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Abstract

This paper studies the distribution of a family of rankings, which includes Google’s PageR-
ank, on a directed configuration model. In particular, it is shown that the distribution of the
rank of a randomly chosen node in the graph converges in distribution to a finite random vari-
able R∗ that can be written as a linear combination of i.i.d. copies of the endogenous solution
to a stochastic fixed point equation of the form

R D=
N∑

i=1
CiRi +Q,

where (Q,N , {Ci}) is a real-valued vector with N ∈ {0, 1, 2, . . . }, P (|Q| > 0) > 0, and the {Ri}
are i.i.d. copies of R, independent of (Q,N , {Ci}). Moreover, we provide precise asymptotics
for the limit R∗, which when the in-degree distribution in the directed configuration model has
a power law imply a power law distribution for R∗ with the same exponent.

Kewywords: PageRank, ranking algorithms, directed configuration model, complex networks,
stochastic fixed-point equations, weighted branching processes, power laws.
2000 MSC: Primary: 05C80, 60J80, 68P20. Secondary: 41A60, 37A30, 60B10.

1 Introduction

Ranking of nodes according to their centrality, or importance, in a complex network such as the
Internet, the World Wide Web, and other social and biological networks, has been a hot research
topic for several years in physics, mathematics, and computer science. For a comprehensive overview
of the vast literature on rankings in networks we refer the reader to [27], and more recently to [7]
for a thorough up-to-date mathematical classification of centrality measures.
In this paper we analyze a family of ranking algorithms which includes Google’s PageRank, the
algorithm proposed by Brin and Page [10], and which is arguably the most influential technique for
computing rankings of nodes in large directed networks. The original definition of PageRank is the
following. Let Gn = (Vn, En) be a directed graph, with a set of (numbered) vertices Vn = {1, . . . , n},
and a set of directed edges En. Choose a constant c ∈ (0, 1), which is called a damping factor, and
let q = (q1, q2, . . . , qn) be a personalization probability vector, i.e., qi ≥ 0 and ∑n

i=1 qi = 1. Denote
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by di = |{j : (i, j) ∈ En}| the out-degree of node i ∈ Vn. Then the PageRank vector r = (r1, . . . , rn)
is the unique solution to the following system of linear equations:

ri =
∑

j:(j,i)∈En

c

dj
rj + (1− c)qi, i = 1, . . . , n. (1.1)

Google’s PageRank was designed to rank Web pages based on the network’s structure, rather than
their content. The idea behind (1.1) is that a page is important if many important pages have a
hyperlink to it. Furthermore, by tuning the personalization values, qi’s, one can, for instance, give
preference to specific topics [20] or penalize spam pages [19].
In the original definition, r is normalized so that ||r||1 = 1, where the norm ||x||1 = ∑n

i=1 |xi|
denotes the l1 norm in Rn. Since the average PageRank in r scales as O(1/n), it is more convenient
for our purposes to work with a scaled version of PageRank:

nr =: R = (R1, R2, . . . , Rn).

Then, also using the notation Cj for c/dj , and notation Qi for n(1− c)qi, we rewrite (1.1) to obtain

Ri =
∑

j:(j,i)∈En

Cj Rj +Qi, i = 1, . . . , n. (1.2)

Throughout the paper, we will refer to R as the PageRank vector and to Q = (Q1, Q2, . . . , Qn) as
the personalization vector.
The basic definition (1.1) has many modifications and generalizations. The analysis in this paper
will cover a wide range of them by allowing a general form of the coefficients in (1.2). For example,
our model admits a random damping factor as studied in [15]. Numerous applications of PageRank
and its modifications include graph clustering [5], spam detection [19], and citation analysis [13, 43].
In real-world networks, it is often found that the fraction of nodes with (in- or out-) degree k is
≈ c0k

−α−1, usually α ∈ (1, 3), see e.g., [10, 29]. Thus, a lot of research has been devoted to the
study of random graph models with highly skewed, or scale-free, degree distributions. By now,
classical examples are the Chung-Lu model [14], the Preferential Attachment model [9], and the
Configuration Model [35, Chapter 7]. New models continue to appear, tuned to the properties
of specific networks. For example, an interesting “super-star” model was recently developed to
describe retweet graphs [6]. We refer to [35, 17, 29] for a more detailed discussion of random graph
models for complex networks. In this paper we focus on the Directed Configuration Model as studied
in [11]. Originally, an (undirected) Configuration Model is defined as a graph, randomly sampled
from the set of graphs with a given degree sequence [8]. We emphasize that, to the best of our
knowledge, [11] is the only paper that formally addresses the directed version of the Configuration
Model and obtains its exact mathematical properties. We will provide more details in Section 3.
From the work of Pandurangan et al. [31], and many papers that followed, the following hypothesis
has always been confirmed by the data.
The power law hypothesis: If the in-degree distribution in a network follows a power law then
the PageRank scores in this network will also follow a power law with the same exponent.
The power law hypothesis is plausible because in (1.1) the number of terms in the summation on
the right-hand side is just the in-degree of i, so the in-degree provides a ‘mean-field’ approximation
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for PageRank [18]. However, this argument is not exact nor accurate enough, which is confirmed by
the fact that the top-ranked nodes in PageRank are not exactly those with the largest in-degrees
[13, 42, 38]. Exact mathematical evidence supporting the power law hypothesis is surprisingly
scarce. As one of the few examples, [26] obtains the power law behavior of average PageRank
scores in a preferential attachment graph by using Polya’s urn scheme and advanced numerical
methods.
In a series of papers, Volkovich et al. [28, 41, 40] suggested an analytical explanation for the
power law behavior of PageRank by comparing the PageRank of a randomly chosen node to the
endogenous solution of a stochastic fixed point equation (SFPE) that mimics (1.2):

R
D=

N∑
i=1

CiRi +Q. (1.3)

Here N (in-degree) is a nonnegative integer random variable having a power law distribution with
exponent α, Q (personalization) is an arbitrary positive random variable, and the Ci’s are random
coefficients that in [40] equal c/Di, with Di being the out-degree of a node provided Di ≥ 1. The
symbol D= denotes equality in distribution. Assuming that N is regularly varying and using Laplace
transforms, it was proved in [40] that R has a power law with the same exponent as N if N has
a heavier tail than Q, whereas the tail of R is determined by Q if it is heavier than N . The same
result was also proved independently in [22] using a sample-path approach.
The properties of equation (1.3) and the study of its multiple solutions has itself been an interesting
topic in the recent literature [4, 22, 24, 23, 30, 2], and is related to the broader study of weighted
branching processes (WBPs) [32, 33, 34]. The tail behavior of the endogenous solution, the one
relevant to PageRank, was given in [22, 24, 23, 30]. In particular, in [22] it was discovered that when
the Ci’s are not bounded by one and there exists a positive root to the equation E

[∑N
i=1 |Ci|α

]
= 1

with 0 < E
[∑N

i=1 |Ci|α log |Ci|
]
< ∞, then R will have a power law tail with exponent α; the

main tool for this type of analysis is the implicit renewal theory on trees developed there and later
extended in [24, 23] to study (1.3) in its full generality.
However, the SFPE does not fully explain the behavior of PageRank in networks since it implicitly
assumes that the underlying graph is an infinite tree, a condition that is never true in real-world
networks. In this work we complete the argument when the underlying network is a Directed
Configuration Model by showing that the distribution of the PageRank in the graph converges
to the endogenous solution of a SFPE. Our techniques are likely to be useful in the analysis of
PageRank in other locally tree-like graphs.
The essential theoretical contribution of this work is two-fold. First, we prove that the PageRank
in the Directed Configuration Model is well approximated by the endogenous solution to a specific
SFPE of the same type as (1.3). Second, we develop a methodology to analyze processes on graphs
based on a coupling with a new type of stochastic process: a weighted branching process. Due to
the presence of weights, couplings with weighted branching processes are more complex compared
to traditional couplings with standard branching processes, and therefore, our approach may be of
independent interest.
In Section 2 we describe our main results, outline the methodology, and provide an overview of the
rest of the paper.
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2 Overview of the paper

Although a rigorous presentation of the main result in the paper requires a significant amount of
notation, we provide here a somewhat imprecise version that still captures the essence of our work.
The paper is written according to the different steps needed in the proof of the main result, outlined
in Section 2.2, and the precise statement can be found in Section 6.2.

2.1 An overview of the main result

Let Gn = (Vn, En) be a directed graph. We number the nodes Vn = {1, 2, . . . , n} in an arbitrary
fashion and let R1 =: R(n)

1 denote the PageRank of node 1, as defined by (1.2). The in-degree of
node 1 is then a random variable N1 picked uniformly at random from the in-degrees of all n nodes
in the graph (i.e., from the empirical distribution). Next, we use the notation Ni+1 to denote the
in-degree of the ith inbound neighbor of node 1 (i.e., (i + 1, 1) ∈ En), and note that although the
{Ni}i≥2 have the same distribution, it is not necessarily the same of N1 since their corresponding
nodes implicitly have one or more out-degrees. More precisely, the distribution of the {Ni}i≥2 is an
empirical size-biased distribution where nodes with high out-degrees are more likely to be chosen.
The two distributions can be significantly different when the number of dangling nodes (nodes with
zero out-degrees) is a positive fraction of n and their in-degree distribution is different than that of
nodes with one or more out-degrees. Similarly, let Q1 and {Qi}i≥2 denote the personalization values
of node 1 and of its neighbors, respectively, and let {Ci}i≥2 denote the coefficients, or weights, of
the neighbors.
As already mentioned, we will assume throughout the paper that Gn is constructed according
to the Directed Configuration Model (DCM). To briefly explain the construction of the DCM
consider a bi-degree sequence (Nn,Dn) = {(Ni, Di) : 1 ≤ i ≤ n} of nonnegative integers satisfying∑n
i=1Ni = ∑n

i=1Di. To draw the graph think of each node, say node i, as having Ni inbound
and Di outbound half-edges or stubs, then pair each of its inbound stubs with a randomly chosen
outbound stub from the set of unpaired outbound stubs (see Section 3 for more details). The
resulting graph is in general what is called a multigraph, i.e., it can have self-loops and multiple
edges in the same direction.
Our main result requires us to make some assumptions on the bi-degree sequence used to construct
the DCM, as well as on the coefficients {Ci} and the personalization values {Qi}, which we will refer
to as the extended bi-degree sequence. The first set of assumptions (see Assumption 5.1) requires
the existence of certain limits in the spirit of the weak law of large numbers, including 1

n

∑n
i=1D

2
i

to be bounded in probability (which essentially imposes a finite variance on the out-degrees). This
first assumption will ensure the local tree-like structure of the graph. The second set of assumptions
(see Assumption 6.2) requires the convergence of certain empirical distributions, derived from the
extended bi-degree sequence, to proper limits as the graph size goes to infinity. This type of weak
convergence assumption is typical in the analysis of random graphs [35]. We point out that the
two sets of assumptions mentioned above are rather weak, and therefore our result is very general.
Moreover, as an example, we provide in Section 7 an algorithm to generate an extended bi-degree
sequence from a set of prescribed distributions that satisfies both assumptions.
To state our main result let (N0,Q0) and (N ,Q, C) denote the weak limits of the joint random
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distributions of (N1, Q1) and (N2, Q2, C2), respectively, as defined in Assumption 6.2. Let R denote
the endogenous solution to the following SFPE:

R D=
N∑
j=1
CjRj +Q, (2.1)

where {Ri} are i.i.d. copies of R, independent of (N ,Q, {Ci}), and with {Ci} i.i.d. and independent
of (N ,Q). Our main result establishes that under the assumptions mentioned above, we have that

R
(n)
1 ⇒ R∗, n→∞,

where ⇒ denotes weak convergence and R∗ is given by

R∗ :=
N0∑
j=1
CjRj +Q0, (2.2)

where the {Ri} are again i.i.d. copies of R, independent of (N0,Q0, {Ci}), and with {Ci} indepen-
dent of (N0,Q0). Thus, R(n)

1 is well approximated by a linear combination of endogenous solutions
of a SFPE. Here R∗ represents the PageRank of node 1, and the Ri’s represent the PageRank of
its inbound neighbors. We give more details on the explicit construction of R and comment on
why it is called the “endogenous” solution in Section 6. Furthermore, since R has been thoroughly
studied in the weighted branching processes literature, we can establish the power law behavior of
PageRank in a wide class of DCM graphs.

