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Abstract. We analyze the game of go from the point of view of complex networks. We construct three
different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of
increasing sizes, and links as actual successions of these patterns in databases of real games. We discuss
the peculiarities of these networks compared to other types of networks. We explore the ranking vectors
and community structure of the networks and show that this approach enables to extract groups of moves
with common strategic properties. We also investigate different networks built from games with players of
different levels or from different phases of the game. We discuss how the study of the community structure
of these networks may help to improve the computer simulations of the game. More generally, we believe
such studies may help to improve the understanding of human decision process.

1 Introduction

The study of complex networks has become more and
more important in the recent past. In particular, com-
munication and information networks have become ubiq-
uitous in everyday life. New tools have been created to
understand the mechanisms of growth of such networks
and their generic properties. On the other hand, it has
been realized that other phenomena can also be modelized
by such tools, e.g. in social sciences, linguistics, and so
on [1–3].

However, the tools of complex networks were never ap-
plied to the study of human games. Nevertheless, games
represent one of the oldest human activities, and may give
insight into the human decision-making processes. In ref-
erence [4], a network was built that describes the game of
go, one of the oldest and most famous board games. The
complexity of the game is such that no computer program
has been able to beat a good player, in contrast with chess
where world champions have been bested by game simu-
lators. It is partly due to the fact that the total number of
possible allowed positions in go is about 10171, compared
to e.g. only 1050 for chess [5]. In fact, among traditional
board games it has by far the largest state space complex-
ity [6]. Part of the complexity of the game of go comes
from this large number of different board states, due to
the fact that it is played on a board (the goban) com-
posed of 19 vertical lines and 19 horizontal lines, implying
361 possible positions, against 64 in chess. Also, it is very
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hard for a computer to evaluate the positional advantages
in the course of the game, while in chess the capture of
different pieces can be easily compared.

Due to that, the study of computer go has become an
important subfield of computer science. Its main challenge
is to estimate a value function of moves, that is, a func-
tion which assigns a value to each move, given a certain
state of the goban. Traditional approaches evaluate the
value function by using huge databases of patterns, from
initial patterns to life-and-death situations, and can learn
to predict the value of moves by reinforcement learning
(see e.g. [7]). By contrast, the recently introduced Monte-
Carlo go does not rest primarily on expert knowledge. Its
basic principle is to evaluate the value of a move by play-
ing at random, according to the rules of go, from a given
state, until the end, so that a value can be assigned to the
move. Playing thousands of games allows to estimate the
value function for each move. This approach has proved
way more efficient than the classical approaches [8,9].

Many improvements have since then been included
in Monte-Carlo go. In particular, Monte-Carlo tree
search, implemented in computer programs such as Crazy
Stone [10] or MoGo [11], is based on the construction of
a tree of goban states, where new states are added itera-
tively as they are met in a simulation. The value function
is updated depending on the outcome of each randomly
played game. Random moves are chosen according to some
playing policy which can itself be biased towards certain
moves (for instance, capture whenever possible), and in
such a way that most promising moves are more carefully
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explored, but with an incentive to visit moves with a large
uncertainty on their actual value. Recent improvements
allow to improve the exploration of the tree [12]. To get
faster estimates of the value of a move the RAVE (Rapid
Action Value Estimation) algorithm, or its Monte-Carlo
version, attributes to a move in a given state s the aver-
age outcome of all games where that move is played after
state s has been encountered [13]. In order to account for
rarely visited states, a heuristic prior knowledge can be
fed into the algorithm to attribute an a priori value to a
move, such as e.g. the value of its grand-father, or a value
depending on local patterns [14].

Although global features, such as chain connections,
or the influence of stones over domains of the goban, are
crucial in the game of go, local features can be used at
many places in the algorithms of computer go, for instance
to improve the heuristic value function which initializes
the value of each move, or to get a faster estimate of the
exact value [15,16].

There is therefore a clear interest in having a better
understanding of local features in the game of go. In ref-
erence [4], two of us introduced a small network based
on local positional patterns and showed that it can be
used to extract information on the tactical sequences used
in real games. However, the small size of the plaquettes
made it difficult to disambiguate many strategically dif-
ferent moves. In the present paper, we construct three
networks based on positional patterns of different sizes,
and study their properties. The network size varies by a
factor one hundred, and the largest one enables to specify
more precise features that were difficult to disambiguate
in reference [4]. In particular, the community structure is
much easier to characterize and discuss. After presenting
the details of the construction of the networks (Sect. 2)
we study their global properties such as ranking vectors
and spectra of the Google matrix, contrast them to other
types of networks, and relate them to specific features of
the game (Sect. 3). In Section 4, we study in detail the
characterization of communities of nodes in the networks,
a well-known subject in network theory, which in our case
enables to regroup tactical moves with common features.
In Section 5 we propose the construction of different net-
works corresponding to specific phases of the game or to
different levels of players.

