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a b s t r a c t

We propose the PageRank model of opinion formation and investigate its rich properties
on real directed networks of the Universities of Cambridge and Oxford, LiveJournal, and
Twitter. In this model, the opinion formation of linked electors is weighted with their
PageRank probability. Such a probability is used by the Google search engine for ranking
of web pages. We find that the society elite, corresponding to the top PageRank nodes, can
impose its opinion on a significant fraction of the society. However, for a homogeneous
distribution of two opinions, there exists a bistability range of opinions which depends on
a conformist parameter characterizing the opinion formation. We find that the LiveJournal
and Twitter networks have a stronger tendency to a totalitarian opinion formation than the
university networks.We also analyze the Sznajdmodel generalized for scale-free networks
with the weighted PageRank vote of electors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

To understand the nature and origins of mass opinion formation is an outstanding challenge of democratic societies [1].
In the last few years the enormous development of such social networks as LiveJournal [2], Facebook [3], Twitter [4], and
VKONTAKTE [5], with up to hundreds of millions of users, has demonstrated the growing influence of these networks on
social and political life. The small-world scale-free structure of the social networks (see, e.g., Refs. [6,7]), combined with
their rapid communication facilities, leads to a very fast information propagation over networks of electors, consumers, and
citizens, making them very active on instantaneous social events. This invokes the need for new theoretical models which
would allow one to understand the opinion formation process in modern society in the 21st century.

The important steps in the analysis of opinion formation have been done with the development of various voter models,
described in great detail in Refs. [8–15]. This research field became known as sociophysics [8,10,12]. In this work, we
introduce several new aspects which take into account the generic features of social networks. First, we analyze the opinion
formation on real directed networks taken from the AcademicWeb LinkDatabase Project of British university networks [16],
the LiveJournal database [17], and the Twitter dataset [18]. This allows us to incorporate the correct scale-free network
structure instead of unrealistic regular lattice networks, often considered in voter models [13,14]. Second, we assume that
the opinion at a given node is formed by the opinions of its linked neighbors weighted with the PageRank probability of
these network nodes. We argue that the introduction of such a weight represents the reality of social networks: all the
network nodes are characterized by the PageRank vector which gives the probability of finding a random surfer on a given
node, as described in Refs. [19,20]. This vector gives a steady-state probability distribution on the network which provides a
natural ranking of node importance, or elector or society member importance. The PageRank vector is the right eigenvector
with unit eigenvalue of the Google matrix constructed from the adjacency matrix of a given directed network. A detailed
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description of this vector and of Google matrix construction is given in Ref. [20]. The PageRank vector is used by the Google
search engine for an efficient ranking of web pages [19,20].

In a certain sense, the top nodes of PageRank correspond to a political elite of the social networkwhose opinion influences
the opinions of other members of the society [1]. Thus the proposed PageRank opinion formation (PROF) model takes into
account the situation in which an opinion of an influential friend from high ranks of the society countsmore than an opinion
of a friend from a lower society level. We argue that the PageRank probability is the most natural form of ranking of society
members. Indeed, the efficiency of PageRank rating is demonstrated for various types of scale-free network, including the
World Wide Web (WWW) [19,20], Physical Review citation network [21,22], scientific journal rating [23], ranking of tennis
players [24], Wikipedia articles [25], the world trade network [26], and others. Due to the above argument, we consider that
the PROF model captures the reality of social networks, and below we present an analysis of its interesting properties.

We note that social networks have typical features which also appear in various sciences, including the economy [27,28],
trader markets [29], world trade [26], and epidemic propagation [30,31], and hence we hope that the results presented in
this work will find a broad field of applications there.

The paper is composed as follows. The PROF model is described in Section 2, and the numerical results on its properties
are presented in Section 3 for British university networks. In Section 4, we combine the PROF model with the Sznajd
model [13,32] and study the properties of the PROF–Sznajd model. In Section 5, we analyze the models on an example
of a large social network, namely LiveJournal [17]. The results for the Twitter dataset [18] are presented in Section 6. A
discussion of the results is presented in Section 7.

