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We introduce a number of random matrix models describing
the Google matrix G of directed networks. The properties of
their spectra and eigenstates are analyzed by numerical ma-
trix diagonalization. We show that for certain models it is
possible to have an algebraic decay of PageRank vector with
the exponent similar to real directed networks. At the same
time the spectrum has no spectral gap and a broad distribu-
tion of eigenvalues in the complex plain. The eigenstates of
G are characterized by the Anderson transition from local-
ized to delocalized states and a mobility edge curve in the
complex plane of eigenvalues.

1 Introduction

The phenomenon of Anderson localization [1] appears in
a variety of quantum physical systems including electron
transport in disordered solids and waves in random me-
dia (see e.g. [2, 3]). It is usually analyzed in the frame of
Hermitian or unitary matrices. Recently, the localization
properties of nonunitary complex matrices has been an-
alyzed for Euclidean matrices [4] in relation to light and
wave localization [5].

In this work we analyze the possibilities of Anderson
like localization and delocalization for the matrices be-
longing to the class of Markov chains and Google ma-
trix G [6, 7]. Such matrices have real nonnegative el-
ements with the sum of elements in each column be-
ing equal to unity. For a directed network one first de-
fines an adjacency matrix Ai j which has element 1 if a
node j have a link pointing to node i and zero otherwise.
The columns with only zero elements (dangling nodes)
are replaced by columns with 1/N where N is the ma-
trix size. The elements of other columns are renormal-
ized in such a way that their sum becomes equal to unity
(
∑

i Si j = 1, Si j = Ai j/
∑

i Ai j ). Thus we obtain the matrix
Si j of Markov transitions. Then the Google matrix G of
the network takes the form [6, 7]:

Gi j = αSi j + (1 − α)/N. (1)

Here, the damping factor α is taken in the range 0 < α ≤
1. In the context of the World Wide Web (WWW) the
term (1 − α) describes for a random surfer a probability
to jump on any node of the network. The above construc-
tion of G has been proposed by Brin and Page [6] to de-
scribe the structure of the World Wide Web (WWW). For
the WWW it is assumed that the Google search engine
uses α ≈ 0.85 [7]. We can also consider a generalized case
of weighted Markov transitions Si j corresponding to real
positive elements of Ai j like happens for the world trade
network (see e.g. [8]).

The matrix G belongs to the class of Perron-Frobenius
operators, its largest eigenvalue is λ = 1 and other eigen-
values have |λ| ≤ α [7, 9]. The right eigenvector at λ = 1,
which is called the PageRank (G P = P), has real nonneg-
ative elements P(i) and gives a probability P(i) to find a
random surfer at site i. It is possible to rank all nodes in a
decreasing order of PageRank probability P(K (i)) so that
the PageRank index K (i) counts all N nodes i according
their ranking, placing the most popular nodes at the top
values K = 1, 2, 3.... Usually for many real directed net-
works the distributions of number of ingoing and out-
going links are described by a power law (see e.g. [10]),
generating an average approximately algebraic decay of
PageRank probability P(K ) ∝ 1/K β with β ≈ 0.9. Some
examples of directed networks can be found in [11].

It is important to note that matrices of Google class
practically have not been studied in physical systems
even if they naturally appear in the frame of Ulam net-
works generated by the Ulam method for dynamical
maps in a coarse-grained phase space (see e.g. [12–14]).

Therefore, it is interesting to see if the phenomena of
Anderson localization and Anderson delocalization tran-
sition can appear for Google matrices. Certain indica-
tions on a possible Anderson transition for the Ulam net-
works, built from dissipative maps, have been reported

∗ Corresponding author E-mail: dima@irsamc.ups-tlse.fr
1 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
2 Novosibirsk State University, 630090 Novosibirsk, Russia
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in [12] with more detailed discussions presented in [11].
Thus, it would be useful to find random matrix mod-
els which are able to reproduce typical properties of
spectrum and PageRank decay in real directed networks.
However, the results presented in [15] show that the full
matrix G with random matrix elements have an unreal-
istic spectrum and hence other random matrix models
of G should be developed. The models discussed in [16]
give certain indications of delocalization of eigenstates
of G but the spectrum of G in these models has a large
gap and is very far from the spectra of real directed net-
works. With this aim we describe below a number of ran-
dom Google matrix models and analyze the properties
of their spectra and eigenstates. We use certain spec-
tral properties of small size orthostochastic matrices with
N = 3, 4 established in [17].

2 Random matrix models of G

We start from a description of various random matrix
models of Google matrix G presenting the results of their
spectral properties in next Section.