2 The go networks

The game of go is played on a board (goban) of 19×19 in-
tersections of vertical and horizontal lines. Each player al-
ternately places a stone of his/her color (black or white)
at an empty intersection. Empty intersections next to a
group of connected stones of the same color are called “lib-
erties”. If only one liberty remains, the group of stones
is said to be in atari. When the last liberty is occupied
and the group is entirely surrounded by the opponent,
its stones must be removed. The aim of the game is to
surround large territories and to secure their possession.
Good players follow general strategies through a series of

local tactical fights. We construct the networks represent-
ing the game by connecting local moves played in the same
neighbourhood (note the similarity with some language
networks [17–19] which are also based on local features).
We describe a move by identifying the empty intersection
(h, v) (with 1 ≤ h, v ≤ 19) where the new stone is placed.

The vertices of our networks are based on what we
call “plaquettes”, i.e. a part of the goban with a given
shape and size which depends on the network. Each pla-
quette corresponds to a certain pattern of white and black
stones with an empty intersection at its center, on which
black will put a stone. We identify plaquettes which are
related by translation on the goban or by a symmetry of
the square, and additionally those with colors swapped.

The first network we consider (Network I) is made as
in reference [4] by taking as plaquettes squares of 3×3 in-
tersections, which are subparts of the goban of the form
{(h + r, v + s),−1 ≤ r, s ≤ 1} (edges and corners of
the board can be accounted for by imagining additional
dummy lines outside the board). Once borders and sym-
metries are taken into account, we obtain as vertices of
network I a total of 1107 nonequivalent plaquettes (with
empty centers).

Network II is made by also taking squares of 3×3 inter-
sections and identifying plaquettes related by symmetry,
but we also include the atari status of the four nearest-
neighbour points from the center. Atari status assesses if
the chain of stones to which a given stone belongs has
only one liberty (one empty intersection connected to it).
Removing the last liberty of a chain in atari entails the
capture of the whole group. In this case, many seemingly
possible configurations are not legal since they would con-
tradict the atari status. This leaves 2051 legal nonequiv-
alent plaquettes with empty centers (the same figure was
found in Ref. [20]).

Network III is based on diamond-shape plaquettes: the
3 × 3 plaquettes discussed above plus the four at dis-
tance two from the center in the four directions left, right,
top, down. We still identify plaquettes related by sym-
metry, but do not take into account the atari status. This
gives us 193 995 nonequivalent plaquettes with empty cen-
ters, which are the vertices of network III (96 771 are so
rare that they are actually never used in our database of
games).

We have identified the occurrence of these different pla-
quettes in games from a database available at [21]. This
database contains the sequence of moves of 135 663 differ-
ent games corresponding to players of diverse levels (the
level of the players is marked by a number of dans, from 1
to 9). The games recorded have been played online, and
the dans have been mutually assessed according to the
results of these plays. The frequency of the different pla-
quettes is shown in Figure 1. It can be compared to Zipf’s
law, an empirical law seen in many natural distributions
(word frequency, city sizes, chess openings...) [22–25]. For
items ranked according to their frequency, it corresponds
to a power-law decay of the frequency versus the rank. The
data presented in Figure 1 show that the three different
network choices all give rise to a distribution following
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Fig. 1. Distribution of frequency of occurrences w(i) of differ-
ent plaquettes for the three different networks (full lines), from
left to right at the bottom: red: square plaquettes (network I),
green: square plaquettes with atari status (network II), blue:
diamond plaquettes (network III)(see text)(data from networks
I and II are indistinguishable over parts of the curves). The
dashed straight lines are power law fits with slopes −1.02 (black
upper line, fit of network II) and −0.94 (brown lower line, fit
of network III).
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Fig. 2. Top 30 plaquettes in frequency of occurrences for the
network III (diamond plaquettes). Black plays at the black
cross. Dotted intersections are outside the diamond plaquette
and their status is unknown.

Zipf’s law, although the slope varies from ≈–1 (networks
I and II) to a slightly slower decay for the largest network
(network III).

We display in Figure 2 the top 30 moves in order of
decreasing frequency of occurrences for network III. The
most common correspond to few stones on the plaquettes,
which is natural since these ones are present at the begin-
ning of almost all local fights, while the subsequent moves
differ from games to games.

To define links of our three networks, we connect ver-
tices corresponding to moves a and b played at (ha, va)
and (hb, vb) on the board if b follows a in a game of the
database and max{|hb−ha|, |vb−va|} ≤ d, where d is some
distance. Here contrary to [4] we put a link only between
a an the first move following a in the specified zone. Each
integer d corresponds to a different network. It specifies
the distance beyond which two moves are considered unre-
lated. In reference [4], different values of d were considered
and it was shown that the value d = 4 was the most rele-
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Fig. 3. Distribution of incoming links Pin (black) and out-
going links Pout (red/grey) for the three different networks;
square plaquettes (network I) (squares), square plaquettes with
atari (network II) (triangles), diamond plaquettes (network III)
(crosses). The dashed lines are power law fits with slopes −1.47
(right) and −1.69 (left).

vant, allowing a correct hierarchization of moves: related
local fights are kept while far away tactical moves are not
taken into account. In the following we will thus retain
this value d = 4. Two vertices are thus connected by a
number of directed links given by the number of times the
two corresponding moves follow each other in the same
neighbourhood of the goban in the games of the database.

