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Abstract. A class of centrality measures called betweenness centralities
reflects degree of participation of edges or nodes in communication be-
tween different parts of the network. The original shortest-path between-
ness centrality is based on counting shortest paths which go through a
node or an edge. One of shortcomings of the shortest-path betweenness
centrality is that it ignores the paths that might be one or two steps
longer than the shortest paths, while the edges on such paths can be
important for communication processes in the network. To rectify this
shortcoming a current flow betweenness centrality has been proposed.
Similarly to the shortest path betwe has prohibitive complexity for large
size networks. In the present work we propose two regularizations of
the current flow betweenness centrality, α-current flow betweenness and
truncated α-current flow betweenness, which can be computed fast and
correlate well with the original current flow betweenness.

1 Introduction

A class of centrality measures called betweenness centralities reflects degree of
participation of edges or nodes in communication between different parts of the
network. The first notion of betweenness centrality was introduced by Freeman
[8]. Let s, t ∈ V be a pair of nodes in an undirected network G = (V,E). We
denote |V | = n, |E| = m, and let dv be the degree of node v. Let σs,t be
the number of shortest paths connecting nodes s and t and denote σs,t(e) the
number of shortest path connecting nodes s and t passing through edge e. Then
betweenness centrality of edge e is calculated as follows:

CB(e) =
1

n(n− 1)

∑
s,t∈V

σs,t(e)

σs,t
(1)

Computational complexity of the best known algorithm for computing the be-
tweenness in (1)is O(mn) [4]. This limits its applicability for large graphs.

One of shortcomings of the betweenness centrality in (1)is that it takes into
accounts only the shortest paths, ignoring the paths that might be one or two
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steps longer, while the edges on such paths can be important for communication
processes in the network. In order to take such paths into account, Newman [11]
and Brandes and Fleischer [5] introduced the current flow betweenness centrality
(CF-betweenness). In [11,5] the graph is regarded as an electrical network with
edges being unit resistances. The CF-betweenness of an edge is the amount of
current that flows through it, averaged over all source-destination pairs, when one
unit of current is induced at the source, and the destination (sink) is connected
to the ground. This exploits the well known relation between electrical networks
and reversible Markov chains, see e.g. [1,7].

The computational difficulty of Betweenness and the CF-betweenness is that
the computations must be done over the set of all source-destination pairs.
The best previously known computational complexity for the CF-betweenness
is O(I(n − 1) + mn log n) where I(n − 1) is the complexity of the inversion of
matrix of dimension n− 1.

In the present work we introduce new betweenness centrality measures: α-
current flow betweenness (α-CF betweenness) and its truncated version. The
main purpose of these new measures is to bring down the high cost of the CF-flow
betweenness computation. Our proposed measures are very close in performance
to the CF-betweenness, but they are comparable to the PageRank algorithm [6]
in their modest computational complexity. Our goal is to provide and analyze
efficient algorithms for α-CF betweenness and truncated α-CF betweenness, to
compare the α-CF betweenness to other centrality measures.

2 Alpha current flow betweenness

We view the graph G as an electrical network where each edge has resistance
1/α, and each node is connected to ground node n+1 by an edge with resistance
1/(1−α). This is in the spirit of the PageRank, indeed, the current (probability
flow) is inversely proportional to the resistance, and thus the fraction α of the
current from a node flows to the network, while the fraction (1−α) of the current
is directed to the sink. Since the graph is undirected, we use a convention that
(v, w) and (w, v) represent the same arc in E, but depending on the chosen
direction the current along this arc is considered to be positive or negative.

Assume that a unit of current is supplied to a source node s ∈ V , and there is

a destination node t ∈ V connected to the ground. Let ϕ
(s,t)
v denote the absolute

potential of node v ∈ V , if s is a source s, and t is the destination. Assume

without loss of generality that s = 1 and t = n (ϕ
(1,n)
n = ϕ

(1,n)
n+1 = 0). The vector

of absolute potentials of the other nodes ϕ(1,n) = [ϕ
(1,n)
1 , ..., ϕ

(1,n)
n−1 ]T is a solution

of the following system of equations (Kirchhoff’s current law):

[D̃ − αÃ]ϕ(1,n) = b̃, (2)

where D̃ and Ã are the degree and adjacency matrices of the graph without node
n and b̃ = [1, 0, ..., 0]T , see [5].