2.1 Model RMZ3: random three-diagonal blocks

Following [17] we consider orthostochastic matrix blocks
Bi j of size M × M = 4 × 4. The orthostochastic property
means that Bi j = Oi j

2, where an orthogonal matrix O
has random matrix elements obtained via random rota-
tions. Since O is an orthogonal matrix the matrix B is bis-
tochastic with

∑
i Bi j = ∑

j Bi j = 1 [17]. The main reason
to use such blocks B is a similarity of complex spectrum
of random matrix ensemble of B with the spectrum of G
of university networks of Cambridge and Oxford, as dis-
cussed in [11]. The size 4 × 4 can be considered as pref-
erential random links between a group of 4 friends. How-
ever, a weak point of the random ensemble of B [17] is a
small matrix size N = 4, while for the above universities
we have N ≈ 2 × 105.

To go to large values of N in matrix Si j we construct
the Random Matrix model Z3 (RMZ3) as follows: we
place blocks B of size M = 4 on the main diagonal with
weights (1 − εi) and on two adjacent upper and lower di-
agonals with weight εi/2, where εi (i = 1, . . . , N/M) are
random numbers uniformly distributed in some inter-
val (εmin, εmax); each block represents a random realiza-
tion of B; then the matrix G of total size N is built from
S via the equation (1). Here we consider two cases with
a constant εi = 0.5 and the interval range 0.15 ≤ εi ≤ 0.3
(see Fig. 1). Obviously, by construction the final matrix

Figure 1 Google matrix eigenvalues λ (a,b), and IPR ξ of eigenvec-
tors as a function of Reλ (c,d). Panels show data for RMZ3 model
(Sec. 2.1) at fixed amplitudes εi = 0.5 (a,c) and for random ampli-
tudes 0.15 ≤ εi ≤ 0.3 (b,d). The green circle shows |λ| = 1 (a,b);
the green horizontal line shows maximal possible ξ = N (c,d); the
gray band in (a,c) highlights specific states (see text). Here the total
number of nodes is N=8000.

belongs to the Google matrix class. We use notations SZ

and G Z for the matrices S and G of this model.

2.2 Model RMZ3S: RMZ3 with shortcuts

The model RMZ3S is obtained from RMZ3 by adding
shortcut links between blocks B in the upper triangle
of the whole matrix S, the blocks of shortcut links are
placed randomly in this part of S. The amplitude of tran-
sitions from one block to another block (outside of three-
diagonal blocks of RMZ3) is taken at some fixed value
εs . The shortcut blocks are randomly and uniformly dis-
tributed over the upper triangle of the whole matrix. Af-
ter adding the shortcut blocks the columns affected by
shortcut blocks are renormalized to unity. In this way
the obtained matrix S again belongs to the Google ma-
trix class. The blocks of shortcuts are placed randomly in
the upper triangle of matrix S, their number Ns is deter-
mined by the parameter δ = 4Ns/(3N). In fact δ gives the
ratio of shortcut blocks to the number of blocks 3N/4 in
the model RMZ3. Again each block B in the main three-
diagonal part of RMZ3 and blocks at shortcut positions
are taken as random and independent realizations for
each block. We note that the shortcuts between single
nodes have been used for studies of quantum chaos and
Anderson transition in the small world Anderson model

2 C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org



O
riginalPaper

Ann. Phys. (Berlin) (2015)

Figure 2 Same as in Fig. 1 for RMZ3S model (Sec. 2.2) with 0.15 ≤
εi ≤ 0.3, shortcut amplitude εs = 0.3, δ = 0.1 (a,c) and δ = 1
(b,d). Here N = 8000.

(see [11, 18, 19]). The results for RMZ3S model are shown
in Figs. 2, 3.

2.3 Model RMZ3F: RMZ3 plus triangular matrix

The results obtained in [15, 20] show that a triangular
matrix of Google matrix class has a tendency to have a
realistic PageRank probability decay with P ∝ 1/K and
have some eigenvalues of finite amplitudes |λ|. Due to
these indications we construct a matrix SF in the follow-
ing way: Nu random numbers fi from the interval (0, 1)
are placed on random positions of the upper triangle of
matrix of size N, then all columns are renormalized to
unity and columns with all zero elements are replaced by
columns with all elements 1/N. Then we construct the
matrix G of the model RMZF as:

SZF = (1 − μ)SZ + μSF , G ZF = αSZF + (1 − α)/N . (2)

Here μ determines a measure of contribution of SF with
0 < μ < 1. The number of nonzero random elements Nu

is given by parameter δ = Nu/(12N). The results for the
RMZF model are shown in Figs. 3, 4, 5.