2.2 Methodology

As mentioned earlier, the proof of our main result is given in several steps, each of them requiring
a very different type of analysis. For the convenience of the reader, we include in this section a
map of these steps.
We start in Section 3 by describing the DCM, which on its own does not require any assumptions
on the bi-degree sequence. Then, in Section 4 we define a class of ranking algorithms, of which
PageRank and its various modifications are special cases. These algorithms produce a vector R(n)

that is a solution to a linear system of equations, where the coefficients are the weights {Ci} assigned
to the nodes. For example, in the classical PageRank scenario, we have Ci = c/Di, if Di 6= 0.
The proof of the main result consists of the following three steps:

1. Finite approximation (Section 4.2). Show that the class of rankings that we study can be
approximated in the DCM with any given accuracy by a finite (independent of the graph size
n) number of matrix iterations. The DCM plays a crucial role in this step since it implies
that the ranks of all the nodes in the graph have the same distribution. A uniform bound on
the sequence {CiDi} is required to provide a suitable rate of convergence.

2. Coupling with a tree (Section 5). Construct a coupling of the DCM graph and a “thorny
branching tree” (TBT). In a TBT each node with the exception of the root has one outbound
link to its parent and possibly several other unpaired outbound links. During the construction,
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all nodes in both the graph and the tree are also assigned a weight Ci. The main result in
this section is the Coupling Lemma 5.4, which states that the coupling between the graph
and the tree will hold for a number of generations in the tree that is logarithmic in n. The
locally tree-like property of the DCM and our first set of assumptions (Assumption 5.1) on
the bi-degree sequence are important for this step.

3. Convergence to a weighted branching process (Section 6). Show that the rank of the root node
of the TBT converges weakly to (2.2). This last step requires the weak convergence of the
random distributions that define the TBT in the previous step (Assumption 6.2).

Finally, Section 7 gives an algorithm to construct an extended bi-degree sequence satisfying the
two main assumptions. The technical proofs are postponed to Section 8.

3 The directed configuration model

The Configuration Model (CM) was originally defined as an undirected graph sampled uniformly at
random from the collection of graphs with a given degree sequence [8]. In order to ensure a desired
degree distribution, one may generate an i.i.d. degree sequence sampled from this distribution, see
[35, Section 7.6]. In this case each node receives a random number of half-edges, or stubs, and
then the stubs are paired uniformly at random. The resulting graph is, in general, a multi-graph,
because two stubs of the same node may form an edge (self-loop), or a node may have two or more
stubs connected to the same other node (multiple edges). There are two ways to create a simple
graph. In the repeated CM, the pairing is repeated until a simple graph is obtained. This will occur
with positive probability if the degrees have finite variance, see [35, Section 7.6.]. In the erased CM
self-loops and double-edges are removed. In the erased CM, the degree sequence is altered because
of edge removal, but the distribution of the original degree sequence is preserved asymptotically
under very general conditions, see again [35, Section 7.6]. A literature review and discussion of the
undirected CM is provided in [35, Section 7.9].
While the undirected CM has been thoroughly studied, a formal analysis of the Directed Configu-
ration Model (DCM) with given in- and out-degree distributions has only been recently presented
by Chen and Olvera-Cravioto [11]. The crucial difference compared to the undirected case is that
now we have a bi-degree sequence, i.e., a pair of sequences of nonnegative integers determining the
in- and out-degrees of the nodes. Note that the sums of the in-degrees must be equal to that of
the out-degrees for one to be able to draw a graph. The difficulty and originality of the DCM is
that sums of i.i.d. in- and out-degrees will only be equal with a probability converging to zero as
the size of the graph grows. To circumvent this problem, the algorithm given in [11], and included
in Section 7 in this paper, forces the sums to match by adding the necessary half-edges in such a
way that the degree distributions are essentially unchanged.
In order to analyze the distribution of ranking scores on the DCM we also need other node attributes
besides the in- and out-degrees, such as the coefficients and the personalization values. With this
in mind we give the following definition.

Definition 3.1 We say that the sequence (Nn,Dn,Cn,Qn) = {(Ni, Di, Ci, Qi) : 1 ≤ i ≤ n} is an
extended bi-degree sequence if for all 1 ≤ i ≤ n it satisfies Ni, Di ∈ N = {0, 1, 2, 3, . . . }, Qi, Ci ∈ R,
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and is such that
Ln :=

n∑
i=1

Ni =
n∑
i=1

Di.

In this case, we call (Nn,Dn) a bi-degree sequence.

Formally, the DCM can be defined as follows.

Definition 3.2 Let (Nn,Dn) be a bi-degree sequence and let Vn = {1, 2, . . . , n} denote the nodes
in the graph. To each node i assign Ni inbound half-edges and Di outbound half-edges. Enumerate
all Ln inbound half-edges, respectively outbound half-edges, with the numbers {1, 2, . . . , Ln}, and let
xn = (x1, x2, . . . , xLn) be a random permutation of these Ln numbers, chosen uniformly at random
from the possible Ln! permutations. The DCM with bi-degree sequence (Nn,Dn) is the directed
graph Gn = (Vn, En) obtained by pairing the xith outbound half-edge with the ith inbound half-edge.

We point out that instead of generating the permutation xn of the outbound half-edges up front, one
could alternatively construct the graph in a breadth-first fashion, by pairing each of the inbound
half-edges, one at a time, with an outbound half-edge, randomly chosen with equal probability
from the set of unpaired outbound half-edges. In Section 5 we will follow this approach while
simultaneously constructing a coupled TBT.
We emphasize that the DCM is, in general, a multi-graph. It was shown in [11] that the random
pairing of inbound and outbound half-edges results in a simple graph with positive probability
provided both the in-degree and out-degree distributions possess a finite variance. In this case, one
can obtain a simple realization after finitely many attempts, a method we refer to as the repeated
DCM, and this realization will be chosen uniformly at random from all simple directed graphs
with the given bi-degree sequence. Furthermore, if the self-loops and multiple edges in the same
direction are simply removed, a model we refer to as the erased DCM, the degree distributions will
remain asymptotically unchanged.
For the purposes of this paper, self-loops and multiple edges in the same direction do not affect the
main convergence result for the ranking scores, and therefore we do not require the DCM to result
in a simple graph. A similar observation was made in the paper by van der Hofstad et al. [36] when
analyzing distances in the undirected CM.
Throughout the paper, we will use Fn = σ((Nn,Dn,Cn,Qn)) to denote the sigma algebra gen-
erated by the extended bi-degree sequence, which does not include information about the random
pairing. To simplify the notation, we will use Pn(·) = P (·|Fn) and En[·] = E[·|Fn] to denote the
conditional probability and conditional expectation, respectively, given Fn.

4 Spectral ranking algorithms

In this section we introduce the class of ranking algorithms that we analyze in this paper. Following
the terminology from [7], these algorithms belong to the class of spectral centrality measures, which
‘compute the left dominant eigenvector of some matrix derived from the graph’. We point out that
the construction of the matrix of weights and the definition of the rank vector that we give in
Section 4.1 is not particular to the DCM.
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4.1 Definition of the rank vector

The general class of spectral ranking algorithms we consider are determined by a matrix of weights
M = M(n) ∈ Rn×n and a personalization vector Q ∈ Rn. More precisely, given a directed graph
with (Nn,Dn,Cn,Qn) as its extended bi-degree sequence, we define the (i, j)th component of
matrix M as follows:

Mi,j =
{
sijCi, if there are sij edges from i to j,
0, otherwise.

(4.1)

The rank vector R = (R1, . . . , Rn) is then defined to be the solution to the system of equations

R = RM + Q. (4.2)

Remark 4.1 In the case of the PageRank algorithm, Ci = c/Di, Qi = 1 − c for all i, and the
constant 0 < c < 1 is the so-called damping factor.

4.2 Finitely many iterations

To solve the system of equations given in (4.2) we proceed via matrix iterations [27]. To initialize
the process let 1 be the (row) vector of ones in Rn and let r0 = r01, with r0 ∈ R. Define

R(n,0) = r0,

and for k ≥ 1,

R(n,k) = r0M
k +

k−1∑
i=0

QM i.

With this notation, we have that the solution R to (4.2), provided it exists, can be written as

R = R(n,∞) =
∞∑
i=0

QM i.

We are interested in analyzing a randomly chosen coordinate of the vector R(n,∞). The first step, as
described in Section 2.2, is to show that we can do so by using only finitely many matrix iterations.
To this end note that

R(n,k) −R(n,∞) = r0M
k −

∞∑
i=k

QM i =
(

r0 −
∞∑
i=0

QM i

)
Mk.

Moreover, ∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤
∣∣∣∣∣∣r0M

k
∣∣∣∣∣∣

1
+
∞∑
i=0

∣∣∣∣∣∣QMk+i
∣∣∣∣∣∣

1
.
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Next, note that for any row vector y = (y1, y2, . . . , yn),

||yM r||1 ≤
n∑
j=1
|y(M r)•j | ≤

n∑
j=1

n∑
i=1
|yi(M r)ij |

=
n∑
i=1
|yi|

n∑
j=1
|(M r)ij | =

n∑
i=1
|yi| · ||M r

i•||1

≤ ||y||1 ||M r||∞ ,

where Ai• and A•j are the ith row and jth column, respectively, of matrix A, and ||A||∞ =
max1≤i≤n ||Ai•||1 is the operator infinity norm. It follows that if we assume that max1≤i≤n |Ci|Di ≤
c for some c ∈ (0, 1), then we have

||M r||∞ ≤ ||M ||r∞ =
(

max
1≤i≤n

|Ci|Di

)r
≤ cr.

In this case we conclude that∣∣∣∣∣∣R(n,k) −R(n,∞)
∣∣∣∣∣∣

1
≤ ||r0||1ck +

∞∑
i=0
||Q||1ck+i

= |r0|nck + ||Q||1
ck

1− c .

Now note that all the coordinates of the vector R(n,k) −R(n,∞) have the same distribution, since
by construction, the configuration model makes all permutations of the nodes’ labels equally likely.
Hence, the randomly chosen node may as well be the first node, and the error that we make by
considering only finitely many iterations in its approximation is bounded in expectation by

En
[∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣] = 1
n
En
[∣∣∣∣∣∣R(n,k) −R(n,∞)

∣∣∣∣∣∣
1

]
≤ |r0|ck + En [||Q||1] ck

n(1− c)

=
(
|r0|+

1
n(1− c)

n∑
i=1
|Qi|

)
ck.

It follows that if we let
Bn =

{
max

1≤i≤n
|Ci|Di ≤ c,

1
n

n∑
i=1
|Qi| ≤ H

}
(4.3)
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for some constants c ∈ (0, 1) and H <∞, then Markov’s inequality yields

P
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
∣∣∣Bn)

= 1
P (Bn)E

[
1(Bn)En

[
1
(∣∣∣R(n,k)

1 −R(n,∞)
1

∣∣∣ > n−ε
)]]

≤ 1
P (Bn)E

[
1(Bn)nεEn

[∣∣∣R(n,k)
1 −R(n,∞)

1

∣∣∣]]
≤
(
|r0|+

1
1− cE

[
1
n

n∑
i=1
|Qi|

∣∣∣∣∣Bn
])

nεck

≤
(
|r0|+

H

1− c

)
nεck. (4.4)

We have thus derived the following result.

