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Abstract
We up a directed network tracing links from a given integer to its divisors
and analyze the properties of the Google matrix of this network. The PageRank
vector of this matrix is computed numerically and it is shown that its probability
is approximately inversely proportional to the PageRank index thus being
similar to the Zipf law and the dependence established for the World Wide
Web. The spectrum of the Google matrix of integers is characterized by a large
gap and a relatively small number of nonzero eigenvalues. A simple semi-
analytical expression for the PageRank of integers is derived that allows us
to find this vector for matrices of billion size. This network provides a new
PageRank order of integers.

PACS numbers: 02.10.De, 02.50.−r, 89.75.Fb

(Some figures may appear in colour only in the online journal)

1. Introduction

Number theory [1] is the fundamental branch of mathematics where the theory of prime
numbers, besides its beauty, finds important cryptographic applications [2]. It is established
that the methods of random matrix theory and quantum chaos find their useful applications
for the understanding of properties of prime numbers and the Riemann zeros [3–5].

In this work, we propose another matrix approach to number theory based on the Markov
chains [6]3 and the Google matrix [7]. The latter finds important applications for the information
retrieval and Google search engine of the World Wide Web (WWW) [8]. The right eigenvector
of the Google matrix with the largest eigenvalue is known as the PageRank vector. The elements
of this vector are non-negative and have the meaning of probability of finding a random surfer
on the network nodes. The PageRank algorithm ranks all websites in decreasing order of

3 English translation ‘Extension of the limit theorems of probability theory to a sum of variables connected in a
chain’ reprinted in appendix B of the second part of [6].
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components of the PageRank vector (see e.g. detailed description in [8]). Here, we propose a
natural way to construct the Google matrix of positive integers using their division properties.
We study the statistical properties of the PageRank vector of this matrix and discuss the
properties of a new order of integers given by this ranking. The properties of the eigenvalues
and eigenvectors are also discussed.

The paper is constructed as follows: in section 2, we give the definition of the Google
matrix of integers; in section 3, the properties of its PageRank vector are analyzed; in section 4,
the analysis of spectral properties is given; in sections 4 and 5, the analytical expressions for
the PageRank vector are presented and in section 6, the discussion of the results is presented.

2. Google matrix of integers

The elements of the Google matrix G(α) of a directed network with N nodes are given by

Gmn(α) = αSmn + (1 − α)/N. (1)

Here the matrix S is obtained by normalizing to unity all columns of the adjacency matrix Amn,
and replacing the elements of columns with only zero elements, corresponding to dangling
nodes, by 1/N. An element Amn of the adjacency matrix is equal to unity if a node n points
to the node m and zero otherwise. The damping parameter α in the WWW context describes
the probability (1 − α) of jumping to any node for a random surfer. The value α = 0.85
gives a good classification of pages for WWW [8]. The matrix G belongs to the class of
Perron–Frobenius operators [8], its largest eigenvalue is λ = 1 and the other eigenvalues obey
|λ| � α. In typical WWW networks, the eigenvalue λ = 1 is strongly degenerate at α = 1
(see e.g. [9]) and the introduction of α < 1 becomes compulsory to define a unique right
eigenvector at λ = 1 and to ensure the convergence of the PageRank vector by the power
iteration method [8]. The right eigenvector at λ = 1 gives the probability P(n) of finding a
random surfer at site n and is called the PageRank. Once the PageRank is found, all nodes can
be sorted by decreasing probabilities P(n) and increasing index K(n). The node rank is then
given by the index K(n) which reflects the relevance of the node corresponding to a positive
integer n. For the WWW, the PageRank dependence on K is well described by a power law
P(K) ∝ 1/Kβin with βin ≈ 0.9 [8, 9]. This is consistent with the relation βin = 1/(μin − 1)

corresponding to the average proportionality of the PageRank probability P(n) to its in-degree
distribution win(k) ∝ 1/kμin where k(n) is a number of ingoing links for a node n [8]. For
the WWW, it is established that for the ingoing links μin ≈ 2.1 (with βin ≈ 0.9), while for
the out-degree distribution wout of outgoing links, a power law has the exponent μout ≈ 2.7
[10, 11]. Here we analyze the properties of PageRank and use the notation β = βin. Finally,
we note that usually for WWW, the analysis is done for the exponent μ (see e.g. [10, 11])
related to dK ∼ dP/P−μ ∼ win(k), but here we prefer to analyze the exponent β which is
related to μ by a simple relation β = 1/(μ − 1).

To construct the Google matrix of integers, we define for m, n ∈ {1, . . . , N} the adjacency
matrix by Amn = k where k is a ‘multiplicity’ defined as the largest integer such that mk is a
divisor of n and if 1 < m < n, and k = 0 if m = 1 or m = n or if m is not a divisor of n. Thus,
we have k = 0 if m is not a divisor of n and k � 1 if m is a divisor of n different from 1 and n.
The total size N of the matrix is fixed by the maximal considered integer.

This defines a network where an integer number n is linked to its divisors m different
from 1 and n itself and where the transition probability is proportional to the multiplicity
k, the number of times we can divide n by m. The number 1 and the prime numbers
are therefore not linked to any other number and correspond to dangling nodes in the
language of WWW networks. For example, the number n = 24 has links pointing to
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Figure 1. The Google matrix of integers: the amplitudes of the matrix elements Gmn at α = 1
are shown by color: blue for minimal zero elements and red for maximal unity elements, with
1 � n � N corresponding to the x-axis (with n = 1 corresponding to the left column) and
1 � m � N to the y-axis (with m = 1 corresponding to the upper row). The matrix sizes are
N = 31 in the left panel and N = 101 in the right panel.

m(k) = 2(3), 3(1), 4(1), 6(1), 8(1), 12(1) (multiplicity is given in parentheses) so that
the nonzero matrix elements in this column are 3/8, 1/8, 1/8, 1/8, 1/8, 1/8, respectively.
We find the total number of links N� = ∑

mn Amn, taking into account the multiplicity, to be
N� = 6005 at N = 1000, N� = 1066 221 at N = 105, N� = 152 720 474 at N = 107 and
N� = 19 877 650 264 at N = 109. The fit of the dependence N� = N (a� + b� ln N) gives
a� = −0.901 ± 0.018, b� = 1.003 ± 0.001.

