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Abstract

Mixing patterns in large self-organizing networks, such as the Internet, the World Wide Web,
social and biological networks are often characterized by degree-degree dependencies between
neighbouring nodes. In assortative networks, the degree-degree dependencies are positive (nodes
with similar degrees tend to connect to each other), while in disassortative networks, these depen-
dencies are negative. One of the problems with the commonly used Pearson correlation coefficient,
also known as the assortativity coefficient is that its magnitude decreases with the network size in
disassortative networks. This makes it impossible to compare mixing patterns, for example, in two
web crawls of different sizes. As an alternative, we have recently suggested to use rank correlation
measures, such as Spearman’s rho. Numerical experiments have confirmed that Spearman’s rho
produces consistent values in graphs of different sizes but similar structure, and it is able to reveal
strong (positive or negative) dependencies in large graphs.

In this paper we analytically investigate degree-degree dependencies for scale-free graph se-
quences. In order to demonstrate the ill behaviour of the Pearson’s correlation coefficient, we first
study a simple model of two heavy-tailed highly correlated random variables X and Y , and show
that the sample correlation coefficient converges in distribution either to a proper random variable
on [−1, 1], or to zero, and the limit is non-negative a.s. if X,Y ≥ 0. We next adapt these results
to the degree-degree dependencies in networks as described by the Pearson correlation coefficient,
and show that it is non-negative in the large graph limit when the asymptotic degree distribution
has an infinite third moment. Furthermore, we provide examples where the Pearson’s correlation
coefficient converges to zero in a network with strong negative degree-degree dependencies, and
another example where this coefficient converges in distribution to a random variable. We sug-
gest the alternative degree-degree dependency measure, based on Spearman’s rho, and prove that
this statistical estimator converges to an appropriate limit under quite general conditions. These
conditions are proved to hold in common network models, such as the configuration model and
the preferential attachment model. We conclude that rank correlations provide a suitable and
informative method for uncovering network mixing patterns.

Keywords. Dependencies of heavy-tailed random variables, Power-laws, Scale-free graphs, Assor-
tativity, Degree-degree correlations

1 Introduction

In this paper we present an analytical study of degree-degree correlations in graphs with power law
degree distribution. In simple words, a random variable X has a power-law distribution with tail
exponent γ > 0 if its tail probability P(X > x) is roughly proportional to x−γ , for large enough
x. Large self-organizing networks, such as the Internet, the World Wide Web, social and biological
networks, usually exhibit high variation in the values of the degrees. Such networks are called scale
free indicating that there is no typical scale for the degrees, and the high degree vertices are called
hubs. This phenomenon is often modelled by using power-law degree distributions.
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Power-law distributions are heavy tailed since the tail probability decreases much more slowly
than a negative exponential, and thus one observes extremely large values of X much more frequently
than in the case of light tails. Statistical analysis of scale-free complex networks has received massive
attention in recent literature, see e.g. [33, 40] for excellent surveys. Nevertheless, there still are
many fundamental open problems. One of them is how to measure dependencies between network
parameters.

An important characteristic of networks is the dependency between the degrees of direct neigh-
bours. A network is usually called assortative when nodes with similar degrees are often connected,
thus, the degree-degree dependencies are positive, while in a disassortative network these depen-
dencies are negative. The degree-degree dependencies define many of the network’s properties. For
instance, the negative degree-degree correlations in the Internet graph have a great influence on the
robustness to failures [15], efficiency of Internet protocols [29], as well as distances and between-
ness [30]. The correlation between in- and out-degree of tasks plays and important role in the dy-
namics of production and development systems [11]. Mixing patterns affect epidemic spread [17, 18]
and Web ranking [19].

Often, degree-degree dependence is characterized by the assortativity coefficient of the network,
introduced by Newman in [38]. The assortativity coefficient is in fact the Pearson correlation co-
efficient between the vector of degrees on each side of an edge, as a function of all edges. See [38,
Table I] for a list of assortativity coefficients for various real-world networks. The empirical data
suggest that social networks tend to be assortative (the assortativity coefficient is positive), while
Internet, World Wide Web, and biological networks tend to be disassortative. In [38, Table I], it is
striking that, typically, larger disassortative networks have an assortativity coefficient that is closer
to 0 and therefore appear to have approximate uncorrelated degrees across edges. Similar conclusions
can be drawn from [39], see in particular [39, Table II]. This phenomenon arises because Pearson’s
correlation coefficient in scale-free networks with realistic parameters decreases with the network
size, as was pointed out in several recent papers [14, 42, 24]. In this paper, we prove that Pearson’s
correlation coefficient in scale-free networks shows several types of pathological behavior, in partic-
ular, its infinite volume limit, when it exists, is non-negative, independently of the mixing pattern,
and in fact this limit can even be random.

In [24] we propose an alternative measure for the degree-degree dependencies, based on the ranks
of degrees. This rank correlation approach is in fact classical in multivariate analysis, falling under
the category of ‘concordance measures’ - dependency measures based on order rather than exact
values of two stochastic variables. The huge advantage of such dependency measures is that they
work well independently of the number of finite moments of the degrees, while Pearson’s coefficient
suffers from a strong dependence on the extreme values of the degrees. Recent applications of rank
correlation measures, such as Spearman’s rho [44] and the closely related Kendall’s tau [27], include
the concordance between two rankings for a set of documents in web search. In this application field
many other measures for rank distances have been proposed, see e.g. [28] and the references therein.

We show mathematically that statistical estimators for degree-degree dependencies based on rank
correlations are consistent. That is, for graphs of different sizes but similar structure (e.g. preferential
attachment graphs of increasing size), these estimators converge to their ‘true’ or limiting value that
describes the degree-degree dependence in an infinitely large graph (in particular, the variance of
the estimator decreases as the size of the graph grows). We also show that Pearson’s correlation
coefficient does not have this basic property when degree distributions are heavy-tailed. In particular,
as explained in more detail in [24], this implies that the assortativity coefficient as suggested in [38]
does not allow one to compare the degree-degree dependencies in graphs of different sizes, such as they
arise when studying a network at different time stamps, or comparing two different networks, e.g. web
crawls of different domains or Wikipedia graphs from different languages. On the other hand, such
a comparison is possible using Spearman’s rho. This paper forms the mathematical justification of
our paper [24], where similar results were predicted on a less formal level and confirmed by numerical
experiments.
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The paper is organized as follows. In Section 2 we start with the analysis of the sample Pearson
correlation coefficient and the sample rank correlation, Spearman’s rho, for a two-dimensional vector
with heavy-tailed marginals. In Section 2.3 we present a simple model with an explicit linear depen-
dence and show that, when the sample size grows to infinity, then Pearson’s correlation coefficient
does not converge to a constant but rather to a random variable involving stable distributions. We
also verify analytically and numerically that the rank correlation provides a consistent statistical
estimator for this model. Next, in Section 2.4 we prove that if random variables are heavy-tailed
with infinite second moment and non-negative, then the sample Pearson correlation coefficient never
converges to a negative value. Thus, such sequence will never be classified as ‘disassortative’. This
result is extended to sequences of graphs in Section 3, where we also obtain quite general convergence
criteria in the infinite volume limit for the Pearson’s correlation coefficient and the Spearman’s rho.
In Section 4 analytical results are provided for Pearson’s correlation coefficient and rank correlations
in the configuration model and the Preferential Attachment model. We also present an adaptation of
the configuration model that has strong negative degree-degree dependencies and prove that Spear-
man’s rho converges to the theoretically justified negative value while Pearson’s coefficient converges
to zero. Furthermore, we construct an example, where Pearson’s correlation coefficient converges to
a random variable. Numerical results are presented in Section 5. We close the paper in Section 6
with a discussion on our results and possible extensions thereof.

2 Correlations between random variables

In this section we introduce the dependency measures studied in this paper. We start with a general
description of dependency measures for random vectors (X,Y ). This will provide the necessary
intuition and framework in order to understand what happens when X and Y are the degrees of
neighboring nodes in a network graph. We present Pearson’s sample correlation coefficient in Section
2.1, and introduce Spearman’s rho in Section 2.2. In Section 2.3 we demonstrate an ill behaviour of
Pearson’s sample coefficient in a simple model with linear dependencies, and in Section 2.4 we show
that if X and Y are non-negative then the Pearson’s sample coefficient cannot converge to a negative
value.

2.1 Sample Pearson’s correlation coefficient

The Pearson correlation coefficient ρ for two random variables X and Y with cumulative distribution
functions FX(·) and FX(·), joint cumulative distribution function FX,Y (·, ·), and Var(X),Var(Y ) <∞
is defined by

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)
√

Var(Y )
. (2.1)

By Cauchy-Schwarz, ρ ∈ [−1, 1], and ρ measures the linear dependence between the random variables
X and Y . We can approximate ρ from a sample by computing the sample correlation coefficient

ρn =
1

n−1

∑n
i=1(Xi − X̄n)(Yi − Ȳn)

Sn(X)Sn(Y )
, (2.2)

where

X̄n =
1

n

n∑
i=1

Xi, Ȳn =
1

n

n∑
i=1

Yi (2.3)

denote the sample averages of (Xi)
n
i=1 and (Yi)

n
i=1, while

S2
n(X) =

1

n− 1

n∑
i=1

(Xi − X̄n)2, S2
n(Y ) =

1

n− 1

n∑
i=1

(Yi − Ȳn)2 (2.4)
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denote the sample variances. For i.i.d. sequences of random vectors ((Xi, Yi))
n
i=1 under the assump-

tion of finite-variance random variables, i.e., Var(X),Var(Y ) <∞, it is well known that the estimator
ρn of ρ is consistent, i.e.,

ρn
P−→ ρ, (2.5)

where
P−→ denotes convergence in probability. In practice, however, we tend not to know whether

Var(X),Var(Y ) <∞, since S2
n(X) <∞ and S2

n(Y ) <∞ clearly hold for any sample, and, therefore,
one might be tempted to always use ρn. Furthermore, by the Cauchy-Schwarz inequality, ρn ∈ [−1, 1]
for every n ≥ 1, which is part of the problem, because, for any sample, a value in [−1, 1] is produced,
and no alarm bells start rinkling when ρn is used inappropriately. In this paper we investigate the
case Var(X),Var(Y ) = ∞, and show that the use of ρn in this case, and in particular in scale-free
random graphs, is uninformative. For example, in case of negative correlations ρn converges to
zero when n → ∞, which makes it impossible to compare the data of different sizes. Moreover,
if correlations are positive, ρn may even converge to a random variable, thus it can produce very
different numbers for two random structures of the same size created by the same mechanism. We
provide such examples for linearly dependent random variables in Section 2.3 and for random graphs
in Section 4.4.

2.2 Rank correlations

For two-dimensional data ((Xi, Yi))
n
i=1, let rXi and rYi be the rank of an observation Xi and Yi,

respectively, when the sample values (Xi)
n
i=1 and (Yi)

n
i=1 are arranged in a descending order. The

idea of rank correlations is in evaluating statistical dependences on the data ((rXi , r
Y
i ))ni=1, rather

than on the original data ((Xi, Yi))
n
i=1. Rank transformation is convenient, in particular because, for

continuous random variables, the two marginals of the resulting vector (rXi , r
Y
i ) are realizations of

identical uniform distributions, implying many nice mathematical properties.
The statistical correlation coefficient for the ranks is known as Spearman’s rho [44]:

ρrank
n =

∑n
i=1(rXi − (n+ 1)/2)(rYi − (n+ 1)/2)√∑n

i=1(rXi − (n+ 1)/2)2
∑n

i (rYi − (n+ 1)/2)2
=

1
n

∑n
i=1 r

X
i r

Y
i − ((n+ 1)/2)2)

1
12 (n2 − 1)

. (2.6)

The mathematical properties of Spearman’s rho have been extensively investigated in the literature.
It is well known that if ((Xi, Yi))

n
i=1 consists of independent realizations of (X,Y ), and the joint

distribution cumulative function of X and Y is continuous, then ρrank
n converges to a number that

can be interpreted as its population value, see [26, Chapter 9], [10]:

ρrank
n

P−→ ρrank = 12E(FX(X)FY (Y ))− 3. (2.7)

For completeness, we give a brief explanation of this formula. Observe that FX(X) is the random
variable that takes the value FX(x) when X = x. If X is continuous then FX(X) has a uniform
distribution on [0, 1]:

FX(x) = P(X ≤ x) = P(FX(X) ≤ FX(x)). (2.8)

Now take FX(x) = t to obtain P(FX(X) ≤ t) = t, where t can take any value in [0, 1]. We note that
this derivation holds for any continuous random variable X. We will use this many times throughout
the paper. In particular, it follows that E(FX(X)) = E(FY (Y )) = 1/2. Next, note that rXi /n is an
empirical estimator of 1− FX(xi), where xi is the realized value of Xi. Moreover,

E((1− FX(X))(1− FY (Y ))) = 1− E(FX(X))− E(FY (Y )) + E(FX(X)FY (Y )) = E(FX(X)FY (Y )).