2.4 Anderson models AD2 and AD3 for G matrix

We use the usual Anderson model [1, 3] with diagonal
disorder terms Wi and transitions V to nearby sites on a

Figure 3 Dependence of P(K ) for models RMZ3S (Sec. 2.2) in pan-
els (a,b) and RMZ3F (Sec. 2.3) in panels (c,d); here 0.15 ≤ εi ≤ 0.3.
In panel (a) we have δ = 0.1 (black symbols) and δ = 1 (blue sym-
bols) at N = 8000; the fitted algebraic dependence is shown by
straight dashed lines with parameters: a = −6.67, β = 0.288 at
δ = 0.1 and a = −3.76, β = 0.71 at δ = 1; panel (b) shows the
dependence of β on δ with the full curve for N = 8000 and tri-
angles, crosses and circles for N = 2000, 4000, 16000 respec-
tively; the amplitude of shortcut elements is εs = 0.3. In panel
(c) we have δ = 0.01 (black symbols) and δ = 3 (blue symbols) at
μ = 0.1 and N = 8000; the fitted algebraic dependence is shown
by straight dashed lines with parameters: a = −8.39, β = 0.072
at δ = 0.01 and a = −6.17, β = 0.36 at δ = 3; panel (d) shows
the dependence of β on δ for μ = 0.1 (blue) and μ = 0.3 (red)
with the full curves for N = 8000 and triangles, crosses and cir-
cles for N = 2000, 4000, 16000 respectively.

Figure 4 Spectrum (a,b) and IPR ξ dependence of Reλ for the
model RMZ3F (Sec. 2.3) at δ = 0.1 (a,c) and δ = 3 (b,d); here
0.15 ≤ εi ≤ 0.3, μ = 0.1, N = 8000; circle and horizontal lines
are as in Fig. 1.

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 3www.ann-phys.org
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Figure 5 Panel (a) shows dependence of maximal IPR ξ (for states
with |λ| < 1) on parameter δ for the model RMZ3F (Sec. 2.3) at
N = 8000. Dependence of maximal IPR ξ on N is shown in panels
(b) at δ = 3 and (c) at δ = 0.1; error bars show statistical error, if it
is larger than symbol size, obtained from Nr disorder realizations.
We use Nr = 11 at N = 2000, Nr = 8 at N = 4000, Nr = 4 at
N = 8000, Nr = 3 at N = 16000. In all panels μ = 0.1 (circles)
and μ = 0.3 (triangles), 0.15 ≤ εi ≤ 0.3; the straight green lines
show dependence ξ = N; the straight gray lines in (b,c) show the
fitted dependence (see text).

lattice in dimension d:

Wiψi + Vψi+1 + Vψi−1 = λψi , (3)

where indexes in bold are vectors in d-dimensional
space. On the basis of (3) we construct the matrices S
and G.

Thus we consider the dimensions d = 2, 3 corre-
sponding to square and cubic lattices. The matrix S is
constructed as follows: each transition matrix element,
corresponding to V terms, in the Anderson model in di-
mension d (3) is replaced by a random number εi uni-
formly distributed in the interval [0, εmax/2d], the diago-
nal element Wi is replaced by unity minus the sum of all
εi over 2d nearby sites (1 − ∑2d

i=1 εi). The asymmetric ma-
trix S constructed in this way belongs to the Google ma-
trix class. Thus we obtain the matrices SAD2, G AD2 for the
model AD2 and SAD3, G AD3 for the model AD3 for d = 2
and 3 respectively. The results for these models are pre-
sented in Figs. 6, 7, 9.

2.5 Anderson models AD2S and AD3S with shortcuts

By adding shortcut links between pairs of nodes ran-
domly distributed in the upper triangle of matrix S we
obtain models AD2S and AD3S respectively from mod-
els AD2 and AD3. The number of shortcut elements in

Figure 6 Distribution of IPR ξi on λ−plane for the Anderson type
models AD2 at d = 2 (a) and AD3 at d = 3 (b) (Sec. 2.4) and the
Anderson type models with shortcuts AD2S (c) and AD3S (d) at
δ = 2 (Sec. 2.5). Here εmax = 0.6; N = 1302 = 16900 for (a,c);
N = 253 = 15625 for (b,d) and εmax = 0.6, εs = εmax/2 = 0.3
for (c,d). Color bars show the ratio ξi/N (IPR values are averaged
inside cells of coarse-grained lattice 60 × 60).