From the adjacency matrix A, we first construct a matrix S0 by normalizing the sum in
each column, containing at least one non-zero element, to unity and the matrix S is obtained
from S0 by replacing the elements of columns with only zero elements, corresponding to
dangling nodes 1 and prime numbers, by 1/N. The Google matrix G is finally obtained from S
by equation (1) for an arbitrary damping factor. The PageRank is the right eigenvector of the
matrix G with the maximal eigenvalue λ = 1: GP = λP = P.

The examples of the Google matrix G at α = 1 for N = 31, 101 are shown in figure 1.
We see that most elements are concentrated above the main matrix diagonal since the divisors
m are smaller than the number n itself. The only exceptions are given by the columns at 1 and
the prime numbers p which have no divisors (apart from 1 and p) and hence they correspond
to the dangling nodes with no direct links pointing to them. The amplitude of the elements
in these columns is uniformly 1/N. The structure of the matrix clearly shows the presence
of diagonals m = n/2, n/3, . . . corresponding to the small divisors m′ = 2, 3, . . ., which
appear rather often in the division of integers. This structure is preserved up to the largest size
N = 109 considered in this work.

As we will see in section 4, the eigenvalue λ0 = 1 of the matrix S is non-degenerate
(contrary to typical realistic WWW networks [9]) and in addition, its spectrum has a large gap
with λ0 and the other eigenvalues |λi| < 0.6. In such a case, the PageRank vector P(K) has
a very small variation when the damping factor α is changed in the range 0.85 � α � 1 and
the convergence of the power method to calculate the PageRank is well assured, actually quite
fast, even for the damping parameter α = 1. Therefore, we limit in this work our studies to
the case α = 1 at which G coincides with the matrix S and from now on we denote S as ‘the
Google matrix’.

3



J. Phys. A: Math. Theor. 45 (2012) 405101 K M Frahm et al

10-6

10-4

10-2

100 102 104 106

P

K

~K −1

103

104

105

106

107

Figure 2. Dependence of PageRank probability P(K) on the PageRank index K for the matrix sizes
N = 103, 104, 105, 106, 107; the dashed straight line shows the Zipf law dependence P ∼ 1/K.

Finally, we note that certain networks constructed from integers have been considered
in [12, 13] but these networks were nondirectional and the Google matrix analysis was not
performed there.

3. PageRank order of integers

We first determine the PageRank vector of the Google matrix numerically by the power
iteration method [8] or by the Arnoldi method [14] using an Arnoldi dimension of size nA,
which allows us to find several eigenvalues and eigenvectors with largest |λ| for a full matrix
size of a few millions (see more details in [9, 15]).

The dependence of PageRank probability P(K) on the PageRank index K is shown in
figure 2. We see that with the growth of the system size N, the dependence P(K) converges
to a fixed distribution P(K) on initial K � N/10 values with the tail of distribution P(K) at
K > N/10, which is sensitive to the cut-off at the finite matrix size N. In the convergent part, a
formal fit (for 10 < K < 105) gives the dependence P ∼ A/Kβ with ln A = 0.0431±0.000 49,
β = 1.040 ± 0.0015 being close to the Zipf law with β = 1 [16]. The small value of β − 1
indicates that there can be a logarithmic correction. Indeed, the fit 1/(PK) = a1 + b1 ln K (for
10 < K < 103) gives the values a1 = 16.050±0.187, b1 = 2.468±0.036. Thus, it is possible
that in the limit of N → ∞, we have the asymptotic behavior P ∼ 1/(K ln K). Such a scaling
looks to be more probable due to usual logarithmic corrections in the density of primes [2].
However, for the available finite matrix sizes, the regime of linear behavior of 1/(PK) versus
ln K is quite limited and it is not obvious how to distinguish between the above two fitting
dependences.

The dependence of PageRank probability P on the integer index n is shown in figure 3.
It is characterized by a global decay P ∝ 1/n with the presence of various branches which
are especially well visible for the rescaled quantity nP. This structure is preserved with the
increase of matrix size for the values of n < N/100. The direct check shows that the highest
plateau corresponds to the prime numbers p.

Another way to analyze the structures visible in figure 3 is to consider the dependence of
n on the PageRank index K obtained from the PageRank probability P(Kn). In fact K gives a
new order of integers imposed by the PageRank. The dependence n(K) is shown in figure 4
on a large scale. In the first approximation, we find the layered structure with a sequence of
parallel lines n ∝ K. This global structure is preserved with the increase of the matrix size
from N = 105 to 107.
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Figure 3. Dependence of PageRank probability P on the integer number n for matrix sizes
N = 106, 107 (left panel: green and red points, respectively), and rescaled probability nP on
n (right panel); data are shown in log–log scale.
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Figure 4. Dependence of the integer number n on the PageRank index K for sizes N = 105, 106

(left panel: green and red points, respectively) and 107 (right panel); data are shown in log–log
scale.

A more detailed view of this structure is shown in figure 5. There are well-defined separated
branches with approximately linear dependence n ≈ κK with κ ≈ 4.5 for the highest branch,
which corresponds to the highest plateau in figure 3 (right panel). This branch contains only
primes. The lower branch contains semi-primes (products of two primes) and so on down to
smaller and smaller values of κ . The whole structure looks to have a self-similar structure as
it shows a zoom to a smaller scale. The increase of the size N gives some modifications of the
structure keeping its global pattern (see figure 5, bottom panels). There is a certain clustering
on the (n, K) plane of rectangles containing close values of K and integer numbers n. The
rectangles in the upper prime-branch contain exclusively prime numbers for n = p. Note that
the neighboring non-prime values appear in other rectangles on the right side for larger values
of K. For example, in the bottom-left panel of figure 5, we have a rectangle at K ∼ 2.6 × 104

and n ∼ 105 with primes but there is at K ∼ 7 × 104 another rectangle of semi-primes, also
with the values n ∼ 105.