Hence, the right-hand side of (2.6) is a statistical estimator of the last expression in (2.7).
For discrete random variables, the situation is more delicate, as the same values of X and Y

may occur more than once. We resolve the ties randomly, using uniformisation as suggested in [31].
Formally, we replace the ranks of ((Xi, Yi)

n
i=1 by the ranks of the random variables

((X∗i , Y
∗
i ))ni=1 = ((Xi + Ui, Yi + U ′i))

n
i=1,

4



where ((Ui, U
′
i))

n
i=1 is a sequence of 2n i.i.d. uniform variables on (0, 1). The random variables X∗i

and Y ∗i now are continuous. We denote their cumulative distribution functions by F ∗X and F ∗Y . Note
that if X takes non-negative integer values then F ∗X can be seen as a linear interpolation of the
cumulative probability P(X < x), x = 0, 1, 2, . . . because P(X = x) = P(X∗ ∈ [x, x+ 1)).

Since (X∗, Y ∗) has a continuous distribution, the convergence result in (2.7) remains valid.
Moreover, [31, Proposition 3.1] states that the population value ρrank is the same for (X,Y ) en
(X∗, Y ∗):

E(F ∗X(X∗)F ∗Y (Y ∗)) = E(FX(X)FY (Y )). (2.9)

The comparison of different ways for resolving ties, and their effect on the resulting computation is
an interesting topic, which is outside the scope of this work. We refer to [36] for a general treatment
of rank correlations for non-continuous distributions.

2.3 Linear dependencies

It is well known that ρ in general measures linear dependence between two random variables. There-
fore, before analyzing the behavior of ρn in networks, we wish to illustrate that ρn fails to cap-
ture the linear dependence between X and Y when the variances of X and Y are infinite, i.e.,
Var(X),Var(Y ) = ∞, even in a very straightforward case when the linear relation between X and
Y is explicitly defined. With this goal in mind, below we analyze the behavior of ρn in the following
linear model:

X = α1ξ1 + · · ·+ αmξm, Y = β1ξ1 + · · ·+ βmξm, (2.10)

where ξj , j = 1, . . . ,m, are independent identically distributed (i.i.d.) non-negative random variables
with regularly varying tail, and tail exponent γ. By definition, the non-negative random variable ξ
is regularly varying with index γ > 0, if

P(ξ > x) = L(x)x−γ , x ≥ 0, (2.11)

where x 7→ L(x) is a slowly varying function, that is, for u > 0, L(ux)/L(x) → 1 as x → ∞, for
instance, L(x) may be equal to a constant or log(x). Note that the random variables X and Y have
the same distribution when (β1, . . . , βm) is a permutation of (α1, . . . , αm).

When we take an i.i.d. sample of random variables ((Xi, Yi))
n
i=1 of random variables with the

above linear dependence, then Spearman’s rho is consistent by (2.7), with a variance that converges
to zero as 1/n. For the sample correlation coefficient, consistency follows from (2.5) in the case where
Var(ξi) < ∞, but not when the ξi’s have infinite variance as we show below in detail. Our main
result in this section is the following theorem:

Theorem 2.1 (Weak convergence of the sample Pearson’s coefficient). Let ((Xi, Yi))
n
i=1 be i.i.d.

copies of the random variables (X,Y ) in (2.10), and where (ξj)
m
j=1 are i.i.d. random variables satis-

fying (2.11) with γ ∈ (0, 2), so that Var(ξj) =∞. Then,

ρn
d−→ ρ ≡

∑m
j=1 αjβjZj√∑m

j=1 α
2
jZj
√∑m

j=1 β
2
jZj

, (2.12)

where (Zj)
m
j=1 are i.i.d. random variables having stable distributions with parameter γ/2 ∈ (0, 1), and

d−→ denotes convergence in distribution. In particular, ρ has a density on [−1, 1]. This density is
strictly positive on (−1, 1) when there exist k, l such that αkβk < 0 < αlβl. Furthermore, the density
is positive on (a, 1) when αkβk ≥ 0 for every k, and on (−1,−a) when αkβk ≤ 0 for every k, where

a = inf
z1,...,zm∈R

∑m
j=1 |αjβj |zj√∑m

j=1 α
2
jzj
√∑m

j=1 β
2
j zj
∈ (0, 1). (2.13)
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Theorem 2.1 states that the sample correlation coefficient converges in distribution to a proper
random variable, contrary to Spearman’s rank correlation which converges in probability to a con-
stant. In particular, this implies that when we have two independent samples, the sample correlation
coefficient will give two rather distinct values, while Spearman’s rank correlation will give two similar
values. We prove Theorem 2.1 in the remainder of this section. In its proof, we need the following
technical result:

Lemma 2.2 (Asymptotics of sums in stable domain). Let (ξi,j)i=1,2,...,n,j=1,2 be i.i.d. random vari-
ables satisfying (2.11) for some γ ∈ (0, 2). Then there exists a sequence an with an = n2/γ`(n), where
n 7→ `(n) is slowly varying, such that

1

an

n∑
i=1

ξ2
i,1

d−→ Z1,
1

an

n∑
i=1

ξi,1ξi,2
P−→ 0, (2.14)

where Z1 is stable with parameter γ/2 and
P−→ denotes convergence in probability.

Proof. Let F (x) = P(ξ ≤ x) be the cumulative distribution function of ξ. In order to prove the
first statement in (2.14) we only need to note that the cumulative distribution function of ξ2 equals
x 7→ F (

√
x), which, by (2.11), implies that ξ2 is regularly varying. Thus, the first statement in

(2.14) is in fact the classical convergence of infinite variance random variables with slowly varying
distribution functions to stable laws (see e.g. [21]), where Z1 is a stable γ/2 random variable. In
particular, denoting [1 − F ](x) = 1 − F (x), x ≥ 0, we can identify an = [1 − F ]−1(1/n2) [4]. Since
x 7→ [1−F ](x) is regularly varying with index γ, [1−F ]−1(1/n) is regularly varying with index 1/γ
[4], so that an = [1 − F ]−1(1/n2) is regularly varying with index 2/γ. To prove the second part of
(2.14), we write

1− F (x) = P(ξ > x) ≤ c′x−γ′ , x ≥ 0, (2.15)

which is valid for any γ′ ∈ (1, γ) by (2.11) and Potter’s theorem. We next study the cumulative
distribution function of ξ1ξ2 which we denote by H, where ξ1 and ξ2 are two independent copies of
the random variable ξ. When F satisfies (2.15), then it is not hard to see that there exists a C > 0
such that

1−H(u) ≤ C(1 + log u)u−γ
′
. (2.16)

Indeed, assume that F has a density f(w) = cw−(γ′+1), for w ≥ 1. Then,

1−H(u) =

∫ ∞
1

f(w)[1− F ](u/w)dw.

Clearly, 1− F (w) = c′w−γ
′

for w ≥ 1 and 1− F (w) = 1 otherwise. Substitution of this yields

1−H(u) ≤ cc′
∫ u

1
w−(γ′+1)(u/w)−γ

′
dw + c

∫ ∞
u

w−(γ′+1) dw ≤ C(1 + log u)u−γ
′
.

When F satisfies (2.15), then ξ1 and ξ2 are stochastically upper bounded by ξ̂1 and ξ̂2 with cumulative
distribution function F̂ satisfying 1− F̂ (w) = c′w−γ

′ ∨ 1, where (x ∨ y) = max{x, y}, and the claim
in (2.16) follows from the above computation.

By the bound in (2.16), the random variables ξi,1ξi,2 are stochastically bounded from above by
random variables Pi that are in the domain of attraction of a stable γ′ random variable. As a result,
there exists bn = n1/γ′`′(n), where n 7→ `′(n) is slowly varying, such that

1

bn

n∑
i=1

Pi
d−→W,

where W is stable γ′. By choosing γ′ > γ/2, we get bn/an → 0, so we obtain the second statement
in (2.14).

6



Proof of Theorem 2.1. We start by noting that

ρn =
1

n−1

∑n
i=1(XiYi − X̄nȲn)

Sn(X)Sn(Y )
, (2.17)

and

S2
n(X) =

1

n− 1

n∑
i=1

(X2
i − X̄2

n), S2
n(Y ) =

1

n− 1

n∑
i=1

(Y 2
i − Ȳ 2

n ). (2.18)

We continue to identify the asymptotic behavior of
n∑
i=1

X2
i ,

n∑
i=1

Y 2
i ,

n∑
i=1

XiYi.

Let [n] denote the set of integers {1, 2, . . . , n}. The distribution of ((Xi, Yi))
n
i=1 is described in terms

of an array (ξi,j)i∈[n],j∈[m], which are i.i.d. copies of a random variable ξ. In terms of these random
variables, we can identify

n∑
i=1

XiYi =
m∑
j=1

αjβj

( n∑
i=1

ξ2
i,j

)
+

m∑
j1 6=j2=1

αj1βj2

( n∑
i=1

ξi,j1ξi,j2

)
. (2.19)

The sums
∑n

i=1 ξ
2
i,j are i.i.d. for different j ∈ {1, . . . ,m}, and by Lemma 2.2,

∑n
i=1 ξi,j1ξi,j2 is of a

smaller order. Hence, from (2.19) we obtain that

1

an

n∑
i=1

XiYi
d−→

m∑
j=1

αjβjZj . (2.20)

Therefore, by taking α = β, we also obtain

1

an

n∑
i=1

X2
i

d−→
m∑
j=1

α2
jZj ,

1

an

n∑
i=1

Y 2
i

d−→
m∑
j=1

β2
jZj , (2.21)

and the convergence holds simultaneously. As a result, (2.12) follows. It remains to establish the
properties of the limiting random variable ρ in (2.12).

The density of Zi is strictly positive on (0,∞). Note that rescaling zj = czj j = 1, . . . ,m, in
(2.13), does not change the value of a. In particular, we can choose c = (max{z1, z2, . . . , zm})−1. If
there exist k and l such that αkβk < 0 < αlβl then the density of ρ is strictly positive on (−1, 1).
Indeed, with positive probability ρ can be arbitrarily close to−1 if Zk = max{Z1, . . . , Zm} and Zj/Zk,
j 6= k are sufficiently small. Similarly, if Zl = max{Z1, . . . , Zm} then with positive probability, ρ can
be arbitrarily close to 1. Now assume that αkβk ≥ 0 for every k. In this case, the density of ρ is
strictly positive on the support of ρ, which is (a, 1), with a as in (2.13). Analogously, when αkβk ≤ 0
then ρ cannot be positive, and has a density on (−1,−a).

Numerical example. In order to illustrate the result of Theorem 2.1, consider the example with
ξj ’s from a Pareto distribution satisfying P(ξ > x) = 1/x1.1, x ≥ 1, so L(x) = 1 and γ = 1.1 in (2.11).
The exponent γ = 1.1 is as observed for the World Wide Web [12]. In (2.10), we choose m = 3 and
αi, βi, i = 1, 2, 3, as specified in Table 1. We generate N data samples ((Xi, Yi))

n
i=1 and compute

ρn and ρrank
n for each of the N samples. Thus, we obtain the vectors (ρn,j)

N
j=1 and (ρrank

n,j )Nj=1 of N

independent realizations for ρn and ρrank
n , respectively, where the sub-index j = 1, . . . , N denotes the

jth realization of ((Xi, Yi))
n
i=1. We then compute

EN (ρn) =
1

N

N∑
j=1

ρn,j , EN (ρrank
n ) =

1

N

N∑
j=1

ρrank
n,j ; (2.22)

σN (ρn) =

√√√√ 1

N − 1

N∑
j=1

(ρn,j − EN (ρn))2, σN (ρrank
n ) =

√√√√ 1

N − 1

N∑
j=1

(ρrank
n,j − EN (ρrank

n ))2. (2.23)
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The results are presented in Table 1. We clearly see that ρn has a significant standard deviation,
of which estimators are similar for different values of n. This means that in the limit as n → ∞,
ρn is a random variable with a significant spread in its values, as stated in Theorem 2.1. Thus, by
evaluating ρn for one sample ((Xi, Yi))

n
i=1 we will obtain a random number, even when n is huge.