Figure 7 Dependence of ξ on Reλ (a,c) and ξ on N (b,d) for the
models AD2 (a,b) and AD3 (b,d) (see Sec. 2.4). For AD2: panel (a) is
for N = 900 (blue, Nr = 10 realizations) and N = 16900 (red,
Nr = 1); panel (b) shows dependence ξ (N) with fits ξ ∝ Nν for
eigenstates at the spectrum edge with Reλ = 0.23 − 0.25 (tri-
angles, ν = 0.18) and for maximal ξ (circles, ν = 0.75). For AD3:
panel (c) is for N = 1000 (blue, Nr = 10 realizations) and N =
15625 (red, Nr = 1); panel (d) shows dependence ξ (N) for eigen-
states at the spectrum edge with Reλ = 0.23 − 0.25 (triangles,
ν = 0.05) for maximal ξ (circles, ν = 0.95). Here εmax = 0.6. The
fits are shown by gray lines, green (b,d) and blue, red (c,d) dashed
lines show dependence ξ = N. For panels (b,d) the number of re-
alizations changes from Nr = 10 to 3 when N changes from min-
imal to maximal value.

4 C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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Figure 8 Same as in Fig. 7 but for the models AD2S (a,b) and AD3S
(c,d) (see Sec. 2.5) at δ = 2; all parameters are as in Fig. 7. The fits
give: (b) ν = 0.04 at the spectrum edge around Reλ ≈ 0.6 (trian-
gles), ν = 0.57 for maximal ξ (circles); (d) ν = −0.19 at the spec-
trum edge around Reλ ≈ 0.6 (triangles), ν = 0.73 for maximal ξ
(circles). Here εmax = 0.6, εs = εmax/2 = 0.3. For panel (b) [(d)]
the number of realizations changes from Nr = 10 to 3 [1] when
N changes from 900 to 16900 [27000].

Figure 9 Dependence of eigenvector amplitudes |ψ | on their rank
index K for models AD2 (a), AD3 (b) from (Sec. 2.4) and AD2S (c),
AD3S (d) from (Sec. 2.5). Here δ = 0 for (a,b) and δ = 2 for (c,d);
N = 104 for (a,c) and N = 203 for (b,d). We use εmax = 0.6 and
εs = 0.3 in (c,d). Data show maximally delocalized (maximal ξ cor-
responding to PageRank, magenta upper curve) and maximally lo-
calized (smallest ξ , blue bottom curve) eigenstates.

S is taken to be Ns = 2dNδ, their amplitude is taken as
0 ≤ εi ≤ εs = εmax/2, after adding shortcuts the columns
with shortcut elements are renormalized to unity. Thus
the sum of elements in each column is equal to unity and
S belongs to the Google matrix class. We note the matri-
ces of these models as SAD2S, G AD2S, SAD3S, G AD3S respec-
tively for d = 2, 3. The results for these models are pre-
sented in Figs. 8, 9, 10.

Figure 10 Dependence of the PageRank exponent β on the param-
eter δ for the models AD2S (left panel) and AD3S (right panel). Left
panel: the solid curve shows data for N = 802, with triangles for
N = 402 and circles for N = 1302. Right panel: the solid curve
shows data for N = 203, with triangles for N = 103 and circles
for N = 253. Here εmax = 0.6 and εs = 0.3.

2.6 Anderson models AD2Z and AD2ZS with blocks and
block shortcuts

By replacing matrix elements in the model AD2 by blocks
B of size 4 × 4 (see Sec. 2.1) we obtain the model AD2Z.
In a similar way for the model AD2S we obtain the model
AD2ZS with block shortcuts. In this case we restrict our
studies only for dimension d = 2 since the matrix size be-
comes too large for d = 3. Amplitudes εmax and εs are de-
fined as for the models AD2 and AD2S. Since the tran-
sitions are now given by blocks then the parameter δ is
now defined as Ns = 2d(N/4)δ with d = 2. The results for
models AD2Z and AD2ZS are presented in Figs. 11, 12.

Figure 11 Spectrum λ (a,b) and IPR ξ vs. Reλ (c,d) for the models
AD2Z (a,c) and AD2ZS at δ = 0.25 (b.d) from Sec. 2.6. Here N =
4 × 702 = 19600, εmax = 0.6 and εs = 0.3 in (c,d).