The direct analysis shows that the rectangles in figure 5 correspond to flat plateaux with
degenerate values of P(Kn) (see the global dependence shown in figure 2) appearing for finite
matrix size N. This degeneracy results from only rational numbers appearing in the elements
of the Google matrix and from its very sparse structure. Inside such flat regions, the ordering
in K is somewhat arbitrary and depends on the precise sorting algorithm used. The K index
shown in figure 5 was obtained by the Shellsort method that may indeed produce quite a
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Figure 5. Top panels: the dependence of the integer number n on the PageRank index K for size
N = 107 shown by red points (left panel); the right panel shows zoom of data in a rectangle from
the left panel. Bottom panels: in addition to the data of the top right panel, data for N = 106 are
shown (left panel); the right panel shows zoom of data in a rectangular region from the left panel.
Data are shown in usual scale.

random ordering for degenerate values, thus generating the rectangles seen in figure 5. We
have verified that when using a modified sorting algorithm with a secondary criterion, to sort
with increasing n inside a degenerate region, the rectangles are replaced by lines from the
left bottom corner to the right top corner. With increasing values of N, these rectangles are
reduced in size. We numerically find that the first degenerate plateau appears at K = Kd and
that this number increases with the matrix size N, e.g. Kd = 27 at N = 1000, 177 at 105,
1287 at 107 and 10 386 at 109. This dependence is well described by the fit Kd = adKbd with
ad = 1.284 ± 0.078, bd = 0.432 ± 0.004. We return to discussion of the convergence at large
N a bit later.

Since we find an approximate linear growth of n with K inside each branch, it is useful to
consider the dependence of the ratio n/K on K, which is shown in figure 6. The upper branch of
primes is well described by the dependence n/K = b2 ln K + a2 with b2 = 0.322, a2 = 1.358.
This shows that in the previous relation, κ is not a constant but grows logarithmically with K.
We have an approximate relation b2 = 0.322 ≈ 1/b1 = 1/2.468. The lower branches also
have an approximately logarithmic growth of the ratio n/K with K.

Finally, let us discuss the stability of the PageRank order of integers with respect to the
variation of the matrix size N. The dependence P(K) is definitely converging to a fixed function
for K 	 N as is well seen in figure 2. However, for a fixed integer n, its PageRank index
Kn has a visible variation with the increase of matrix size N. These variations are visible in
figure 5 (bottom panels). At the same time, the global structure of the Kn or n(K) dependence
shows signs of convergence with the growth of N. A more detailed analysis of variation of
�K = |Kn(N1) − Kn(N2)| for two matrix sizes N2 = 10N1 is shown in figure 7. We see that
there is a significant decrease in variations �K with increase in N1, even if a small change
of Kn values is visible even at relatively low n ∼ 100. On the basis of these data, we make a

6
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Figure 6. Dependence of the ratio n/K on the PageRank index K for size N = 107; data are shown
in semi-log scale. The straight line shows the fit dependence n/K = a2 + b2 ln K for the upper
branch in the range 10 � K � 104 with a2 = 1.3583 ± 0.0099, b2 = 0.3227 ± 0.0014.
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Figure 7. Dependence of |�K| = |Kn(N2) − Kn(N1)| on the integer n for matrix sizes
N1 = 106, N2 = 107 (green points) and N1 = 105, N2 = 106 (red points). The left and right
panels show the same data either in normal or in log–log scales.

conjecture that in the limit of N → ∞, we will have a convergence to a fixed PageRank order
of integers Kn. However, we expect that this convergence is very slow, probably logarithmic
in N, thus being the reason that, even at N = 107, we find some variations in Kn. We note that
the density of states of Riemann zeros also shows very slow convergence so that enormously
large values of n ∼ N ∼ 1020 are required to obtain stable results [3, 4].

4. Spectral properties of the Google matrix of integers

4.1. Arnoldi method

To study numerically the spectrum of the Google matrix S = G of integers at α = 1, we
first employ the Arnoldi method [14, 15]. This method uses a normalized initial vector ξ0 and
generates a Krylov space by the vectors S j ξ0 for j = 0, . . . , nA − 1, where nA is called the
Arnoldi dimension. Using Gram–Schmidt orthogonalization, one determines an orthogonal
basis of the Krylov space and the matrix representation of S in this basis. This provides a
matrix S̄ of modest dimension nA of Hessenberg form which can be diagonalized by standard
QR-methods and whose eigenvalues, called Ritz eigenvalues, are in general very accurate
approximations of the largest eigenvalues of the original (very large) matrix S.

In this work, we have used the Arnoldi dimension nA = 1000 and two different initial
vectors: first a random initial vector and second a uniform initial vector with identical

7
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Figure 8. Spectrum of the Google matrix of integers for the matrix size N = 106 (left panels)
and 107 (right panels); the red crosses (light blue squares) represent numerical data from the
Arnoldi method with Arnoldi dimension nA = 1000 and a random initial vector (with the unit
initial vector), and the dark blue points represent the exact eigenvalues obtained as the zeros of
the reduced polynomial of equation (6). The top panels show the whole spectrum and the bottom
panels show a zoom of the region represented by black squares in the top panels. The eigenvalues
have significantly higher accuracy for the Arnoldi method with unit initial vector. The unit circle
|λ| = 1 is shown in green.

components 1/
√

N (thus normalized by the Euclidean norm ‖(· · ·)‖2). The spectrum of the
matrix S is shown in figure 8 for two sizes N = 106, 107. We see that there are only three
eigenvalues within the ring 0.05 < |λ| < 0.5 while the majority of eigenvalues is concentrated
inside a range of |λ| < 0.05. The first few largest eigenvalues are accurately obtained from
both initial vectors used for the Arnoldi method and also coincide (up to numerical precision)
with the eigenvalues determined by a semi-analytical approach (see below). However, for the
range |λ| < 0.05, the situation becomes more subtle, as discussed below.

We note that figure 8 shows a large gap between λ0 = 1 and the next eigenvalue, thus
justifying our above choice of the damping factor α = 1.

4.2. Analytical discussion of spectrum

The Google matrix S at α = 1 has a very particular structure that allows us to establish some
important properties for the spectrum and its eigenvalues. We can write

S = S0 + v d T , (2)

8



J. Phys. A: Math. Theor. 45 (2012) 405101 K M Frahm et al

where v and d are two vectors of size N with components vn = 1/N and dn = 1 for the prime
numbers n = p or n = 1 and dn = 0 for the other non-prime numbers (different from 1). For
later use, we also introduce the vector e with components en = 1 and therefore v = e/N. In
addition, d T denotes the transposed line vector of d. The matrix S0 is the contribution that
arises from the adjacency matrix A by normalizing the non-vanishing columns of the latter and
the tensor product v d T represents the values 1/N that are put in the zero columns of S0 when
constructing the full matrix S. The normalization condition of the non-vanishing columns of
S0 can be formally written as e T S0 = e T − d T which is just the line vector with components
0 for the vanishing columns of S0 (for prime numbers n or n = 1) and 1 for the non-vanishing
columns of S0 (for the other non-prime numbers different from 1). This expression provides
the useful identity

d T = e T (1 − S0). (3)

Furthermore, we observe that the matrix S0 has a trigonal form with vanishing entries
on the diagonals because (S0)mn �= 0 only if m is a divisor of n different from 1 and n, and
therefore for any non-vanishing matrix element (S0)mn, we have m � n/2 < n. This matrix
structure can also be seen in figure 1. As a consequence, S0 is nilpotent with Sl

0 = 0 for
some integer l. In the following, let us assume that l is the minimal number such that Sl

0 = 0.
Obviously in our model, l = [log2(N)] is actually a very modest number as compared to the
full matrix size N.