The convergence to a non-trivial distribution is directly seen in Figure 1 because the plots for the two
values of n almost coincide. Note that in all cases, the density is fairly uniform, ensuring a comparable
probability for all feasible values and rendering the value obtained in a specific realization even more
uninformative.

N 103 102

Model parameters n 102 103 104 105

EN (ρn) 0.4395 0.4365 0.4458 0.4067
α = (1/2, 1/2, 0) σN (ρn) 0.3399 0.3143 0.3175 0.3106
β = (0, 1/2, 1/2) EN (ρrankn ) 0.4508 0.4485 0.4504 0.4519

σN (ρrankn ) 0.0922 0.0293 0.0091 0.0033
EN (ρn) 0.8251 0.7986 0.8289 0.8070

α = (1/2, 1/3, 1/6) σN (ρn) 0.1151 0.1125 0.1108 0.1130
β = (1/6, 1/3, 1/2) EN (ρrankn ) 0.8800 0.8850 0.8858 0.8856

σN (ρrankn ) 0.0248 0.0073 0.0023 0.0007
EN (ρn) -0.3052 -0.3386 -0.3670 -0.3203

α = (1/2,−1/3, 1/6) σN (ρn) 0.6087 0.5841 0.5592 0.5785
β = (1/6, 1/2,−1/3) EN (ρrankn ) -0.3448 -0.3513 -0.3503 -0.3517

σN (ρrankn ) 0.1202 0.0393 0.0120 0.0034

Table 1: Estimated mean and standard deviation of ρn and ρrankn in N samples with linear dependence (2.10),
P(ξ > x) = x−1.1, x ≥ 1.

Figure 1: The empirical distribution function FN (x) = P(ρn ≤ x) for the N = 1.000 observed values of ρn
(n = 1.000, n = 10.000), in the case of linear dependence (2.10).

On the other hand, from Table 1 we clearly see that the behaviour of the rank correlation is
exactly as we can expect from a good statistical estimator. The obtained average values are consistent
while the standard deviation of ρrank

n decreases approximately as 1/
√
n as n grows large. Therefore,

ρrank
n converges to a deterministic number.

2.4 Sample Pearson’s correlation coefficient for non-negative variables

We proceed by investigating correlations between non-negative heavy-tailed random variables. Our
main result in this section shows that the correlation coefficient is asymptotically non-negative:

Theorem 2.3 (Asymptotic non-negativity of the sample Pearson’s coefficient for positive r.v.’s).
Let ((Xi, Yi))

n
i=1 be i.i.d. copies of non-negative random variables (X,Y ), where X and Y satisfy

P(X > x) = LX(x)x−γX , P(Y > y) = LY (y)y−γY , x, y ≥ 0, (2.24)

with γX , γY ∈ (0, 2), so that Var(X) = Var(Y ) = ∞. Then, any limit point of the sample Pearson
correlation coefficient is non-negative.
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N 103 102

n 10 102 103 104 105

EN (ρn) -0.4833 -0.1363 -0.0342 -0.0077 -0.0015
σN (ρn) 0.1762 0.0821 0.0245 0.0064 0.0011
EN (ρrankn ) -0.6814 -0.4508 -0.4485 -0.4504 -0.4519
σN (ρrankn ) 0.1580 0.0283 0.0082 0.0024 0.0007

Table 2: The mean and standard deviation of ρn and ρrankn in N simulations of ((Xi, Yi))
n
i=1, where X = 2ξI,

Y = 2ξ(1− I), I is a Bernoulli(1/2) random variable, P(ξ > x) = x−1.1, x ≥ 1.

We illustrate Theorem 2.3 with a useful example. Let (ξi)
n
i=1 be a sequence of i.i.d. random

variables satisfying (2.11) for some γ ∈ (0, 2), and where ξ ≥ 0 a.s. Let (X,Y ) = (0, 2ξ) with
probability 1/2 and (X,Y ) = (2ξ, 0) with probability 1/2. Then, XY = 0 a.s., while E[X] = E[Y ] =

E[ξ] and Var(X) = Var(Y ) = 2E[ξ2] − E[ξ]2 = 2Var(ξ) + E[ξ]2. By Theorem 2.3, ρn
P−→ 0 when

(ξi)
n
i=1 is a sequence of i.i.d. non-negative random variables satisfying (2.11) for some γ ∈ (0, 2),

which is not appropriate as (X,Y ) are highly negatively dependent. When γ > 2, this anomaly does
not arise, since, if Var(ξ) <∞,

ρn
P−→ ρ = − E[ξ]2

2Var(ξ) + E[ξ]2
∈ (−1, 0). (2.25)

The asymptotics in (2.25) are quite reasonable, since the random variables (X,Y ) are highly nega-
tively dependent: When X > 0, Y must be equal to 0, and vice versa.

Table 2 shows the empirical mean and standard deviation of the estimators ρn and ρrank
n . Here

P(ξ > x) = x−1.1, x ≥ 1, as in Table 1. As predicted by Theorem 2.3, the sample correlation
coefficient (assortativity) converges to zero as n grows large, while ρrank

n consistently shows a clear
negative dependence, and the precision of the estimator improves as n → ∞. This explains why
strong disassortativity is not observed in large samples of non-negative power-law data.

We next prove Theorem 2.3:
Proof of Theorem 2.3. Clearly

∑n
i=1XiYi ≥ 0 when Xi ≥ 0, Yi ≥ 0, so that

ρn ≥ −
1

n−1

∑n
i=1 X̄nȲn

Sn(X)Sn(Y )
= − n

n− 1

X̄n

Sn(X)

Ȳn
Sn(Y )

.

It remains to show that if Var(X) = ∞, then X̄n/Sn(X)
P−→ 0. Indeed, if γ ∈ (1, 2) then X̄n

P−→
E[X] <∞ by the strong law of large numbers. When γ ∈ (0, 1], instead, then X is in the domain of
attraction of a γ stable random variable, hence X̄n, loosely speaking, it scales as n1/γX−1. Further,
from (2.24) and Lemma 2.2 it follows that Sn(X) scales as n2/γX−1, in particular, X̄n/Sn(X)

P−→ 0
for all γ ∈ (0, 2).

3 Applications to networks

In real-world networks it is particularly important to measure degree-degree dependencies for neigh-
boring vertices. We refer to [37] for an extensive introduction to networks, their empirical properties
and models for them. In Section 3.1 below, we start with the formal definition of Pearson’s cor-
relation coefficient (which was termed the assortativity coefficient in [38]), and Spearman’s rho in
the network context. Next, in Section 3.2 we show that all limit points of Pearson’s coefficients for
sequences of growing scale-free random graphs with power-law exponent γ < 3 are non-negative, a
result that is similar in spirit to Theorem 2.3. In Section 3.3, we state general convergence conditions
for both Pearson’s correlation coefficient as well as Spearman’s rho.
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3.1 Definitions and notations

We start by introducing some notation. Let G = (V,E) be an undirected random graph. For a
directed edge e = (u, v), we write e = u, e = v and we denote the set of directed edges in E by E′

(so that |E′| = 2|E|), and Dv is the degree of vertex v ∈ V . In general, Dv is a random variable.
The assortativity coefficient of G is equal to (see, e.g., [38, (4)])

ρ(G) =

1
|E′|
∑

(u,v)∈E′ DuDv −
(

1
|E′|
∑

(u,v)∈E′
1
2(Du +Dv)

)2

1
|E′|
∑

(u,v)∈E′
1
2(D2

u +D2
v)−

(
1
|E′|
∑

(u,v)∈E′
1
2(Du +Dv)

)2 . (3.1)

Note that the assortativity coefficient in (3.1) is equal to the sample correlation coefficient, where
((Du, Dv))(u,v)∈E′ represent a sequence of non-negative random variables, as studied in Theorem 2.3.
However, ((Du, Dv))(u,v)∈E′ are not independent, so that we may not immediately apply the previous
theory. Theorem 3.1 below is the analogue of Theorem 2.3 in the network context, and we give a
formal proof of it below.

Let us now introduce Spearman’s rho in G that we denote by ρrank(G). In accordance to the
original definition of Spearman’s rho, ρrank(G) is the correlation coefficient of the sequence of random
variables (Re, Re), where e is a uniformly chosen directed edge (u, v) from E′n. We let Re and Re be
the rank of respectively De + Ue and De + U ′e in the sequences (De + Ue)e∈E′n and (De + U ′e)e∈E′n .
Here, as discussed on page 4, (Ue)e∈E′n and (U ′e)e∈E′n are i.i.d. sequences of uniform (0, 1) random
variables. Then, Spearman’s rank correlation coefficient is defined as follows:

ρrank(G) =

1
|E′|
∑

e∈E′ ReRe − (|E′|+ 1)2/4

(|E′|2 − 1)/12
. (3.2)

3.2 No disassortative scale-free random graph sequences

We compute that

1

|E′|
∑

(u,v)∈E′

1
2(Du +Dv) =

1

|E′|
∑
v∈V

D2
v ,

1

|E′|
∑

(u,v)∈E′

1
2(D2

u +D2
v) =

1

|E′|
∑
v∈V

D3
v . (3.3)

Thus, ρ(G) can be written as

ρ(G) =

∑
(u,v)∈E′ DuDv − 1

|E′|

(∑
v∈V D

2
v

)2

∑
v∈V D

3
v − 1

|E′|

(∑
v∈V D

2
v

)2 . (3.4)

Consider a sequence of graphs (Gn)n≥1, where Gn = (Vn, En) and n denotes the number of
vertices n = |Vn| in the graph. Since many real-world networks are quite large, we are interested in
the behavior of ρ(Gn) as n → ∞. Note that this discussion applies both to sequences of real-world
networks of increasing size, as well as to graph sequences of random graphs. We start by generalizing
Theorem 2.3 to this setting:

Theorem 3.1 (Asymptotic non-negativity of Pearson’s coefficient in scale-free graphs). Let (Gn)n≥1

be a sequence of graphs of size n satisfying that there exist γ ∈ (1, 3) and 0 < c < C <∞ such that
cn ≤ |E| ≤ Cn, cn1/γ ≤ maxv∈Vn Dv ≤ Cn1/γ and cn(2/γ)∨1 ≤

∑
v∈Vn D

2
v ≤ Cn(2/γ)∨1. Then, any

limit point of Pearson’s correlation coefficient ρ(Gn) is non-negative.

In the next section, we give several examples where Theorem 3.1 applies and yields results that
are not sensible. The powerful feature of Theorem 3.1 is that it applies to all graphs, not just
realizations of certain random graphs.
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Proof. We note that Dv ≥ 0 for every v ∈ V , so that, from (3.4)

ρ(Gn) ≥ ρ−(Gn) ≡ −
1
|E′|

(∑
v∈V D

2
v

)2

∑
v∈V D

3
v − 1

|E′|

(∑
v∈V D

2
v

)2 . (3.5)

By assumption,
∑

v∈V D
3
v ≥ (maxv∈[n]Dv)

3 ≥ c3n3/γ , whereas 1
|E′|

(∑
v∈V D

2
v

)2
≤ (C2/c)n2(2/γ∨1)−1 =

(C2/c)n[(4/γ−1)∨1]. Since γ ∈ (1, 3) we have (4/γ − 1) ∨ 1 < 3/γ, so that∑
v∈V D

3
v

1
|E′|

(∑
v∈V D

2
v

)2 →∞.

Hence, ρ−(Gn)→ 0 as n→∞. This proves the claim.

In the literature, many examples are reported of real-world networks where the degree distribu-
tion closely follows a power law with γ in (1, 3), see e.g., [1, Table I] or [40, Table I]. Let D be such a
power-law random variable, and denote µp = E[Dp] for p ∈ (0, γ). In that case one can expect that

|E′| =
∑
v∈V

Dv ∼ µ1n,

while maxv∈V Dv ∼ n1/γ , and

1

n

∑
v∈V

Dp
v ∼

{
µp when γ > p,

Cpn
p/γ−1 when γ < p.