Proposition 4.2 Consider the directed configuration graph generated by the extended bi-degree
sequence (Nn,Dn,Cn,Qn) and let Bn be defined according to (4.3). Then, for any xn → ∞ and
any k ≥ 1, we have

P
(∣∣∣R(n,∞)

1 −R(n,k)
1

∣∣∣ > x−1
n

∣∣∣Bn) = O
(
xnc

k
)

as n→∞.

This completes the first step of our approach. In the next section we will explain how to couple
the graph, as seen from a randomly chosen node, with an appropriate branching tree.

5 Construction of the graph and coupling with a branching tree

The next step in our approach is to approximate the distribution of R(n,k)
1 with the rank of the

root node of a suitably constructed branching tree. To ensure that we can construct such a tree we
require the extended bi-degree sequence to satisfy some further properties with high probability.
These properties are summarized in the following assumption.

Assumption 5.1 Let (Nn,Dn,Cn,Qn) be an extended bi-degree sequence for which there exists
constants H, νi > 0, i = 1, . . . , 5, with

µ := ν2/ν1, λ := ν3/ν1 and ρ := ν5µ/ν1 < 1,
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0 < κ ≤ 1, and 0 < c, γ, ε < 1 such that the events

Ωn,1 =
{∣∣∣∣∣

n∑
r=1

Dr − nν1

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,2 =
{∣∣∣∣∣

n∑
r=1

DrNr − nν2

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,3 =
{∣∣∣∣∣

n∑
r=1

D2
r − nν3

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,4 =
{∣∣∣∣∣

n∑
r=1

D2+κ
r − nν4

∣∣∣∣∣ ≤ n1−γ
}
,

Ωn,5 =
{∣∣∣∣∣

n∑
r=1
|Cr|Dr − nν5

∣∣∣∣∣ ≤ n1−γ , max
1≤r≤n

|Cr|Dr ≤ c
}
,

Ωn,6 =
{

n∑
r=1
|Qr| ≤ Hn

}
,

satisfy as n→∞,

P (Ωc
n) = P

(( 6⋂
i=1

Ωn,i

)c)
= O

(
n−ε

)
.

It is clear from (4.3) that Ωn ⊆ Bn, hence Proposition 4.2 holds under Assumption 5.1. We also
point out that all six conditions in the assumption are in the spirit of the Weak Law of Large
Numbers, and are therefore general enough to be satisfied by many different constructions of the
extended bi-degree sequence. As an example, we give in Section 7 an algorithm based on sequences
of i.i.d. random variables that satisfies Assumption 5.1.
In Sections 5.1–5.4 we describe in detail how to construct a coupling of the directed graph Gn and its
approximating branching tree. We start by explaining the terminology and notation in Section 5.1,
followed by the construction itself in Section 5.2. Then, in Section 5.3 we present the Coupling
Lemma 5.4, which is the main result of Section 5. Finally, Section 5.4 explains how to compute the
rank of the root node in the coupled tree.

5.1 Terminology and notation

Throughout the remainder of the paper we will interchangeably refer to the {Ni} as the in-
degrees/number of offspring/number of inbound stubs, to the {Di} as the out-degrees/number
of outbound links/number of outbound stubs, to the {Ci} as the weights, and to the {Qi} as the
personalization values. We will refer to these four characteristics of a node as the node attributes.
The fact that we are working with a directed graph combined with the presence of weights, means
that we need to use a more general kind of tree in our coupling than the standard branching
process typically used in the random graph literature. To this end, we will define a process we
call a Thorny Branching Tree (TBT), where each individual (node) in the tree has a directed edge
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pointing towards its parent, and also a certain number of unpaired outbound links (pointing, say,
to an artificial node outside of the tree). The name ‘thorny’ is due to these unpaired outbound
links, see Figure 1. We point out that the structure of the tree (i.e., parent-offspring relations) is
solely determined by the number of offspring.

Figure 1: Graph construction process. Unpaired outbound links are in blue.

The simpler structure of a tree compared to a general graph allows for a more natural enumeration
of its nodes. As usually in the context of branching processes, we let each node in the TBT have
a label of the form i = (i1, i2, . . . , ik) ∈ U , where U = ⋃∞

k=0(N+)k is the set of all finite sequences
of positive integers. Here, the convention is that N0

+ = {∅} contains the null sequence ∅. Also, for
i = (i1) we simply write i = i1, that is, without the parenthesis. Note that this form of enumeration
gives the complete lineage of each individual in the tree.
We will use the following terminology and notation throughout the paper.

Definition 5.2 We say that a node i in the graph (resp. TBT) is at distance k of the first (resp.
root) node if it can reach the first (resp. root) node in k steps, but not in any less than k steps.

In addition, for r ≥ 0, we define on the graph/tree the following processes:

• Ar: set of nodes in the graph at distance r of the first node.
• Âr: set of nodes in the tree at distance r of the root node (Âr is also the set of nodes in the
rth generation of TBT, with the root node being generation zero).
• Zr: number of inbound stubs of all the nodes in the graph at distance r of the first node

(Zr ≥ |Ar+1|).
• Ẑr: number of inbound stubs of all the nodes in generation r of the TBT (Ẑr = |Âr+1|).
• Vr: number of outbound stubs of all the nodes in the graph at distance r of the first node.
• V̂r: number of outbound stubs of all the nodes in generation r of the TBT.

Finally, given the extended bi-degree sequence (Nn,Dn,Cn,Qn), we introduce two empirical distri-
butions that will be used in the construction of the coupling. The first one describes the attributes
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of a randomly chosen node:

f∗n(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(node k is sampled)

= 1
n

n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t). (5.1)

The second one, corresponds to the attributes of a node that is chosen by sampling uniformly at
random from all the Ln outbound stubs:

fn(i, j, s, t) =
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Pn(an outbound stub from node k is sampled)

=
n∑
k=1

1(Nk = i,Dk = j, Ck = s,Qk = t)Dk

Ln
. (5.2)

Note that this is a size-biased distribution, since nodes with more outbound stubs are more likely
to be chosen, whereas nodes with no outbound stubs (dangling nodes) cannot be chosen.

5.2 Construction of the coupling

Given an extended bi-degree sequence (Nn,Dn,Cn,Qn) we now explain how to construct the graph
Gn and its coupled TBT through a breadth-first exploration process. From this point onwards we
will ignore the implicit numbering of the nodes in the definition of the extended bi-degree sequence
and rename them according to the order in which they appear in the graph exploration process.
To keep track of which outbound stubs have already been matched we borrow the approach used
in [36] and label them 1, 2, or 3 according to the following rules:

1. Outbound stubs with label 1 are stubs belonging to a node that is not yet attached to the graph.
2. Outbound stubs with label 2 belong to nodes that are already part of the graph but that have

not yet been paired with an inbound stub.
3. Outbound stubs with label 3 are those which have already been paired with an inbound stub

and now form an edge in the graph.

The graph Gn is constructed as follows. Right before the first node is sampled, all outbound stubs
are labeled 1. To start the construction of the graph, we choose randomly a node (all nodes with the
same probability) and call it node 1. The attributes of this first node, denoted by (N1, D1, C1, Q1),
are sampled from distribution (5.1).
After the first node is chosen, its D1 outbound stubs are labeled 2. We then proceed to pair the
first of the Z0 = N1 inbound stubs of the first node with a randomly chosen outbound stub. The
corresponding node is attached to the graph by forming an edge pointing to node 1 using the chosen
outbound stub, which receives a label 3, and all the remaining outbound stubs from the new node
are labeled 2. Note that it is possible that the chosen node is node 1 itself, in which case the
pairing forms a self-loop and no new nodes are added to the graph. We continue in this way until
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all Z0 inbound stubs of node 1 have been paired with randomly chosen outbound stubs. Since these
outbound stubs are sampled independently and with replacement from all the possible Ln outbound
stubs, this corresponds to drawing the node attributes independently from the random distribution
(5.2). Note that in the construction of the graph any unfeasible matches will be discarded, and
therefore the attributes of nodes in Gn do not necessarily have distribution (5.2), but rather have
the conditional distribution given the pairing was feasible. We will use the vector (Ni, Di, Ci, Qi)
to denote the attributes of the ith node to be added to the graph.
In general, the kth iteration of this process is completed when all Zk−1 inbound stubs have been
matched with an outbound stub, and the corresponding node attributes have been assigned. The
process ends when all Ln inbound stubs have been paired. Note that whenever an outbound stub
with label 2 is chosen a cycle or a double edge is formed in the graph.
Next, we explain how the TBT is constructed. To distinguish the attribute vectors of nodes in the
TBT from those of nodes in the graph, we denote them by (N̂i, D̂i, Ĉi, Q̂i), i ∈ U . We start with
the root node (node ∅) that has the same attributes as node 1 in the graph: (N̂∅, D̂∅, Ĉ∅, Q̂∅) ≡
(N1, D1, C1, Q1), sampled from distribution (5.1). Next, for k ≥ 1, each of the Ẑk−1 individuals in
the kth generation will independently have offspring, outbound stubs, weight and personalization
value according to the joint distribution fn(i, j, s, t) given by (5.2).
Now, we explain how the coupling with the graph, i.e., the simultaneous construction of the graph
and the TBT, is done.

1) Whenever an outbound stub is sampled randomly in an attempt to add an edge to Gn,
then, independently of the stub’s label, a new offspring is added to the TBT. This is done
to maintain the branching property (i.i.d. node attributes). In particular, if the chosen
outbound stub belongs to node j, then the new offspring in the TBT will have Dj−1 outbound
stubs (which will remain unpaired), Nj inbound stubs (number of offspring), weight Cj , and
personalization value Qj .

2) If an outbound stub with label 1 is chosen, then both the graph and the TBT will connect the
chosen outbound stub to the inbound stub being matched, resulting in a node being added
to the graph and an offspring being born to its parent. We then update the labels by giving
a 2 label to all the ‘sibling’ outbound stubs of the chosen outbound stub, and a 3 label to the
chosen outbound stub itself.

3) If an outbound stub with label 2 is chosen it means that its corresponding node already
belongs to the graph, and a cycle, self-loop, or multiple edge is created. We then relabel the
chosen outbound stub with a 3. An offspring is born in the TBT according to 1).

4) If an outbound stub with label 3 is chosen it means that the chosen outbound stub has already
been matched. In terms of the construction of the graph, this case represents a failed attempt
to match the current inbound stub, and we have to keep sampling until we draw an outbound
stub with label 1 or 2. Once we do so, we update the labels according to the rules given
above. An offspring is born in the TBT according to 1).

Note that as long as we do not sample any outbound stub with label 2 or 3, the graph Gn and
the TBT are identical. Once we draw the first outbound stub with label 2 or 3 the processes Zk
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and Ẑk may start to disagree. The moment this occurs we say that the coupling has been broken.
Nonetheless, we will continue with the pairing process following the rules given above until all Ln
inbound stubs have been paired. The construction of the TBT also continues in parallel by keeping
the synchronization of the pairing whenever the inbound stub being matched belongs to a node
that is both in the graph and the tree. If the pairing of all Ln inbound stubs is completed after k
iterations of the process, then we will have completed k generations in the TBT. Moreover, up to
the time the coupling breaks, a node i ∈ Âk is also the jth node to be added to the graph, where:

j = 1 +
k−2∑
r=0

Ẑr +
ik−1−1∑
s=1

N̂(i1,...,ik−2,s) + ik,

with the convention that ∑b
r=a xr = 0 if b < a.