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5www.ann-phys.org
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Figure 12 Top panels show distribution of IPR ξ values on λ−plane
for models AD2Z (a) and AD2ZS at δ = 0.25 (b) of Sec. 2.6 with
parameters of Fig. 11; color bar gives the ratio ξ/N obtained from
cells as in Fig. 6. Panel (c): dependence of ξ on N for AD2Z with tri-
angles for states with λ located in the delocalized domain Reλ ∈
(0.3, 0.85) (red triangles, fit gives ν = 0.67) and in the local-
ized domain Reλ < −0.5 (blue triangles, ν = 0.15); for AD2ZS
at δ = 0.25 with circles for states with λ located in the delocal-
ized domain Reλ ∈ (0.2, 0.85) (red circles, ν = 0.53) and in the
quasi-localized domain Reλ < −0.5 (blue circles, ν = 0.25); fits
are shown by lines, green line shows ξ = N. Panel (d): depen-
dence of PageRank probability P on PageRank index K for mod-
els AD2Z (gray symbols) and AD2ZS at δ = 0.25 (black symbols);
the fits for the range K ∈ (100, 6000) are shown by dashed lines
with β = 0.16 (AD2Z) and β = 0.51 (AD2ZS) for the parameters
of panels (a,b).

3 Spectral properties of G matrix models

We use exact numerical diagonalization for analysis of
spectrum and eigenstates of models of Sec. 2. The matrix
size N is changed from a minimal N = 900 up to maximal
N = 27000. For the description of the decay of PageRank
probability we use a fit ln P = a − β ln K which gives us
the PageRank exponent of algebraic β. In all simulations
we use α = 0.85. The right eigenstates ψi( j) of G are de-
termined by

N∑

j ′=1

G j j ′ψi( j ′) = λiψi( j) . (4)

We characterize ψi( j) by the Inverse Participation Ra-
tio (IPR) ξi = (

∑
j |ψi( j)|2)2/

∑
j |ψi( j)|4. This quantity is

broadly used in the studies of Anderson localization [3]
and determines the number of sites effectively popu-
lated by an eigenstate. The value of ξ is independent of

normalization. We use normalization
∑

i P(i) = 1 for the
PageRank eigenstate at λ = 1. For each eigenvector ψi( j)
we can order all nodes in a monotonically decreasing or-
der of |ψi( j)| thus obtaining the local rank index K for a
given ψi( j). Such a ranking was used in [21, 22].

We note that in the following Figs. when we show the
dependence of ξ on Reλ then all λ values are shown;
we use various number of disorder realizations which is
given in figure captions or equal to one if not directly
stated (but we checked that the results are not sensitive
to a change of disorder realization).

In the following we present analysis of right eigen-
states of G which produce influence on the PageRank
vector. The properties of left eigenvectors reserve a sep-
arate analysis (e.g. the left eigenvector at λ = 1 has con-
stant equal elements since the sum of each column ele-
ments is equal to unity).

Below we describe the results for models of Sec. 2.

3.1 Results for RMZ3 model

For the model RMZ3 at εi = const = 0.5 the spectrum is
shown in Fig. 1a. We see that it has a form of 6−rays star
typical for the directed networks studied in [11, 21, 22].
The size of the star is slightly reduced since all λi(α) →
αλi(α = 1) for α < 1, except λ = 1 [7]. There is also addi-
tional reduction of |λi | due to finite coupling terms εi > 0
but this reduction is moderate and the spectrum of G Z is
close to the spectrum of independent 4 × 4 blocks found
in [17]. Thus RMZ3 model captures a part of real proper-
ties of directed networks.

An interesting property of eigenstates becomes visi-
ble from the dependence of ξ on Reλ shown in Fig. 1c
at εi = 0.5. Many eigenstates have relatively small ξ < 10
which remain bounded with the increase of N up to
N = 16000 (data not shown). However, there is a group
of states (gray band) with ξ ∼ N growing linearly with
N (data not shown). These are delocalized states. Their
origin becomes clear from the following consideration.
We can use the anzats in which the elements of ψ( j) are
constant inside a given block Bm with a values ϕm. Then
Eq.(4) takes the form

(1 − ε)ϕm + ε(ϕm+1 + ϕm−1)/2 = λϕm , (5)

since the matrix G is bistochastic with sum of elements
in rows being unity since εi = const. The spectrum λ in
(5) is real. Thus we obtain in (5) the Bloch equation with
plane wave delocalized solutions well known for crys-
tals [2, 3]. These solutions belong to the gray band part
of the spectrum in Fig. 1a. Another part of the spectrum

6 C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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corresponds to such ψ( j) which have different values on
a scale of one block B.