With this definition, the three networks are now de-
fined, with vertices connected by directed links. The total
number of links including degeneracies is 26 116 006 links.
The numbers without degeneracies are, respectively,
558 190 (network I), 852 578 (network II) and 7 405 395
(network III). The link distributions are shown in Fig-
ure 3; it is close to a power-law. This implies that the
networks present the scale-free property [1–3]. One can
notice a symmetry between ingoing and outgoing links,
which is a peculiarity of this problem, and is not seen in
e.g. the World Wide web, where the exponent for Pout

(≈–2.7) is different from the one for Pin (≈–2.1) [26,27].
Here exponents are similar and close to 1.5, intermediate
between these two values. Our results indicate the pres-
ence of a symmetry (at least at a statistical level) between
moves that follow many different others and moves which
have many possible followers. This symmetry is natural,
since in many cases (i.e. in the course of a local fight)
the occurrence of a plaquette in the database implies the
presence of both an ingoing and an outgoing link.

3 Ranking vectors and spectra
of Google matrices

We have presented up to now the construction of our net-
works for the game of go, and their global statistical prop-
erties. To get more insight into the organization of the
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game, we use tools developed in the framework of net-
work theory, in order to hierarchize vertices of a network.
Such tools are routinely used by search engines to decide in
which order answers to queries are presented. The general
strategy is to build a ranking vector, whose value on each
vertex will measure its importance. A famous vector of this
type is the PageRank [28,29], which has been at the basis
of the Google search engine. It can be obtained from the
Google matrix G, defined as Gij = αSij + (1 − α) tee/N ,
where e = (1, ..., 1), N is the size of the network, α is a
parameter such that 0 < α ≤ 1 (we chose α = 1 in the
computations in this paper), and S is the weighted adja-
cency matrix. The latter starts from the adjacency matrix
where the value of the entry (i, j) corresponds to the num-
ber of links from vertex j to vertex i; then one replaces
any column of 0 by a column of 1, and one normalizes
the sum of each column to 1. This ensures that the ma-
trix G has the mathematical property of stochasticity. The
PageRank vector is defined as the right eigenvector of the
matrix G associated with the largest eigenvalue λ = 1.
It singles out as important vertices the ones with many
incoming links from other important nodes. Equivalently,
it can be seen as giving the average time a random surfer
on the network will spend on each vertex. Indeed, the pro-
cess of iterating G can be seen as the action of a random
surfer choosing randomly at each node to follow a link
to another node. The largest eigenvalue corresponds to
the equilibrium distribution of the surfer, and gives the
average time spent on each node. Other ranking vectors
which can be built from the graph include the CheiRank
vector [30,31], and the Hubs and Authorities of the HITS
algorithm [32]. While PageRanks and Hubs attribute im-
portance to vertices depending on their incoming links,
CheiRanks and Authorities stem from outgoing links. In
particular, CheiRank can be defined as the PageRank of
the “dual” network where all links are inverted. We denote
the Google matrix of this dual network by G∗.

In Figure 4 the distributions of PageRank and
CheiRank are shown for the three networks, showing that
ranking vectors follow an algebraic law, with a slightly dif-
ferent exponent for the largest network. Similarly as for
the link distribution, one sees a symmetry between distri-
butions of ranking vectors based on ingoing links and out-
going links, again an original feature which can be related
to the statistical symmetry between ingoing and outgoing
links and the fact that at lowest approximation ranking
vectors can be approximated by in- or outgoing links [33].

In order to check to what extent this symmetry affects
the ranking vectors, we plot in Figure 5 the CheiRank
K∗ as a function of the PageRank K. It indeed shows
that the two quantities are not independent, and strong
correlations between PageRank and CheiRank do exist.
This symmetry is not visible in general for other net-
works (see e.g. [34] where similar plots are shown in the
context of world trade, displaying much less correlation).
Nevertheless, the symmetry is clearly not exact, especially
for the largest network (a perfect correlation will produce
points only on the diagonal); the plots are not even sym-
metric with respect to the diagonal. Thus PageRank and
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Fig. 4. Distribution of ranking vectors (normalized by∑
K P (K) =

∑
K∗ P

∗(K∗) = 1) for the three different net-
works: PageRank P (K) (solid lines) and CheiRank P ∗(K∗)
(dashed lines), same color code for the networks as in Figure 1
(data from networks I and II are indistinguishable over parts
of the curves). The dotted lines are power law fits with slopes
−1.03 (orange upper line, fit of network II) and −0.89 (black
lower line, fit of network III).
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Fig. 5. PageRank-CheiRank correlation plot of the three dif-
ferent networks: square plaquettes (network I)(top left), square
plaquettes with atari status (network II)(top right) and dia-
mond plaquettes (network III)(bottom). PageRank K is given
in x-axis and CheiRank K∗ in y-axis, the plot of network III
is a zoom on the top 20 000 moves in both K and K∗.