Definition 5.3 Let τ be the number of generations in the TBT that can be completed before the
first outbound stub with label 2 or 3 is drawn, i.e., τ = k if and only if the first inbound stub to
draw an outbound stub with label 2 or 3 belonged to a node i ∈ Âk.

The main result in this section consists in showing that provided the extended bi-degree sequence
(Nn,Dn,Cn,Qn) satisfies Assumption 5.1, the coupling breaks only after a number of generations
that is of order logn, which combined with Proposition 4.2 will allow us to approximate the rank
of a randomly chosen node in the graph with the rank of the root node of the coupled TBT.

5.3 The coupling lemma

It follows from the construction in Section 5.2 that, before the coupling breaks, the neighborhood
of node 1 in Gn and of the root node in the TBT are identical. Recall also from Proposition 4.2 that
we only need a finite number k of matrix iterations to approximate the elements of the rank vector
to any desired precision. Furthermore, the weight matrix M is such that the elements (M r)i,1,
1 ≤ i ≤ n, 1 ≤ r ≤ k, depend only on the k-neighborhood of node 1. Hence, if the coupling holds
for τ > k generations, then the rank score of node 1 in Gn is exactly the same as that of the root
node of the TBT restricted to those same k generations. The following coupling lemma will allow
us to complete the appropriate number of generations in the tree to obtain the desired level of
precision in Proposition 4.2. Its proof is rather technical and is therefore postponed to Section 8.1.

Lemma 5.4 Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 5.1. Then,

• for any 1 ≤ k ≤ h logn with 0 < h < 1/(2 logµ), if µ > 1,

• for any 1 ≤ k ≤ nb with 0 < b < min{1/2, γ}, if µ ≤ 1,

we have

P (τ ≤ k|Ωn) =


O
(
(n/µ2k)−1/2

)
, µ > 1,

O
(
(n/k2)−1/2

)
, µ = 1,

O
(
n−1/2

)
, µ < 1,

as n→∞.
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Remark 5.5 The constant µ was defined in Assumption 5.1, and it corresponds to the limiting
expected number of offspring that each node in the TBT (with the exception of the root node) will
have. The coupling between the graph and the TBT will hold for any µ > 0.

We conclude from Lemma 5.4 that if R̂(n,k) := R̂
(n,k)
∅ denotes the rank of the root node of the TBT

restricted to the first k generations, then, for any δ > 0,

P
(∣∣∣R(n,k)

1 − R̂(n,k)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P (τ < k|Ωn) := ϕ(k, n).

Note that the super index n does not refer to the number of nodes in the tree, and is being used
only in the definition of the distributions f∗n and fn (given in (5.1) and (5.2), respectively).
This observation, combined with Proposition 4.2, implies that if we let kn = dh logne, when µ > 1,
and kn = nε, when µ ≤ 1, where h = (1− ε)/(2 logµ) and 0 < ε < min{1/3, γ}, then

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
≤ P

(∣∣∣R(n,∞)
1 −R(n,kn)

1

∣∣∣ > n−δ/2
∣∣∣Ωn

)
+ P

(∣∣∣R(n,kn)
1 − R̂(n,kn)

∣∣∣ > n−δ/2
∣∣∣Ωn

)
= O

(
nδckn + ϕ(kn, n)

)
= O

(
nδ−h| log c| + n−ε/2

)
. (5.3)

In view of (5.3), analyzing the distribution of R(n,k)
1 in the graph reduces to analyzing the rank of

the root node of the coupled TBT, R̂(n,k). In the next section, we compute R̂(n,k) by relating it to
a linear process constructed on the TBT.

5.4 Computing the rank of nodes in the TBT

In order to compute R̂(n,k) we need to introduce a new type of weights. To simplify the notation,
for i = (i1, . . . , ik) we will use (i, j) = (i1, . . . , ik, j) to denote the index concatenation operation; if
i = ∅, then (i, j) = j. Each node i is then assigned a weight Π̂i according to the recursion

Π̂∅ ≡ 1 and Π̂(i,j) = Π̂iĈ(i,j), i ∈ U .

Note that the Π̂i’s are the products of all the weights Ĉj along the path leading to node i, as
depicted in Figure 2.

Next, for each fixed k ∈ N and each node i in the TBT define R̂(n,k)
i to be the rank of node i

computed on the subtree that has i as its root and that is restricted to having only k generations,
with each of the |Âk| nodes having rank r0. In mathematical notation,

R̂
(n,k)
i =

N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−1)
(i,j) + Q̂i, k ≥ 1, R̂

(n,0)
j = r0. (5.4)
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Π̂ = 1

Π̂1 = Ĉ1 Π̂2 = Ĉ2 Π̂3 = Ĉ3

Π̂(1,1) = Ĉ(1,1)Ĉ1

Π̂(1,2) = Ĉ(1,2)Ĉ1

Π̂(2,1) = Ĉ(2,1)Ĉ2

Π̂(3,1) = Ĉ(3,1)Ĉ3

Π̂(3,2) = Ĉ(3,2)Ĉ3

Π̂(3,3) = Ĉ(3,3)Ĉ3

Figure 2: Weighted tree.

Iterating (5.4) gives

R̂(n,k) =
∑
i∈Â1

Π̂iR̂
(n,k−1)
i + Q̂∅ =

∑
i∈Â1

Π̂i

 N̂i∑
j=1

Ĉ(i,j)R̂
(n,k−2)
(i,j) + Q̂i

+ Q̂∅

=
∑
i∈Â2

Π̂iR̂
(n,k−2)
i +

∑
i∈Â1

Π̂iQ̂i + Q̂∅ = · · · =
∑

i∈Âk

Π̂ir0 +
k−1∑
s=0

∑
i∈Âs

Π̂iQ̂i. (5.5)

The last step in our proof of the main result is to identify the limit of R̂(n,kn) as n → ∞, for a
suitable chosen kn →∞. This is done in the next section.

6 Coupling with a weighted branching process

The last step in the derivation of our approximation for the rank of a randomly chosen node in the
graph Gn is to substitute the rank of the root node in the TBT, which is defined with respect to
empirical distributions based on the extended bi-degree sequence (Nn,Dn,Cn,Qn), with a limiting
random variable independent of the size of the graph, n.
The appropriate limit will be given in terms of a solution to a certain stochastic fixed-point equation
(SFPE). The appeal of having such a representation is that these solutions have been thoroughly
studied in the WBPs literature, and in many cases exact asymptotics describing their tail behavior
are available [22, 23, 30]. We will elaborate more on this point after we state our main result.
As already mentioned in Section 2, our main result shows that

R
(n,∞)
1 ⇒ R∗

as n→∞, where R∗ can be written in terms of the so-called endogenous solution to a linear SFPE.
Before we write the expression for R∗ we will need to introduce a few additional concepts.
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6.1 The linear branching stochastic fixed-point equation

We define the linear branching SFPE according to:

R D=
N∑
j=1
CjRj +Q, (6.1)

where (N ,Q, C1, C2, . . . ) is a real-valued random vector with N ∈ N ∪ {∞}, P (|Q| > 0) > 0,
and the {Ri} are i.i.d. copies of R, independent of the vector (N ,Q, C1, C2, . . . ). The vector
(N ,Q, C1, C2, . . . ) is often referred to as the generic branching vector, and in the general setting is
allowed to be arbitrarily dependent with the weights {Ci} not necessarily identically distributed.
This equation is also known as the “smoothing transform” [21, 16, 1, 3].
In the context of ranking algorithms, we can identify N with the in-degree of a node, Q with its
personalization value, and the {Ci} with the weights of the neighboring nodes pointing to it. We
now explain how to construct a solution to (6.1).
Similarly as what we did in Section 5.4 and using the same notation introduced there, we con-
struct a weighted tree using a sequence {(Ni,Qi, C(i,1), C(i,2), . . . )}i∈U of i.i.d. copies of the vector
(N ,Q, C1, C2, . . . ) to define its structure and its node attributes. This construction is known in the
literature as a WBP [32]. Next, let Ak denote the number of individuals in the kth generation of
the tree, and to each node i in the tree assign a weight Πi according to the recursion

Π∅ ≡ 1 and Π(i,j) = Πi C(i,j), i ∈ U .

Then, the random variable formally defined as

R :=
∞∑
k=0

∑
i∈Ak

ΠiQi (6.2)

is called the endogenous solution to (6.1), and provided E
[∑N

i=1 |Ci|β
]
< 1 for some 0 < β ≤ 1, it

is well defined (see [23], Lemma 4.1). The name “endogenous” comes from its explicit construction
in terms of the weighted tree. We point out that equation (6.1) has in general multiple solutions
[3, 4], so it is important to emphasize that the one considered here is the endogenous one.
Comparing (5.5) and (6.2) suggests that R̂(n,kn) should converge to R provided the distribution of
the attribute vectors in the TBT converges to the distribution of the generic branching vector in the
WBP, but in order to formalize this heuristic there are two difficulties that we need to overcome. The
first one is that the TBT was defined using a sequence of (conditionally) independent vectors of the
form {(N̂i, Q̂i, Ĉi)}i∈U , where by construction (see Assumption 5.1 and (5.2)) the generic attribute
vector (N̂1, Q̂1, Ĉ1) is dependent. Note that this implies that the vectors (N̂i, Q̂i, Ĉ(i,1), Ĉ(i,2), . . . )
and {(N̂(i,j), Q̂(i,j), Ĉ(i,j,1), Ĉ(i,j,2), . . . )}j≥1 are dependent through the dependence between N̂(i,j)
and Ĉ(i,j), which destroys the branching property of the WBP. The second problem is that the root
node of the TBT has a different distribution from the rest of the nodes in the tree.
It is therefore to be expected that we will need something more than weak convergence of the node
attributes to obtain the convergence of R̂(n,kn) we seek. To solve the first problem we will require
that (N̂1, Q̂1, Ĉ1) converges to (N ,Q, C) with C independent of (N ,Q). Note that this will naturally
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lead to the {Ci} being i.i.d. in (6.1). To solve the second problem we will allow the attributes of
the root node in the TBT to converge to their own limit (N0,Q0). In view of these observations
we can now identify the limit of R̂(n,kn) to be:

R∗ :=
N0∑
i=1
CiRi +Q0, (6.3)

where the {Ri} are i.i.d. copies of R, as given by (6.2), independent of the vector (N0,Q0, {Ci})
with {Ci} i.i.d. and independent of (N0,Q0). The appropriate condition ensuring that R∗ is the
correct limit is given in terms of the Kantorovich-Rubinstein distance (also known as the minimal
l1 distance or the Wasserstein distance).

Definition 6.1 Consider the metric space (Rd, || · ||1), where ||x||1 is the l1 norm in Rd. Let
M(µ, ν) denote the set of joint probability measures on Rd×Rd with marginals µ and ν. Then, the
Kantorovich-Rubinstein distance between µ and ν is given by

d1(µ, ν) = inf
π∈M(µ,ν)

∫
Rd×Rd

||x− y||1 dπ(x,y).