2. PageRank opinion formation (PROF) model description

The PROFmodel is defined in the followingway. In agreement with the standard PageRank algorithm [20], we determine
the PageRank probability Pi for each node i and arrange all N nodes in monotonic decreasing order of the probability.
In this way each node i has a probability P(Ki), and the PageRank index Ki with the maximal probability is at Ki = 1
(
N

i=1 P(Ki) = 1). We use the usual damping factor value α = 0.85 to compute the PageRank vector of the Google matrix of
the network (see, e.g., Refs. [19,20,33,34]). In addition, a network node i is characterized by an Ising spin variable σi which
can take values +1 or −1, coded also by red or blue color, respectively. The sign of a node i is determined by its direct
neighbors j, which have PageRank probabilities Pj. For that we compute the sum Σi over all directly linked neighbors j of
node i:

Σi = a


j

P+

j,in + b


j

P+

j,out − a


j

P−

j,in − b


j

P−

j,out , a + b = 1, (1)

where Pj,in and Pj,out denote the PageRank probability Pj of a node j pointing to node i (incoming link) and a node j to which
node i points to (outgoing link), respectively. Here, the two parameters a and b are used to tune the importance of incoming
and outgoing links with the imposed relation a + b = 1 (0 ≤ a, b ≤ 1). The values P+ and P− correspond to red and blue
nodes, respectively. The spin σi takes the value 1 or−1, respectively, forΣi > 0 orΣi < 0. In a certain sense we can say that
a large value of parameter b corresponds to a conformist society in which an elector i takes an opinion of other electors to
which he/she points (nodes with many incoming links are on average at the top positions of PageRank). In contrast, a large
value of a corresponds to a tenacious society in which an elector i takes mainly the opinion of those electors who point to
him/her.

The condition (1) on spin inversion can bewritten via the effective Ising HamiltonianH of thewhole systemof interacting
spins:

H = −


i,j

Jijσiσj = −


i

Biσi =


i

ϵi, (2)

where the spin–spin interaction Jij determines the local magnetic field Bi on a given node i:

Bi =


j

(aPj,in + bPj,out)σj, (3)

which gives the local spin energy ϵi = −Biσi. According to (2) and (3), the interaction between a selected spin i and its
neighbors j is given by the PageRank probability: Jij = aPj,in + bPj,out . Thus from a physical viewpoint the whole system can
be viewed as a disordered ferromagnet [12,14]. In this way, condition (1) corresponds to a local energy ϵi minimization done
at zero temperature.We note that such an analogywith spin systems is well known for opinion formationmodels on regular
lattices [12–14]. However, it should be noted that generally we have asymmetric couplings Jij ≠ Jji, which is unusual for
physical problems (see the discussion in Ref. [35]). In view of this analogy, it is possible to introduce a finite temperature T
and then tomake a probabilistic Metropolis-type condition [36] for the spin i inversion determined by a thermal probability
ρi = exp(−1ϵi/T ), where 1ϵi is the energy difference between on-site energies ϵi with spin up and down. During the
relaxation process, each spin is tested on an inversion condition that requires N steps and then we do t iterations of N such
steps. We discuss the results of the relaxation process at both zero temperature and at finite temperature T in the next
section. We use a standard random number generator to create an initial random distribution of spins σi up and down on
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Fig. 1. (Color online) Time evolution of opinion given by a fraction of red nodes f (t) as a function of number of iterations t . The red and black curves (top and
bottom curves at t = 15, respectively) show evolution for two different realizations of a random distribution of color with the same initial fraction fi = 0.5
at t = 0. The green curve (middle curve at t = 15) shows the dependence f (t) for the initial state with Ntop all red nodes with top PageRank K indexes
(highest P(Ki) values, 1 ≤ K ≤ Ntop). The evolution is done at a = b = 0.5 and temperature T = 0. Left panel: Cambridge network with Ntop = 2000. Right
panel: Oxford network with Ntop = 1000.

nodes of a given network. We do averaging over Nr ≤ 104 such random generations to obtain statistically stable results for
the final opinion distributions. TheMetropolisMonte Carlo simulations follow the standard procedure described in Ref. [36].

3. Numerical results for the PROF model on university networks

Here we present results for the PROF model considered on the networks of the Universities of Cambridge and Oxford
in 2006, taken from Ref. [16]. The properties of PageRank distribution P(K) for these networks have been analyzed in
Refs. [33,34]. The total numbers of nodes N and links Nℓ are N = 212710, Nℓ = 2015265 (Cambridge); and N = 200823,
Nℓ = 1831542 (Oxford) [34]. Both networks are characterized by an algebraic decay of PageRank probability P(K) ∝ 1/Kβ

and approximately usual exponent value β ≈ 0.9; additional results on the scale-free properties of these networks are
given in Refs. [33,34]. We usually discuss the fraction of red nodes, since by definition all other nodes are blue.