CheiRank produce genuinely different information on the
network.

Figure 6 shows the first 30 plaquettes in decreasing
importance in the PageRank and CheiRank vectors. The
correlation between the two sequences is clearly visible,
although it is again not perfect. We note that these se-
quences are also very similar to the one obtained by just
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Fig. 6. Top 30 plaquettes for first eigenvector of G (PageRank)
(top) and G∗ (CheiRank) (bottom) of the network III.
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Fig. 7. Correlation plot of PageRank-CheiRank vs. fre-
quency of moves for network III (diamond plaquettes) (only
first 1000 moves in K are shown); blue squares: PageRank K,
red crosses: CheiRank K∗.

counting the move frequency (as in Zipf’s law): most fre-
quent moves tend to dominate the ranking vectors.

However, as Figure 7 shows, the correlation between
ranking vectors and frequency ordering is far from per-
fect, especially for the PageRank, which can be extremely
different from the rank obtained by frequency. This shows
that the ranking vectors present an information obtained
from the network construction, which differs from the
mere frequency count of moves in the database. Indeed, as
explained above the frequency count is related to the link
distribution due to the construction process of the net-
work. It is known in general that the PageRank has some
relation with the distribution of ingoing links, but with the
significant difference that it highlights nodes whose ingo-
ing links come from (recursively defined) other important
nodes. This was the basis of the fortune of Google and
in our case means that highlighted moves correspond to
plaquettes with ingoing links coming from other impor-
tant plaquettes. Thus the PageRank underlines moves to
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Fig. 8. Spectrum in the complex plane of G (black squares)
and G∗ (red/grey crosses) for the three different networks:
I (top), II (middle) and III (bottom).

which converge many well-trodden paths of history in the
different games of the database. The CheiRank does the
same in the reverse direction, highlighting moves which
open many such paths.

The ranking vectors discussed above are just one eigen-
vector of the matrices associated with a given network.
However, other eigenvalues and their associated eigenvec-
tors also contain information about the network. We have
computed the spectrum of the Google matrix for the three
networks; they are shown in Figure 8. For square plaque-
ttes (network I) and square plaquettes plus atari status
(network II) all eigenvalues are computed. In the case of
the largest network, standard diagonalization techniques
could not be used and therefore we used an Arnoldi-
type algorithm to compute the largest few thousands
eigenvalues in the complex plane. For the G matrix of
the diamond network (network III), about 1000 eigenvec-
tors were computed. For G∗ matrix of diamond network,
about 500 eigenvectors were computed.

Stochasticity of G and G∗ implies that their spectra
are necessarily inside the unit disk. For the World Wide
Web the spectrum is spread inside the unit circle [35,36],
with no gap between the largest eigenvalue and the bulk.
For networks I and II, Figure 8 shows a huge gap between
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the first and the other eigenvalues. For the third network,
there is still a gap between the first eigenvalue and next
ones, but it is smaller. While the distribution of the rank-
ing vectors shown in Figure 4 reflects the distribution of
links, the gap in the spectrum is related to the connec-
tivity of the network and the presence of large isolated
communities [35,36]. The presence of a large gap indicates
a large connectivity, which is reasonable for the smaller
networks. The presence of a smaller gap for network III
indicates that there is more structure in the networks with
larger plaquettes which disambiguate the different game
paths and makes more visible the communities of moves.
However, the gap being still present shows that even at the
level of diamond-shaped plaquettes, the moves can belong
to many different communities: this underlines one of the
specificities of the game of go, which makes a given posi-
tion part of many different strategic processes, and makes
it so difficult to simulate by a computer.

The results in this section show that the tools of com-
plex networks such as ranking vectors associated to the
largest eigenvalue already give new information which
clearly go beyond the mere frequency count of the moves.
This could be used to make more efficient the Monte Carlo
algorithms of computer go. Nevertheless, other eigenval-
ues also carry valuable information, that we will study in
the next section.

4 Eigenvectors and communities

In the preceding section, we displayed the spectra of the
networks constructed from the game of go. We have al-
ready discussed the ranking vectors associated to the
largest eigenvalue. The other eigenvectors give a differ-
ent information. In Figure 9 we display the intensities of
the first 200 eigenvectors of the three different networks.
It is clear that eigenvectors have specific features, not
being spread out uniformly or localized around a single
specific location. Correlations are also clearly visible be-
tween different eigenvectors, materialized by the vertical
lines where several eigenvectors have similar intensities on
the same node. Correlations are less visible on the largest
network, but it is also due to the much largest size of the
vectors which decreases the individual projections on each
node. It is interesting to note that these correlations are
not necessarily related to the PageRank values or the fre-
quency of moves: vertical lines tend to be more visible on
the left of the figure corresponding to high PageRank, but
they are present all over the interval: certain sequences of
eigenvectors have correlated peaks at locations with rela-
tively low PageRank.