We point out that d1 is only strictly speaking a distance when restricted to the subset of measures

P1(Rd) :=
{
µ ∈P(Rd) :

∫
Rd
||x− x0||1 dµ(x) <∞

}
,

for some x0 ∈ Rd, where P(Rd) is the set of Borel probability measures on Rd. We refer the
interested reader to [39] for a thorough treatment of this distance, since Definition 6.1 gives only a
special case.
An important property of the Kantorovich-Rubinstein distance is that if {µk}k∈N is a sequence of
probability measures in P1(Rd), then convergence in d1 to a limit µ ∈ P1(Rd) is equivalent to
weak convergence. Furthermore, d1 satisfies the useful duality formula:

d1(µ, ν) = sup
||ψ||Lip≤1

{∫
Rd
ψ(x)dµ(x)−

∫
Rd
ψ(x)dν(x)

}
for all µ, ν ∈P1(Rd), where the supremum is taken over al Lipschitz continuous functions ψ : Rd →
R with Lipschitz constant one (see Remark 6.5 in [39]).
We now give the required assumption. With some abuse of notation, for joint distribution func-
tions Fn, F ∈ Rd we write d1(Fn, F ) to denote the Kantorovich-Rubinstein distance between their
probability measures µn and µ. The symbol P→ denotes convergence in probability.

Assumption 6.2 Given the extended bi-degree sequence (Nn,Dn,Cn,Qn) define

F ∗n(m, q) := 1
n

n∑
k=1

1(Nk ≤ m,Qk ≤ q) and Fn(m, q, x) :=
n∑
k=1

1(Nk ≤ m,Qk ≤ q, Ck ≤ x)Dk

Ln
.

Suppose there exist random vectors (N0,Q0) and (N ,Q), and a random variable C, such that

d1(F ∗n , F ∗)
P→ 0 and d1(Fn, F ) P→ 0,
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as n→∞, where

F ∗(m, q) := P (N0 ≤ m,Q0 ≤ q) and F (m, q, x) := P (N ≤ m,Q ≤ q)P (C ≤ x).

Remark 6.3 Note that Assumption 6.2 and the duality formula imply that

sup
{
En
[
ψ(N̂1, Q̂1, Ĉ1)

]
− E[ψ(N ,Q, C)] : ψ is bounded and continuous

}
converges to zero in probability, and therefore, by the bounded convergence theorem,

E
[
ψ(N̂1, Q̂1, Ĉ1)

]
→ E[ψ(N ,Q, C)], n→∞,

for any bounded and continuous function ψ, or equivalently, (N̂1, Q̂1, Ĉ1) ⇒ (N ,Q, C); similarly,
(N̂∅, Q̂∅) ⇒ (N0,Q0). The duality formula, combined with Assumption 5.1, also implies that
E[N0] = ν1, E[N ] = µ and E[C] = ν5/ν1.

6.2 Main Result

We are now ready to state the main result of this paper, which establishes the convergence of the
rank of a randomly chosen node in the DCM to a non-degenerate random variable R∗.

Theorem 6.4 Suppose the extended bi-degree sequence (Nn,Dn,Cn,Qn) satisfies Assumptions 5.1
and 6.2. Then,

R
(n,∞)
1 ⇒ R∗

as n→∞, where R∗ is defined as in (6.3) with the weights {Ci} i.i.d. and independent of (N0,Q0),
respectively of (N ,Q) in (2.1).

Proof. Define Ωn according to Assumption 5.1 and note that P (Ωc
n) = O(n−ε), so it suffices

to show that R(n,∞)
1 , conditional on Ωn, converges weakly to R∗. Note that by Assumption 5.1,

ρ = E[N ]E[|C|] = ν5µ/ν1 < 1, which is a sufficient condition forR to be well defined (see Lemma 4.1
in [23]). First, when µ > 1, fix 0 < δ < | log c|/(2 logµ) and let kn = s logn, where δ/| log c| < s <
1/(2 logµ). Next, note that by the arguments leading to (5.3),

P
(∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣ > n−δ

∣∣∣Ωn

)
= O

(
nδckn + (µ2kn/n)1/2

)
= O

(
nδ−s| log c| + n(2s logµ−1)/2

)
= o(1)

as n→∞. When µ ≤ 1 we can take kn = nε, with ε < min{1/2, γ}, to obtain that the probability
converges to zero. We then obtain that conditionally on Ωn,∣∣∣R(n,∞)

1 − R̂(n,kn)
∣∣∣⇒ 0.

That R̂(n,kn) ⇒ R∗ conditionally on Ωn will follow from Theorem 4.8 in [12] and Assumption 6.2
once we verify that, as n→∞,

En
[
N̂1|Ĉ1|

]
P→ E[N ]E[|C|] and En

[
|Q̂1Ĉ1|

]
P→ E[|Q|]E[|C|]. (6.4)
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To show that (6.4) holds define φK(q, x) = (|q| ∧K)(|x| ∧ 1) for K > 0, and note that since φK is
bounded and continuous, Assumption 6.2 and Remark 6.3 imply that

En
[
φK(Q̂1, Ĉ1)

]
P→ E[φK(Q, C)] = E[|Q| ∧K]E[|C|], n→∞.

Next, fix ε > 0 and choose K such that E[|Q|1(|Q| > K)] < ε/4. Then,∣∣∣En [|Q̂1Ĉ1|
]
− E[|QC|]

∣∣∣ ≤ ∣∣∣En [φK(Q̂1, Ĉ1)
]
− E[φK(Q, C)]

∣∣∣
+ En

[
(|Q̂1| −K)+|Ĉ1|

]
+ E[(|Q| −K)+|C|]

≤
∣∣∣En [φK(Q̂1, Ĉ1)

]
− E[φK(Q, C)]

∣∣∣+ cEn
[
(|Q̂1| −K)+

]
+ cε/4,

where we used that both |Ĉ1| and |C| are bounded by c < 1. It follows that

lim
n→∞

P
(∣∣∣En [|Q̂1Ĉ1|

]
− E[|QC|]

∣∣∣ > ε
)
≤ lim

n→∞
P
(
En
[
(|Q̂1| −K)+

]
> ε/2

)
.

To show that this last limit is zero note that (|x| − K)+ is Lipschitz continuous with Lipschitz
constant one, so by the duality formula we obtain

En
[
(|Q̂1| −K)+

]
P→ E[(|Q| −K)+] < ε/4

as n→∞, which gives the desired limit.

The proof for En
[
|N̂1Ĉ1|

]
follows the same steps and is therefore omitted.

6.3 Asymptotic behavior of the limit

We end this section by giving a limit theorem describing the tail asymptotics of R∗; its proof
is given in Section 8.2. This result covers the case where the weights {Ci} are nonnegative and
either the limiting in-degree N or the limiting personalization value Q have a regularly varying
distribution, which in turn implies the regular variation of R. Then, we deduce the asymptotics of
R∗ using some results for weighted random sums with heavy-tailed summands. The corresponding
theorems can be found in [30, 40].

Definition 6.5 We say that a function f is regularly varying at infinity with index −α, denoted
f ∈ R−α, if f(x) = x−αL(x) for some slowly varying function L; and L : [0,∞)→ (0,∞) is slowly
varying if limx→∞ L(λx)/L(x) = 1 for any λ > 0.

We use the notation f(x) ∼ g(x) as x→∞ for limx→∞ f(x)/g(x) = 1.

Theorem 6.6 Suppose the generic branching vector (N ,Q, C1, C2, . . . ) is such that the weights {Ci}
are nonnegative, bounded i.i.d. copies of C, independent of (N ,Q), N ∈ N and Q ∈ R. Define
ρ = E[N ]E[C] and ρα = E[N ]E[Cα] and let R be defined as in (6.2).
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• If P (N > x) ∈ R−α, α > 1, ρ∨ ρα < 1, P (N0 > x) ∼ κP (N > x) as x→∞ for some κ > 0,
E[Q], E[Q0] > 0, and E

[|Q|α+ε + |Q0|α+ε] <∞ for some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (E[Q]E[C])α
(1− ρ)α(1− ρα)P (N > x), x→∞.

• If P (Q > x) ∈ R−α, α > 1, ρ ∨ ρα < 1, P (Q0 > x) ∼ κP (Q > x) as x→∞ for some κ > 0,
E[|Q|β + |Q0|β] <∞ for all 0 < β < α, and E

[|N |α+ε + |N0|α+ε] <∞ for some ε > 0, then

P (R∗ > x) ∼ (E[N0]E[Cα] + κ(1− ρα)) (1− ρα)−1P (Q > x), x→∞.

Remark 6.7 (i) For PageRank we have Ci = c/Di and Qi = 1−c, where c ∈ (0, 1) is the damping
factor. This leads to a limiting weight distribution of the form

P (C ≤ x) = lim
n→∞

1
Ln

n∑
i=1

1(c/Di ≤ x)Di,

which is not the limiting distribution of the reciprocal of the out-degrees, {c/Di}, but rather a
size-biased version of it.
(ii) Applying Theorem 6.6 to PageRank when P (N > x) ∈ R−α and P (N0 > x) ∼ κP (N > x) for
some constant κ > 0 gives that

P (R∗ > x) ∼ κ′P (N > x) as x→∞,

where κ′ > 0 is determined by the theorem.
(iii) The theorem above only includes two possible cases of the relations between (N0,Q0) and
(N ,Q). The exact asymptotics of R∗ can be obtained from those of R in more cases than these
using the same techniques; we leave the details to the reader.
(iv) Theorem 6.6 requires the weights {Ci} to be nonnegative, which is not a condition in Theo-
rem 6.4. The tail asymptotics of R, and therefore of R∗, in the real-valued case are unknown.

7 Algorithm to generate bi-degree sequences

As an example of an extended bi-degree sequence satisfying Assumptions 5.1 and 6.2, we give in this
section an algorithm based on sequences of i.i.d. random variables. The method for generating the
bi-degree sequence (Nn,Dn) is taken from [11], where the goal was to generate a directed random
graph with prescribed in- and out-degree distributions.
To define the algorithm we need to first specify target distributions for the in- and out-degrees,
which we will denote by f in

k = P (N = k), and fout
k = P (D = k), k ≥ 0, respectively. Furthermore,

we will assume that these target distributions satisfy E[N ] = E[D ],

F in(x) =
∑
k>x

f in
k ≤ x−αLin(x) and F out(x) =

∑
k>x

fout
k ≤ x−βLout(x),

for some slowly varying functions Lin and Lout, and α > 1, β > 2. To the original construction given
in [11] we will need to add two additional steps to generate the weight and personalization sequences
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Cn and Qn, for which we need two more distributions F ζ(x) = P (ζ ≤ x) and FQ(x) = P (Q ≤ x)
with support on the real line and satisfying

P (|ζ| ≤ c) = 1 for some 0 < c < 1, and E[|Q|1+εQ ] <∞ for some 0 < εQ ≤ 1.

Let
κ0 = min{1− α−1, 1/2}.

The IID Algorithm:

1. Fix 0 < δ0 < κ0.
2. Sample an i.i.d. sequence {N1, . . . ,Nn} from distribution F in; let N n = ∑n

i=1 Ni.
3. Sample an i.i.d. sequence {D1, . . . ,Dn} from distribution F out, independent of {Ni}; let

Dn = ∑n
i=1 Di.

4. Define ∆n = N n −Dn. If |∆n| ≤ n1−κ0+δ0 proceed to step 5; otherwise repeat from step 2.
5. Choose randomly |∆n| nodes {i1, i2, . . . , i|∆n|} without replacement and let

Ni =
{

Ni + 1 if ∆n < 0 and i ∈ {i1, i2, . . . , i|∆n|},
Ni otherwise,

Di =
{

Di + 1 if ∆n ≥ 0 and i ∈ {i1, i2, . . . , i|∆n|},
Di otherwise.

6. Sample an i.i.d. sequence {Q1, . . . , Qn} from distribution FQ, independent of {Ni} and {Di}.
7. Sample an i.i.d. sequence {ζ1, . . . , ζn} from distribution F ζ , independent of {Ni}, {Di} and
{Qi}, and set Ci = ζi/Di if Di ≥ 1 or Ci = c sgn(ζi) otherwise.