The case with different εm (e.g. 0.15 ≤ εm ≤ 0.3 in
Fig. 1b,d) we can use the same anzats for the left vector
ϕm that leads to the eigenvalue equation:

(1 − εm)ϕm + εm(ϕm+1 + ϕm−1)/2 = λϕm. (6)

Such a problem corresponds to the case of off-diagonal
disorder in the 1d Anderson model where the localiza-
tion length, and hence IPR, is diverging at the center of
the band [2, 3]. The spectrum λ in (6) is real. A simi-
lar problem is known as the Sinai walk [23] where tran-
sition probabilities on a Markov chain are fluctuating.
This model has been studied extensively (see e.g. [24] and
Refs. therein).

The spectrum λ in (6), corresponding to this anzats, is
the same for the right eigenvectors [7]. The right eigen-
vectors are different from the left ones but have a similar
structure on average. The IPR values, shown in Fig. 1d are
significantly reduced, comparing to the case εm = const,
except those with λ close to unity. When N is increas-
ing we find that IPR is growing only for λ → 1 while for
|λ| < 1 IPR values remains finite. This corresponds to the
known results for the Anderson model with off-diagonal
disorder. Other eigenstates for which ψi is not constant
inside B blocks correspond to the eigenstates with rather
small IPR values ξ ∼ 10.

Even if the spectrum and eigenstates have interest-
ing properties in the two above cases of model RMZ3
there is a weak point here: the PageRank probability P in
these cases is flat being practically independent of K and
ξ ∼ N. Thus the situation is very different from the real
directed networks with β ≈ 1 (see e.g. [7, 11]). This hap-
pens due to a space homogeneous structure of the ma-
trix G (a part of fluctuations) and thus there is no leading
node with a large number of links. Due to that we try to
introduce shortcut links as described in the next Sec. 3.2.

3.2 Properties of RMZ3S model

The spectrum and IPR dependence for RMZ3S model
with shortcuts are shown in Fig. 2 for two typical val-
ues of parameter δ. We see that at small values of δ (e.g.
δ = 0.1) the spectrum structure is practically the same as
for RMZ3 model. However, for larger values ( δ = 1) the
size of the spectrum star is decreasing. The values of IPR
are significantly reduced at finite values of δ and our data
show that the maximal ξ values remain less than ξ = 200
even for the largest size N = 16000 for 0.1 ≤ δ ≤ 1 for all

|λ| < 1 (data not shown). Thus in this model all eigen-
states remain localized.

Even if all states are localized the decay of PageRank is
more close to the case of real directed networks. Indeed,
the data of Fig. 3a,b show that P(K ) have approximately
algebraic decay with PageRank index. The fit allows to
determine the PageRank exponent β which is small at
δ ∼ 0.1 and is growing with increase of δ reaching values
β ≈ 0.75 at δ = 1. It is important to note that β is inde-
pendent of N at large N values. Thus the homogeneous
random elements in the upper triangle of S matrix allow
to obtain β close to unity at large δ. Indeed, in the limit
of rather large δ we come to the case of triangular ma-
trix S studied in [15] (and also in [20]) where one obtains
an approximate decay P ∝ 1/K . Indeed, at large δ a sum
of elements in a row of G drops approximately as 1/K
(where K is a row index) leading to P ∝ 1/K . Indeed, we
can say that P(K ) ≈ ∑

j G K j e j ∼ 1/K , where e j = 1/N is
a homogeneous initial vector, considering this as one it-
eration of the PageRank algorithm [7]. We note that for
the PageRank vector we have ξ ∼ N for β < βc = 1/4.

Thus the model RMZ3S has a reasonable spectrum
structure and an algebraic PageRank probability decay.
But all eigenstates with |λ| < 1 remain localized. Thus we
go to the analysis of RMZ3F model.

3.3 Results for RMZ3F model

The spectrum and IPR values for the RMZ3F model are
presented in Fig. 4. We see that the star spectrum struc-
ture is preserved but IPR values are increased in a vicinity
Reλ ≈ α. The examples of P(K ) and β(δ) dependencies
are shown in Fig. 3c,d. It is important to note that β is
independent of N at large N values. Qualitatively, the sit-
uation is similar to the model RMZ3S but the effect of δ

on localization properties of ξ is more complicated.
Indeed, it is well seen in Fig. 5a that the maximal IPR