Obviously, we would not like to solve a separate linear system for each source-
destination pair with different left hand side coefficient matrix [D̃− αÃ]. In the



following theorem we demonstrate that we need to only invert the coefficient
matrix [D − αA].

Theorem 1 The voltage drop along the edge (v, w) is given by

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v), (3)

where (cv,w)v,w∈V , are the elements of the matrix C = [D − αA]−1.

Proof: Assume again without loss of generality that s = 1 and t = n. The
matrix [D − αA] can be written in the following block structure

D − αA =

[
D̃ − αÃ −αã
−αãT dn

]
, with ã =


a1,n
a2,n

...
an−1,n

 .
Then, divide accordingly the elements of the inverse matrix

C = [D − αA]−1 =

[
C̃ c̃
c̃T cn,n

]
.

Writing the relation [D − αA]C = I in the block form yields

[D̃ − αÃ]C̃ − αãc̃T = I, (4)

[D̃ − αÃ]c̃− αãc̃n,n = 0. (5)

Premultiplying equation (4) by [D̃ − αÃ]−1, we obtain

[D̃ − αÃ]−1 = C̃ − α[D̃ − αÃ]−1ãc̃T . (6)

And premultiplying (5) by [D̃ − αÃ]−1, we obtain

α[D̃ − αÃ]−1ã =
1

cn,n
c̃. (7)

Combining both equations (6) and (7) gives

[D̃ − αÃ]−1 = C̃ − 1

cn,n
c̃c̃T ,

and hence ϕ(1,n) = [D̃ − αÃ]−1b̃ = C̃·,1 − c1,n
cn,n

c̃. Thus, we can write

ϕ(1,n)
v − ϕ(1,n)

w = (cv,1 − cw,1) +
c1,n
cn,n

(cw,n − cv,n)

The above expression is symmetric and can be rewritten for any source-target
pair (s, t). That is,

ϕ(s,t)
v − ϕ(s,t)

w = (cv,s − cw,s) +
cs,t
ct,t

(cw,t − cv,t).



Furthermore, since matrix C is symmetric for symmetric graphs, we can rewrite
the above equation as

ϕ(s,t)
v − ϕ(s,t)

w = (cs,v − cs,w) +
cs,t
ct,t

(ct,w − ct,v),

which completes the proof. �

The current I
(s,t)
e through edge e = (v, w) is equal to α(ϕ

(s,t)
v − ϕ(s,t)

w ). Let

x(s,t)e = |ϕ(s,t)
v − ϕ(s,t)

w |, (v, w) ∈ E

be the difference of potentials, that determines the absolute value of the current
on the edge. The α-CF betweenness of edge e is defined by

xαe =
1

n(n− 1)

∑
s,t∈V,s 6=t

x(s,t)e , e ∈ E. (8)

Further, for each node v ∈ V its α-CF betweenness is defined as the sum of the
α-CF betweenness scores of its adjacent edges:

α-CF betweenness(v) =
∑

(v,w)∈E

xα(v,w), v ∈ V. (9)

With this definition, the node is central if a relatively large amount of current
flows from this node to the network. This is in accordance to the original CF-
betweenness of [11,5], except we introduced the additional sink ground node
n + 1. This mitigates the computational complexity because the original CF-
betweenness require the inversion of the ill-conditioned matrix [D̃ − Ã], while
for computing α-CF betweenness we need to invert the matrix [D− αA], which
is a well posed problem, and has many possible efficient solutions, for example,
power iteration and Monte Carlo methods. In fact, as we shall show below, we
need to obtain just a few rows of the inverse matrix [D − αA]−1. In the rest
of the paper we will discuss the computations and the properties of the α-CF
betweenness.

3 Computation of α-CF betweenness

Due to the presence of the auxiliary node n+ 1, the value of x
(s,t)
e on the right-

hand side of (8) can be computed efficiently with high precision for any source-
destination pair. However, the summation over all n(n − 1) pairs is a problem
of prohibitive computational complexity even for graphs of a modest size. The
solution is to perform the computations for sufficiently many source-destination
pairs. This presents two problems: how to sample the source-destination pairs
and how many such pairs we need to achieve a good precision.