We now discuss how the form of equation (2) affects the eigenvalues of the full matrix S.
Let ψ be a right eigenvector of S and λ its eigenvalue:

λψ = Sψ = S0ψ + C v, C = d T ψ =
N∑

n prime or n=1

ψn. (4)

If C = 0, we find that ψ is an eigenvector of S0. Then λ = 0 since the matrix S0 is nilpotent
and cannot have non-vanishing eigenvalues. The matrix S0 is actually non-diagonalizable and
can only be transformed to a Jordan form with quite large Jordan blocks and 0 as the diagonal
element of each of the Jordan blocks.

Suppose now that C �= 0 implying that λ �= 0 since the equation S0ψ = −C v does not
have a solution for ψ because S0 has many zero rows and vn = 1/N �= 0 for each n = 1, . . . , N.
Since λ �= 0, the trigonal matrix λ1 − S0 is invertible and from equation (4), we obtain

ψ = C (λ1 − S0)
−1 v = C

λ

l−1∑
j=0

(
S0

λ

) j

v. (5)

Note that the sum is finite since Sl
0 = 0. The eigenvalue λ is determined by the condition that

this expression of ψ has to satisfy the condition C = d T ψ . Multiplying this condition by
λl/C, we find that λ is a zero of the following reduced polynomial of degree l:

Pr(λ) = λl −
l−1∑
j=0

λl−1− j c j = 0, c j = d T S j
0 v. (6)

This calculation shows that there are at most l eigenvalues λ �= 0 of S given as the zeros of
this reduced polynomial.

We note that using Sl
0 = 0 and identity (3), one finds that the coefficients c j obey the

following sum rule:

l−1∑
j=0

c j = d T

⎛
⎝ l−1∑

j=0

S j
0

⎞
⎠ v = e T (1 − S0)(1 − S0)

−1 v = 1 (7)

9
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since e T v = ∑
n vn = 1. This sum rule ensures that λ = 1 is a zero of the reduced polynomial

and the PageRank as the eigenvector of λ = 1 is obtained from (5):

P = C
l−1∑
j=0

S j
0 v, C−1 =

l−1∑
j=0

e T S j
0 v, (8)

where the identity for C−1 is due to the normalization of P.
Since the degree l = [log2(N)] of the reduced polynomial is very modest, 9 � l � 29

for 103 � N � 109, we have determined numerically the coefficients c j, which only require
a finite number of successive multiplications of S0 to the initial vector v, and determined the
zeros of the reduced polynomial by the very efficient Newton–Maehly method in the complex
plane. The resulting l eigenvalues (and the trivial highly degenerate eigenvalue λ = 0 of S)
obtained from this semi-analytical method are also shown in figure 8.

The numerical determination of the zeros shows that they are all simple zeros of the
reduced polynomial but at this point, we are not yet sure that they are also non-degenerate
as far as the full matrix S is concerned. In theory we might still have the principal vectors φ

associated with some eigenvalue λ �= 0 such that Sφ = λφ+ψ with ψ being the eigenvector at
λ. However, we can exclude this scenario by determining the full characteristic polynomial
of S:

PS(λ) = det(λ1 − S0 − v d T )

= λN det(1 − S0/λ) det[1 − (1 − S0/λ)−1 v d T /λ]

= λN[1 − d T (1 − S0/λ)−1 v/λ] = λN−l Pr(λ) (9)

since det(1 − S0/λ) = 1, det(1 − u w T ) = (1 − w T u) for the arbitrary vectors u and w,
and the matrix inverse has been expanded in a finite sum in a similar way as in equation (5).
According to equation (9), we observe that the simple zeros of Pr(λ) are also simple zeros of
PS(λ) and have therefore an algebraic multiplicity equal to 1. This proves that there are no
principal vectors and no non-trivial Jordan-block structure for λ �= 0. On the other hand, the
eigenvalue λ = 0 has the algebraic multiplicity N − l with many large Jordan blocks.

The l-dimensional subspace associated with the eigenvalues λ �= 0 is according to
equation (5) generated by the l vectors v( j) = S j

0 v with j = 0, . . . , l − 1, which form
a basis of this subspace. Using equations (2) and (6), we may easily determine the matrix
representation of S with respect to this basis by

S v( j) = c j v
(0) + v( j+1) =

l∑
k=0

S̄k+1, j+1 v(k), j = 0, . . . , l − 1, (10)

where for simplicity of notation for the case j = l − 1, we write v(l) = 0. The l × l-matrix S̄
has the explicit form

S̄ =

⎛
⎜⎜⎜⎜⎜⎝

c0 c1 · · · cl−2 cl−1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ . (11)

One easily verifies that the characteristic polynomial PS̄(λ) of this matrix coincides with
the reduced polynomial (6) and its l eigenvalues are therefore exactly the l non-vanishing
eigenvalues of the full matrix S. Using the sum rule (7), one notes that the l-dimensional
vector (1, . . . , 1)T is a right eigenvector of S̄ with eigenvalue λ = 1, thus confirming the
PageRank expression P ∝ ∑l−1

j=0 v( j) (see also equation (8)).

10
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Figure 9. Left panel: the dependence of γ j = 2 ln |λ j| on the index j for the l non-vanishing
eigenvalues of S and various matrix sizes N. Right panel: the dependence of γ1 on (ln N)−1 (red
line with crosses). The green line corresponds to the fit γ1(N) = γ1(∞) + �γ/ ln N for the range
105 � N � 109 (i.e. (ln N)−1 < 0.09) with γ1(∞) = 1.020 ± 0.006 and �γ = 7.14 ± 0.09.