(3.6)

Of course, the convergence in (3.6) depends sensitively on the occurrence of large degrees. However,
intuitively it can be explained as follows. When

1

n

∑
v∈V

1{Dv≥k} = C ′k−γ(1 + o(1))

for all k for which k−γ � 1/n so that k � n1/γ , then

1

n

∑
v∈V

Dp
v =

∑
k≥1

(kp − (k − 1)p)
1

n

∑
v∈V

1{Dv≥k} ≈ C
′′
n1/γ∑
k=1

kp−1−γ = Cpn
p/γ−1,

where C ′′ and Cp are appropriately chosen constants. In particular, the conditions of Theorem 3.1
hold and ρ−(Gn) → 0 when γ < 3. Thus, the asymptotic degree-degree correlation of the graph
sequence (Gn)n≥1 is non-negative. As a result, when the power-law exponent satisfies γ < 3 there
exist no scale-free graph sequences that will be identified as disassortative by Pearson’s coefficient.
We next investigate a general theorem that allows us to identify the limit of Spearman’s rho and
Pearson’s coefficient for many random graph models.

3.3 Convergence conditions for degree-degree dependency measures

Let (Gn)n≥1 be again a sequence of graphs of size n, where Gn = (Vn, En), |Vn| = n. We write En
for the conditional expectation given the graph Gn (which in itself is random, so that we are not
taking the expectation w.r.t. Gn). Consider a random vector (X,Y ) = (De, De) where e is chosen
uniformly at random from E′. Recall that for a discrete random variableX, FX denotes its cumulative
distribution function, and F ∗X denotes the cumulative distribution function of X∗ = X + U , where
U is an independent uniform random variable on (0, 1). Then F ∗X(X∗) has a uniform distribution
on (0, 1), see (2.8). Our main result to identify the limits of Spearman’s rho as given by (3.2) and
Pearson’s coefficient is the following theorem:
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Theorem 3.2 (Convergence criteria for degree-degree dependency measures). Let (Gn)n≥1 be a
sequence of random graphs of size n, where Gn = (Vn, En), |Vn| = n. Let (Xn, Yn) be the degrees on
both sides of a uniform directed edge e ∈ E′n. Suppose that for every bounded continuous h : R2 → R,

En[h(Xn, Yn)]
P−→ E[h(X,Y )], (3.7)

where the r.h.s. is non-random. Then
(a)

ρrank(Gn)
P−→ ρrank = 12E(F ∗X(X∗)F ∗X(Y ∗))− 3 = 12E(FX(X)FX(Y ))− 3, (3.8)

where X∗ = X + U , Y ∗ = Y + U ′, U and U ′ are independent random variables on (0, 1), also
independent of X and Y , and F ∗X(·) is the cumulative distribution function of X∗;

(b) when we further suppose that En[X2
n]

P−→ E[X2] <∞, and Var(X) > 0, then also

ρ(Gn)
P−→ ρ =

Cov(X,Y )

Var(X)
. (3.9)

We remark that when Gn is a random graph, then ρrank(Gn) and ρ(Gn) are random variables.
Equation (3.7) implies that the distribution of the degrees on either side of an edge converges in
probability to a deterministic limit, which can be interpreted as the statement that the degree
distribution converges to a deterministic limit. The limits of ρrank(Gn) and ρ(Gn) only depend on
the limiting degree distribution, where ρrank(Gn) always converges, while ρ(Gn) can only be proved
to converge when its limit is well defined. We further note that (3.7) is equivalent to showing that

#{e = (u, v) ∈ E′n : (Du, Dv) = (k, l)}/|E′n|
P−→ P(X = k, Y = l). (3.10)

Condition (3.10) will be simpler to verify in practice. We emphasize that we study undirected graphs
but we work with directed edges e = (u, v), which we vary over the whole set of edges, in such a way
that (u, v) and (v, u) contribute as different edges. In particular, the marginal distributions of Xn

and Yn and consequently of X and Y , are the same. We next prove Theorem 3.2:

Proof. We start with part (a). The sequence (Re/|E′n|, Re/|E′n|) is a bounded sequence of two-
dimensional random variables. Let Fn,X denote the empirical cumulative distribution function of
(De)e∈E′n (which equals that of (De)e∈E′n), and let F ∗n,X denote the empirical cumulative distribution
functions of (De + Ue)e∈E′n (which equals that of (De + U ′e)e∈E′n), where (Ue)e∈E′n , (U ′e)e∈E′n are
independent sequences of i.i.d uniform (0, 1) random variables. Then, we can rewrite, with `n = |E′n|,

(Re, Re) =
(
(d`nF ∗n,X(De + Ue)e, d`nF ∗n,X(De + U ′e)e

)
. (3.11)

In particular,

(Re/`n, Re/`n) =
(
d`nF ∗n,X(De + Ue)e/`n, d`nF ∗n,X(De + U ′e)e/`n

)
. (3.12)

Thus,
(Re/`n, Re/`n) =

(
F ∗n,X(De + Ue), F

∗
n,X(De + U ′e)

)
+O(1/`n). (3.13)

By (3.7), the fact that Xn
d−→ X and the fact that F ∗X is continuous, F ∗n,X(x)

P−→ F ∗X(x) for every x ≥
0. Moreover, we claim that this convergence holds uniformly in x, i.e., supx∈R |F ∗n,X(x)−F ∗X(x)| P−→ 0.
To see this, note that (3.7) implies that the distribution functions of Xn and Yn converge to those of
X and Y . Since all these random variables take on only integer values, this convergence is uniform,
i.e., supk≥0 |Fn,X(k) − FX(k)| P−→ 0. We obtain F ∗n,X by linearly interpolating between Fn,X(k − 1)
and Fn,X(k) for every k, so also F ∗n,X converges uniformly, as we claimed.

12



By this uniform convergence, for every bounded continuous function g : [0, 1]2 → R,

En[g(Re/`n, Re/`n)] = En[g(F ∗n,X(De + Ue), F
∗
n,X(De + U ′e))] (3.14)

= En[g(F ∗X(De + Ue), F
∗
X(De + U ′e))] + oP(1)

= En[g(F ∗X(Xn + U), F ∗X(Yn + U ′))] + oP(1)
P−→ E[g(F ∗X(X + U), F ∗X(Y + U ′))] = E[g(F ∗X(X∗), F ∗X(Y ∗))],

again by (3.7) and the fact that (x, y) 7→ E[g(F ∗X(x + U), F ∗X(y + U ′))] is continuous and bounded.
Applying this to g(x, y) = xy, g(x, y) = x2 and g(x, y) = y2 yields the required convergence.
Moreover, since F ∗X(X∗) and F ∗X(Y ∗) are uniform random variables, Var(F ∗X(X∗)) = Var(F ∗X(Y ∗)) =
1/12. This completes the proof of convergence and the first equality in (a). The second equality is
just [31, Proposition 3.1], see (2.9).

For part (b), we note that

ρ(Gn) =
Covn(Xn, Yn)

Varn(Xn)
. (3.15)

Since En[X2
n]

P−→ E[X2] < ∞, also En[Xn]
P−→ E[X] < ∞, so that Varn(Xn)

P−→ Var(X). Since
these limits are positive, by Slutzky’s theorem,

ρ(Gn) =
Covn(Xn, Yn)

Var(X)
(1 + oP(1)). (3.16)

Furthermore, the random variables (XnYn)n≥1 converge in distribution, and are uniformly integrable

(since both (X2
n)n≥1 and (Y 2

n )n≥1 are, which again follows from the fact that En[X2
n]

P−→ E[X2] <∞
and the fact that Xn and Yn have the same marginals). Therefore, also En[XnYn]

P−→ E[XY ], so
that the convergence follows.

4 Random graph examples

In this section we consider four random graph models to highlight our result: the configuration
model, the configuration model with intermediate vertices, the preferential attachment model and a
model of complete bipartite random graphs. In Section 5, we present the numerical results for these
models.

4.1 The configuration model

The configuration model (CM) was invented by Bollobás in [7], inspired by [3]. Its connectivity
structure was first studied by Molloy and Reed [34, 35]. It was popularized by Newman, Srogatz and
Watts [41], who realized that it is a useful and simple model for real-world networks.

Given a degree sequence, namely a sequence of n positive integers d = (d1, d2, . . . , dn) with
`n =

∑
i∈[n] di assumed to be even, the configuration model (CM) on n vertices and degree sequence

d is constructed as follows. Start with n vertices, labelled 1, 2, . . . , n, and dv half-edges adjacent to
vertex v. The graph is constructed by randomly pairing each half-edge to some other half-edge to
form an edge. Number the half-edges from 1 to `n in some arbitrary order. Then, at each step,
two half-edges that are not already paired are chosen uniformly at random among all the unpaired
half-edges and are paired to form a single edge in the graph. These half-edges are removed from the
list of unpaired half-edges. We continue with this procedure of choosing and pairing two unpaired
half-edges until all the half-edges are paired. In the resulting graph Gn = (Vn, En) we have |Vn| = n,
`n = 2|En|. Although self-loops and double edges may occur, these become rare as n → ∞ (see
e.g. [8] or [25] for more precise results in this direction). In the analysis we keep the self-loops and
multiple edges, so that `n = |E′n|. In the numerical simulation we also consider the case where
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the self-loops are removed, and we collapse multiple edges to a single edge. As we will see in the
simulations, these two cases are qualitatively similar.

We investigate the CM where the degrees are i.i.d. random variables, and note that the proba-
bility that two vertices u and v are directly connected is close to dudv/`n. Since this is of product
form in u and v, the degrees at either end of an edge are close to being independent, and in fact are
asymptotically independent. Therefore, one expects the assortativity coefficient of the configuration
model to converge to 0 in probability, irrespective of the degree distribution.

We now make this argument precise. We make the following assumptions on our degree sequence
(dv)v∈Vn :

Condition 4.1 (Degree regularity).
(a) There exists a probability distribution (pk)k≥0 such that nk/n → pk for every k ≥ 1, where
nk = #{v : dv = k} denotes the number of vertices of degree k.
(b) E[D(n)]→ E[D], where P(D(n) = k) = nk/n and P(D = k) = pk.

See [23, Chapter 7] for an extensive discussion of the CM under Condition 4.1.

Theorem 4.2 (Convergence of the degree-degree dependency measures for CM). Let (Gn)n≥1 be a
sequence of configuration models of size n, for which the degree sequence (dv)v∈Vn satisfies Condition
4.1. Then

ρrank(Gn)
P−→ 0,

and
ρ(Gn)

P−→ 0.

Proof. We apply Theorem 3.2, for which we start by investigating (3.10). We note that a uniform
edge can be constructed by taking two half-edges uniformly at random. Indeed, we can first draw
the first half edge uniformly at random, and this will be paired to another half edge uniformly at
random by construction of the CM. We perform a second moment argument on Nk,l = #{e = (u, v) ∈
E′n : (du, dv) = (k, l)}, and will prove that

Nk,l/`n
P−→ kpk

E[D]

lpl
E[D]

,

For this, it suffices to prove that

E[Nk,l]/`n →
kpk
E[D]

lpl
E[D]

, E[N2
k,l]/`

2
n →

( kpk
E[D]

lpl
E[D]

)2
,

since then Var(Nk,l/`n) = o(1).
We note that

E[Nk,l] =
klnknl
`n − 1

,

where `n =
∑

v∈Vn dv = 2|En| and nk = #{v : dv = k} is the number of vertices with degree k.
Therefore, also using that `n = nE[D(n)], Condition 4.1 implies that

E[Nk,l]/`n →
kpk
E[D]

lpl
E[D]

.

Further,

E[N2
k,l]/`

2
n =

1

`2n

∑
(u1,v1),(u2,v2)

P(du1 = k, dv1 = l, du2 = k, dv2 = l).

There are four different cases, depending on a = #{u1, u2, v1, v2}. When a = 4, the contribution is

k2nk(nk − 1)l2nl(nl − 1)

`2n(`n − 1)(`n − 3)
=

(knklnl)
2

`4n
(1 +O(1/n))→

( kpk
E[D]

lpl
E[D]

)2
.
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Therefore, we are left to show that the contributions due to a ≤ 3 vanish.
When a = 3, either one of the edges (u1, v1) and (u2, v2) is a self-loop, while the other joins two

other vertices (which only contributes when k = l), or both edges start in the same vertex v, so that
this contribution is at most

k2nk(nk − 1)l2nl
`2n(`n − 1)(`n − 3)

= O(1/n) = o(1).

