
trum, properties of certain selected eigenvectors and also
certain other quantities (Georgeot and Giraud , 2012;
Kandiah et al., 2014b). The studies are done for plaque-
ttes of different sizes with the corresponding network size
changing from N = 1107 for plaquettes squares with 3×3
intersections up to maximal N = 193995 for diamond-
shape plaquettes with 3×3 intersections plus the four at
distance two from the center in the four directions left,
right, top, down. It is shown that the PageRank leads
to a frequency distribution of moves which obeys a Zipf
law with exponents close to unity but this exponent may
slightly vary if the network is constructed with shorter
or longer sequences of successive moves. The important
nodes in certain eigenvectors may correspond to certain
strategies, such as protecting a stone and eigenvectors are
also different between amateur and professional games.
It is also found that the different phases of the game go
are characterized by a different spectrum of the G ma-
trix. The obtained results show that with the help of the
Google matrix analysis it is possible to extract commu-
nities of moves which share some common properties.

The authors of these studies (Georgeot and Giraud ,
2012; Kandiah et al., 2014b) argue that the Google ma-
trix analysis can find a number of interesting applications
in the theory of games and the human decision-making
processes.
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E. Opinion formation on directed networks

Understanding the nature and origins of mass opin-
ion formation is an outstanding challenge of democratic
societies (Zaller, 1999). In the last few years the enor-
mous development of such social networks as LiveJour-
nal, Facebook, Twitter, and VKONTAKTE, with up to
hundreds of millions of users, has demonstrated the grow-
ing influence of these networks on social and political
life. The small-world scale-free structure of the social
networks, combined with their rapid communication fa-
cilities, leads to a very fast information propagation over
networks of electors, consumers, and citizens, making
them very active on instantaneous social events. This
invokes the need for new theoretical models which would
allow one to understand the opinion formation process in
modern society in the 21st century.

The important steps in the analysis of opinion for-
mation have been done with the development of vari-
ous voter models, described in great detail in (Castel-
lano et al., 2009; Krapivsky et al., 2010). This research
field became known as sociophysics (Galam , 1986, 2008).
Here, following (Kandiah and Shepelyansky , 2012), we
analyze the opinion formation process introducing sev-
eral new aspects which take into account the generic fea-
tures of social networks. First, we analyze the opinion
formation on real directed networks such as WWW of
Universities of Cambridge and Oxford (2006), Twitter
(2009) and LiveJournal. This allows us to incorporate the
correct scale-free network structure instead of unrealistic
regular lattice networks, often considered in voter mod-
els. Second, we assume that the opinion at a given node
is formed by the opinions of its linked neighbors weighted
with the PageRank probability of these network nodes.
The introduction of such a weight represents the reality
of social networks where network nodes are characterized
by the PageRank vector which provides a natural rank-
ing of node importance, or elector or society member
importance. In a certain sense, the top nodes of PageR-
ank correspond to a political elite of the social network
whose opinion influences the opinions of other members
of the society (Zaller, 1999). Thus the proposed PageR-
ank opinion formation (PROF) model takes into account
the situation in which an opinion of an influential friend
from high ranks of the society counts more than an opin-
ion of a friend from a lower society level. We argue that
the PageRank probability is the most natural form of
ranking of society members. Indeed, the efficiency of
PageRank rating had been well demonstrated for various
types of scale-free networks.

The PROF model is defined in the following way. In
agreement with the standard PageRank algorithm we de-
termine the probability P (Ki) for each node ordered by
PageRank index Ki (using α = 0.85). In addition, a net-
work node i is characterized by an Ising spin variable σi
which can take values +1 or 1, coded also by red or blue
color, respectively. The sign of a node i is determined by
its direct neighbors j, which have PageRank probabilities

Pj . For that we compute the sum Σi over all directly
linked neighbors j of node i:

Σi = a
∑
j(P

+
j,in − P−j,in)+

b
∑
j(P

+
j,out − P−j,out) , a+ b = 1 ,

(17)

where Pj,in and Pj,out denote the PageRank probability
Pj of a node j pointing to node i (ingoing link) and a
node j to which node i points to (outgoing link), respec-
tively. Here, the two parameters a and b are used to
tune the importance of ingoing and outgoing links with
the imposed relation a+ b = 1 (0 ≤ a, b ≤ 1). The values
P+ and P− correspond to red and blue nodes, and the
spin σi takes the value 1 or −1, respectively, for Σi > 0
or Σi < 0. In a certain sense we can say that a large
value of parameter b corresponds to a conformist society
in which an elector i takes an opinion of other electors
to which he/she points. In contrast, a large value of a
corresponds to a tenacious society in which an elector i
takes mainly the opinion of those electors who point to
him/her. A standard random number generator is used
to create an initial random distribution of spins σi on a
given network. The time evolution then is determined by
the relation (17) applied to each spin one by one. When
all N spins are turned following (17) a time unit t is
changed to t → t + 1. Up to Nr = 104 random initial
generations of spins are used to obtain statistically stable
results. We present results for the number of red nodes
since other nodes are blue.

FIG. 57 (Color online) Density plot of probability Wf to find
a final red fraction ff , shown in y−axis, in dependence on an
initial red fraction fi, shown in x− axis; data are shown inside
the unit square 0 ≤ fi, ff ≤ 1. The values of Wf are defined
as a relative number of realisations found inside each of 20×20
cells which cover the whole unit square. Here Nr = 104 real-
izations of randomly distributed colors are used to obtained
Wf values; for each realization the time evolution is followed
up the convergence time with up to t = 20 iterations; (a)
Cambridge network; (b) Oxford network at a = 0.1. The
probability Wf is proportional to color changing from zero
(blue/black) to unity (red/gray). After (Kandiah and Shep-
elyansky , 2012).

The main part of studies is done for the WWW of
Cambridge and Oxford discussed above. We start with
a random realization of a given fraction of red nodes
fi = f(t = 0) which evolution in time converges to a
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steady state with a final fraction of red nodes ff approx-
imated after time tc ≈ 10. However, different initial re-
alisations with the same fi value evolve to different final
fractions ff clearly showing a bistability phenomenon.
To analyze how the final fraction of red nodes ff depends
on its initial fraction fi, we study the time evolution f(t)
for a large number Nr of initial random realizations of
colors following it up to the convergence time for each
realization. We find that the final red nodes are homoge-
neously distributed in PageRank index K. Thus there is
no specific preference for top society levels for an initial
random distribution. The probability distribution Wf of
final fractions ff is shown in Fig. 57 as a function of ini-
tial fraction fi at a = 0.1. The results show two main
features of the model: a small fraction of red opinion is
completely suppressed if fi < fc and its larger fraction
dominates completely for fi > 1− fc; there is a bistabil-
ity phase for the initial opinion range fb ≤ fi ≤ 1 − fb.
Of course, there is a symmetry in respect to exchange of
red and blue colors. For the small value a = 0.1 we have
fb ≈ fc with fc ≈ 0.25. For the larger value a = 0.9 we
have fc ≈ 0.35, fb ≈ 0.45 (Kandiah and Shepelyansky ,
2012).

FIG. 58 (Color online) PROF-Sznajd model, option 1: den-
sity plot of probability Wf to find a final red fraction ff ,
shown in y−axis, in dependence on an initial red fraction
fi, shown in x− axis; data are shown inside the unit square
0 ≤ fi, ff ≤ 1. The values of Wf are defined as a relative
number of realizations found inside each of 100 × 100 cells
which cover the whole unit square. Here Nr = 104 realiza-
tions of randomly distributed colors are used to obtained Wf

values; for each realization the time evolution is followed up
the convergence time with up to τ = 107 steps. (a) Cambridge
network; (b) Oxford network; here Ng = 8. The probability
Wf is proportional to color changing from zero (blue/black) to
unity (red/gray). After (Kandiah and Shepelyansky , 2012).