A direct numerical diagonalization of matrix (11) is tricky and fails to produce the smaller
eigenvalues (below 10−2) due to numerical rounding errors since the coefficients c j decay very
rapidly, e.g. c22 ∼ 10−38 for N = 107 with l = 23. However, we may numerically diagonalize
the ‘equilibrated’ matrix, ρ−1 S̄ ρ, which has the same eigenvalues as S̄ and where ρ is a
diagonal matrix with the diagonal matrix elements ρ j j = 1/c j−1. The eigenvalues obtained
from the equilibrated matrix coincide very precisely (up to numerical precision 10−14) with
the zeros obtained from the reduced polynomial by the Newton–Maehly method. In figure 8,
we also show these l zeros for N = 106 and N = 107. Apparently, both variants of the Arnoldi
method fail to confirm the analytical result that there are only l non-vanishing eigenvalues, a
point we attribute to the numerical instability of the highly degenerate and defective eigenvalue
λ = 0 and which we will discuss below.

To study the evolution of the eigenvalue spectrum with N, it is actually convenient to
introduce the variable γ j = −2 ln |λ j|. The dependence of γ j on the index j is shown in the
left panel of figure 9. It appears that the γ -spectra for different values of N fall roughly on the
same curve except for the last one or two values of each spectrum. This universal curve can
be roughly approximated by a piecewise linear function with two slopes ≈ 4/3 for 0 � j � 6
and ≈ 1/7 for 6 � j � 28.

We note that the convergence of the first nonzero γ1 is compatible with the law
γ1(N) ≈ γ1(∞) + �γ/ ln N with γ1(∞) = 1.020 ± 0.006 and �γ = 7.14 ± 0.09 obtained
from a fit in the range 105 � N � 109. This fit is actually very accurate as can be seen from the
small error of γ1(∞) and the right panel of figure 9. Once more, such a dependence indicates
a very slow logarithmic convergence with the system size N.

In figure 10, we show the amplitude |ψ1| of the second eigenvector ψ1 at λ1 =
−0.284 22 + i 0.387 26 for N = 107 versus the K index. Despite some fluctuations, this
eigenvector seems to be close to the PageRank as far as the overall distribution of very large
and small values is concerned. This behavior does not come as a surprise in view of the
expansion (see equation (5))

ψ1 ∝
l−1∑
j=0

λ
− j−1
1 v( j). (12)

In principle, the fact that |λ1| is well below 1 indicates that the contributions of v( j) for the
larger values of j increase. However, as we will discuss in the next section, the overall size of
v( j) decays with increasing j much faster than the increase by the factor λ

− j−1
1 and therefore

11
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Figure 10. Dependence of the PageRank vector P (red curve) and the eigenvector |ψ1| (blue crosses)
on the PageRank index K for N = 107. Here the eigenvalue is λ1 = −0.284 22 + i 0.387 26
(|λ1| = 0.480 37, γ1 = 1.4663, and the corresponding ψ1 is normalized by the condition∑

n |ψ1(n)| = 1); the green curve shows the difference |�P| between the numerically computed
PageRank P (red curve) and semi-analytical computation of PageRank; for clarity, |�P| is
multiplied by a factor of 108.

mainly the first few terms of this sum contribute to ψ1 in a similar way as for the PageRank
(see section 5).

Finally in figure 10, also the numerical difference of the PageRank determined by the
standard power method and the semi-analytical expression (8) is shown. The relative difference
is ∼10−10 for the full range of K, thus numerically confirming the accuracy of equation (8).

4.3. Numerical problems due to Jordan blocks

The question arises why the Arnoldi method for both initial vectors, random and uniform (and
also direct numerical diagonalization for small matrix sizes N � 104), fails to confirm the
analytical result that there are only l = [log2(N)] non-zero eigenvalues λ �= 0 of S. The reason
is that the big subspace of dimension N − l associated with the eigenvalue λ = 0 with a lot of
large Jordan blocks is numerically very problematic. This effect for such a defective eigenvalue
is well known in the theory of numerical diagonalization methods [14]. To understand this a
bit clearer, consider a ‘perturbed’ Jordan block of size D:⎛

⎜⎜⎜⎜⎜⎝

0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
ε 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠ , (13)

which has a characteristic polynomial λD − (−1)Dε and therefore complex eigenvalues that
scale as |λ| ∼ ε1/D as a function of the perturbation ε, while for ε = 0 we have λ = 0 with
multiplicity D. Therefore, a value of ε ∼ 10−15 due to numerical rounding errors may still
produce strong numerical errors in the eigenvalues if D is sufficiently large. In our case, figure 8
shows that the eigenvalues obtained by the Arnoldi method are accurate for |λ| � 10−2.

As can be seen in figure 8, there is also a difference in quality between the two initial
vectors chosen for the Arnoldi method. Using a random initial vector, the Arnoldi method
produces some wrong isolated eigenvalues in the intermediate regime 0.01 � |λ| � 0.02 and
in the case N = 107, some of the semi-analytical eigenvalues in the same regime are not
accurately found. However, for uniform initial vector, the Arnoldi method produces rather

12
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accurate eigenvalues even for |λ| ≈ 0.005. The reason is that the uniform initial vector
corresponds (up to normalization) to the vector v = e/N. In view of equation (10), the Arnoldi
method generates, at least in theory, exactly the l-dimensional subspace spanned by the vectors
v( j) and should exactly break off at nA = l with a vanishing coupling matrix element from
the subspace to the remaining space. However, due to numerical rounding errors and the fact
that the vectors v( j) are badly conditioned, i.e. mathematically they are linearly independent
but numerically nearly linearly dependent, the coupling matrix element is of the order of
10−3 (for N = 107). As a consequence, the Arnoldi method continues to generate new vectors
producing a cloud of ‘artificial’ eigenvalues inside a circle or radius ∼0.005. These eigenvalues
are generated by the above-explained mechanism of perturbed Jordan blocks.

The Arnoldi method with a random initial vector produces a similar but slightly larger
cloud of such artificial eigenvalues. However, here, even without any numerical rounding
errors, the method should not break off due to a bad choice of the initial vector. Actually,
in this case, the method even produces some ‘bad’ eigenvalues outside the Jordan-block-
generated cloud.

We mention that it is possible to improve the numerical behavior of the Arnoldi method
with uniform initial vector by the following ‘tricks’: first we chose a different matrix
representation of S where the first basis vector (associated with the number ‘1’) is replaced
by the uniform vector e and second where the scalar product used for the Gram–Schmidt
orthogonalization is modified with stronger weights ∼ n2 for the larger components. This
modified Arnoldi method produces a very small coupling matrix element ∼10−10 (for N = 107)
at nA = l and numerically very accurate eigenvalues (up to 10−10) for all l non-vanishing
eigenvalues. If we force the Arnoldi iterations to continue (nA  l), we obtain again a Jordan-
block-generated cloud of eigenvalues but whose size is considerably reduced as compared to
both original variants of the method.