Typical examples of time evolution of the fraction of red nodes f (t) with the number of time iterations t are shown
in Fig. 1. We see the presence of bistability in the opinion formation: two random states with the same initial fraction
of red nodes fi = f (t = 0) evolve to two different final fractions of red nodes ff . The process gives an impression of
convergence to a fixed state after tc ≈ 10 iterations. A special check shows that all node colors become fixed after this
time (tc). The convergence time to a fixed state is similar to those found for opinion formation on regular lattices, where
tc = O(1) [13,14,37]. The corresponding time evolution of colors is shown in Fig. 2 for the first 10% of nodes ordered by the
PageRank index K .

The results of Fig. 1 show that for a random initial distribution of colors we may have different final states with ±0.2
variation compared to the initial fi = 0.5. However, if we consider that Ntop nodes with the top K index values (from 1 to
Ntop) have the same opinion (e.g. red nodes), then we find that even a small fraction of the total number of nodes N (e.g. Ntop
of about 0.5% or 1% of N) can impose its opinion on a significant fraction of nodes of about ff ≈ 0.4. This shows that in the
frame of PROFmodel the society elite, corresponding to the top K nodes, can significantly influence the opinion of thewhole
society under the condition that the elite members have a fixed opinion between themselves.

We also considered the case when the red nodes are placed on Ntop = 2000 top nodes of the CheiRank index K ∗. This
ranking is characterized by the CheiRank probability P∗(K ∗) for a random surfer moving in the inverted direction of links,
as described in Refs. [25,34]. On average P∗(K ∗) is proportional to the number of outgoing links. However, in this case, the
top nodes with small fi values are not able to impose their opinion, and the final fraction becomes blue. We attribute this
to the fact that the opinion condition (1) is determined by the PageRank probability P(K) and that the correlations between
CheiRank and PageRank are not very strong (see the discussion in Refs. [25,34]).

To analyze how the final fraction of red nodes ff depends on its initial fraction fi, we study the time evolution f (t) for a
large number Nr of initial random realizations of colors following it up to the convergence time for each realization. We find
that the final red nodes are homogeneously distributed in K . Thus there is no specific preference for top society levels for
an initial random distribution. The probability distribution Wf of final fractions ff is shown in Fig. 3 as a function of initial
fraction fi at three values of parameter a. These results show twomain features of the model: a small fraction of red opinion
is completely suppressed if fi < fc and its larger fraction dominates completely for fi > 1 − fc ; there is a bistability phase
for the initial opinion range fb ≤ fi ≤ 1 − fb. Of course, there is a symmetry in respect to exchange of red and blue colors.
For the small value a = 0.1 we have fb ≈ fc with fc ≈ 0.25, while for the large value a = 0.9 we have fc ≈ 35, fb ≈ 0.45.

Our interpretation of these results is the following. For small values of a → 0 the opinion of a given society member
is determined mainly by the PageRank of neighbors to whom he/she points (outgoing links). The PageRank probability P
of nodes to which many nodes point is usually high, since P is proportional to the number of ingoing links [20]. Thus, at
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Fig. 2. (Color online) Time evolution of opinion colors (red/gray and blue/black) for the parameters of Fig. 1: the left/right column is for the
Cambridge/Oxford network. The initial fraction of red colors is fi = 0.5 (top panel), and Ntop nodes have red color for the bottom panels, with Ntop = 2000
and 1000 for the Cambridge network and the Oxford network, respectively. Nodes are ordered by the PageRank index K , and the color plot shows only
K ≤ 20000.

a → 0, the society is composed of members who form their opinion by listening to an elite opinion. In such a society its elite
with one color opinion can impose this opinion on a large fraction of the society. This is illustrated in Fig. 4, which shows
a dependence of the final fraction ff of red nodes on parameter a for a small initial fraction of red nodes in the top values
of the PageRank index (Ntop = 2000). We see that a = 0 corresponds to a conformist society which follows in its great
majority the opinion of its elite. For a = 1, this fraction ff drops significantly, showing that this corresponds to a regime of a
tenacious society. It is somewhat surprising that the tenacious society (a → 1) has a well-defined and relatively large fixed
opinion phasewith a relatively small region of bistability phase. This is in contrast to the conformist society at a → 0, where
the opinion is strongly influenced by the society elite. We attribute this to the fact that in Fig. 3 we start with a randomly
distributed opinion, because the opinion of the elite has two fractions of two colors that create a bistable situation, since
the two fractions of society follow the opinions of this divided elite, which makes the situation bistable on a larger interval
of fi compared to the case of a tenacious society at a → 1.