When a = 2, similar computations show that the contribution is at most O(1/n2). When a = 1, the
edges (u1, v1) and (u2, v2) are self-loops from the same vertex v, so that this contributes only when
k = l, and then at most

k(k − 1)(k − 2)(k − 3)nk
`2n(`n − 1)(`n − 3)

= O(1/n3) = o(1).

We conclude that (3.10) holds with

P(X = k, Y = l) =
kpk
E[D]

lpl
E[D]

.

In particular, X and Y are independent, so that ρrank = 0. This proves the first part of Theorem 4.2.
For the second part, we note that when the degrees (dv)v∈Vn are fixed, the only random part in

ρ(Gn) is

Mn =
1

`n

∑
e∈E′n

dede.

We perform a second moment method on this quantity. We use that an edge e is a pair of two
specified half-edges incident to two specific vertices. Thus, we can denote e by e = (u, s), e = (v, t),
where u, v are the vertices to which the specific half-edges are incident, while s ∈ {1, . . . , du} is the
label of the half-edge incident to vertex u and t ∈ {1, . . . , dv} is the label of the half-edge incident
to vertex v, that are paired together. The probability of pairing them together equals 1/(`n − 1).
Therefore,

E[Mn] =
1

`n

∑
u,v,s,t

dudv
`n − 1

=
∑

u,v∈Vn

d2
ud

2
v/`n(`n − 1) =

∑
u,v∈Vn

d2
ud

2
v/`

2
n(1 +O(1/n)),

where we note that we count multiple edges as frequently as they occur. Further, and in a similar
way,

E[M2
n] = (1 + o(1))

∑
u,v,u′,v′∈Vn

d2
ud

2
u′d

2
vd

2
v′/`

4
n,

so that
Mn(∑

v∈Vn d
2
v/`n

)2

P−→ 1.

In particular,

ρ(Gn) =
Mn −

(∑
u,v∈Vn d

2
u/`n

)2

∑
u∈Vn d

3
u/`n −

(∑
u∈Vn d

2
u/`n

)2

P−→ 0,

both when
∑

u∈Vn d
3
u/`n �

(∑
u∈Vn d

2
u/`n

)2
, as well as when

∑
u∈Vn d

3
u/`n = Θ

(∑
u∈Vn d

2
u/`n

)2
.
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4.2 Configuration model with intermediate vertices

We now give an example of a strongly disassortative graph to demonstrate that ρ(Gn) fails to capture
obvious negative degree-degree dependencies when the degree distribution is heavy tailed. In order
to do that we adapt the configuration model slightly, by replacing every edge by two edges that
meet at a middle vertex. Denote this graph by Ḡn = (V̄n, Ēn), while the configuration model is
Gn = (Vn, En). In this model, there are n + `n/2 vertices and |Ē′n| = 2`n directed edges. For
(u, v) ∈ Ē′n, the degree of either vertex u or vertex v equals 2, and the degree of the other vertex
in the edge is equal to ds, where s is the unique vertex in the original configuration model that
corresponds to u or v.

Theorem 4.3 (Convergence of degree-degree dependency measures for CM with intermediate ver-
tices). Let (Ḡn)n≥1 be a sequence of configuration models with intermediate vertices, where the degree
sequence (dv)v∈Vn satisfies Condition 4.1. Then

ρrank(Ḡn)
P−→ 12E(FX(X)FX(Y ))− 3 = −3

4
+ 3

(
p̃1 +

1

2
p̃2

)(
1− p̃1 −

1

2
p̃2

)
, (4.1)

where (X,Y ) = (2I + (1 − I)D̃1, 2(1 − I) + ID̃2) with D̃1, D̃2 i.i.d. random variables with P(D̃ =
k) = kpk/E[D] := p̃k and I an independent Bernoulli(1/2) random variable. Further,

ρ(Gn)
P−→

{
Cov(X,Y )

Var(X) if E[D3
(n)]→ E[D3] <∞;

0 if E[D3
(n)]→∞,

and, for E[D3
(n)]→ E[D3] <∞, and writing µp = E[Dp],

Cov(X,Y )

Var(X)
=

2µ2/µ1 − (1 + µ2/(2µ1))2

(2 + µ3/(2µ1))− (1 + µ2/(2µ1))2
< 0.

The fact that the degree-degree correlation is negative is quite reasonable, since in this model,
vertices of high degree are label only connected to vertices of degree 2, so that there is a negative
dependence between the degrees at either end of an edge. When E[D3

(n)] → ∞, on the other hand,

ρ(Ḡn)
P−→ 0, which is inappropriate, as the negative dependence of the degrees persists.

Proof. The first part follows directly from Theorem 3.2, since the collection of values (d̄e, d̄e)e∈Ē′n
only depends on the degrees (dv)v∈Vn and

#{e : d̄e = l, d̄e = k}/|Ē′n| = (knkδ2,l + lnlδ2,k − 2n21{k=l=2})/(2`n),

which converges to P(X = k, Y = 2). Now, consider the possible values of X, and notice that

P(X = 1) = p̃1/2, (4.2)

P(X = 2) = 1/2 + p̃2/2, (4.3)

P(X ≥ 3) = 1/2− p̃1/2− p̃2/2. (4.4)

Then we obtain

F ∗X(x+ U) =


1
2 p̃1U, if x = 1,
p̃1
2 +

(
p̃2
2 + 1

2

)
U, if x = 2,

1
2 +

∑x−1
k=1

p̃k
2 + p̃x

2 U, if x ≥ 3.

(4.5)

Since either X or Y equals 2 and corresponds to the intermediate node, we further condition on D̃:

E(F ∗X(X∗)F ∗X(Y ∗)) = E(F ∗X(D̃ + U)F ∗X(2 + U ′)) (4.6)

= E(F ∗X(2 + U ′))

×
[
(E(F ∗X(1 + U))P(D̃ = 1) + E(F ∗X(2 + U))P(D̃ = 2) + E(D̃ + U |D̃ ≥ 3)P(D̃ ≥ 3)

]
.
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Now, using (4.5) and substituting (4.2–4.4), from the last expression we readily obtain

E(F ∗X(X∗)F ∗X(Y ∗)) =

(
p̃1

2
+
p̃2

4
+

1

4

)
×
[

1

4
(p̃1)2 +

( p̃1

2
+
p̃2

4
+

1

4

)
p̃2 +

( p̃1

4
+
p̃2

4
+

3

4

)
(1− p̃1 − p̃2)

]
=

3

16
+

1

4

(
p̃1 +

1

2
p̃2

)(
1− p̃1 −

1

2
p̃2

)
.

Substituting this in (3.8) and again using (2.9) we obtain (4.1).
For the second part, we compute

1

|Ē′n|
∑

(u,v)∈Ē′n

d̄ud̄v =
2

`n

∑
v∈Vn

d2
v,

and for p ≥ 2,
1

|Ē′n|
∑
s∈V̄n

d̄ps =
1

2`n
2p(`n/2) +

1

2`n

∑
v∈Vn

dpv = 2p−2 +
1

2`n

∑
v∈Vn

dpv,

As a result, when E[D3
(n)]→ E[D3] <∞, we have

ρ(Ḡn)
P−→ 2µ2/µ1 − (1 + µ2/(2µ1))2

(2 + µ3/(2µ1))− (1 + µ2/(2µ1))2
< 0,

where µp = E[Dp].

4.3 Preferential attachment model

We discuss the general Preferential Attachment model (PAM), as formulated, for example, in [23,
Chapter 8] or [16, Chapter 4]. The PAM is a dynamical random graph model, and thus models a
growing network. It is defined in terms of two parameters, m, which denotes the number of edges of
newly added vertices, and δ > −m, which quantifies the tendency to attach to vertices that already
have a high degree. We start by defining the model for m = 1.

We start with one vertex having one self-loop. Suppose we have the graph of size t, which we
denote by G(1)

t . Let i label the vertex that appeared at time i = 1, 2, . . .. Then, G(1)

t+1 is constructed
by adding one extra vertex that has one edge, which forms a self-loop with probability (1 + δ)/((2 +
δ)t+ 1 + δ) and, conditionally on G(1)

t , attaches to a vertex v ∈ [t] with probability (Di(t) + δ)/((2 +
δ)t + 1 + δ), where Di(t) is the random degree of vertex i in G(1)

t . As a result, vertices with high
degree have a higher probability to be attached to, which explains the name preferential attachment
model.

The model with m ≥ 2 is obtained from the model with m = 1 as follows. Collapse vertices
m(s− 1) + 1, . . . ,ms, and all of their edges, in (G(1)

t )t≥1 with δ replaced by δ′ = δ/m to form vertex
s in (G(m)

t )t≥1 with parameter δ. It is well known (see e.g., [9] where this was first derived for δ = 0
and [23, Theorem 8.3] as well as the references in [23] for a more detailed literature overview) that
the resulting graph has an asymptotic degree sequence pk, i.e.,

Nk(t)/t = #{i ∈ [t] : Di(t) = k}/t P−→ pk, (4.7)

where, for k ≥ m,

pk = (2 + δ/m)
Γ(k + δ)Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)Γ(k + 3 + δ + δ/m)
. (4.8)

In particular, the PAM is scale free with power-law exponent γ = 2 + δ/m. See [23, Section 8.2] for
more details on the scale-free behavior of the PAM. The next theorem investigates the behaviour of
Pearson’s correlation coefficient as well as Spearman’s rho for the PAM:
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Theorem 4.4 (Convergence of degree-degree dependency measures for PAM). Let (G(m)

t )t≥1 be the
PAM. Then

ρrank(G(m)

t )
P−→ ρrank, (4.9)

while

ρ(G(m)

t )
P−→

{
0 if δ ≤ m,
ρ if δ > m,

(4.10)

where, abbreviating a = δ/m,

ρ =
(m− 1)(a− 1)[2(1 +m) + a(1 + 3m)]

(1 +m)[2(1 +m) + a(5 + 7m) + a2(1 + 7m)].
(4.11)

The value of ρ in (4.11) was predicted in [14], and we make this analysis mathematically rigorous.
The remainder of the section is the proof of Theorem 4.4. It involves intermediate technical results
formulated as Lemma’s 4.5–4.9 below.

For the PAM, it will be convenient to direct the edges from young to old, so that there are mt
directed edges. Let Nk,l(t) denote the number of directed edges e for which De(t) = k, De(t) = l.
We will prove that there exists a probability distribution (qk,l)k,l≥m such that

Nk,l(t)/(mt)
P−→ qk,l. (4.12)

Since a uniform directed edge oriented from young to old can be obtained by taking a uniform vertex
and then a uniform edge coming out of this vertex, this proves (3.10) with

pkl = P(X = k, Y = l) = 1
2(qk,l + ql,k). (4.13)

In particular, by Theorem 3.2(a), this proves (4.9) in Theorem 4.4. We follow the proof of [23,
Theorem 8.2], which, in turn, is strongly inspired by the proof in [9].

Proofs for convergence of the degree sequence typically consist of two key steps. The first is a
martingale concentration argument in Lemma 4.5.

Lemma 4.5 (Convergence of degree-degree counts). For every k, l, there exists a C > 0 such that,

P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1). (4.14)

Proof. The proof for the degree distribution in [23] applies almost verbatim (see, in particular, [23,
Proposition 8.4] and its proof). Indeed, the proof relies on a martingale argument. Define the
Doob-martingale, for t = 0, . . . , n,

Mn = E[Nkl(t) | G(m)
n ].

The crucial observation is that (Mn)tn=0 is a martingale with Mt = Nkl(t) and M0 = E[Nkl(t)] that
satisfies

|Mn −Mn−1| ≤ 4m. (4.15)

We prove (4.15) below. The Azuma-Hoeffding inequality [2, 22] then proves (4.14) for any C >
4[4m]2. Indeed,

P
(
|Nkl(t)− E[Nkl(t)]| ≥ A

)
= P

(
|Mt −M0| ≥ A

)
≤ e−A

2/(2t[4m]2).

Taking A = C
√
t log t with C2 > 4[4m]2 proves that

P
(
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1/t2),
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so that even

P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
≤ (mt)2 max

k,l
P
(

max
k,l
|Nkl(t)− E[Nkl(t)]| ≥ C

√
t log t

)
= o(1).