Remark 7.1 Note that since E[|N − D |1+a] < ∞ for any 0 < a < min{α − 1, β − 1}, then
E[|N −D |1+(κ0−δ0)/(1−κ0)] <∞, and Corollary 8.4 in Section 8 gives

P
(
|∆n| > n1−κ0+δ0

)
= O

(
n−δ0(κ0−δ0)/(1−κ0)

)
(7.1)

as n→∞.

The two propositions below give the desired properties. Their proofs are given in Section 8.3.

Proposition 7.2 The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID Algo-
rithm satisfies Assumption 5.1 for any 0 < κ < β−2, any 0 < γ < min{(κ0−δ0)2/(1−δ0), (β−2−
κ)/β}, µ = ν1 = E[N ] = E[D ], ν2 = (E[D ])2, ν3 = E[D2], ν4 = E[D2+κ], ν5 = E[|ζ|]P (D ≥ 1),
H = E[|Q|] + 1, and some ε > 0.

Proposition 7.3 The extended bi-degree sequence (Nn,Dn,Cn,Qn) generated by the IID Algo-
rithm satisfies Assumption 6.2 with

F ∗(m, q) = P (N ≤ m)P (Q ≤ q) and

F (m, q, x) = P (N ≤ m)P (Q ≤ q)E[1(ζ/D ≤ x)D ]/µ.
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7.1 Numerical examples

To complement the theoretical contribution of the paper, we use the IID Algorithm described in the
previous section to provide some numerical results showing the accuracy of the WBP approximation
to PageRank. To generate the in- and out-degrees we use the zeta distribution. More precisely, we
set

Ni = X1,i + Y1,i, Di = X2,i + Y2,i,

where {X1,i} and {X2,i} are independent sequences of i.i.d. Zeta random variables with parameters
α+ 1 and β + 1, respectively; {Y1,i} and {Y2,i} are independent sequences of i.i.d. Poisson random
variables with different parameters chosen so that N and D have equal mean. Note that the
Poisson distribution has a light tail so that the power law tail behavior of N and D is preserved
and determined by α and β, respectively.
Once the sequences {Ni} and {Di} are generated, we use the IID Algorithm to obtain a valid
bi-degree sequence (Nn,Dn). Note that in PageRank, we have ζi = c and Qi = 1 − c. Given this
bi-degree sequence we next proceed to construct the graph and the TBT simultaneously, according
to the rules described in Section 5. To compute R(n,∞) we perform matrix iterations with r0 = 1
until ‖R(n,k) − R(n,k−1)‖2 < ε0 for some tolerance ε0. We only generate the TBT for as many
generations as it takes to construct the graph, with each generation corresponding to a step in the
breadth first graph exploration process. The computation of the root node of the TBT, R̂(n,k) is
done recursively starting from the leaves using

R̂
(n,0)
i = 1 for i ∈ Âk, R̂

(n,r)
i =

N̂i∑
j=1

c

D̂(i,j)
R̂

(n,r−1)
(i,j) + 1− c, for i ∈ Âr, 0 ≤ r < k.

To draw a sample from R∗, note that by Proposition 7.3, R∗ in the IID Algorithm has the same
distribution as R, i.e., the endogenous solution to the SFPE

R D=
N∑
i=1
CiRi + 1− c,

where P (C ≤ x) = E[1(c/D ≤ x)D ]/µ. To sample R we construct a WBP with generic branching
vector (N , 1−c, {Ci}), with the {Ci} i.i.d. and independent of N and proceed as in the computation
of R̂(n,k). To simulate samples of C we use the acceptance-rejection method.

To show the convergence of R(n,∞)
1 to R∗, we let n = 10, 100 and 10000. The values of the other

parameters are α = 1.5, β = 2.5, E[N ] = E[D ] = 2, c = 0.3. For the TBT, we simulate up to
kn = blognc generations. For the WBP, we simulate 10 generations. For each n, we draw 1000
samples of R(n,∞)

1 , R(n,kn)
1 , R̂(n,kn) and R∗, respectively, to approximate the distribution of these

quantities.

Figure 3 shows the empirical CDFs of 1000 i.i.d. samples of the true PageRank, R(n,∞)
1 ; finitely many

iterations of PageRank, R(n,kn)
1 ; and the TBT approximation R̂(n,kn); it also plots the distribution

of the limit R∗ using 1000 simulations. The approximations are so accurate that the CDFs are
almost indistinguishable. Figure 4 illustrates the weak convergence of PageRank on the graph,
R

(n,∞)
1 , to its limit R∗ as the size of the graph grows.
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To quantify the distance between the CDFs, we sort the samples in ascending order and compute
the mean squared error (MSE) ∑1000

i=1 (x(n)
i − yi)/1000, where yi is the sorted ith sample of R∗ and

x
(n)
i is the sorted ith sample of R(n,∞)

1 . For robustness, we discard the squared error of the maximal
value. As a result, the MSEs are 0.2950, 0.1813 and 0.0406 respectively for n = 10, 100 and 10000.
It is clear that the approximation improves as n increases.
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Figure 3: The empirical CDFs of 1000 samples of R∗, R(n,∞)
1 , R(n,kn)

1 and R̂(n,kn) for n = 10000
and kn = 9.

8 Proofs

The last section of the paper contains most of the proofs. For the reader’s convenience we have
organized them in subsections according to the order in which their corresponding statements
appear in the paper.

8.1 Proof of the coupling lemma

Recall from Section 5 that N̂∅ denotes the number of offspring of the root node in the TBT (chosen
from distribution (5.1)) and N̂1 denotes the number of offspring of a node chosen from distribution
(5.2). Throughout this section we will also need to define

µ∗n = En
[
N̂∅
]

=
∑
i,j,s,t

if∗n(i, j, s, t) = 1
n

n∑
k=1

Nk = Ln
n
,
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Figure 4: The empirical CDFs of 1000 samples of R∗ and R
(n,∞)
1 for n = 10, 100 and 10000.

and
µn = En

[
N̂1
]

=
∑
i,j,s,t

ifn(i, j, s, t) = 1
Ln

n∑
k=1

NkDk.

Before we give the proof of the Coupling Lemma 5.4 we will need the following estimates for the
growth of the process {Ẑk}.

Lemma 8.1 Suppose (Nn,Dn,Cn,Qn) satisfies Assumption 5.1 and recall that µ = ν2/ν1. Then,
for any constants K > 0, any nonnegative sequence {xn} with xn →∞ and any k = O(nγ),

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= O

(
x−1
n

)
, n→∞.

Proof. Start by noting that for any r = 0, 1, 2, . . . ,

En[Ẑr] = µ∗nµ
r
n. (8.1)

Moreover, on the event Ωn,

µn = nν2(1 +O(n−γ))
nν1(1 +O(n−γ)) = µ(1 +O(n−γ)), and

µ∗n = nν1(1 +O(n−γ))
n

= ν1(1 +O(n−γ)).
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Next, note that conditionally on Fn, the process

Xr = Ẑr
µ∗nµ

r
n

= 1
µ∗nµ

r
n

∑
i∈Âr−1

N̂i, r ≥ 1, X0 = N̂∅
µ∗n

is a nonnegative martingale with respect to the filtration σ (Fr ∪Fn), where Fr = σ
(
N̂i : i ∈ Âs, s ≤ r

)
.

Therefore, we can apply Doob’s inequality, conditionally on Fn, to obtain

P

(
max

0≤r≤k

Ẑr
µr

> Kxn

∣∣∣∣∣Ωn

)
= P

(
max

0≤r≤k

Xrµ
∗
nµ

r
n

µr
> Kxn

∣∣∣∣Ωn

)
= P

(
max

0≤r≤k
Xrν1(1 +O(n−γ))r+1 > Kxn

∣∣∣∣Ωn

)
≤ 1
P (Ωn)E

[
1(Ωn)En

[
1
(

max
0≤r≤k

Xr >
Kxn

ν1(1 +O(n−γ))k+1

)]]
≤ 1
P (Ωn)E

[
1(Ωn)En[Xk]ν1(1 +O(n−γ))k+1

Kxn

]

= ν1(1 +O(n−γ))k+1

Kxn
(since En[Xk] = 1).

Noting that (1 +O(n−γ))k = eO(kn−γ) = O(1) as n→∞ gives that this last term is O(x−1
n ). This

completes the proof.

We now give the proof of the coupling lemma.
Proof of Lemma 5.4. Start by defining

xn =


(n/µ2k)1/2, µ > 1,
(n/k2)1/2, µ = 1,
n1/2, µ < 1,

and Fk =
{

max
0≤r≤k

Ẑr
µr
≤ xn

}
.

Note that xn → ∞ as n → ∞ for all 1 ≤ k ≤ h logn when µ > 1 and for all 1 ≤ k ≤ nb,
b < min{1/2, γ}, when µ ≤ 1. The constraint b < γ will allow us to use Lemma 8.1.
Next, note that the jth inbound stub of node i ∈ As (where the label i refers to the order in which
the node was added to the graph during the exploration process) will be the first one to be paired
with an outbound stub having label 2 or 3 with probability

1
Ln

(
s−1∑
r=0

V̂r +
i−1∑
t=1

Dt + (j − 1)
)
≤ 1
Ln

s∑
r=0

V̂r =: Ps.

It follows that,

P (τ = s|Ωn) ≤ P (τ = s, Fk|Ωn) + P (τ = s, F ck |Ωn)
≤ P (Bin(Ẑs, Ps) ≥ 1, Fk|Ωn) + P (τ = s, F ck |Ωn),
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where Bin(n, p) is a Binomial random variable with parameters (n, p). It follows that if we let
Fk = σ(Ẑr, V̂r : 1 ≤ r ≤ k), then

P (τ ≤ k|Ωn) =
k∑
s=0

P (τ = s|Ωn)

≤
k∑
s=0

{
P
(

Bin(Ẑs, Ps) ≥ 1, Fk
∣∣∣Ωn

)
+ P (τ = s, F ck |Ωn)

}

≤
k∑
s=0

E
[
1(Fk)P (Bin(Ẑs, Ps) ≥ 1|Fk)

∣∣∣Ωn

]
+ P (F ck |Ωn)

≤
k∑
s=0

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
+ P (F ck |Ωn) ,

where in the last step we used Markov’s inequality. Now, use the bound for Ẑs implied by Fk and
recall that |Âr| = Ẑr−1 to obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ E [µsxnPs|Ωn] (8.2)

= µsxn
ν1n

s∑
r=0

E
[
V̂r
∣∣∣Ωn

]
(1 +O(n−γ))

= µsxn
ν1n

{
E
[
V̂0
∣∣∣Ωn

]
+

s∑
r=1

E
[
En
[
V̂r|Ẑr−1

]∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
E [µ∗n|Ωn] +

s∑
r=1

E
[
Ẑr−1λn

∣∣∣Ωn

]}
(1 +O(n−γ)),

where in the first equality we used that on the set Ωn we have Ln = ν1n(1 +O(n−γ)), and on the
second equality we used the observation that

En
[
V̂0
]

= En
[
D̂∅
]

= µ∗n, En
[
V̂r
∣∣∣ Ẑr−1

]
= Ẑr−1λn, r ≥ 1,

where λn = En[D̂1]. Moreover, on the set Ωn we have that

λn = 1
Ln

n∑
k=1

D2
k = nν3(1 +O(n−γ))

nν1(1 +O(n−γ)) = λ(1 +O(n−γ)),

so we obtain

E
[
1(Fk)ẐsPs

∣∣∣Ωn

]
≤ µsxn

ν1n

{
ν1 +

s∑
r=1

λE
[
Ẑr−1

∣∣∣Ωn

]}
(1 +O(n−γ))

= µsxn
ν1n

{
ν1 +

s∑
r=1

λE
[
µ∗nµ

r−1
n

∣∣∣Ωn

]}
(1 +O(n−γ)) (by (8.1)).