In order to quantify these effects, we first look at the
spreading of eigenvectors: for a given vector, how many
sites have significant projections? This can be measured
for a vector ψ through the Inverse Participation Ratio
(IPR):

∑
i |ψi|4/(

∑
i |ψi|2)2. For a vector uniformly spread

over P vertices it would be equal to P . A random vector
thus has an IPR proportional to the size of the system.
The data of Figure 10 for the eigenvectors corresponding
to the largest eigenvalues show that these vectors are not

Fig. 9. Eigenvector correlation map of the matrix G for the
three different networks: I (top), II (middle) and III (bottom).
Top 200 eigenvectors in order of decreasing eigenvalue modu-
lus are plotted horizontally from bottom to top. Only the first
200 components are shown in the PageRank basis. The colors
are proportional to the modulus of components (the normal-
ization of an eigenstate ψ is

∑
i |ψi|2 = 1), from blue/dark grey

(minimal) to red/light grey (maximal).

http://www.epj.org
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Fig. 10. Histogram of IPR values (see text) for network I
(red/dark grey), network II (green/light grey) and network III
(blue/black). Top panel shows the values computed for eigen-
vectors of G and bottom panel shows the same for G∗. Data
correspond to the top 221 eigenvalues (network I), top 410
eigenvalues (network II) and top 999 eigenvalues (network III).

random or uniformly spread. On the contrary, their IPR is
quite small, even for the largest network: in this case only
a few dozen sites contribute to a given eigenvector, among
almost 200 000 possible nodes. Figure 10 also shows that
there is a relatively large dispersion of the IPR around the
mean value. We provide the distributions for the Google
matrices G and G∗. Qualitatively the features are similar,
but there is both a lower mean value and a lower disper-
sion for G∗, indicating that the statistical symmetry found
previously between incoming and outgoing links is indeed
only approximate.

What is the meaning of these eigenvectors? If one in-
terprets the Google matrix as describing a random walk
among the nodes of the network as in the original pa-
per [28], eigenvectors of G correspond to parts of the net-
work where the random surfer gets stopped for some time
before going elsewhere in the network. In other words,
they are localized on sets of moves which are more linked
together than with the rest of the network. This corre-
sponds to so-called communities of nodes which share cer-
tain common properties (see e.g. [37]). In social networks,
the importance of communities has been stressed several
times and they are the subject of a large number of studies
(see e.g. the review [38]). The use of the eigenvectors of G
to extract the communities is one of the many available
methods, which has been used already in the different con-
text of the World Wide Web [39]. As already mentioned,
eigenvectors with largest eigenvalues tend to be localized
on groups of nodes where the probability is trapped for
some time. This approach will thus detect communities of
nodes from where it is difficult to escape, i.e. with few links
leading to the outside. In parallel, the eigenvectors of G∗
tend to be localized on groups of nodes with few incoming
links from the outside. Figure 10 shows that this latter
type of community, obtained from G∗, tends to be smaller
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Fig. 11. Examples of the top 30 nodes where eigenvectors
of G localize themselves for diamond network, from top to
bottom λ7 = −0.618, λ11 = 0.185–0.5739i, λ13 = 0.5651,
λ21 = −0.4380.

on average for the go game than the former type, obtained
from G. These different communities should reflect differ-
ent strategic groupings of moves during the course of the
game.

The concept of community being intrinsically ambigu-
ous, one can assign a subjective meaning to the defini-
tion of the community related to a chosen method. In our
case, it is a difficult task to establish clear characteristics
regarding what moves should be considered belonging to
which community, however in the spirit of “moves that are
more played together” or “similar moves” we can observe
that a single eigenvector may contain a mixing of several
communities. This could explain why in Figure 9 one can
see similar patterns appearing in different eigenvectors.
These considerations are confirmed by Figures 11 and 12

http://www.epj.org
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Fig. 12. Examples of the top 30 nodes where eigenvectors
of G∗ localize themselves for diamond network, from top to
bottom λ7 = −0.6023, λ11 = 0.1743–0.5365i, λ18 = −0.4511,
λ21 = −0.4021.

where the first 30 moves of representative eigenvectors of
G and G∗ are displayed, ranked by decreasing compo-
nent modulus. While some common features appear, one
gets the impression that groups of moves corresponding
to different strategic processes are mixed and should be
disentangled; for instance the last example of Figure 11
seems to mix moves where black captures a white stone
and moves where black connects a chain.

In principle one could use correlations as the ones
shown in Figure 9 directly to identify communities, but
we chose a different strategy. We propose here different
basic methods that can be a first step into separating the
communities within a given eigenvector. The simplest and
most straightforward method consists in filtering out the
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Fig. 13. Same eigenvectors as in Figure 11 treated by filtering
out the top 30 PageRank moves.

effects of the most common and important moves by re-
moving the top moves given by PageRank and CheiRank
vectors. An example is shown in Figures 13 and 14 where
the remaining moves in the given eigenvectors corresponds
to a specific set of moves. Very common moves (such as
empty or almost empty plaquettes) have been deleted,
leaving more focused groups of moves. For example, the
third eigenvector in Figure 13 is much more focused on
various moves containing situations of Ko or of imminent
capture (Ko or “eternity” is a famous type of fights with
alternate captures of opponent’s stones).