This completes the proof of Lemma 4.5 assuming (4.15).
We complete the proof by deriving (4.15). For this, it will be convenient to introduce some

further notation. Let e ∈ [mt] label the edges. Let ve = de/me denote the vertex from which the eth
edge emanates, and Ve (which is a random variable) the vertex to which the eth edge points. Then,

Nk,l(t) =
∑
e∈[mt]

1{Dve (t)=k,DVe (t)=l}.

As a result,

Mn −Mn−1 =
∑
e∈[mt]

[
P(Dve(t) = k,DVe(t) = l | Gn)− P(Dve(t) = k,DVe(t) = l | Gn−1)

]
,

where we abbreviate Gn = G(m)
n . We let (G′l)l≥0 denote the PAM with G′n−1 = Gn−1, while the

evolution of (G′l)l≥0 after time n− 1 is the same in distribution as that of (Gl)l≥0, but conditionally
independent of it given Gn−1 = G′n−1. Let D′i(t) denote the degree of vertex i in G′t. Then,

P(Dve(t) = k,DVe(t) = l | Gn−1) = P(D′ve(t) = k,D′Ve(t) = l | Gn−1)

= P(D′ve(t) = k,D′Ve(t) = l | Gn−1, Gn \Gn−1),

where Gn \Gn−1 is shorthand for the edges of Gn that are not in Gn−1. The last step is due to the
conditional independence of the evolution after time n− 1 in (G′t)t≥0. Thus,

P(Dve(t) = k,DVe(t) = l | Gn−1) = P(D′ve(t) = k,D′Ve(t) = l | Gn).

We conclude that

Mn −Mn−1 =
∑
e∈[mt]

[
P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)

]
.

When Ve > n, clearly P(Dve(t) = k,DVe(t) = l | Gn) = P(D′ve(t) = k,D′Ve(t) = l | Gn), as the
degrees of vertices i with i > n are independent of Gn. Thus, we can restrict to Ve ≤ n. Further,
when ve > n, then Dve(t) is independent of Gn, so that

P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)

= P(Dve(t) = k)
[
P(DVe(t) = l | Gn)− P(D′Ve(t) = l | Gn)

]
.

Note that DVe(n−1) = D′Ve(n−1) a.s., P(DVe(t) = l | Gn, DVe(n) = j) = P(DVe(t) = l | DVe(n) = j),
and

P(D′Ve(t) = l | Gn, D′Ve(n) = j) = P(D′Ve(t) = l | D′Ve(n) = j) = P(DVe(t) = l | DVe(n) = j).

Thus, using that

P(DVe(t) = l | Gn) = E[P(D′Ve(t) = l | DVe(n)) | Gn],

P(D′Ve(t) = l | Gn) = E[P(D′Ve(t) = l | D′Ve(n)) | Gn],

we obtain at

|P(D′Ve(t) = l | DVe(n))− P(D′Ve(t) = l | D′Ve(n))| ≤ 1{DVe (n)6=D′Ve (n)}.
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Taking expectations yields∣∣∣P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)
∣∣∣ ≤ P(DVe(n) 6= D′Ve(n) | Gn).

In a similar way, we see that for ve ≤ n,

|P(Dve(t) = k,DVe(t) = l | Gn)− P(D′ve(t) = k,D′Ve(t) = l | Gn)|
≤ P(DVe(n) 6= D′Ve(n) | Gn) + P(Dve(n) 6= D′ve(n) | Gn).

We conclude that

|Mn −Mn−1| ≤
∑
e∈[mt]

[
P(DVe(n) 6= D′Ve(n) | Gn) + P(Dve(n) 6= D′ve(n) | Gn)

]
≤ 4m.

We continue with the proof of (4.12). The second key step the proof of (4.12) is to prove that,
for each k, l,

lim
t→∞

E[Nkl(t)]/(mt) = qk,l. (4.16)

We sum over the vertex s that has degree l at time t, and condition on the degree r ≥ m of the
vertex to which the edge of vertex s is attached. This yields

E[Nkl(t)] = m

t∑
s=1

∑
r≥m

(r + δ)

(2m+ δ)s
E[Nr(s)]

[
P
(
Br+1[s+ 1, t] = k,Bm[s+ 1, t] = l

)
+O(1/s)

]
, (4.17)

where Bm[s + 1, t] is m plus the number of edges attached to vertex s between time s + 1 and
t, while Br+1[s + 1, t] is r plus the number of further edges attached to the vertex of degree r to
which the edge of vertex s is attached. The O(1/s) term is due to contributions where at least two
edges of vertex s are attached to the same vertex of degree r, and also due to the fact that the
probability of attaching the jth edge of vertex s to a vertex of degree r at time s is actually equal
to (r+δ)

(2m+δ)s+(j−1)(2+δ/m)+1+δ/m , which is (r+δ)
(2m+δ)s(1 +O(1/s)). Further,

P
(
Br+1[s+ 1, t] = k,Bm[s+ 1, t] = l

)
= P(Br+1[s+ 1, t] = k)P(Bm[s+ 1, t] = l) +O(1/t),

since the dependence between the two probabilities is entirely due to the fact that edges that con-
tribute to Br+1[s+1, t] cannot contribute to Bm[s+1, t]. Indeed, (Br+1[s+1, t], Bm[s+1, t]) is equal
in distribution to the number of balls in two urns at time m(t − s), where we start with r + 1 and
m balls at time 0, and in each draw, we draw a ball in each of the urns with probability equal to the
number of balls plus δ and then replace it with two balls. Knowing how many balls are put into the
first urn only gives us information about how many balls cannot be put into the second urn, so the
balls in the different urns are close to independent. We study these probabilities now:

Lemma 4.6 (Growth of degrees in PAM). For all k ≥ r ≥ m and a ∈ (0, 1),

lim
s→∞

P(Br[as, s] = k) = Pk(a; r),

where, for each r ≥ m and a ∈ (0, 1), (Pk(a; r))k≥r is a probability measure.

Proof. We note that (Br[s, ts])t≥1
d−→ (Zt)t≥1, as s → ∞, where (Zt)t≥0 is a pure birth process,

which increases by 1 at rate m(Zt + δ)/((2m+ δ)t) at time t. Indeed, when Br[s, ts] = k, then each
of the m edges of vertex st+ 1 has probability (k+ δ)/[(2m+ δ)(st)] +O(1/s2) of being attached to
the vertex that has degree k at time ts, and thus of increasing Br[s, ts] to k+1. Thus, within a short
time interval [t, t+dt] and conditionally on Br[s, ts] = k, the probability that Br[s, (t+dt)s] = k+ 1
is equal to

sdt
[
m(k + δ)/[(2m+ δ)(st)] +O(1/s2) + o(1)

]
→ dt

m(k + δ)

(2m+ δ)t
+ o(dt),
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as s→∞. This is the birth rate of the pure birth process (Zt)t≥1.
We next study the limiting birth process, for which is it useful to make a time change. With

bt = Ze(2+δ/m)t , (bt)t≥0 is a birth process that grows at rate bt + δ at time t. Define

fr,k(t) = P(bt = k | b0 = r).

Then,
∂

∂t
fr,k(t) = −(k + δ)fr,k(t) + (k − 1 + δ)fr,k−1(t).

This set of differential equations is solved by fr,r(t) = e−(r+δ)t and, for k ≥ r + 1,

fr,k(t) = (k − 1 + δ)e−(k+δ)t

∫ t

0
e(k+δ)sfr,k−1(s)ds.

This can be solved by, for k ≥ r + 1,

fr,k(t) = P(bt = i | b0 = r) =
Γ(k + δ)

Γ(r + δ)
e−(k+δ)t

k−r∑
j=0

αj,ke
jt,

where α0,k = −
∑k−1

j=0 αj,k−1/(j + 1), while, for j ≥ 1,

αj,k = αj−1,k−1/j.

As a result, for all a ∈ (0, 1),

lim
t→∞

P(Br[at, t] = k) = P(Z1/a = k | Z1 = r) = fr,k((2 + δ/m)−1 log(1/a)).

Note that Pr(a; r) is the probability that the birth process has no births. We thus compute that
Pr(a; r) = fr,r((2 + δ/m)−1 log(1/a)) = a(r+δ)/(2+δ/m) for k = r, while

Pk(a; r) = fr,k((2 + δ/m)−1 log(1/a)) =
Γ(k + δ)

Γ(r + δ)
a(k+δ)/(2+δ/m)

k−r∑
j=0

αj,ka
−j/(2+δ/m).

We continue from (4.17), and rewrite it as

E[Nkl(t)]/(mt) =
∑
r≥m

E
[ (r + δ)

(2m+ δ)Ut
E[Nr(Ut)]P(Br+1[Ut, t] = k | U)P(Bm[Ut, t] = l | U)

]
+O(log t/t),

(4.18)
where U has a uniform distribution, we interpret Ut = dUte, and the outer expectation is over U
only. Using that E[Nr(s)]/s = pr +O(1/s) (see [23, Proposition 8.4]), we further arrive at

E[Nkl(t)]/(mt) =
∑
r≥m

r + δ

2m+ δ
prE

[
P(Br+1[Ut, t] = k | U)P(Bm[Ut, t] = l | U)

]
+ o(1). (4.19)

By Lemma 4.6, this converges to

E[Nkl(t)]/(mt)→ qk,l ≡
∑
r≥m

r + δ

2m+ δ
prE[Pk(U ; r)Pl(U ;m)]. (4.20)

This proves (4.16), and thus, by Theorem 3.2(a), proves the convergence of the rank correlation in
(4.9) in Theorem 4.4.
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For the convergence of the correlation coefficient in (4.10) in Theorem 4.4, we aim to use Theorem
3.2(b) and thus start by investigating the convergence of moments of Xn. By (3.3), and letting En
denote the conditional expectation given Gn,

En[X2
n] =

1

n

∑
i∈[n]

Di(n)3.

Thus, we are lead to studying sums of powers of degrees. To analyze the limit of sums of powers of
degrees, we rely on the following lemma:

Lemma 4.7 (Sum of powers of degrees in PAM). For all p < γ = 2 + δ/m,

1

n

∑
i∈[n]

Di(n)p
P−→ µp =

∑
k≥m

kppk <∞.

Proof. We note that
∑

i∈[n]Di(n)p =
∑

k≥m k
pNk(n). Under the conditions stated, for every kn →

∞, ∑
k≥m

kpNk(n) =
∑

m≤k≤kn

kpNk(n) + oP(n).

This follows since, for any ε > 0, k > kn implies that kε/kεn > 1, so that∑
k>kn

kpNk(n) ≤ k−εn
∑
k≥m

kp+εNk(n) = k−εn
1

n

∑
i∈[n]

Di(n)p+ε.

By the analysis in [23, Section 8.1 and 8.6], when p+ ε < γ + 1 = 3 + δ/m,

lim sup
n→∞

E
[ 1

n

∑
i∈[n]

Di(n)p+ε
]
<∞.

Therefore, by the Markov inequality,
∑

k>kn
kpNk(n) = oP(n).

Now, since maxk |Nk(n)− pk| ≤
√
Cn log n whp by [23, Proposition 8.4],∑

m≤k≤kn

kpNk(n) = t
∑

m≤k≤kn

kppk +OP(k
p+1
n

√
n log n).

This proves the claim.

It follows from Lemma 4.7 that for 3 < γ = 2 + δ/m,

En[X2
n] =

1

n

∑
i∈[n]

Di(n)3 = B(1 + oP(1)).

where B is a constant. As a result,

ρ(Gn)
a.s.−→ ρ = Cov(X,Y )/Var(X) =

∑
k,l klqk,l − E[X]2

E[X2]− E[X]2
. (4.21)

This proves (4.10) in Theorem 4.4 when δ > m. For γ < 3, instead, D1(n)/n1/γ a.s.−→ ξ, for
some strictly positive random variable ξ (see e.g., [23, Sections 8.1 and 8.6]). Therefore, En[X2

n] ≥
ξ3n3/γ−1(1 + o(1)). Further, the majority of edges of high degree vertices is young, so that

En[XnYn] = oP(n
3/γ−1). (4.22)

Indeed, fix Tn such that Tn →∞ and Tn = o(n). There are at most mTn edges between vertices with
index at most Tn, and, since the maximal degree is OP(n

1/γ), these contribute at most OP(n
2/γ−1Tn).
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For the other edges, one of the vertices involved was born after time Tn. Since maxi≥Tn Di(n) =
oP(n

1/γ), the contribution of these edges is at most

oP(n
1/γ)En[Xn + Yn].