Using the observation that E
[
µ∗nµ

r−1
n

∣∣Ωn
]

= ν1µ
r−1(1 +O(n−γ))r−1 (see the proof of Lemma 8.1),

and the condition r − 1 < s ≤ k = O(nγ), gives

P (τ ≤ k|Ωn) ≤ (1 +O(1))(λ+ 1)xn
n

k∑
s=0

s∑
r=0

µs+r + P (F ck |Ωn).
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Note that we did not compute E
[
ẐsPs

∣∣∣Ωn

]
in (8.2) directly, since that would have led to having

to compute En
[
Ẑ2
s−1

]
and neither N̂0 nor N̂1 are required to have finite second moments in the

limit. Now, since by Lemma 8.1 we have that P (F ck |Ωn) = O
(
x−1
n

)
, and

k∑
s=0

s∑
r=0

µs+r ≤


µ2(k+1)/(µ− 1)2, µ > 1,
(k + 1)(k + 2)/2, µ = 1,
1/(1− µ), µ < 1,

we conclude that

P (τ ≤ k|Ωn) =


O
(
xnµ

2kn−1 + x−1
n

)
= O

(
(n/µ2k)−1/2

)
, µ > 1,

O
(
xnk

2n−1 + x−1
n

)
= O

(
(n/k2)−1/2

)
, µ = 1,

O
(
xnn

−1 + x−1
n

)
= O

(
n−1/2

)
, µ < 1,

as n→∞. This completes the proof.

8.2 Proof of the asymptotic behavior of R∗

We give in this section the proof of Theorem 6.6 which describes the asymptotic behavior of the
limit R∗, which is essentially determined by the asymptotic behavior of the endogenous solution R
given in (6.2). The tail behavior of R is the main focus of the work in [40, 22, 24, 23, 30].

Proof of Theorem 6.6. We consider the case when N is regularly varying first. By Theorem 3.4
in [30] and the remarks that follow it (see also Theorem 4.1 in [40]),

P (R > x) ∼ (E[Q]E[C1])α
(1− ρ)α(1− ρα)P (N > x), x→∞,

and therefore, P (R > x) ∈ R−α. Next, since the {Ci} are i.i.d. and independent of N , Minkowski’s
inequality gives for any β ≥ 1,

E

( N∑
i=1
Ci
)β = E

E
( N∑

i=1
Ci
)β∣∣∣∣∣∣N

 ≤ E [N βE[Cβ1 ]
]
. (8.3)

Applying Lemma 2.3 in [30] with β = 1 + δ gives that E[|R|1+δ] < ∞ for all 0 < δ < α − 1. By
conditioning on the filtration Fk = σ

(
(Ni, C(i,1), C(i,2), . . . ) : i ∈ As, s < k

)
it can be shown that

E
[∑

i∈Ak ΠiQi
]

= ρkE[Q], which implies that E[R] = (1− ρ)−1E[Q] > 0. Also, by Lemma 3.7(2)
in [25] we have

P

N0∑
i=1
Ci > x

 ∼ (E[C1])α P (N0 > x) ∼ κ(1− ρ)α(1− ρα)
(E[Q])α P (R > x).
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Using Theorem A.1 in [30] we conclude that

P (R∗ > x) ∼
(
E[N0]E[Cα1 ] + κ

(1− ρ)α(1− ρα)
(E[Q])α (E[R])α

)
P (R > x)

∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (E[Q]E[C1])α
(1− ρ)α(1− ρα)P (N > x)

as x→∞.

Now, for the case when Q is regularly varying, note that E
[(∑N

i=1 Ci
)α+ε

]
<∞ by (8.3) and the

theorem’s assumptions. Then, by Theorem 4.4 in [30] (see also Theorem 4.1 in [40]) we have

P (R > x) ∼ (1− ρα)−1P (Q > x), x→∞.

The same observations made for the previous case give E[|R|1+δ] < ∞ for all 0 < δ < α − 1. In
addition, note that the same argument used above gives E

[(∑N0
i=1 Ci

)α+ε
]
<∞. Also,

P (Q0 > x) ∼ κP (Q > x) ∼ κ(1− ρα)P (R > x).

It follows, by Theorem A.2 in [30], that

P (R∗ > x) ∼ (E[N0]E[Cα1 ] + κ(1− ρα))P (R > x)
∼ (E[N0]E[Cα1 ] + κ(1− ρα)) (1− ρα)−1P (Q > x)

as x→∞.

8.3 Proofs of properties of the IID Algorithm

Before giving the proofs of Propositions 7.2 and 7.3 we will need some general results for sequences
of i.i.d. random variables, which may be of independent interest. The first result establishes a
bound for the sum of the largest order statistics in a sample. The second result is essentially an
explicit version of the Weak Law of Large Numbers.

Lemma 8.2 Let X1, X2, . . . , Xn be i.i.d. nonnegative random variables satisfying E[X1+κ
1 ] < ∞

for some κ > 0, and let X(i) denote the ith smallest observation from the set {X1, X2, . . . , Xn}. Let
{π1, π2, . . . , πn} be any permutation of the set {1, 2, . . . , n}. Then, for any kn ∈ {1, 2, 3, 4, . . . , n}
we have

P

 n∑
i=n−kn+1

X(i) > n1−γ

 = O
(
kκ/(1+κ)
n n−(κ/(1+κ)−γ)

)
as n→∞.

Proof. Note that, by Markov’s inequality,

P (X1 > x) ≤ E[X1+κ
1 ]x−1−κ,
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and therefore,
P (Xi > x) ≤ P (Yi > x),

where {Y1, Y2, . . . , Yn} are i.i.d. Pareto random variables having distribution G(x) = 1− (x/b)−1−κ

for x > b :=
(
E[X1+κ

1 ]
)−1/(1+κ)

. We then have that

P

 n∑
i=n−kn+1

X(i) > n1−γ

 ≤ P
 n∑
i=n−kn+1

Y(i) > n1−γ


≤ 1
n1−γ

n∑
i=n−kn+1

E[Y(i)],

where Y(i) is the ith smallest from the set {Y1, Y2, . . . , Yn}. Moreover, it is known (see [37], for
example) that

E[Y(i)] = b · n!
(n− i)! ·

Γ(n− i+ 1− (1 + κ)−1)
Γ(n+ 1− (1 + κ)−1) ,

where Γ(·) is the Gamma function. By Wendel’s inequality [44], for any 0 < s < 1 and x > 0,(
x

x+ s

)1−s
≤ Γ(x+ s)

xsΓ(x) ≤ 1,

and therefore, for i < n, and ϑ = (1 + κ)−1,

E[Y(i)] ≤ b ·
n!

Γ(n+ 1− ϑ) ·
1

(n− i)ϑ ≤ b
(
n+ 1− ϑ
n− i

)ϑ
.

We conclude that

1
n1−γ

n∑
i=n−kn+1

E[Y(i)] ≤
b

n1−γ

 n−1∑
i=n−kn+1

(
n+ 1− ϑ
n− i

)ϑ
+ n!Γ(1− ϑ)

Γ(n+ 1− ϑ)


≤ b(n+ 1− ϑ)ϑ

n1−γ

 n−1∑
i=n−kn+1

( 1
n− i

)ϑ
+ Γ(1− ϑ)


≤ b(n+ 1)ϑ

n1−γ

kn−1∑
j=1

∫ j

j−1

1
tϑ
dt+ Γ(1− ϑ)


= b(n+ 1)ϑ

n1−γ

(
(kn − 1)1−ϑ

1− ϑ + Γ(1− ϑ)
)

= O

(
k1−ϑ
n

n1−ϑ−γ

)
,

where in the second inequality we used Wendel’s inequality. This completes the proof.

Lemma 8.3 Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] <∞ for some
κ > 0 and µ = E[X1]. Set Sm = X1 + · · · + Xm and θ = min{1 + κ, 2}. Then, for any K > 0,
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any nonnegative sequence {xn} such that xn → ∞ as n → ∞, and all m = o
(
x1+κ
n

)
, there exists

an n0 ≥ 1 such that for all n ≥ n0 ,

P (|Sm −mµ| > Kxn) ≤ E[|X1|θ]
( 2
K2 + 1

)
m

xθn
.

Proof. If κ ≥ 1, then Chebyshev’s inequality gives, for all m ≥ 1,

P (|Sm −mµ| > Kxn) ≤ mVar(X1)
K2x2

n

≤ mE[|X1|2]
K2x2

n

= mE[|X1|θ]
K2xθn

.

Suppose now that 0 < κ < 1 and let G(t) = P (|X1| ≤ t). Set t = xn and define P (X̃i ≤ x) =
P (Xi ≤ x|Xi ≤ t), and note that∣∣∣E[X̃1]− µ

∣∣∣ = |E[X11(|X1| ≤ t)]/G(t)− µ|

≤ 1
G(t) |E[X11(|X1| ≤ t)]− µ|+

|µ|G(t)
G(t)

= 1
G(t)

(
|E[X11(|X1| > t)]|+ |µ|G(t)

)
≤ 1
G(t)

(
tG(t) +

∫ ∞
t

G(x)dx+ |µ|G(t)
)

≤ E[|X1|1+κ]
G(t)

(
t−κ +

∫ ∞
t

x−1−κ dx+ |µ|t−1−κ
)

(by Markov’s inequality)

= E[|X1|1+κ]
G(t)

(1 + κ

κ
+ |µ|t−1

)
t−κ.

Then, for sufficiently large n, we obtain that∣∣∣E[X̃1]− µ
∣∣∣ ≤ 2E[|X1|1+κ]

(1 + κ

κ
+ |µ|

)
t−κ , K ′t−κ = K ′x−κn .

It follows that for sufficiently large n and m = o(x1+κ
n ),

P (|Sm −mµ| > Kxn)

= P

(∣∣∣∣∣
m∑
i=1

(X̃i − µ)
∣∣∣∣∣ > Kxn

)
G(t)m + P

(∣∣∣∣∣
m∑
i=1

(Xi − µ)
∣∣∣∣∣ > Kxn, max

1≤i≤m
|Xi| > t

)

≤ P
(∣∣∣∣∣

m∑
i=1

(X̃i − E[X̃1])
∣∣∣∣∣+m

∣∣∣E[X̃1]− µ
∣∣∣ > Kxn

)
G(t)m + P

(
max

1≤i≤m
|Xi| > t

)

≤ G(t)m

(Kxn −K ′mt−κ)2 ·mVar(X̃1) + 1−G(t)m (by Chebyshev’s inequality)

≤ G(t)mmVar(X̃1)
K2x2

n(1−mx−1−κ
n K ′/K)2 +mG(t).

To estimate Var(X̃1) note that

Var(X̃1) ≤ E[X̃2
1 ] = E[X2

1 1(|X1| ≤ t)]
G(t) ≤ E[|X1|1+κ]t1−κ

G(t) ,
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so using Markov’s inequality again to estimate G(t) gives us

P (|Sm −mµ| > Kxn) ≤ E[|X1|1+κ]
K2(1−mx−1−κ

n K ′/K)2 ·
mt1−κ

x2
n

+ E[|X1|1+κ]m
t1+κ

= E[|X1|1+κ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)

m

x1+κ
n

= E[|X1|θ]
(

1
K2(1−mx−1−κ

n K ′/K)2 + 1
)
m

xθn
.

This completes the proof.

By setting m = n and xn = n1−γ we immediately obtain the following corollary.