To stress the important role of PageRank in the dependence of ff on fi presented in Fig. 3, we show in Fig. 5 the same
analysis at a = 0.5, but for the case when in Eq. (1) for the spin flip we take all P = 1 (equal weight for all nodes). The
data of Fig. 5 clearly demonstrate that in this case the bistability of opinion disappears. Thus the PROFmodel is qualitatively
different from the case when only the links without their PageRank weight are counted for the spin flip condition. We also
test the sensitivity in respect to PageRank probability by replacing P by

√
P in Eq. (1), as is shown in Fig. 5 (bottom panels).

We see that compared to the case P = 1we start to have some signs of bistability, but still they remain ratherweak compared
to the case of Fig. 3.

In fact the spin flip condition (1) can be viewed as a relaxation process in a disordered ferromagnet (since all Jij ≥ 0 in (2)
and (3)) at zero temperature. Such a type of analysis of voter model relaxation processes on regular lattices is analyzed in
Refs. [13,14]. From this viewpoint it is natural to consider the effect of finite temperature T on this relaxation. At finite T ,
the flip condition is determined by the thermal Metropolis probability exp(−1ϵi/T ), as described above. We follow this
thermodynamic relaxation process at finite temperature up to t = 200 iterations, and in this way obtain the probability
distribution of the final fraction ff of red nodes obtained from the initial fraction fi of red nodes randomly distributed over
the network at t = 0. The results obtained at finite temperatures are shown in Fig. 6. They show that a finite temperature
T allows a finite fraction ff of red nodes when for their small initial fraction fi all final ff were equal to zero. Also, the
bistability splitting is reduced and it disappears at larger values of T . Thus finite T introduces a certain smoothing in the
Wf distribution.
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Fig. 3. (Color online) Density plot of probability Wf to find the dependence of the final red fraction ff , shown on the y-axis, on the initial red fraction fi ,
shown on the x-axis; data are shown inside the unit square 0 ≤ fi, ff ≤ 1. The values ofWf are defined as the relative number of realizations found inside
each of 20 × 20 cells which cover the whole unit square. Here, Nr = 104 realizations of randomly distributed colors are used to obtain the Wf values; for
each realization, the time evolution is followed up to the convergence time with up to t = 20 iterations; here T = 0. Left column: Cambridge network
(a, b, c); right column: Oxford network (d, e, f); here, a = 0.1 (a, d), 0.5 (b, e), 0.9 (c, f) from top to bottom. The probability Wf is proportional to color
changing from zero (blue/black) to unity (red/gray).

However, the relaxation process at finite temperatures does not lead to the thermal Boltzmann distribution. Indeed, in
Fig. 7, we show the probability distribution wi(ϵi) as a function of local energies ϵi defined in (2) and (3). The distribution
wi(ϵi) is obtained from the relaxation process with many initial random spin realizations Nr . Even if the temperature T is
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Fig. 4. (Color online) Dependence of the final fraction of red nodes ff on the tenacious parameter a (or conformist parameter b = 1 − a) for initial red
nodes in Ntop = 2000 values of the PageRank index (1 ≤ K ≤ Ntop); black and red/gray curves show data for Cambridge and Oxford networks; here, T = 0.

a

b

c

d

Fig. 5. (Color online) The same as in Fig. 3 (middle panels) at a = 0.5 but with uniform condition for spin flip being independent of PageRank probability
(top panels (a, c): P = 1 in Eq. (1)) and PageRank probability P replaced by

√
P in Eq. (1) (bottom panels (b, d)); the left and right panels correspond to

Cambridge (a, b) and Oxford (c, d) networks; here, T = 0, and Nr = 104 realizations are used.

comparable with typical values of local energies ϵi, we still obtain a rather peaked distribution at ϵi ≈ 0 being very different
from the Boltzmann distribution.

We argue that a physical reason of significantly non-Boltzmann distribution is related to the local nature of the spin
flip condition which does not allow the production of a good thermalization on the scale of the whole system. Indeed,
there are various energetic branches, and probably nonlocal thermalization flips of group of spins are required for a better
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a

b

c

d

Fig. 6. (Color online) The same as in Fig. 3 (middle panel) at a = 0.5, but at finite temperature T during the relaxation process with T = 0.001 (top panels
(a, c)) and T = 0.01 (bottom panels (b, d)); the number of random initial realizations is Nr = 6000, and the relaxation is done during t = 200 iterations.
Left and right columns correspond to Cambridge (a, b) and Oxford (c, d) networks.