In turn, En[Xn + Yn] = OP(n
(2/γ−1)∧1), which completes the proof of (4.22). This implies that

ρ(Gn)
P−→ 0, which proves (4.10) in Theorem 4.4 when δ < m. For δ = m, so that γ = 3,∑

i∈[n]Di(n)3 = ΘP(n log n)(1 + oP(1)). As a result, also in this case ρ(Gn)
a.s.−→ 0 for δ ≤ m.

We continue with the proof of (4.11) in Theorem 4.4. To compute expectations involving X, we
often rely on the following lemma:

Lemma 4.8 (Degree on one side of uniform edge). For every function f : N→ R,

E[f(X)] =
∑
k≥m

f(k)
kpk
2m

.

Proof. Let f be bounded, and let Xn be the degree at the bottom of a uniform edge. Then,

E[f(Xn) | G(m)
n ] =

1

|E′n|
∑
e∈E′n

f(De(n)) =
1

2mn

∑
v∈[n]

f(Dv(n))Dv(n) =
1

2m

∑
k≥m

f(k)kNk(n)/n.

Taking the limit of n→∞ and using that Nk(n)/n
P−→ pk, as well as Xn

d−→ X proves the claim.

Lemma 4.8 allows us to identify the r.h.s. of (4.21) as

ρ = Cov(X,Y )/Var(X) =
(2m)2

∑
k,l klqk,l − λ2

2

2mλ3 − λ2
2

,

where λa =
∑

k≥m k
apk. To identify the limit, we follow [14]. Recall the definition of pkl in (4.13).

Lemma 4.9 (Asymptotic degree-degree distribution for PAM). For all k, l ≥ m,

pkl = P(X = k, Y = l) (4.23)

= (2 + δ/m)
Γ(m+ 2 + δ + δ/m)

Γ(m+ δ)2

Γ(l + δ)Γ(k + δ)

Γ(k + 2 + δ)Γ(l + k + 2 + 2δ + δ/m)

×
[ k∑
j=m+1

(
k + l − j −m

l −m

)(
j + k + 2 + 2δ + δ/m

k + 1 + δ

)
+

l∑
j=m+1

(
k + l − j −m

k −m

)(
j + l + 2 + 2δ + δ/m

l + 1 + δ

)]
.

Consequently, (4.11) follows.

Proof. To compute P(X = k, Y = l), we let Mkl(t) denote the number of edges at time t where one
side has degree k and the other side degree l, so that

pkl = lim
t→∞

E[Mkl(t)]/(2mt).

We note that Mkl(t) satisfies the recursion relation

E[Mkl(t+ 1)]− E[Mkl(t)] = m
(k ∨ l)− 1 + δ

(2m+ δ)t
E[Nk∨l−1(t)]1{k∧l=m}

+m
k − 1 + δ

(2m+ δ)t
E[Mk−1,l(t)] +m

l − 1 + δ

(2m+ δ)t
E[Mk,l−1(t)]

−m k + δ

(2m+ δ)t
E[Mk,l(t)]−m

l + δ

(2m+ δ)t
E[Mk,l(t)] +O(1/t2).
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It is not clear that the left-hand side converges since we only know that E[Mk,l(t)]/(2mt)→ pkl, and
we will show this now. Indeed, since E[Mk,l(t)]/(2mt) → pkl and E[Nk(t)]/t → pk, we arrive at the
claim that, for all k, l with k ∨ l ≥ m+ 1,

lim
t→∞

E[Mkl(t+ 1)]− E[Mkl(t)]

= 2m2 (k ∨ l)− 1 + δ

2m+ δ
pk−11{k∧l=m} + 2m2k − 1 + δ

2m+ δ
pk−1,l + 2m2 l − 1 + δ

2m+ δ
pk,l−1 − 2m2k + l + 2δ

2m+ δ
pk,l.

Since limt→∞ E[Mkl(t)]/(2mt) = pkl, we must therefore have that limt→∞ E[Mkl(t+1)]−E[Mkl(t)] =
2mpkl, so that

pkl = m
(k ∨ l)− 1 + δ

2m+ δ
pk∨l−11{k∧l=m} +m

k − 1 + δ

2m+ δ
pk−1,l +m

l − 1 + δ

2m+ δ
pk,l−1 −m

k + l + 2δ

2m+ δ
pk,l,

and

(k+ l+2+2δ+δ/m)pkl = ((k∨ l)−1+δ)pk∨l−11{k∧l=m}+(k−1+δ)pk−1,l+(l−1+δ)pk,l−1. (4.24)

This is equivalent to [14, (12)]. This can be worked out to yield

pkl =

k∑
j=m+1

(
k + l − j −m

k − j

)
Γ(k + δ)

Γ(j − 1 + δ)

Γ(l + δ)

Γ(m+ δ)

Γ(j + k + 2 + 2δ + δ/m)

Γ(l + k + 3 + 2δ + δ/m)
pj−1

+

l∑
j=m+1

(
k + l − j −m

l − j

)
Γ(k + δ)

Γ(j − 1 + δ)

Γ(l + δ)

Γ(m+ δ)

Γ(j + l + 2 + 2δ + δ/m)

Γ(l + k + 3 + 2δ + δ/m)
pj−1.

Substituting (4.8), we arrive at (4.23).
The computation to go from (4.24) to (4.11) is performed in [14, (12)], and applies verbatim.

4.4 Asymptotically random Pearson’s coefficient: collection of complete bipar-
tite graphs

In this section, we present an example where ρ(Gn) in (3.4) converges to a random variable when the
number of vertices tends to infinity. For |Vn| = n, under the assumptions of Theorem 3.1, we have∑

(u,v)∈E′n

DuDv ≤ max
v∈Vn

dv
∑

(u,v)∈E′n

Du = max
v∈Vn

Dv

( ∑
v∈Vn

D2
v

)
≤ C2n1/γ+(2/γ∨1), (4.25)

∑
(u,v)∈E′n

DuDv ≥ max
v∈Vn

Dv ≥ cn1/γ , (4.26)

∑
(u,v)∈E′n

DuDv ≥
∑
v∈Vn

D2
v ≥ cn2/γ∨1. (4.27)

Further, from the proof of Theorem 3.1, we know that∑
v∈Vn

D3
v ≥ (max

v∈Vn
Dv)

3 ≥ c3n3/γ , (4.28)

and

1

|E′n|

( ∑
v∈Vn

D2
v

)2
≤ (C2/c)n(4/γ−1)∨1, (4.29)

where we see that (4.29) is vanishing compared to (4.28). The convergence of (3.4) to a random
variable can only take place if the crossproducts on the left-hand side of (4.25 – 4.27) are of the same
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order of magnitude as the left-hand side of (4.28). As we see from the above, this is possible for
γ ∈ (1, 3).

Below we present an example where ρ(Gn) indeed converges to a random variable. However, due
to slow convergence, a substantially larger computational capacity is needed in order to approximate
the limiting distribution.

Take ((Xi, Yi))
n
i=1 to be an i.i.d. sample of integer random variables as in (2.10), where α1 =

α2 = β1 = b, β2 = ab for some b > 0 and a > 1. Then, for i = 1, . . . , n, we create a complete
bipartite graph of Xi and Yi vertices, respectively. These n complete bipartite graphs are not
connected to one another. We denote such a collection of n bipartite graphs by Gn. The graph Gn
has |Vn| =

∑n
i=1(Xi+Yi) vertices and |E′n| = 2

∑n
i=1XiYi directed edges. Further, if Dv denotes the

random degree of vertex v, then we obtain

∑
v∈Vn

Dp
v =

n∑
i=1

(Xp
i Yi + Y p

i Xi),
∑

(u,v)∈E′n

DuDv = 2
n∑
i=1

(XiYi)
2.

Assume that the ξj ’s in (2.10) satisfy (2.11) with γ ∈ (2, 4), so that E[ξ2] < ∞, but E[ξ4] = ∞. As

a result, |E′n|/n
P−→ 2E[XY ] <∞ and 1

n

∑
v∈V D

2
v

P−→ E[XY (X + Y )] <∞ when γ ∈ (3, 4), while,
for γ ∈ (2, 3),

n−3/γ
∑
v∈V

D2
v = n−3/γ

n∑
i=1

(X2
i Yi + Y 2

i Xi)
d−→ Z, (4.30)

for some random variable Z. [For γ = 3, this sum grows as a slowly varying function in n, but this
case is very similar and will thus be omitted.] Further,

n−4/γb−4
n∑
i=1

(X3
i Yi + Y 3

i Xi)
d−→ (a3 + a)Z1 + 2Z2, n−4/γb−4

N∑
i=1

(XiYi)
2 d−→ a2Z1 + Z2,

where Z1 and Z2 and two independent stable distributions with parameter γ/4. Therefore, using
(3.4) and the fact that 4/γ > (6/γ − 1) ∧ 1, we arrive at

ρ(Gn)
d−→ 2a2Z1 + 2Z2

(a+ a3)Z1 + 2Z2
, as n→∞.

which is a proper random variable taking values in (2a/(1 + a2), 1).
For convergence of the rank correlation, we note that

P(Xn = k, Yn = l)→ P(X = k, Y = l) =
kl

E[X1Y1]
P(X1 = k, Y1 = l),

where we recall that (X1, Y1) is as in (2.10), while (X,Y ) are the degrees at either side of a uniformly
chosen edge. Thus, convergence of the rank correlation follows from Theorem 3.2(a).

5 Numerical results

In this section, we present numerical examples that illustrate our results.

5.1 Numerical results for configuration models and preferential attachment model

We have generated random graphs of different sizes using the configuration model in Section 4.1,
the configuration model with intermediate vertices in Section 4.2, and the Preferential Attachment
model (PAM) in Section 4.3. For the undirected preferential attachment model, we use the basic
version with m = 1 and δ = 0, which implies γ = 2. In both configuration models (without and with
intermediate vertices) we generate the degree sequences by rounding up i.i.d. values of a continuous
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random variable η with Pareto distribution: P(η > x) = 4x−2, x > 2. The exponent γ = 2 is chosen
for a fair comparison to PAM, and all degrees are at least three for the strongest disassortativity
in the model with intermediate in the model with intermediate vertices, see (4.1). In case of the
configuration graph in Section 4.1, we consider two versions: the original model with self-loops and
double edges present, and the model where self-loops and double-edges are removed. The rank
correlation coefficient ρrank(G) is computed as in (3.2). The results are presented in Table 3.

n
Model Characteristic 102 103 104 105

EN (ρ(Gn)) -0.0070 -0.0018 -0.0011 0.0006
Configuration model σN (ρ(Gn)) 0.0735 0.0221 0.0077 0.0017

with self-loops and double edges EN (ρrank(Gn)) 0.0056 -0.0098 -0.0036 0.0005
σN (ρrank(Gn)) 0.0504 0.0150 0.0046 0.0019
EN (ρ(Gn)) -0.0713 -0.0226 -0.0150 -0.0032

Configuration model σN (ρ(Gn)) 0.0546 0.0188 0.0092 0.0029
without self-loops and double edges EN (ρrank(Gn)) -0.0409 -0.0094 -0.0032 -0.0006

σN (ρrank(Gn)) 0.0700 0.0201 0.0083 0.0021
EN (ρ(Ḡn)) -0.2804 -0.1346 -0.0572 -0.0291

Configuration model σN (ρ(Ḡn)) 0.0742 0.0517 0.0279 0.0147

with intermediate vertices EN (ρrank(Ḡn)) -0.7523 -0.7498 -0.7498 -0.7500
σN (ρrank(Ḡn)) 0.0081 0.0025 0.0008 0.0003
EN (ρ(Gn)) -0.2682 -0.1282 -0.0608 -0.0272

Preferential attachment σN (ρ(Gn)) 0.0575 0.0271 0.0132 0.0064
EN (ρrank(Gn)) -0.4347 -0.4263 -0.4288 -0.4289
σN (ρrank(Gn)) 0.0627 0.0272 0.0065 0.0020

Table 3: Estimated mean and standard deviation of ρ(Gn) and ρrank(Gn) obtained from 20 realizations of
Gn for random graph models in Sections 4.1–4.3.

The results for the configuration model with intermediate vertices confirm our findings in Sec-
tion 4.2: Pearson’s coefficient converges to zero, while Spearman’s rho quickly converges to −0.75
revealing the strong negative dependence. For the PAM, Pearson’s coefficient converges to zero, as
indicated in Theorem 3.1, while Spearman’s rank correlation clearly indicates a negative dependence.
This can be understood by noting that the majority of edges of vertices with high degrees, which are
old vertices, come from vertices which are added late in the graph growth process and thus have small
degree. On the other hand, by the growth mechanism of the PAM, vertices with low degree are more
likely to be connected to vertices having high degree, which indeed suggests negative degree-degree
dependencies.