5. Self-consistent determination of PageRank and analytic approximation

The eigenvalue equation of the PageRank, P = C v + S0 P with C = d T P (see equation (2)),
can be interpreted as a self-consistent equation for P defining a very effective iterative method
to determine P in a few iterations. Let us define the following iteration procedure:

P(0) = 0, P( j+1) = C v + S0 P( j), j = 0, 1, 2, . . . . (14)

In principle, the constant C = d T P is only obtained once the exact PageRank is known.
Therefore, in a practical application of this iteration, one first chooses some arbitrary non-
vanishing value for C and normalizes the PageRank once the procedure has converged.
However, for reasons of notation, we chose to keep the value C = d T P in equation (14)
from the very beginning.

We note that iteration (14) can formally be solved by the sum

P( j) = C
j−1∑
i=0

Si
0 v = C

j−1∑
i=0

v(i). (15)

Since Sl
0 = 0 for l = [log2(N)], the iteration not only converges but it actually provides the

exact PageRank P = P(l) after a finite number of iterations when j = l and in which case,
equation (15) coincides with our previous result (8).

We mention that the power method, where one successively multiplies the matrix
S = v d T + S0 by an initial (normalized) vector, is somewhat similar to (14) but with a
very crucial difference. In the power method, the constant C is updated at each iteration
according to C( j) = d T P( j) and here the initial vector must be different from 0. We recall that
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obtained from equation (14) and the exact PageRank P versus the PageRank index K. Right
panel: comparison of the dependence of the rescaled probabilities nP and nP(3) on n. Both panels
correspond to the case N = 107.

the power method converges exponentially with an error ∼|λ1| j where λ1 being the second
eigenvalue of S with |λ1| ≈ 0.5 for N = 109 and an extrapolated value |λ1| ≈ 0.6 in the limit
N → ∞. As can be seen in figure 11, iteration (14) actually converges much faster than |λ1| j,
which is simply due to fixing the constant C from the beginning and not updating it with the
iterations.

The norm δ j = ‖P( j) − P‖1 of the error vector after j iterations decays much faster than
exponentially with j as shown in figure 11. For N = 107, one can quite well approximate the
error norm by the fit δ j ≈ exp(1.6–1.48 j − 0.117 j2) representing a quadratic function in
the exponential. Furthermore, for j close to l, we have the approximate ratio δ j/δ j−1 ≈ 10−2

and not 0.5–0.6 as the power method would imply. For j > 12, one can actually identify
a regime of superconvergence where the logarithm of the error behaves exponentially,
− ln(δ j) ≈ exp(2.46 + 0.092 j), but the parameter range for j is too small to decide if
there is really superconvergence. However, both fits clearly indicate that the convergence is
considerably faster than exponential.

As a consequence of the very rapid convergence dependent on the required precision, it is
sufficient to apply iteration (14) only a few times j 	 l to obtain a reasonable approximation.
For example, figure 12 shows for N = 107 that on a logarithmic scale, P(3) and P are already
very close.
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This allows us to obtain a very simple analytical approximation of the PageRank:
P ≈ P(3) = v(0) + v(1) + v(2). For this, let us rewrite the recursion v( j+1) = S0 v( j) in a
different way:

v( j+1)
n =

[N/n]∑
m=2

M(mn, m)

Q(mn)
v( j)

mn if n � 2 and v
( j+1)

1 = 0, (16)

where for given two integers n and m > 1, the multiplicity M(n, m) is the largest integer
such that mM(n,m) is a divisor of n and Q(n) = ∑n−1

m=2 M(n, m) is the number of divisors of n
(different from 1 and n itself) counting divisors several times according to their multiplicity.
The appearance of the multiplicity M(mn, n) in (16) is not very convenient for numerical
evaluations. Either one recalculates the multiplicity at each use or one sacrifices a big amount
of memory to store them. It is actually possible to rewrite equation (16) in a way that the
multiplicities no longer appear explicitly. For this, we note that the case M(mn, n) � 2 implies
only those values of m such that n is a divisor of m implying m = m̃n and mn = m̃n2. This
produces a second sum where one uses the multiples of n2 and in a similar way, a further sum
with multiples of n3 for the cases M(mn, n) � 3 and so on. For n � 2, we may therefore
rewrite equation (16) in the following equivalent expression:

v( j+1)
n =

[N/n]∑
m=2

1

Q(mn)
v( j)

mn +
nν�N∑
ν�2

[N/nν ]∑
m=1

1

Q(mnν )
v

( j)
mnν , (17)

where each term in the sum of ν takes into account the contributions with M(mn, m) = ν.
Note that the extra sums start at m = 1 since n � 2 and therefore mnν > n even for m = 1.
The above PageRank iteration (14) can be written in a similar way (see below) but for practical
purposes, numerical or analytical, it is actually more convenient to use the recurrence for the
vectors v( j) and to add them to obtain the PageRank according to equation (15).

Both equations (16) and (17) are also very efficient for a numerical evaluation, especially
in terms of memory usage, since the matrix S0 is represented by ‘only’ N integer values Q(n),
n = 1, . . . , N, which is much less than the number (∼N ln N) of non-zero double-precision
matrix elements of S0 (even completely taking into account the sparse structure of S0). When
using equation (16), one can recalculate at each time the multiplicities M(n, m), which is not
very expensive. However, it turns out that the additional sums in equation (17) are slightly
more effective than this recalculation. Furthermore, for the iteration of v( j), the number of
non-vanishing elements is reduced by a factor of 2 at each iteration. As a consequence, we may
replace in equations (16) and (17) N by [N 2− j] and thus considerably reduce the computation
time. We note that the direct iteration of P( j) instead v( j) does not have this advantage. Actually,
in terms of numerical computation time, the approximation to stop after a few iterations is not
very important since in any case the higher order corrections require less computation time.
Using iteration (17), we have been able to determine numerically the vectors v( j) and therefore
the PageRank, the coefficients c j and the resulting l = [log2 N] non-zero eigenvalues of S for
system sizes up to N = 109.