Our interpretation of these results is the following. For
small values of a� 1 the opinion of a given society mem-
ber is determined mainly by the PageRank of neighbors
to whom he/she points (outgoing links). The PageR-
ank probability P of nodes to which many nodes point
is usually high, since P is proportional to the number of
ingoing links. Thus at a � 1 the society is composed of
members who form their opinion by listening to an elite
opinion. In such a society its elite with one color opinion
can impose this opinion on a large fraction of the soci-

ety. Indeed, the direct analysis of the case, where the top
Ntop = 2000 nodes of PageRank index have the same red
color, shows that this 1% of the society elite can impose
its opinion to about 50% of the whole society at small a
values (conformist society) while at large a values (tena-
cious society) this fraction drops significantly (see Fig.4
in (Kandiah and Shepelyansky , 2012)). We attribute
this to the fact that in Fig. 57 we start with a randomly
distributed opinion, since the opinion of the elite has two
fractions of two colors this creates a bistable situation
when the two fractions of society follow the opinions of
this divided elite, which makes the situation bistable on
a larger interval of fi compared to the case of a tenacious
society at a → 1. When we replace in (17) P by 1 then
the bistability disappears.

However, the detailed understanding of the opinion for-
mation on directed networks still waits it development.
Indeed, the results of PROF model for the LiveJournal
and Twitted networks show that the bistability in these
networks practically disappears. Also e.g. for the Twit-
ter network studied in Sec. X.A, the elite of Ntop = 35000
(about 0.1% of the whole society) can impose its opinion
to 80% of the society at small a < 0.15 and to about
30% for a > 0.15 (Kandiah and Shepelyansky , 2012).
It is possible that a large number of links between top
PageRank nodes in Twitter creates a stronger tendency
to a totalitarian opinion formation comparing to the case
of University networks. At the same time the studies of
opinion formation with the PROF model on the Ulam
networks (Chakhmakhchyan and Shepelyansky , 2013),
which have not very large number of links, show practi-
cally no bistability in opinion formation. It is expected
that a small number of loops is at the origin of such a
difference in respect to university networks.

Finally we discuss a more generic version of opinion
formation called the PROF-Sznajd model (Kandiah and
Shepelyansky , 2012). Indeed, we see that in the PROF
model on university network opinions of small groups of
red nodes with fi < fc are completely suppressed that
seems to be not very realistic. In fact, the Sznajd model
(Sznajd-Weron and Sznajd , 2000) features the idea of
resistant groups of a society and thus incorporates a well-
known trade union principle “United we stand, divided
we fall”. Usually the Sznajd model is studied on regular
lattices. Its generalization for directed networks is done
on the basis of the notion of group of nodes Ng at each
discrete time step τ .

The evolution of group is defined by the following rules:
(a) we pick in the network by random a node i and

consider the polarization of Ng − 1 highest PageRank
nodes pointing to it;

(b) if node i and all other Ng − 1 nodes have the same
color (same polarization), then these Ng nodes form a
group whose effective PageRank value is the sum of all

the member values Pg =
∑Ng

j=1 Pj ;

(c) consider all the nodes pointing to any member of
the group and check all these nodes n directly linked to
the group: if an individual node PageRank value Pn is
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less than the defined above Pg , the node joins the group
by taking the same color (polarization) as the group
nodes and increase Pg by the value of Pn; if it is not
the case, a node is left unchanged.

The above time step is repeated many times during
time τ , counting the number of steps and choosing a ran-
dom node i on each next step.

The time evolution of this PROF-Sznajd model con-
verges to a steady state approximately after τ ≈ 10N
steps. This is compatible with the results obtained for
the PROF model. However, the statistical fluctuations
in the steady-state regime are present keeping the color
distribution only on average. The dependence of the final
fraction of red nodes ff on its initial value fi is shown by
the density plot of probability Wf in Fig. 58 for the uni-
versity networks. The probability Wf is obtained from
many initial random realizations in a similar way to the
case of Fig. 57. We see that there is a significant differ-
ence compared to the PROF model: now even at small
values of fi we find small but finite values of ff , while
in the PROF model the red color disappears at fi < fc.
This feature is related to the essence of the Sznajd model:
here, even small groups can resist against the totalitar-
ian opinion. Other features of Fig. 58 are similar to those
found for the PROF model: we again observe bistability
of opinion formation. The number of nodes Ng, which
form the group, does not significantly affect the distribu-
tion Wf (for studied 3 ≤ Ng ≤ 13).