Ideally, we would like to choose the most representative source-destination

pairs. In particular, we can expect large values of x
(s,t)
e if the sum of all potentials



∑
v∈V ϕ

(s,t)
v is maximal. Let us take again s = 1, t = n. Then we obtain∑

v∈V
ϕ(1,n)
v = 1T [D̃ − αÃ]−1b̃ = 1T [I − αP̃ ]−1D̃−1b̃, (10)

where 1 is a column vector of ones, and P̃ is the transition probability matrix for
a simple random walk on G with absorption in n. Compare this to the well-known
expression for PageRank vector π = (π1, . . . , πn) with uniform teleportation and
damping factor α:

π =
1− α
n

1T [I − αP ]−1.

Note that the vector 1T [I−αP̃ ]−1 in (10) is very similar to PageRank, except it
nullifies the contribution of node n. We denote this vector by π̃ and recall that
b̃ = (1, 0, . . . , 0)T to obtain ∑

v∈V
ϕ(1,n)
v = π̃1d

−1
1 .

It is well-known and is also confirmed by our experiments that the PageRank
of a node in an undirected graph is strongly correlated to the degree of the
node. Thus, with any choice of the source, the sum of the potentials is of similar
magnitude, except for the cases when the contribution of the destination node is
defining for the PageRank mass of the source. However, the destination node will
mainly affect the PageRank of its close neighbours. Thus, we propose to choose
the source-destination pair uniformly at random, so that there is no preference
on the source, and the probability of choosing neighbour nodes is small. This
results in the next algorithm for computing the α-CF betweenness.

Algorithm 1.

1. Select a set of pairs of nodes (si, ti), i = 1, ..., N , uniformly at random;
2. For each si or ti, i = 1, ..., N compute the rows csi,·, cti,·. (this can be done

either by power iteration or by Monte Carlo algorithm);
3. For each edge e = (v, w) and each pair (si, ti), use (3) to compute

x(si,ti)e = |ϕv − ϕw|.

4. Average over source-destination pairs

x̄αe =
1

N

N∑
i=1

x(si,ti)e .

Since we chose the pairs (si, ti) uniformly at random then for every edge
e, x̄αe is just a sample average where all values are between zero and one. Then
using the standard approach for the analysis of the series of independent random
variables we have the following result.



Theorem 2 Algorithm 1 approximates the alpha current flow betweenness in
O(m log(n)ε−2 log(ε)/ log(α)) time and O(m) space to within an absolute error
of ε with arbitrarily high fixed probability.

Proof: In addition to the proof of Theorem 3 in [5] we just need to note that we
can compute Personalized PageRank with precision ε in O(log(ε)/ log(α)) power
iterations. �

4 Truncated α-CF betweenness

In the experiments we noticed that the values x
(s,t)
e have a high variance, which

results in poor precision when evaluating xαe . A closer analysis revealed that the

edges adjacent to the source s receive large values of x
(s,t)
e . This is especially

apparent when e = (v, s), where v has degree 1, so (v, s) is its only edge, and s
has a large degree. This can be explained using the random walk interpretation.
Consider a PageRank-type random walk on G. At each node, with probability
α, the random walk traverses a randomly chosen edge of this node, and with
probability 1− α it jumps to the sink n+ 1. Denote by TB the number of steps
of the random walk needed to hit set B. Then it follows from Proposition 10

of [1, Chapter 3] that ϕ
(s,t)
v /ϕ

(s,t)
s = Pv(T{s} < T{t,n+1}), where Pv(·) is a

conditional probability given that the random walk starts at v. Hence, if s is

the only neighbor of v then ϕ
(s,t)
v /ϕ

(s,t)
s = α, the probability of no absorption

before reaching s. Thus, |ϕ(s,t)
s − ϕ(s,t)

v | = (1 − α)ϕ
(s,t)
s , which can be large if

e.g. α = 0.8 because ϕ
(s,t)
s is the largest potential in the network. Furthermore,

the original CF-betweenness corresponds to α = 1, implying that the current in
(v, s) is zero.