values (excluding PageRank vectors) are at first reduced
with an increase of δ from 10−3 up to 0.1 but they are
increased when δ goes from 0.1 to 10. The dependence
of maximal ξ on N at δ = 0.1; 3 is shown in Fig. 5b,c
for μ = 0.1; 0.3. We fit this dependence by a power law
ξ ∝ Nν and obtain for μ = 0.1: ν = 0.352 (at δ = 0.1) and
ν = 0.770 (at δ = 3); for μ = 0.3: ν = 0.33 (at δ = 0.1 and
3). These results show that there are certain states (except
PageRank) that become delocalized in the limit of large
matrix size. In a certain sense, for the dependence ξ (N)
we have a certain similarity with the results obtained in
[16] where a sub-polynomial growth of ξ with N has been
found for randomized university networks and preferen-
tial attachment models. However, for the RZ3F model the
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spectrum has no large gap and is more similar to the real
directed networks.

The investigations of RMZ3F model at larger sizes
(e.g. with the help of the Arnoldi method [11, 21]) can
provide a more firm conclusion about the delocalization
properties of eigenstates in this model.

3.4 Properties of AD2 and AD3 models

The spectra of AD2 and AD3 models are shown in
Fig. 6a,b with color plot of IPR values. We see that there
are rather large values of ξ indicating existence of delo-
calized eigenstates. Indeed, a more detailed analysis pre-
sented in Fig. 7 shows that for the states of the spectral
range Reλ > 0.25 IPRs are growing with N clearly demon-
strating delocalization. Indeed, for maximal ξ from this
range (excluding PageRank) we find ν = 0.75 at d = 2
and ν = 0.95 at d = 3. At the same time in a vicinity of
the spectrum edge Reλ < 0.25 we have ν = 0.18; 0.05 for
d = 2; 3 clearly showing that in this part of the spectrum
the eigenstates are well localized. Indeed, for these local-
ized states we have an exponential decay ln |ψ | ∝ −K 1/d

with the eigenstate rank index K (see Fig. 9a,b). Such a
decay also appears for the localized states of the Ander-
son model in dimension d.

But for the majority of eigenstates we have significant
growth of ξ with N showing that these states are delo-
calized. Of course, the case of d = 2 should be studied
in more detail since for the standard Anderson model at
d = 2 (3) all eigenstates are exponentially localized [3].
However, we have here non-Hermitian matrix and for
our knowledge there are no rigorous results about local-
ization in such matrices in d = 2.

Even if in AD2, AD3 models we find delocalization,
the PageRank in these models is practically flat due to ab-
sence of central node (see Fig. 9a,b). Another weak point
of AD2, AD3 models is a relatively narrow distribution of
eigenvalues with |Imλ| < 0.1 and due to that we continue
our analysis with the next model.

3.5 Results for AD2S and AD3S models

The spectra of AD2S, AD3S models are shown in Fig. 6c,d.
We see that the additional terms in upper triangle of ma-
trix S produce a broadening of Imλ which however still
remains relatively narrow (|Imλ| < 0.2). The IPR values
are growing with N except of the eigenstates at the spec-
tral edge Reλ ≈ 0.6 (see Fig. 8). For these localized states
the exponent ν is practically zero while for the maxi-
mal IPR (except PageRank) we find rather large values of

ν = 0.57 at d = 2, ν = 0.73 at d = 3. Thus, in these models
we clearly have the Anderson type transition from local-
ized to delocalized eigenstates.

In analogy with the 3d Anderson model [3], we make
a conjecture that in models AD2, AD3, AD2S, AD3S there
is a certain mobility edge curve in the complex plane λ

which separates localized from delocalized states. In a
qualitative manner such a curve is visible in Fig. 6 as a
border between blue color of localized states with small ξ
and white color of states with large ξ . But definitely more
detailed studies are required for a more exact determina-
tion of such a mobility edge curve.

Examples of PageRank probability decay are shown in
Fig. 9. The new element, appearing in AD2S, AD3S mod-
els (comparing to AD2, AD3 cases), is a dependence of
the PageRank exponent β on the parameter δ as shown
in Fig. 10. These data demonstrate that β increases from
β ≈ 0.2 at δ = 0.1 up to β ≈ 0.9 at δ = 3. Thus AD2S,AD3S
models have delocalized eigenstates and the PageRank
exponent of real directed networks. The only weak point
is a narrow distribution of spectrum in Imλ. To improve
this feature we study in next Section the models AD2Z,
AD2ZS.

3.6 Results for AD2Z and AD3ZS models

The spectra of AS2Z, AD2ZS models are shown in Fig. 11.
We see that the star structure appears due to introduc-
tion of blocks 4 × 4. The dependence of IPR ξ on Reλ

clearly shows the existence of two groups of states with
small ξ < 100, presumably for localized phase, and large
ξ > 100, presumably for delocalized phase.