A more systematic method that we propose is to con-
sider the ancestors of each move and determine if they
share a significant number of preceding moves. As the
Google matrix describes a Markovian transition model it
would be natural to look for incoming flows of two moves
to decide whether they belong to the same community.
We implement it as follows: We choose two moves m1

and m2, with, respectively, N1 and N2 incoming links. We
denote the origin of these incoming links pointing to m1

http://www.epj.org
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Fig. 14. Same eigenvectors as in Figure 12 treated by filtering
out the top 30 CheiRank moves.

and m2 as sets of moves S1 and S2. If both moves share
at least a certain fraction ε of common ancestors, that is
if ε min(N1, N2) < card(S1 ∩ S2), we assign both moves
to the same community. This process is iterated until no
more new moves are added to this community. This ex-
tracting process is of course empirical, but helps us never-
theless to sort out some subgroups of moves that are differ-
ent from those extracted with previous methods, provided
that the parameter ε is carefully tuned. Indeed a too low
value of ε does not help much in extracting a group as
in most cases moves share naturally a certain amount of
preceding moves but a too high value of ε will not capture
anything for a sparse matrix. In our network III we thus
used the range of values 0.3 < ε < 0.7. Unfortunately
there is no typical behaviour of how the size of a com-
munity varies with respect to ε: this size depends highly
on the initial move and on the number of components
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Fig. 15. Example of set of moves extracted from data of Fig-
ure 11 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7, λ11 and λ21, and
threshold level ε = 0.5 applied to λ13. .
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Fig. 16. Example of set of moves extracted from data of Fig-
ure 12 by considering common ancestry of moves with thresh-
old level ε = 0.3 (see text) applied to λ7, λ11, λ18 and λ21.

of an eigenvector on which one is allowed to explore the
ancestries.

We have applied this extracting process on eigenvec-
tors. We thus identify communities in two steps, the first
being to select eigenvectors corresponding to the largest
eigenvalues of G or G∗, and the second step to follow this
ancestry technique. As mentioned earlier an eigenvector
corresponding to a large eigenvalue modulus is more likely
to be localized on a small number of nodes, therefore one
can truncate a given eigenvector to retain its top nodes
and apply this method by choosing one of the top nodes
as the starting move and constructing the community by
successively exploring this subset. Starting from different
nodes will allow to identify the different communities. Fig-
ures 15 and 16 show that the method is able to extract
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moves which have common features, much more so that
just looking at largest components of the vectors or remov-
ing the ranking vectors (as in Figs. 11–14). Small sub-
sets of moves are disambiguated from the larger groups
of the preceding figures, showing sequences which seem
to go together with situations of Ko with different black
dispositions (first and third eigenvector of Fig. 15), black
connecting on the side of the board (fourth eigenvector of
Fig. 15), and so on. Similarly, the first line of Figure 16
can be associated to attempts by black to take over an
opponent’s chain on the rim of the board. These exam-
ples show that the method is effective to regroup moves
according to reasonably defined affinities.

We mention an alternative method which gives good
results in some instances. It consists in analyzing the an-
gles of an eigenvector components when plotted in a com-
plex plane. This method is not systematic as there exist
several real valued eigenvectors but for the complex ones
one can observe interesting patterns. Either the plots show
a meaningless cloud of points or they can reveal a tendency
of a subset of components to be aligned. As shown in an
example in Figure 17 there can be one or several direc-
tions within the same eigenvector, indicating that maybe
the phases of the components can characterize moves shar-
ing common properties. Qualitatively speaking the spatial
configuration of these subgroups of moves look similar but
there are also similarities between moves having differ-
ent angles, and a formal understanding of the meaning of
phases is still lacking. We note that for undirected net-
works the sign of components of eigenvectors of the adja-
cency matrix has been used to detect communities [40].

It is worth insisting again on the fact that in general
the next to leading eigenvectors in the Google matrix rep-
resent a different information from the list of most com-
mon moves. In fact, these eigenvectors can even sometimes
be highly sensitive to rare links, indeed during our anal-
ysis one impossible move was highlighted in one of the
top eigenvectors. This move had only two links among the
several millions, leading us to find a fake gamefile in the
dataset. This shows that the network approach can detect
specificities that a mere statistical analysis of the datasets
will miss.