Fig. 7. (Color online) Normalized histograms of probability distribution wi over local energies ϵi obtained from the relaxation process during t = 103

time iterations at temperatures T = 0.01 (black curve) and T = 0.05 (red/gray curve); the average is taken over Nr = 200 random initial realizations. The
insets show the distributions on a large scale including all local energies ϵi . The left and right panels show Cambridge and Oxford networks.

thermalization. However, voting is a local process that involves only direct neighbors, which seems to be not sufficient for
the emergence of a global thermal distribution. The presence of a few energy branches is well visible from the data of Fig. 8
obtained at T = 0. This figure shows the dependence of the final fraction ff of red nodes on their initial fraction fi and the
total initial energy Ei =

N
m=1 ϵm of the whole system corresponding to a chosen initial random configuration of spins.

Most probably, these different branches prevent efficient thermalization of the system with only local spin flip procedure.
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Fig. 8. (Color online) This diagram shows the final fraction of red nodes ff , coded by color from ff = 0 (black) to ff = 1 (blue/dark gray), as a function
of initial fraction of red nodes fi and the total initial energy Ei; each of Nr > 3.5 × 104 random realizations is shown by color point; data are shown after
t = 20 time iterations at T = 0. The energy E0 is the modulus of total energy with all spin up; here, a = 0.5. Left and right panels show data for Cambridge
(E0 = 341.20) and Oxford (E0 = 254.28) networks; bars show color attribution to final probability ff .

In addition to the above points, the asymmetric form of Jij couplings plays an important role, generating amore complicated
picture compared to the usual image of thermal relaxation (see, e.g., Ref. [35]). We also note that thermalization is absent
in voter models on regular lattices [13].

4. PROF–Sznajd model

The Sznajd model [32] nicely incorporates the well-known trade union principle ‘‘United we stand, divided we fall’’ into
the field of voter modeling and opinion formation on regular networks. A review of various aspects of this model is given
in Ref. [13]. Here, we generalize the Sznajd model to include in it the features of the PROF model, and consider it on social
networks with their scale-free structure. This gives us the PROF–Sznajd model, which is constructed in the following way.
For a given network, we determine the PageRank probability P(Ki) and the PageRank index Ki for all i nodes. We introduce
the definition of a group of nodes. A group of nodes is defined by the following rule applied at each time step τ .
• (i) Pick by random a node i in the network and consider the polarization of the Ng − 1 highest PageRank nodes pointing

to it.
• (ii) If node i and all other Ng − 1 nodes have the same color (same spin polarization), then these Ng nodes form a group

whose effective PageRank value is the sum of all the member values Pg =
Ng

j=1 Pj; if this is not the case, then we leave
the nodes unchanged and perform the next time step.

• (iii) Consider all the nodes pointing to any member of the group (this corresponds to model option 1) or consider all the
nodes pointing to any member of the group and all the nodes pointed by any member of the group (this corresponds to model
option 2); then check all these nodes n directly linked to the group: if an individual node PageRank value Pn is less than
Pgroup then this node joins the group by taking the same color (polarization) as the group nodes; if this is not the case,
then the node is left unchanged; the PageRank values of added nodes are then added to the group PageRank Pgroup and
the group size is increased.

The above time step is repeated many times during time τ , counting the number of steps, by choosing a random node i on
each next step. This procedure effectively corresponds to the zero-temperature case in the PROF model.

A typical example of the time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model is shown in Fig. 9.
It shows that the system converges to a steady state after a time scale τc ≈ 10N that is comparable with the convergence
times for the PROF models studied in previous sections. We see that there are still some fluctuations in the steady-state
regime which are visibly smaller for the option 2 case. We attribute this to a larger number of direct links in this case. The
number of group nodes Ng gives some variation of ff , but these variations remain on a relatively small scale of a few percent.
Here, we should point on the important difference between the PROF and PROF–Sznajd models: for a given initial color
realization, in the first case we have convergence to a fixed state after some convergence time, while in the second case we
have convergence to a steady state which continues to fluctuate in time, keeping the color distribution only on average.