The distribution of ξ on λ−plane is shown in
Fig. 12a,b. Again we see signs of the mobility edge
curve separating localized (blue) and delocalized (white)
eigenstates.

The dependence of ξ on N is shown in Fig. 12c. There
are well localized states with ξ practically independent of
N (ξ < 20) and delocalized states for which ξ is growing
with N with a relatively large growth exponent ν = 0.67
at δ = 0 and ν = 0.53 at δ = 0.25. This gives a strong ar-
gument for existence of the Anderson transition with a
mobility edge in a complex λ−plane in these models.

The decay of PageRank probability is shown in
Fig. 12d: at δ = 0 we have a flat P(K ) distribution with
the exponent β = 0.16, while at δ = 0.25 we find β = 0.51
being close to the values found in real directed networks
(e.g. for the Twitter network β ≈ 0.54 [11]).

Thus we can say that the model AD2ZS is the one be-
ing most close to real directed networks with the num-
ber of interesting features: algebraic decay of PageRank
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probability with the exponent β ≈ 0.5, absence of spec-
tral gap at α = 1, a broad star like distribution of eigen-
values in the complex λ−plane, existence of localized
and delocalized eigenstates of the Google matrix with
strong indications on the Anderson transition and the
mobility curve in λ−plane.

Of course, the presented results are obtained for ma-
trices of finite size while the Anderson delocalization as-
sumes that states are delocalized over an infinite system
size. Due to that the finite matrix simulations give only
numerical indications. However, the clear increase of ξ

values with matrix size N, shown in Fig. 7, 8, 12, gives us
a convincing evidence on existing delocalized states in
the limit N → ∞. The same Figs. demonstrate existence
of localized states with ξ being practically independent
of N.

We expect that a similar model AD3ZS constructed
in dimension d = 3 from the AD3S model will have even
stronger delocalization properties.

4 Summary

Let us now summarize results obtained above in various
models. We see that with the Anderson type models with-
out shortcuts (AD2, AD3, AD2Z) we obtain delocalized
eigenstates for a certain domain of eigenvalues λ and lo-
calized eigenstates at the border of spectrum or at some
regions of spectrum. The most interesting model is AD2Z
with a broad domain of complex λ (Fig. 12) while for the
models AD2, AD3 the imaginary part of λ is relatively
small (Fig. 6). For the AD2Z model we have a clear sepa-
ration between well localized states and those with large
ξ corresponding to delocalized domain. A certain curve
(a contour) in the complex plain of λ separates these two
domains playing the role of mobility edge curve in the
complex plain. However, a weak point of model AD2Z is
a relatively small value of PageRank exponent β ≈ 0.16.
It is possible that more realistic values of β ∼ 0.5 can be
reached considering higher dimensions d = 3, 4, ... with
the transition blocks used in AD2Z. However, a verifica-
tion of this expectation requires more advanced numer-
ical simulations in future, probably with the help of the
Arnoldi method described in [11].

Another promising case is the AD2ZS model with
shortcuts. A small fraction of shortcuts added allows to
increase the PageRank exponent and obtain β ≈ 0.5 as
in real networks. Even if shortcuts produce transitions
to faraway nodes their effect has two tendencies. The
first tendency is the delocalization effect since probabil-
ity can be transferred to nodes located very far. But this
does not necessary gives a delocalization since the wave

function still can remain located on a small number of
nodes with a relatively small ξ values. Such a situation
has been seen in the Anderson small world model where
a small fraction (density) of shortcuts did not affect lo-
calized states remaining with small ξ values and Pois-
son statistics [18, 19]. The second tendency of shortcuts
is related to the fact that they introduce a disorder that
may enhance localization features, as it clearly happens
in Fig. 5a.

We think that it can be very promising to study the
extentions of models AD2Z and AD2ZS to higher dimen-
sions d and larger matrix sizes.

5 Discussion

In this work we described various random matrix mod-
els of the Google matrix of directed networks. Our results
show that for certain models (like AD2ZS) we have an
algebraic decay of PageRank probability with the expo-
nent β ∼ 0.5, absence of spectral gap at α = 1, existence
of the Anderson transition and mobility edge in the com-
plex λ− plane. We think that the further analysis of the
models described here will allow to establish more close
links between the Anderson delocalization phenomenon
in disordered solids and delocalization of eigenstates of
the Google matrix of directed networks.
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