In addition, equation (16) allows also for some analytical approximate evaluation of the
first vectors. The initial vector is v(0)

n = 1/N. Let us try to evaluate the next two vectors v(1)
n

and v(2)
n for the most important case where n is a prime number p. Furthermore, in sum (16),

the most important contributions arise for m also being a prime number q such that Q(qp) = 2
and M(qp, p) = 1 (except for the case q = p, which we neglect) resulting in

v(1)
p ≈

[N/p]∑
q=2, prime

1

2N
= 1

2N
π

([
N

p

])
≈ 1

2p(ln N − ln p)
, (18)
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where π(n) ≈ n/ ln(n) (for n  1) is the number of prime numbers below n. However,
these values of v(1)

n at the prime numbers n = p do not contribute to (16) for the next
iteration j = 1 when trying to determine v(2). To obtain the leading contributions in v(2),
we need v(1)

n for n = p1 p2 being a product of two prime numbers. In this case, we have
Q(q p1 p2) = 23 −2 = 6 if q, p1and p2 are three different prime numbers. Assuming p1 �= p2

and neglecting the complications from the few cases q = p1 or q = p2, we find that

v(1)
p1 p2

≈ 1

6N
π

([
N

p1 p2

])
≈ 1

6p1 p2 (ln N − ln p1 − ln p2)
. (19)

For the case n = p2, i.e. p1 = p2 = p, we have Q(qp2) = 5 (since p has multiplicity 2)
resulting in

v
(1)

p2 ≈ 1

5N
π

([
N

p2

])
≈ 1

5p2 (ln N − 2 ln p)
. (20)

From (16) for j = 1 and (19), we obtain

v(2)
p ≈ 1

12N

[N/(2p)]∑
q=2, prime

π

([
N

p q

])
. (21)

Here we have reduced the sum from q � [N/p] to q � [N/(2p)] since π([N/(pq)]) is non-zero
only for N/(pq) � 2 and therefore q � N/(2p). Now, we replace the sum

∑
q(· · ·) over the

prime numbers by an integral
∫

dq π ′(q) (· · ·) where π ′(q) ≈ 1/ ln(q) is the average density
of prime numbers at q resulting in

v(2)
p ≈ 1

12N

∫ N/(2p)

2
dq π

([
N

p q

])
π ′(q)

≈ 1

12p

∫ N/(2p)

2

dq

q

1

(ln(N/p) − ln q) ln q

= 1

12p

∫ ln(N/(2p))

ln 2
du

1

(ln(N/p) − u) u

= 1

6p ln(N/p)

(
ln ln

(
N

2p

)
− ln ln 2

)
. (22)

From (18) and (22), we obtain the PageRank approximation at integer values,

Pp ≈ P(3)
p ≈ C

(
1

N
+ v(1)

p + v(2)
p

)
≈ C

2p ln N

(
1 − ln ln 2 + ln ln N

3

)
, (23)

where we have assumed that N  p and replaced ln(N/p) = ln N − ln p ≈ ln N and C is the
same constant as used in (14).

The important point with this expression is that it is of the form Pp ≈ CN/p where CN is
a constant depending on N. In order to compare with our above results, especially in figure 2,
we have to replace p by the K index. Assuming that the K index is dominated by the prime
numbers, we have K = π(p) ≈ p/ ln p implying p ≈ K ln p ≈ K ln K, thus providing the
behavior P(K) ≈ CN/(K ln K) already conjectured above based on the numerical results.
Concerning the numerical value of the constant CN , we find that, at N = 107, it is roughly one
order of magnitude too small compared to the numerical results.

We recall that the considerations leading to expression (23) are based on a lot of
assumptions and quite crude approximations, especially the replacement of π(n) ≈ n/ ln(n),
even if n = O(1), and we have neglected a lot of contributions from numbers with more
factors in their prime factor decomposition, which are most likely responsible for the reduced
numerical prefactor. Furthermore, the assumption that the PageRank is dominated by prime
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Figure 13. Left panel: the full lines correspond to the dependence of PageRank probability P(K)

on the PageRank index K for the matrix sizes N = 107, 108, 109 with the PageRank evaluated from
expression (8) using the efficient numerical method based on equation (17). The green crosses
correspond to the PageRank obtained by the power method (PM) for N = 107; the dashed straight
line shows the Zipf law dependence P ∼1/K. Right panel: the same as in the left panel (without
data from the power method) for a simplified model for the Google matrix of integers where all
multiplicities M(n, m) are replaced by 1, i.e. n is linked to its divisors m only once even if n can be
divided several times by m. The PageRank was numerically evaluated by the same efficient method
using equations (8) and (16) with M(n, m) = 1.

numbers is not completely exact since certain non-prime numbers with a small number of
factors intermix with larger prime numbers in the PageRank, thus modifying the dependence
of the prime numbers on the K index from p ≈ K ln(K) to p ≈ K (1.36 + 0.323 ln K)

according to the fit in figure 6 for N = 107. However, despite the approximations, we recover
the leading parametric dependence of P ∼1/(K ln K).

The PageRank dependence P(K) obtained from expression (8) using the efficient
numerical method based on equation (17) is shown in figure 13 (left panel) for N =
107, 108, 109. For N = 107, these data agree with the computation result by the Arnoldi
power method with the numerical accuracy of the order of 10−10 (see also figure 10). This
confirms the efficiency of our semi-analytical computation of the PageRank.

We note that it may be useful to consider a simplified model for the Google matrix
of integers when multiplicity of all divisors is taken to be unity. The numerical fit of
data shows that, in this case, the number of links scales as N� = N (a� + b� ln N) with
a� = −1.838±0.002, b� = 0.999±0.0002. For this model, we have the same expression (16)
but with the replacements M(nm, m) → 1 and Q(n) → Q∗(n) where Q∗(n) is the
number of divisors of the integer n excluding 1 and n itself without multiplicities, e.g.
Q∗(2) = 0, Q∗(3) = 0, Q∗(4) = 1, . . .. Note that this quantity is given by the expression
Q∗(n) = (

∏
j(μ j + 1)) − 2 where μ j are the exponents in the prime factor decomposition of

n = ∏
j p

μ j

j .
The dependence of the PageRank on K for the simplified model is shown in the right

panel of figure 13. It shows practically the same behavior as in the main model shown in the
left panel. In this case, the analytical expression for the PageRank P, obtained from the first
three terms, has a very simple form

Pn ≈ P(3)
n = σN

(
1 +

[N/n]∑
m1=1

1

Q∗(m1n)
+

[N/n]∑
m1=2

[N/(nm1)]∑
m2=2

1

Q∗(m1n)

1

Q∗(m2m1n)

)
, (24)

where N is the matrix size and σN is the global normalization constant determined by the
condition

∑n=N
n=1 Pn = 1. This simple formula gives a good description of the PageRank

behavior shown in the right panel of figure 13. Indeed, the direct count shows that the ratio
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not reduced allowing a direct comparison with the right panel of figure 7. The data were obtained
by the same efficient numerical method as in the left panel of figure 13.