The dependence of the final fraction of red nodes ff on its initial value fi is shown by the density plot of probability Wf
in Fig. 10 (option 1 of the PROF–Sznajd model). The probability Wf is obtained from many initial random realizations in
a similar way to the case of Fig. 3. We see that there is a significant difference compared to the PROF model (Fig. 3): now
even at small values of fi we find small but finite values of ff , while in the PROF model the red color disappears at fi < fc .
This feature is related to the essence of the Sznajd model: here, even small groups can resist the totalitarian opinion. Other
features of Fig. 10 are similar to those found for the PROF model: we again observe bistability of opinion formation. The
number of nodes Ng , which form the group, does not significantly affect the distributionWf : we have smaller fluctuations at
larger Ng values but the model already works in a stable way at Ng = 3. The results for option 2 of the PROF–Sznajd model
are shown in Fig. 11. In this case, the opinions with a small initial fraction of red nodes fi are suppressed in a significantly
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Fig. 9. (Color online) Time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model with the initial fraction of red nodes fi = 0.7 at one
random realization. The curves show data for three values of group size Ng = 3 (blue/black); 8 (green/light gray); and 13 (red/gray). Full/dashed curves
are for Cambridge/Oxford networks; the left panel is for option 1; the right panel is for option 2.

stronger way compared to option 1. We attribute this to the fact that large groups can suppress small groups in a stronger
way, since the outgoing direct links are taken into account in this option.

The significant difference between the two options of the PROF–Sznajd model is well seen from the data of Fig. 12. Here,
allNtop nodes are taken in red (comparewith the PROFmodel in Fig. 4). For option 1, the society elite succeeds in imposing its
opinion on a significant fraction of nodes, which is increased by a factor 5–10. Visibly, this increase is less significant than in
the PROFmodel. However, for option 2 of the PROF–Sznajdmodel there is practically no increase of the fraction of red nodes.
Thus, in option 2 the society members are very independent and the influence of the elite on their opinion is very weak.

5. PROF models on the LiveJournal network

Even if one can expect that the properties of university networks are similar to those of real social networks, it is important
to analyze the previous PROFmodels in the frame of a real social network. For thatwe use the LiveJournal network, collected,
described, and presented in Ref. [17]. From this database we obtain a directed network with N = 3577166 nodes and
Nℓ = 44913072 links, which are mainly directed (only about 30% of links are symmetric). The Google matrix of the network
is constructed in the usual way [20], and its PageRank vector is determined by the iteration process at damping factor
α = 0.85. For the time evolution of fraction of red nodes f we use time iterations in t and τ defined as in previous sections.

The PageRank probability decay P(K) is shown in Fig. 13. It is well described by an algebraic law P(K) ∝ 1/Kβ with
β = 0.448±0.000046. The convergence of a fraction of red nodes f (t) takes place approximately on the same convergence
time scale tc ∼ 5 ∼ O(1) even though the size of the network is increased almost by a factor 20.

In a way similar to the university networks we find that the homogeneous opinion of the society elite presented in a
small fraction of Ntop nodes influences a large fraction of the whole society especially when the parameter a is not very large
(see Fig. 14 in comparison with Fig. 4). The influence of the elite at 1% of red nodes is larger in the case of the LiveJournal
network. It is possible that this is related to a 30% larger number of links, but it is also possible that other structural network
parameters also play a role here.

In spite of certain similarities with the previous data for university networks discussed before, we find that the opinion
diagram for the LiveJournal network (see Fig. 14 right panel) is very different from those obtained for the university networks
(see Fig. 3): the bistability has practically disappeared. We think that this difference originates from a significantly slower
decay exponent for PageRank probability P(K) in the case of LiveJournal. To check this assumption we compare the
probability distribution Wf of final opinion ff for an initial opinion fixed at fi = 0.4 using the PROF model with the usual
linear weight P in Eq. (1) and a quadratic weight proportional to P2 (see Fig. 15). For the linear weight, we find that only
very small values of ff ≈ 0.005 can be found for initial fi = 0.4, while for the quadratic weight we obtain a rather broad
distribution of ff values in the main range 0 < ff < 0.15 with a few large values ff ≈ 0.6. Thus we see that the final opinion
is rather sensitive to theweight used in Eq. (1). However, in contrast to the university networks (see Figs. 3 and 5), where we
have narrow one-peak or double-peak distributions of ff , for the LiveJournal networkwith quadratic weight we find a rather
broad distribution of ff . In the spirit of a renormalization map description considered in Ref. [10] (see Figs. 1, 2 there), it is
possible to assume that one or two peaks corresponds to one or two fixed point attractors of themap.Wemake a conjecture
that a broad distribution as in Fig. 15 (right panel) can correspond to a regime of a strange chaotic attractor appearing in the
renormalization map dynamics. In principle, such a chaotic renormalization dynamics is known to appear in coupled spins
lattices when three-spin couplings are present (see Ref. [38] and the references therein). It is possible that the presence of
weight probability associated with the PageRank in a certain power may lead to chaotic dynamics which would generate a
broad distribution of final opinions ff .