We emphasize that under given model assumptions, the graphs of different sizes have been
constructed by the same algorithm. Thus, their mixing patterns are exactly the same. As we
predicted, the Pearson correlation coefficient fails to reflect the intrinsic properties of the model
because its absolute value decreases with the graph size, and converges to zero for all models. On
the contrary, Spearman’s rho consistently shows neutral mixing for the classical configuration model,
moderately disassortative mixing for the Preferential Attachment graph, and strongly disassortative
mixing for the configuration model with intermediate vertices.

5.2 Numerical results for collections of bipartite graphs

We next compute the degree-degree dependencies in the collection of bipartite graphs discussed in
Section 4.4. In Table 4 we present numerical results for ρ(Gn) and ρrank(Gn). Here we choose
b = 1/2, a = 2, ξ has a generalized Pareto distribution P(ξ > x) = (1 + (x− 1)/2.8)−2.8, x > 1, and
the degrees X and Y are obtained by rounding up the values in (2.10).

Note that in this model there is a genuine dependence between the correlation measure and
the graph size. Indeed, if n = 1 then the assortativity coefficient equals −1 because nodes with
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n 102 103 104 105

EN (ρ(Gn)) 0.6554 0.7247 0.8042 0.8265
σN (ρ(Gn)) 0.1145 0.1406 0.0689 0.0654
EN (ρrank(Gn)) 0.7575 0.7950 0.8526 0.8615
σN (ρrank(Gn)) 0.0735 0.1377 0.0218 0.0074

Table 4: Estimated mean and standard deviation of ρ(Gn) and ρrank(Gn) for the collection of n complete
bipartite graphs. The number of realizations for each graph size is 20.

larger degrees are connected to nodes with smaller degrees. However, when the graph size grows, the
positive correlations start dominating because of the positive linear dependence between X and Y .
We see that again the rank correlation captures the relation faster and gives consistent results with
decreasing dispersion of values. Finally, Figure 2 shows the changes in the empirical distribution of
ρ(Gn) as n grows. It is clear that a part of the probability mass is spread over the interval (0.8, 1).

Figure 2: The empirical distribution function P(ρ(Gn) ≤ x) for 100 observed values of ρ(Gn), where Gn is a
collection of n complete bipartite graphs.

In the limit, ρ(Gn) has a non-zero density on this interval. The difference between the crossproducts
and the expectation squared in ρ(Gn) is only of the order n1−2/γ , which is about n0.29 in our example,
thus, the convergence is too slow to be observed at n = 100.000.

5.3 Web samples and social networks

For completeness, we present the numerical results for web samples and social networks from [24],
see in Table 5. We used the compressed graph data from the Laboratory of Web Algorithms (LAW)
at the Università degli studi di Milano [6, 5] with bvgraph MATLAB package [20]. The stanford-cs
database [13] is a 2001 crawl that includes all pages in the cs.stanford.edu domain. In datasets (iv),
(vii), (viii) we evaluate ρ(Gn), ρrank(Gn) and ρ−(Gn) (see (3.5)) over 1000 random edges, and present
the average over 10 such evaluations (in 10 samples of 1000 edges, the observed dispersion of the
results was small).

We note that ρrank(Gn) here is an approximation of (3.2) computed as described in [24]: we
define the random variables X and Y as the degrees on two ends of a random undirected edge in
a graph (that is, here (u, v) and (v, u) represent the same edge); for each edge, when the observed
degrees are a and b, we assign [X = a, Y = b] or [X = b, Y = a] with probability 1/2; the ties are
resolved randomly as in (3.2). The experiments on random graphs show that the values obtained by
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nr Dataset Description # nodes # edges max degree ρ(Gn) ρrank(Gn) ρ−(Gn)

(i) stanford-cs web domain 9,914 54,854 340 -.1656 -.1627 -.4648

(ii) eu-2005 .eu web domain 862,664 5,477,938 68,963 -.0562 -.2525 -.0670

(iii) uk@100,000 .uk web crawl 100,000 5,559,150 55,252 -.6536 -.5676 -1.117

(iv) uk@1,000,000 .uk web crawl 1,000,000 77,123,940 403,441 -.0831 -.5620 -.0854

(v) enron e-mail exchange 69,244 506,898 1,634 -.1599 -.6827 -.1932

(vi) dblp-2010 co-authorship 326,186 1,615,400 238 .3018 .2604 -.7736

(vii) dblp-2011 co-authorship 986,324 6,707,236 979 .0842 .1351 -.2963

(viii) hollywood-2009 co-starring 1,139,905 113,891,327 11,468 .3446 .4689 -0.6737

Table 5: (i)–(iv) Web crawls: nodes are web pages, and an (undirected) edge means that there
is a hyperlink from one of the two pages to another; (iii),(iv) are breadth-first crawls around one
page. (v) e-mail exchange by Enron employees (mostly part of the senior management): node are
employees, and an edge means that an e-mail message was sent from one of the two employees to
another. (vi), (vii) scientific collaboration networks extracted from the DBLP bibliography service:
each vertex represents a scientist and an edge means a co-authorship of at least one article. (viii)
vertices are actors, and two actors are connected by an edge if they appeared in the same movie.

this algorithm are very close to those computed by (3.2).
The most remarkable result here is obtained on the two .uk crawls (iii) and (iv). Here ρ(Gn) is

significantly smaller in magnitude on a larger crawl. Intuitively, mixing patterns should not depend
on the crawl size. This is indeed confirmed by the value of Spearman’s rho, which consistently shows
strong negative correlations in both crawls. We could not observe a similar phenomenon so sharply
in (vi) and (vii), probably because a larger co-authorship network incorporates articles from different
areas of science, and the culture of scientific collaborations can vary greatly from one research field
to another.

We also notice that, as predicted by our results, the small in magnitude values of ρ−(Gn) result
in profound difference in magnitude between ρ(Gn) and ρrank(Gn). This is clearly seen in the data
sets (ii), (iv) and (v). Again, (ii) and (iv) are the largest among the analyzed web crawls.

The observed behaviour of Pearson’s coefficient is explained by the results proved in this paper
in that ρ(Gn) is strongly influenced by the large dispersion in the degree values, and particularly
by the presence of hubs. The latter increases with graph size because of the scale-free phenomenon.
As a result, ρ(Gn) becomes smaller in magnitude when n increases, which makes it impossible to
compare graphs of different sizes. In contrast, the ranks of the degrees are drawn from a uniform
distribution on [0, 1], scaled by the factor |E′|. Clearly, when a correlation coefficient is computed,
the scaling factor cancels, and therefore Spearman’s rho provides consistent results in the graphs of
different sizes.

6 Discussion

In this paper, we have investigated dependency measures for power-law random variables. We have
argued that Pearson’s correlation coefficient, despite its appealing feature that it is always in [−1, 1],
is inappropriate to describe dependencies between heavy-tailed random variables. Indeed, the two
main problems with the sample correlation coefficient are that (a) it can converge to a proper
random variable when the sample size tends to infinity, indicating that it fluctuates tremendously as
the sample size increases, and (b) that it is always asymptotically non-negative when dealing with
non-negative random variables (even when these are obviously negatively dependent). In the context
of random graphs, the first deficiency means that Pearson’s coefficient can have a non-vanishing
variance even when the size of the graph is huge, the second mistakenly suggests that there do not
exist asymptotically disassortative scale-free graphs. We give proofs for the facts stated above, and
illustrate the results using simulations.

Rank correlations are a special case of the broader concept of copulas that are widely used in
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multivariate analysis, in particular in applications in mathematical finance and risk management.
There is a heated discussion in this area about the adequacy and informativeness of such measures, see
e.g. [32] and consequent reactions. There are several points of criticism. In particular, Spearman’s rho
uses rank transformation, which changes the observed values of the degrees. Then, first of all, what
exactly does Spearman’s rho tell us about the dependence between the original values? Second of all,
no substantial justification exists for the rank transformation, besides its mathematical convenience.
We thus do not claim that Spearman’s rho is the solution to the problem. Nevertheless, compared
to the Pearson’s coefficient, Spearman’s rho has a significant advantage that it is free from the
undesirable size-dependency, and converges to meaningful value in the infinite volume limit.

We note that Spearman’s rho has computational complexity O(n log(n)) because the values of
the random variables must be ranked first. Pearson’s correlation coefficient is easier to evaluate
because it uses the values of the degrees directly, and has computational complexity O(n). Efficient
methods for computing Spearman’s rho in large graphs is an interesting topic for future research.

Raising the discussion to a higher level, random variables X and Y are positively dependent
when a large realization of X typically implies a large realization of Y . A strong form of this
notion is when P(X > x, Y > y) ≥ P(X > x)P(Y > y) for every x, y ∈ R, but for many purposes
this notion is too restrictive. The covariance for non-negative random variables is obtained by
integrating the above inequality over x, y ≥ 0, so that it is true for ‘typical’ values of x, y. In many
cases, however, we are particularly interested in certain values of x, y. Another class of methods for
measuring rank correlations is based on the angular measure, a notion originating in the theory of
multivariate extremes, for which the above inequality is investigated for large x and y, so that it
describes the tail dependence for a random vector (X,Y ), that is, the dependence between extremely
large values of X and Y , see e.g. [43]. Such tail dependence is characterized by an probability-like
measure, or, the angular measure, on [0, 1]. Informally, a concentration of the angular measure
around the points 0 and 1 indicates independence of large values, while concentration around some
other number a ∈ (0, 1) suggests that a certain fraction of large values of Y comes together with
large values of X. In [45, 46] a first attempt was made to compute the angular measure between
in-degree of a node and its importance measured by the Google PageRank algorithm. Strikingly,
completely different dependence structures were discovered in Wikipedia (independence), Preferential
Attachment networks (complete dependence) and the Web (intermediate case).
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[19] S. Fortunato, M. Boguñá, A. Flammini, and F. Menczer. On local estimations of pagerank: A
mean field approach. Internet Mathematics, 4(2-3):245–266, 2007.

[20] D.F. Gleich, A.P. Gray, C. Greif, and T. Lau. An inner-outer iteration for computing pagerank.
SIAM Journal on Scientific Computing, 32(1):349, 2010.

[21] B. V. Gnedenko and A. N. Kolmogorov. Limit distributions for sums of independent random
variables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices
by J. L. Doob and P. L. Hsu. Revised edition. Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills., Ont., (1968).

30



[22] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

[23] R. van der Hofstad. Random graphs and complex networks, 2013. Available at http://www.

win. tue. nl/∼rhofstad/NotesRGCN.pdf.

[24] R. van der Hofstad and N. Litvak. Uncovering disassortativity in large scale-free networks.
Physical Review E, 87(2):022801, 2013.

[25] S. Janson. The probability that a random multigraph is simple. Combinatorics, Probability and
Computing, 18(1-2):205–225, 2009.

[26] M. Kendall. Rank Correlation Methods. Charles Griffin & Company, 1975.

[27] M.G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[28] R. Kumar and S. Vassilvitskii. Generalized distances between rankings. In Proceedings of the
19th international conference on World wide web, pages 571–580. ACM, 2010.

[29] L. Li, D.L. Alderson, J.C. Doyle, and W. Willinger. Towards a theory of scale-free graphs:
definition, properties, and implications. Internet Mathematics, 2(4):431–523, 2005.

[30] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topology analysis and genera-
tion using degree correlations. ACM SIGCOMM Computer Communication Review, 36(4):135–
146, 2006.

[31] M. Mesfioui and A. Tajar. On the properties of some nonparametric concordance measures in
the discrete case. Nonparametric Statistics, 17(5):541–554, 2005.

[32] T. Mikosch. Copulas: Tales and facts. Extremes, 9(1):3–20, 2006.

[33] M. Mitzenmacher. A brief history of generative models for power law and lognormal distribu-
tions. Internet Mathematics, 1(2):226–251, 2004.

[34] M. Molloy and B. Reed. A critical point for random graphs with a given degree sequence.
Random Structures & Algorithms, 6(2-3):161–180, 1995.

[35] M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree
sequence. Combinatorics Probability and Computing, 7(3):295–305, 1998.
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