It is in principle not excluded that one should look into
combinations of eigenvectors but even though we consid-
ered single vectors, the results show that it is possible to
extract community of moves which share some common
properties with these methods. The combination of meth-
ods outlined in this section, namely isolating top moves
in eigenvectors associated to large eigenvalues, and dis-
ambiguating them through search for common ancestries,
seems to yield meaningful groups of moves. We stress
again that they do not merely correspond to most played
moves or sequences of moves, nor to the best ranked in
the PageRank or CheiRank, but give a different informa-
tion related to the network structure around these moves.
It is possible to play with the parameters of the method
(threshold ε, number of eigenvectors, starting point of the
common ancestry) in order to find different sets of commu-
nities, which should be analyzed in relation with the strat-
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Fig. 17. Example of community extraction through phase
analysis (see text) applied on the eigenvector ψ of G∗ corre-
sponding to λ13. Top: eigenvector components in the complex
plane; groups of plaquettes, from top to bottom, correspond to
respective symbols red circles, blue squares, green diamonds,
oranges triangles and purple stars.

egy of the game, and then could help organize the Monte
Carlo go search by running it into specific communities.

5 Generalized networks

One can refine the analysis further by disaggregating the
datasets in several ways, constructing different networks
from the same database. The number of nodes is still the
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Fig. 18. Fluctuation difference rj =
∑

i←j |ki − k′i|/
∑

i ki

of outgoing links versus move indices for top 1500 moves of
diamond patterns in PageRank order (network III)(see text).
An example of difference is shown between two networks built
from games between 6d players (blue crosses) and two networks
built respectively from games between 1d players and games
between 9d players (red squares). The number of games in each
case is 2731, corresponding to the number of 1d/1d games in
the database [21].

same, but links are now selected according to some specific
criterion and may give rise to different properties. In this
section we will illustrate this by a few examples.

An important aspect of the games, especially in view
of applications to computer go, is to select moves which
are more susceptible of winning the game. It is possible
to separate the players between winners and losers, but
the presence of handicaps makes this process ambiguous.
Indeed, it is possible to place up to nine stones before the
beginning of the game at strategic locations, giving an ad-
vantage to a weaker player which may allow him to play
against a better opponent with a fair chance of winning.
Another possibility we thus investigated was to separate
the players by their levels according to their dan ranking.
Indeed, players are ranked from first dan (1d, lowest level)
to ninth dan (9d, highest level). In the database [21] the
number of dans of the players is known, and it is there-
fore possible to separate games played at different levels.
To explore these differences, we constructed the diamond
network from games played by 1d versus 1d, the one from
9d versus 9d, and the one from 6d versus 6d. Figure 18
shows the quantity rj =

∑
i←j |ki−k′i|/

∑
i ki defined for a

pair of networks, where ki (resp. k′i) is the number of links
from a fixed node j to node i for one network (resp. for
the second network). For each node, rj thus quantifies the
difference in outgoing links between two networks. Fig-
ure 18 shows the distribution of this quantity highlighting
the difference between the network 1d/1d and the net-
work 9d/9d. One sees that they are indeed different, with
a mean 〈rj〉 ≈ 1.33. Nevertheless, in the same figure we
add for comparison the difference between two networks
of 6d/6d, showing that one can also find differences be-
tween networks built from players of the same level. In
view of this, to see if the difference between 1d/1d and

a b c d e f g h i j k
sample 

1.2

1.25

1.3

1.35

1.4

r

Fig. 19. Difference r (see text) between the networks built
from games of 1d players and of 9d players (red cross) together
with several examples of r for pairs of networks constructed
from different samples of games of 6d players (green squares).
The three horizontal lines mark the mean and the variance of
the 6d values The number of games in each sample is 2731,
corresponding to the number of 1d/1d games in the database.

9d/9d is statistically significant, Figure 19 shows the av-
erage r = 〈rj〉 for different choices of samples of 6d versus
6d games and the value for the networks constructed from
the games of 1d players and 9d players, with the average
taken on top 1500 moves of the PageRank. It shows that
the difference between 1d players an 9d players has some
statistical significance. The quantity r is a simple way of
quantifying the structural differences in the networks at
the level of outgoing flows which is in our case an indi-
cation that 9d players might have an overall structurally
different style of play than 1d players, even though the
difference is relatively small.

An interesting possibility which might also be useful
for applications is to create separate networks for different
phases of the game. For instance, one can take into account
when using the database of real games only the first 50
moves, the middle 50, or the final 50. Again, this does not
modify the nodes of the networks, but changes the links,
creating three different networks corresponding to respec-
tively beginning, middle, and ending phases of the game.
The number of links is now 6 155936 for the beginning
phase, 6 460 771 for the middle phase, and 5 947 467 for the
ending phase (instead of 26 116 006 for the whole game)
(the numbers without degeneracies for diamond plaque-
ttes are respectively 613 953, 2 070 305 and 3 182 771). The
spectra of the three networks for the diamond plaquettes
are shown in Figure 20 (again, only the largest eigenvalues
are calculated). It is clear that the spectra are quite dif-
ferent, indicating that the structure of the network is not
equivalent for the different phases of the game. It is visible
that the eigenvalue cloud is larger for the ending phase in-
dicating that near the final stage of the game the random
surfer gets trapped more easily in specific patterns, which
should correspond to typical endgames. Similarly, the gap
is smaller for the beginning phase, indicating that one
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-0.5

0
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Fig. 20. Spectrum of G for diamond networks of different
game phases: first 50 moves (red crosses), middle 50 moves
(green circles) and last 50 moves (blue stars). The black squares
correspond to the spectrum of the network when the whole
game is taken into account, shown for reference.

strongly knit community exists with an eigenvalue close
to the PageRank value.