We also made tests for the PROF–Sznajd model (option 1) for the LiveJournal database. However, in this case, at fi = 0.4
and a = 0.5, we found only small ff values (similar of those in Fig. 15, left panel) both for linear and quadratic weights in
Eq. (1). It is possible that the Sznajd groups are less sensitive to the probability weight.
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Fig. 10. (Color online) PROF–Sznajd model, option 1: density plot of probabilityWf to find the dependence of the final red fraction ff , shown on the y-axis,
on the initial red fraction fi , shown on the x-axis; data are shown inside the unit square 0 ≤ fi, ff ≤ 1. The values ofWf are defined as the relative number
of realizations found inside each of 100×100 cells which cover the whole unit square. Here, Nr = 104 realizations of randomly distributed colors are used
to obtained Wf values; for each realization the time evolution is followed up to the convergence time with up to τ = 107 steps. Left column: Cambridge
network (a, b, c); right column: Oxford network (d, e, f); here, Ng = 3 (a, d), 8 (b, e), 13 (c, f) from top to bottom. The probabilityWf is proportional to color
changing from zero (blue/black) to unity (red/gray).

6. PROF models for the Twitter dataset

We also analyzed the opinion formation on the Twitter dataset with N = 41 652 230, Nℓ = 1468 365 182 taken from
Ref. [18]. This is the entire size of Twitter at the corresponding moment of time [18]. The size is rather large, and due to that
we present only the main features of the PROF model for this directed network.
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Fig. 11. (Color online) The same as in Fig. 10 but for PROF–Sznajd model, option 2.

The dependence of PageRank P on its index K is shown in Fig. 16 (left panel). For the range 1 ≤ log10 K ≤ 5.5, we find
that the decay exponent β ≈ 0.51, being similar to that of the LiveJournal network (see Fig. 13) even if there is a faster drop
of P at larger K values. We note that the value β ≈ 0.5 is rather different from the value usually found for the Zipf law [39]
and the WWW [20], with β ≈ 1. It is possible that this is related to a significantly larger average number of links per node,
which is increased by a factor 3.5 for the Twitter network compared to the university networks analyzed in the previous
sections.

The effect of the homogeneous elite opinion of all red Ntop nodes is shown in Fig. 16 (right panel). We see that on the
Twitter network a small fraction of elite with fixed opinion (Ntop/N ≈ 3 × 10−5) can impose this opinion on practically
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Fig. 12. (Color online) Time evolution of the fraction of red nodes f (τ ) in the PROF–Sznajd model with the initial red nodes for the top PageRank nodes:
Ntop = 200 (blue/black); 1000 (green/light gray); 2000 (red/gray); here, Ng = 8. Full/dashed curves are for Cambridge/Oxford networks; the left panel is
for option 1; the right panel is for option 2. The color of curves is red, green, blue, from top to bottom at maximal τ on both panels.

Fig. 13. (Color online) Data for the LiveJournal network. Left panel: PageRank probability decay with PageRank index K (full curve); the fitted algebraic
dependence is shown by the dashed line y = b − βx (for 1 ≤ log10 K ≤ 5.5) with the exponent β = 0.448 ± 0.000046 and b = −3.70 ± 0.00023. Right
panel: time evolution of opinion given by a fraction of red nodes f (t) as a function of number of iterations t (cf. Fig. 1) at a = 0.5; a few random initial
realizations with fi = 0.5 are shown.

the whole community for all values of the conformist parameter 1 − a. We find that for Ntop > 1300 all ff values are very
close to unity, while for Ntop < 1200 we find ff = 0, as is seen in Fig. 16, right panel. Thus, the transition is very sharp.
We attribute such a strong influence of elite opinion to the very connected structure of Twitter network with a significantly
larger average number of links per node compared to the university and LiveJournal networks.