Corollary 8.4 Let {X1, X2, . . . , Xn} be i.i.d. random variables satisfying E[|X1|1+κ] < ∞ for
some κ > 0 and µ = E[X1]. Set Sn = X1 + · · · + Xn. Then, for any 0 ≤ γ < 1 − 1/θ ,
θ = min{1 + κ, 2} and any constant K > 0, there exists an n0 ≥ 1 such that for all n ≥ n0

P
(
|Sn − nµ| > Kn1−γ

)
≤ E[|X1|θ]

( 2
K2 + 1

)
n−θ(1−1/θ−γ).

We now proceed to prove that the extended bi-degree sequence generated by the IID Algorithm
satisfies Assumptions 5.1 and 6.2.

Proof of Proposition 7.2. It suffices to show that P
(
Ωc
n,i

)
= O(n−ε) for some ε > 0 and

i = 1, . . . , 6. Throughout the proof let En = {|∆n| ≤ n1−κ0+δ0} and recall that by (7.1) P (Ecn) =
O
(
n−δ0η

)
, where η = (κ0 − δ0)/(1− κ0).

We start with Ωn,2. Let ν2 = (E[D ])2 and define χi = Di−Di, τi = Ni−Ni. Note that χi, τi ∈ {0, 1}
for all i = 1, . . . , n; moreover, either all the {χi} or all the {τi} are zero, and therefore χiτj = 0 for
all 1 ≤ i, j ≤ n. We now have∣∣∣∣∣

n∑
i=1

DiNi − nν2

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

DiNi − nν2 +
n∑
i=1

(Diτi + χiNi)
∣∣∣∣∣

≤
∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣+ max


n∑

i=n−∆n+1
D(i),

n∑
i=n−∆n+1

N(i)

 ,
where D(i) (respectively, N(i)) is the ith smallest value from the set {D1, . . . ,Dn} (respectively,
{N1, . . . ,Nn}). Since |∆n| ≤ n1−κ0+δ0 on En, we have

P (Ωc
n,2) = P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ
∣∣∣∣∣En

)

≤ 1
P (En)

{
P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)

+P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2

 .
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Now apply Corollary 8.4 to Xi = DiNi, which satisfies E[(D1N1)1+η] = E[N 1+η
1 ]E[D1+η

1 ] < ∞,
to obtain

P

(∣∣∣∣∣
n∑
i=1

DiNi − nν2

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−η+(1+η)γ

)
.

For the remaining two probabilities use Lemma 8.2 to see that

P

 n∑
i=n−bn1−η(1−κ0)c+1

D(i) >
n1−γ

2

+ P

 n∑
i=n−bn1−η(1−κ0)c+1

N(i) >
n1−γ

2


= O

(
n(1−η(1−κ0))η/(1+η)−(η/(1+η)−γ)

)
= O

(
n−η(κ0−δ0)/(1+η)+γ

)
.

It follows from these estimates that

P (Ωc
n,2) = O

(
n−η(κ0−δ0)/(1+η)+γ

)
. (8.4)

Next, we can analyze Ωn,1,Ωn,3 and Ωn,4 by considering the sequence {Dϑ
i } where ϑ can be taken

to be 1, 2 or 2 + κ. Correspondingly, we have ν1 = E[D ], ν3 = E[D2] and ν4 = E[D2+κ]. Similarly
as what was done for Ωn,2, note that∣∣∣∣∣

n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

(
(Di + χi)ϑ −Dϑ

i

)
≤
∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣+
n∑
i=1

ϑ(Di + 1)ϑ−1χi,

where we used the inequality (d+x)ϑ−dϑ ≤ ϑ(d+1)ϑ−1x for d ≥ 0, x ∈ [0, 1] and ϑ ≥ 1. Now note
that E[(Dϑ)1+σ] <∞ for any 0 < σ < (β − 2− κ)/(2 + κ); in particular, since γ < (β − 2− κ)/β,
we can choose γ/(1− γ) < σ < (β − 2− κ)/(2 + κ). For such σ, Corollary 8.4 gives

P

(∣∣∣∣∣
n∑
i=1

Dϑ
i − nE[Dϑ]

∣∣∣∣∣ > n1−γ

2

)
= O

(
n−σ+(1+σ)γ

)
.

For the term involving the {χi} we use again Lemma 8.2 to obtain

P

(
n∑
i=1

ϑ(Di + 1)ϑ−1χi >
n1−γ

2

)
≤ P

 n∑
i=n−dn1−ηe+1

ϑ(D(i) + 1)ϑ−1 >
n1−γ

2


= O

(
n(1−η)(1−1/2)−(1−γ−1/2)

)
= O

(
n−η/2+γ

)
.

It follows that

P (Ωc
n,i) ≤

1
P (En) ·O

(
n−σ+(1+σ)γ + n−η/2+γ

)
, i = 1, 3, 4. (8.5)
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Now note that since |ζ| ≤ c < 1 a.s., then E[|ζ|2] <∞ and Corollary 8.4 gives

P (Ωc
n,5) = P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣ > n1−γ
)

= P

(∣∣∣∣∣
n∑
r=1
|ζr|1(Dr ≥ 1)− nν5

∣∣∣∣∣+ c|∆n| > n1−γ
)

= O
(
n−1+2γ

)
. (8.6)

Finally, by Corollary 8.4 and (7.1),

P (Ωc
n,6) ≤ P

(∣∣∣∣∣
n∑
r=1
|Qr| − nE[|Q|]

∣∣∣∣∣ > n

∣∣∣∣∣En
)

= O
(
n−εQ + n−δ0η

)
. (8.7)

Our choice of 0 < γ < min{η(κ0 − δ0)(1 + η), σ/(1 + σ)} guarantees that all the exponents of n in
expressions (8.4) - (8.6) are strictly negative, which completes the proof.

Proof of Proposition 7.3. We will show that d1(F ∗n , F ∗) and d1(Fn, F ) converge to zero a.s. by
using the duality formula for the Kantorovich-Rubinstein distance. To this end, let Sn = ∑n

i=1 Di,
Ck = ζk/Dk1(Dk ≥ 1) + c sgn(ζk)1(Dk = 0), and fix ψ∗ : R2 → R and ψ : R3 → R to be Lipschitz
continuous functions with Lipschitz constant one. Then,

E0 :=
∣∣∣∣∣ 1n

n∑
k=1

ψ∗(Nk, Qk)−
1
n

n∑
k=1

ψ∗(Nk, Qk)
∣∣∣∣∣

≤ 1
n

n∑
k=1
|ψ∗(Nk + 1, Qk)− ψ∗(Nk, Qk)| 1(Nk = Nk + 1)

≤ 1
n

n∑
k=1

1(Nk = Nk + 1) ≤ |∆n|
n

,

and

E1 :=
∣∣∣∣∣
n∑
k=1

ψ(Nk, Qk, Ck)
Dk

Ln
−

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn

∣∣∣∣∣
≤

n∑
k=1

Dk

Sn
|ψ(Nk, Qk,Ck)− ψ(Nk, Qk,Ck)| 1(∆n ≤ 0)

+
n∑
k=1

Dk

Ln
|ψ(Nk, Qk, Ck)− ψ(Nk, Qk,Ck)| 1(∆n > 0)

+
n∑
k=1

∣∣∣∣ψ(Nk, Qk, ζk/Dk)
(
Dk

Ln
− Dk

Sn

)∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1

Dk

Sn
1(Nk = Nk + 1) +

n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0),
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where we used the fact that ψ∗ and ψ have Lipschitz constant one. To bound further E1 use the
Cauchy-Schwarz inequality to obtain

n∑
k=1

Dk

Sn
1(Nk = Nk + 1) ≤ n

Sn

(
1
n

n∑
k=1

D2
k

)1/2 ( |∆n|
n

)1/2
.

Now, use the observation that |ζk| ≤ c to obtain
n∑
k=1

Dk

Ln
|ζk/(Dk + 1)− Ck| 1(Dk = Dk + 1)

≤ c
n∑
k=1

1
LnDk

1(Dk = Dk + 1,Dk ≥ 1) +
n∑
k=1

1
Ln
|ζk − c sgn(ζk)| 1(Dk = Dk + 1,Dk = 0)

≤ c

Ln

n∑
k=1

1(Dk = Dk + 1) ≤ c|∆n|
Sn

.

Next, use the bound |ψ(m, q, x)| ≤ ||(m, q, x)||1 + |ψ(0, 0, 0)| and Hölder’s inequality to obtain
n∑
k=1
|ψ(Nk, Qk,Ck)|

∣∣∣∣(Dk −Dk)Sn −Dk∆n

LnSn

∣∣∣∣ 1(∆n > 0)

≤
n∑
k=1
|ψ(Nk, Qk,Ck)|

1(Dk = Dk + 1)
Sn

+
n∑
k=1
|ψ(Nk, Qk,Ck)|

Dk|∆n|
S2
n

≤ 1
Sn

n∑
k=1
||(Nk, Qk, c)||1 1(Dk = Dk + 1) + |∆n|

S2
n

n∑
k=1

(NkDk + |Qk|Dk + c) + 2|ψ(0, 0, 0)∆n|
Sn

≤ n

Sn


(

1
n

n∑
k=1

N 1+δ
k

)1/(1+δ)

+
(

1
n

n∑
k=1
|Qk|1+δ

)1/(1+δ)

( |∆n|

n

)δ/(1+δ)

+ |∆n|
S2
n

n∑
k=1

(NkDk + |Qk|Dk) + H|∆n|
Sn

,

where 0 < δ < min{α − 1, εQ} and H = 2|ψ(0, 0, 0)| + 2c. Now note that since the bi-degree
sequence is constructed on the event |∆n| ≤ n1−κ0+δ0 , we have that E0 ≤ n−κ0+δ0 a.s. To show that
E1 converges to zero a.s. use the Strong Law of Large Numbers (SLLN) (recall that E[D2] < ∞
and that N ,D , Q are mutually independent) and the bounds derived above.
Finally, by the SLLN again and the fact that E[||(N , Q,C )||1] <∞, we have

lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = lim
n→∞

1
n

n∑
k=1

ψ∗(Nk, Qk) = E[ψ∗(N , Q)] a.s.

and

lim
n→∞

n∑
i=1

ψ(Nk, Qk, Ck)
Di

Sn
= lim

n→∞

n∑
k=1

ψ(Nk, Qk,Ck)
Dk

Sn
= 1
µ
E[ψ(N , Q,C )D ] a.s.
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The first limit combined with the duality formula gives that d1(F ∗n , F ∗) → 0 a.s. For the second
limit we still need to identify the limiting distribution, for which we note that

1
µ
E[ψ(N , Q,C )D ] = 1

µ
E [E[ψ(N , Q,C )D |N , Q]] = 1

µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, z/i)i dF ζ(z)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

ψ(N , Q, y)i dF ζ(yi)P (D = i)
]

=: E [ψ(N , Q, Y )] ,

where Y has distribution function

P (Y ≤ x) = 1
µ
E

[ ∞∑
i=1

∫ ∞
−∞

1(y ≤ x)i dF ζ(yi)P (D = i)
]

= 1
µ
E

[ ∞∑
i=1

iF ζ(ix)P (D = i)
]

= 1
µ
E[DF ζ(Dx)] = 1

µ
E[D1(ζ/D ≤ x)] = P (C ≤ x).

It follows that E[ψ(N , Q,C )D ]/µ = E[ψ(N , Q, C)], which combined with the duality formula
gives that d1(Fn, F )→ 0 a.s.
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[23] P.R. Jelenković and M. Olvera-Cravioto. Implicit renewal theorem for trees with general
weights. Stoch. Proc. Appl., 122(9):3209–3238, 2012.
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