Rms of the total number of links N� for both models (counted with or without multiplicities)
approaches unity for large matrix sizes. For example, we have Rms = 1.184 (N = 1000),
1.102 (105), 1.070 (107) and 1.052 (109). Thus, we think that in the limit of large N, both
models converge to the same type of behavior. It is possible that the simplified model may be
more suitable for further analytical analysis. However, in this work, we present data for the
simplified model only in the right panel of figure 13.

Using the PageRank data obtained by the self-consistent approach for large N =
107, 108, 109, we can analyze the convergence of the PageRank order Kn at larger sizes
compared to those used in figure 7. These new results for variation of |�K| are presented in
figure 14. They show that the variation |�K| decreases with the increase of N from 107 up
to 109 even if the process is slow. A direct comparison shows that the first deviation in the
order Kn appears at K = Ks = 13 (comparing N = 106 versus 107), Ks = 27 (107 versus
108), Ks = 30 (108 versus 109). We find that the stable range interval Ks grows with N but this
growth seems logarithmic like with Ks ∼ln N. Such a growth seems to be natural in the view
of logarithmic convergence of the second eigenvalue λ1 discussed above and all logarithmic
factors appearing in the density of primes. We also note that the value of Ks is significantly
smaller than the value of Kd at which the first degenerate flat plateau appears in the PageRank
P(K) and hence these degeneracies do not affect the order of the first Ks integers.

On the basis of the obtained results, we conclude that for our maximal matrix size N = 109,
we have convergence of the first 32 values of Kn. These numbers n, corresponding to the values
of K = 1, 2, . . . , 32, are n = 2, 3, 5, 7, 4, 11, 13, 17, 6, 19, 9, 23, 29, 8, 31, 10, 37, 41, 43, 14,
47, 15, 53, 59, 61, 25, 67, 12, 71, 73, 22, 21. There are about 30% of non-primes among these
values. We mention that the positions of the first non-primes 4, 6, 9 can already be obtained
from the first-order approximations of v(1) discussed above. According to (18), the relative
weight of a prime number in the first order is 1/(2p). For the two square numbers 4 and 9,

the weight is according to (20) either 1/(5 × 4) = 1/(2 × 10) or 1/(5 × 9) = 1/(2 × 22.5),
explaining that 4 is between the primes 7 and 11 and that 9 is between 19 and 23. For the
product 6 = 2 × 3, we have according to (19) the weight 1/(6 × 6) = 1/(2 × 18) implying
that 6 is between 17 and 19. However, this simple argument does not work for other numbers,
for example, for 10 (or 14), it would imply an incorrect position between 29 and 31 (41 and
43). We mention that more numerical data are available at the web page [17].
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For the simplified model, we find at N = 109 for the first values K = 1, 2, . . . , 32 a
slightly different order of integers n = 2, 3, 5, 4, 7, 11, 13, 17, 9, 6, 19, 8, 23, 29, 31, 10, 37,
41, 43, 14, 47, 15, 53, 25, 59, 16, 61, 12, 67, 71, 22, 21. Here the absence of multiplicities
increases the weight for the square numbers of primes to 1/(4p2), implying that these numbers
are slightly advanced in the K order as compared to our main model. The modified weight for
9 is 1/(2 × 18) coherent with the new position between 17 and 19 (with 6 having the same
first-order weight as 9 and also being between 17 and 19). For 4, the weight is increased from
1/(2 × 10) to 1/(2 × 8). However, this increase is not sufficient to explain the new position
of 4 between 5 and 7.

One might mention as a curiosity a special ‘prime integer network model’ where a non-
prime number n is only linked to its prime factors (and not to all of its divisors). In this case,
the matrix S0 is strongly simplified such that S2

0 = 0, i.e. l = 2 being independent of the
system size, and hence there are only two non-vanishing eigenvalues of the Google matrix,
which are λ0 = 1 and λ1 = c0 − 1 ≈ −1 + 1/ ln N where c0 = (π(N) + 1)/N ≈ 1/ ln N is
the ratio of the number of primes and unity to N. This is simply seen from the definition of c j

in equation (6) and the trace c0 = λ0 + λ1 of matrix (11), which is of size 2 × 2 for this case.
According to (5), the PageRank P and the second eigenvector ψ1 are given by P ∝ e + v(1)

and ψ1 ∝ e − v(1)/(1 − 1/ ln N) where e is the vector with all components equal to unity
and v(1) is a vector such that v(1)

n = 0 for the non-prime numbers n or n = 1 and v(1)
n for

the prime numbers n = p is given by an equation similar to equation (16) for j = 0 with
v(0)

nm being replaced by unity and multiplicities and number of divisors adapted for the prime
integer network model. Here both versions, with or without multiplicities, are possible. The
eigenvalues do not depend on the version but the eigenvectors do. For both cases, it is pretty
obvious that the K index gives exactly the sequence of prime numbers below N in increasing
order followed by a large degenerated plateau for the non-prime integer numbers. Note that
here the second eigenvalue converges to −1 with a correction 1/ ln(N) for large N, thus closing
the gap in |λ| of the Google matrix.

6. Discussion

In this work, we constructed the Google matrix of integers based on links between a given
integer n and its divisors. The numerical analysis based on the Arnoldi method allowed us
to show that the PageRank P(Kn) of this directed network decays with the PageRank index
Kn of an integer n approximately as P(Kn) ∼ 1/(Kn ln Kn), being similar to those of the Zipf
law and those found for the WWW. However, the spectrum of the Google matrix has a large
gap appearing between the unit eigenvalue and other eigenvalues, while the spectrum of the
Google matrix of WWW usually has no gap. We developed an efficient semi-analytical method
to compute the PageRank of integers which allowed us to determine the dependence P(Kn)

up to the matrix size of 1 billion. We show that the dependence of PageRank on the integer
number n is characterized by a series of branches corresponding to primes, semi-primes and
numbers with higher products of primes. Our data show a logarithmic-like convergence of the
PageRank order of integers to a fixed order in the limit of matrix size going to infinity.
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