At a = 0.5, for a fixed fraction of initial opinion fi = 0.4, we find that the probability distribution Wf of final opinion
ff is located in the range of small values 0.0006 < Wf < 0.0007 for both the linear P and quadratic P2 weights used
in Eq. (1) (we do not show these data). For the linear weight, the situation is rather similar to the case of LiveJournal
(see Fig. 15), but for the quadratic weight we find a significant difference between the two networks (see Fig. 15). The
reason for such a significant difference for the quadratic weight case requires a more detailed comparison of network
properties.

The large size of the Twitter network makes numerical simulations of the PROF–Sznajd model rather difficult, and
therefore we did not study this model for this network.

7. Discussion

In this work we have proposed the PageRank model of opinion formation of social networks and analyzed its properties
on examples of four different networks. For two university networks we find rather similar properties of opinion formation.
Opinion formation is characterized by an important feature according to which the society elite with a fixed opinion can
impose its opinion on a significant fraction of the society members which is much larger than the initial elite fraction.
However, when the initial opinions of society members, including the elite, are presented by two options, then we find a
significant range of opinion fraction within a bistability regime. This range depends on the conformist parameter, which
characterizes the local aspects of opinion formation of linked society members. The generalization of the Sznajd model for
scale-free social networks gives interesting examples of opinion formation where finite small-size groups can keep their
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Fig. 14. (Color online) Data for the LiveJournal network. Left panel: dependence of the final fraction of red nodes ff on the tenacious parameter a
(or conformist parameter b = 1 − a) in the PROF model for initial red nodes in Ntop values of the PageRank index (1 ≤ K ≤ Ntop; cf. Fig. 4). Here,
Ntop = 2000 blue, 10,000 green, and 35,000 red curves (from bottom to top at a = 0.5); T = 0. Right panel: the same data as in Fig. 3 at a = 0.5 with the
same parameters but for the LiveJournal network.

Fig. 15. (Color online) Data for the LiveJournal network: probability distribution Wf of final opinion ff for a fixed initial opinion fi = 0.4 and a = 0.5 in
the PROF model. Left panel: usual linear weight P(K) in Eq. (1). Right panel: a quadratic weight P2(K) in Eq. (1). Histograms are obtained with Nr = 500
initial random realizations; the normalization is fixed by the condition that the sum ofWf over all histogram bins is equal to unity.

own opinion, being different from the main opinion of the majority. In this way, the proposed PROF–Sznajd model shows
that totalitarian opinions can be escaped from by small subcommunities. We find that the properties of opinion formation
are rather similar for the two university networks of Cambridge and Oxford. However, the results obtained for networks of
LiveJournal and Twitter show that the range of bistability practically disappears for these networks. Our data indicate that
this is related to a slower algebraic decay of PageRank in these cases compared to the university networks. However, the deep
reasons for such a difference require a more detailed analysis. Indeed, the LiveJournal and Twitter networks demonstrate
rather different behavior for the P2-weighted function of opinion formation. The studies performed for regular networks [10]
show the existence of stable or bistable fixed points for opinion formation models that have certain similarities with the
opinion formation properties found in our studies. At the same time the results obtained in Ref. [38] show that three-body
spin coupling can generate a chaotic renormalization dynamics. Some of our results (Fig. 15, right panel) give indications of
the possible existence of such a chaotic phase in social networks.

The enormous development of social networks in the last few years [2–5] definitely shows that the analysis of opinion
formation on such networks requires further investigations. This research can find also various other applications. One of
them could be a neuronal network of a brain which represents itself as a directed scale-free network [40]. The applications
of network science to brain networks is now under rapid development (see, e.g., Ref. [41]), and Google matrix methods can
find useful applications in this field [42].
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Fig. 16. (Color online) Data for the Twitter network. Left panel: PageRank probability decay with PageRank index K (full curve); the fitted algebraic
dependence is shown by the dashed line y = b−βx (for 1 ≤ log10 K ≤ 5.5) with the exponent β = 0.511±0.0021 and b = −3.33±0.0069 (for the range
5.5 ≤ log10 K ≤ 7 we find β = 1.23). Right panel: dependence of the final fraction of red nodes ff on the tenacious parameter a (or conformist parameter
b = 1−a) in the PROFmodel for initial red nodes in Ntop values of PageRank index (1 ≤ K ≤ Ntop; cf. Fig. 4, Fig. 14). Here, Ntop = 1200 (blue line at ff = 0);
1250 (red curve with circles); and 1300 (top green line); T = 0.
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