The eigenvectors shown in Figure 21 highlight different
sets of moves as might be expected since strategy should
differ in those phases. Obviously, eigenvectors for open-
ing moves are much more biased towards relatively empty
plaquettes, indicating the start of local fights. In the mid-
dle and end of the games, communities are biased towards
moves corresponding to more and more filled plaquettes,
indicating ongoing fights or fight endings. We stress the
fact that those sets of moves are not just the most played
moves in the respective phases. Running the community
detection process of Section 4 on such eigenvectors should
select communities specific to these different phases of the
game.

6 Conclusion

We have shown that it is possible to construct networks
which describe the game of go, in a spirit similar to the
ones already used for languages. We have extended the
results of [4], comparing three networks of different sizes
according to the size of the plaquettes which serve as
nodes of the network. The three networks share struc-
tural similarities, such as a statistical correlation (but
not an exact symmetry) between incoming and outgoing
links. However, the largest network, besides necessitating
more refined numerical tools in order to obtain the largest
eigenvalues and associated eigenvectors, is also much less
connected and disambiguates much better the different
moves. We have also shown that specific subnetworks can
be constructed, selecting links in the databases according
to levels of the players or phases of the game.

Our results show that the networks constructed in this
way have specific properties which reflect the peculiarities

. .

.

.

. .

. . .

.

.

. . .

. . . .

. .

. .

. . . .

. . .

.

.

. . .

. .

.

.

. .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . .

.

.

. . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. .

.

.

. .

. . .

.

.

. . .

. .

.

.

. .

. . .

.

.

. . .

. . .

.

.

. . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. . .

.

.

. . .

. . .

.

.

. . .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. .

.

.

. .

. . .

.

.

. . .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

.

.

. .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. . .

.

.

. . .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. . .

.

.

. . .

. .

.

.

. .

.

.

. .

. .

.

.

. .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. .

.

.

. .

. . .

.

.

. . .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. . .

.

.

. . .

. .

.

.

. .

. . .

.

.

. . .

. . .

.

.

. . .

. . .

.

.

. . .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. . . .

. .

. .

. . . .

. . . .

. .

. .

. . . .

. .

.

.

. .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

. . .

.

.

. . .

. .

.

.

. .

. .

.

.

. .

. .

.

.

. .

.

.

. .

. . . .

. .

. .

. . . .

. .

.

.

. .

Fig. 21. Examples of set of top 30 moves where eigenvectors
of G localize themselves, those examples are computed for dia-
mond network in different game phases: starting phase and λ4

(top), middle phase and λ4 (middle) and ending phase λ4

(bottom).

of the game. In particular, the PageRank and CheiRank
vectors give new orderings of the moves, which do not
merely correspond to most played moves or sequences of
moves, but give a different information. As explained in
Section 3, moves highlighted by the ranking vectors can
correspond to moves which are connected to chains of im-
portant moves, eventhough they are not that frequent (it
was this difference which made Google the famous com-
pany it is today). We have also shown that it is possi-
ble with these methods to extract communities of moves
which share some common properties. A possible use of
these results would be to help organize the Monte Carlo
go search by running it into specific communities. Indeed,
despite its limitations [41], Monte-Carlo go remains the
most promising approach to computer go. The main goal
of these algorithms is an efficient value function estima-
tion [12]. We have proposed in this paper various commu-
nity detection processes, and the knowledge of these com-
munities could be used for instance to initialize the value
of moves according to the local pattern, at a value given
by the value of its ancestors. It could also be used to prop-
agate the value of a move to similar moves. It would be

http://www.epj.org
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interesting to compare the values assigned to nodes of our
networks by the different computer programs available, in
order to see whether adjacency matrix properties could be
used to converge more quickly to the correct value func-
tion. We think an especially interesting path in this direc-
tion corresponds to the approach outlined in Section 5: by
constructing specific networks according to game phases
or levels of players, one can specify communities useful in
specific contexts of the game or corresponding to winning
strategies. It is also possible to use “personalization” tech-
niques (implemented by modifying the vector e in the def-
inition of G in Sect. 3 [29]) which are currently explored
in a World Wide Web context and allow to compute a
ranking vector biased towards a certain group of nodes,
e.g. one of the communities discussed in Section 4. All
these techniques deserve further study in this context.

It will be fascinating to see if other games such as chess
could be modelized this way, and how different the results
will be. Besides its applicability to the simulations of go
on computers, we also believe that such studies enable
to get insight on the way the human brain participates
in such game activities, and more generally on the hu-
man decision-making processes [9]. In this direction, an
interesting extension of this work could be to compare the
networks built from games played by human beings and
computers, and determine how different they are.
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