This motivates for the truncated version of α-CF betweenness where for each
edge (v, w) we only take into account the scores x

(s,t)
(v,w) if v, w 6= s. In Figure 1

we present log-linear plots of the empirical complementary distribution function

of x
(s,t)
(v,w) over all pairs (s, t) (solid line), and its truncated version (dashed line).

The plots are given for two edges in the Dolphin social network described in
Section 5 below. Nodes 1 and 36 are central in the network, so the high α-CF
betweenness of (1,36) is expected. Node 60 has degree 1, so edge (32,60) gains
an unwanted high betweenness in the non-truncated version.

Since the truncated α-CF betweenness gives lower scores to the edges con-
nected to nodes of degree 1, one can expect that it has a higher correlation
with CF-betweenness, especially for not very large α. This is confirmed below in
Figure 2. Moreover, the truncated version removes outliers, and does not have
large spread in values, thus standard statistical procedures, based on the Central
Limit Theorem can be applied. Also, because of the smaller variance, Algorithm 1
achieves a desired precision with a smaller sample of source-destination pairs.

5 Datasets

We consider the four graphs described below.



Fig. 1. The number of pairs s, t with x
(s,t)

(v,w) > x over all pairs (s, t) (solid line) and

only pairs with v, w 6= s. (dashed line)

Dolphin social network. This small graph represents a social network of
frequent associations between 62 dolphins in a community living off Doubtful
Sound, New Zealand [10].

Graph of VKontakte social network. We have collected data from a
popular Russian social network VKontakte. We were considering subgraph rep-
resenting one of the connected components of people who stated that they were
studying at Applied Mathematics - Control Processes Faculty at the St. Peters-
burg State University in different years. We ran the breadth-first search (BFS)
algorithm starting at one specific node on the network and then anonymized
the obtained users’ data leaving only information about connections between
people. Collected network consists of 2092 individuals out of total 8859 denoted
the specified faculty in the Education field.

Watts-Strogatz model. As an artificial example, we used a random graph
generated by the Watts-Strogatz model. We have chosen this model as it com-
bines high clustering and short average path length, thus different centrality
measures give very different results on this graph. For other random models
considered (Erdos-Renyi and Barabasi-Albert) all measures are highly correlated
and behave very similar to each other.

Enron graph. Enron email communication network is a well known test
dataset. It covers all the email communication within a dataset of around half
million emails between Enron’s employees. The node are e-mail addresses, and
the edges appears if an e-mail message was sent from one e-mail to another.
Although this graph is small compared to, say, web or Twitter samples, it is
already prohibitively large for computing the CF-betweenness in its original
form.

6 Numerical results for α-CF betweenness

To begin with, we compare the two versions of α-CF betweenness (truncated and
without truncation) to the CF-betweenness scores defined as in [11,5]. Figure 2
presents the results for the three smaller graphs, in which the latter measure



|V | |E| 〈deg(v)〉 diam(G) Cclustering 〈d(u, v)〉

Dolphin social network 62 159 5.13 8 0.259 3.357
VKontakte AMCP social graph 2092 14816 14.16 14 0.338 4.598
Watts-Strogatz 1000 6000 12.00 6 0.422 3.713
(n = 1000, k = 12, p = 0.150)
Enron 36692 183831 10.02 11 0.4970 ≈ 4.8

Table 1. Datasets characteristics

could be computed. As a correlation measure we use the Kendall tau rank cor-
relation. We observe that the truncated version is better correlated with the

Fig. 2. Correlations between α-CF betweenness and truncated α-CF betweenness with
CF-betweenness as a function of α.

CF-betweenness when α is not very close to one. As explained above, this is
because the high probability of absorption results in a relatively high current in
the edges connected to the source, which is not necessarily the case if absorption
is only possible in the destination node.

Next, we demonstrate that that we can compute α-CF betweenness in the
Enron graph, where the computation of CF-centrality is infeasible. We have
evaluated α-CF betweenness, non-truncated and truncated, with α = 0.98. We
have run Algorithm 1 using with N = 20 · 106 source-destination pairs. In the
plot below we show the complementary distribution function in log-linear scale,
of the score x0.98e across the edges.