The above studies of opinion formation models on
scale-free networks show that the society elite, corre-
sponding to the top PageRank nodes, can impose its
opinion on a significant fraction of the society. However,
for a homogeneous distribution of two opinions, there
exists a bistability range of opinions which depends on a
conformist parameter characterizing the opinion forma-
tion. The proposed PROF-Sznajd model shows that to-
talitarian opinions can be escaped from by small subcom-
munities. The enormous development of social networks
in the last few years definitely shows that the analysis
of opinion formation on such networks requires further
investigations.

XV. DISCUSSION

Above we considered many examples of real directed
networks where the Google matrix analysis finds useful
applications. The examples belong to various sciences
varying from WWW, social and Wikipedia networks,
software architecture to world trade, games, DNA se-
quences and Ulam networks. It is clear that the concept
of Markov chains and Google matrix represents now the
mathematical foundation of directed network analysis.

For Hermitian and unitary matrices there are now
many universal concepts, developed in theoretical
physics, so that the main properties of such matrices
are well understood. Indeed, such characteristics as level
spacing statistics, localization and delocalization prop-

erties of eigenstates, Anderson transition (Anderson ,
1958), quantum chaos features can be now well han-
dled by various theoretical methods (see e.g. (Akemann
et al., 2011; Evers and Mirlin , 2008; Guhr et al., 1998;
Haake, 2010; Mehta, 2004)). A number of generic models
has been developed in this area allowing to understand
the main effects via numerical simulations and analytical
tools.

In contrast to the above case of Hermitian or unitary
matrices, the studies of matrices of Markov chains of di-
rected networks are now only at their initial stage. In
this review, on examples of real networks we illustrated
certain typical properties of such matrices. Among them
there is the fractal Weyl law, which has certain traces
in the field of quantum chaotic scattering, but the main
part of features are new ones. In fact, the spectral prop-
erties of Markov chains had not been investigated on a
large scale. We try here to provide an introduction to the
properties of such matrices which contain all information
about large scale directed networks. The Google matrix
is like The Library of Babel (Borges, 1962), which con-
tains everything. Unfortunately, we are still not able to
find generic Markov matrix models which reproduce the
main features of the real networks. Among them there
is the possible spectral degeneracy at damping α = 1,
absence of spectral gap, algebraic decay of eigenvectors.
Due to absence of such generic models it is still difficult to
capture the main properties of real directed networks and
to understand or predict their variations with a change
of network parameters. At the moment the main part
of real networks have an algebraic decay of PageRank
vector with an exponent β ≈ 0.5 − 1. However, certain
examples of Ulam networks (see Figs. 13, 14) show that
a delocalization of PageRank probability over the whole
network can take place. Such a phenomenon looks to be
similar to the Anderson transition for electrons in disor-
dered solids. It is clear that if an Anderson delocalization
of PageRank would took place, as a result of further de-
velopments of the WWW, the search engines based on
the PageRank would loose their efficiency since the rank-
ing would become very sensitive to various fluctuations.
In a sense the whole world would go blind the day such
a delocalization takes place. Due to that a better under-
standing of the fundamental properties of Google matri-
ces and their dependencies on various system parameters
have a high practical significance. We believe that the
theoretical research in this direction should be actively
continued. In many respects, as the Library of Babel, the
Google matrix still keeps its secrets to be discovered by
researchers from various fields of science. We hope that a
further research will allow “to formulate a general theory
of the Library and solve satisfactorily the problem which
no conjecture had deciphered: the formless and chaotic
nature of almost all the books.” (Borges, 1962)
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