Note that distribution over edges (the left plot in Figure 3) does not have a
large spread of values, except one outlier edge that connects two most important
hubs. Since the weights of the edges are comparable, it is to be expected that in
this graph the nodes of large degrees are also the ones with highest betweenness.
Indeed, the Kendall’s tau correlation between α-CF betweenness and degree of



Fig. 3. Distribution of α-CF betweenness scores in the Enron graph, truncated (dashed
line) and not truncated (solid line). Left: x0.98e for edges e ∈ E. Right: α-CF betweenness
(v) for v ∈ V . On the x-axis are the values of α-CF betweenness, on the y-axis the
number of edges/nodes with the score larger than x.

the nodes turns out to be 0.808, which is higher than in small examples below.
The reason can be either the graph size or its structure. In future research we
will investigate how the CF-betweenness score, e.g. its maximum value across
the edges, scales with the graph size in graphs with power law degrees.

We further present correlations between our proposed measures and other
measure of betweenness. These are computed on smaller graphs where we could
obtain exact values of all presented measures, see Tables 2–4. For completeness,
we also include one distance-base centrality measure - the Closeness Centrality:

CC(v) =
n− 1∑

w∈V,w 6=v d(v, w)
,

where d(v, w) is the graph distance between v and w. Betweenness (Between.)
is computed as in (1), and PageRank(PR) is computed with α = 0.85.

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.930 0.548 0.665 0.737 0.864 0.855 0.769
PageRank 0.930 1.000 0.458 0.658 0.733 0.872 0.827 0.757
Closeness 0.548 0.458 1.000 0.578 0.575 0.515 0.573 0.591
Betweenness 0.665 0.658 0.578 1.000 0.829 0.749 0.759 0.828
CF 0.737 0.733 0.575 0.829 1.000 0.798 0.820 0.939
αCF(0.8) 0.864 0.872 0.515 0.749 0.798 1.000 0.925 0.838
αCF-tr(0.8) 0.855 0.827 0.573 0.759 0.820 0.925 1.000 0.876
αCF(0.98) 0.769 0.757 0.591 0.828 0.939 0.838 0.876 1.000

Table 2. Kendall tau for centrality measures in Dolphin social network.

Note that α-CF betweenness is strongly correlated with CF-betweenness.
The Closeness Centrality does not agree well with the CF-betweenness, even the
PageRank and the degrees have a higher correlations with the CF-betweenness
in real graphs. Recent paper [2] suggests more measures based on distance, and



Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.655 0.679 0.521 0.545 0.659 0.668 0.599
PageRank 0.655 1.000 0.375 0.662 0.717 0.833 0.811 0.766
Closeness 0.679 0.375 1.000 0.382 0.356 0.424 0.445 0.395
Betweenness 0.521 0.662 0.382 1.000 0.761 0.760 0.749 0.778
Current Flow 0.545 0.717 0.356 0.761 1.000 0.812 0.833 0.917
αCF(0.8) 0.659 0.833 0.424 0.760 0.812 1.000 0.938 0.878
αCF-tr(0.8) 0.668 0.811 0.445 0.749 0.833 0.938 1.000 0.903
αCF(0.98) 0.599 0.766 0.395 0.778 0.917 0.878 0.903 1.000

Table 3. Kendall tau for centrality measures in the social graph VKontakte AMCP.

Degree PR Closeness Between. CF αCF(0.8) αCF-tr(0.8) αCF(0.98)

Degree 1.000 0.891 0.462 0.526 0.610 0.643 0.581 0.612
PageRank 0.891 1.000 0.415 0.485 0.565 0.610 0.546 0.567
Closeness 0.462 0.415 1.000 0.655 0.613 0.647 0.666 0.628
Betweenness 0.526 0.485 0.655 1.000 0.853 0.819 0.852 0.857
Current Flow 0.610 0.565 0.613 0.853 1.000 0.910 0.914 0.979
αCF(0.8) 0.643 0.610 0.647 0.819 0.910 1.000 0.935 0.923
αCF-tr(0.8) 0.581 0.546 0.666 0.852 0.914 0.935 1.000 0.930
αCF(0.98) 0.612 0.567 0.628 0.857 0.979 0.923 0.930 1.000

Table 4. Kendall tau for centrality measures in the Watts-Strogatz graph (n=1000,
k=12, p=0.150).

efficient computation method for such measures is presented in [3]. In future it
will be interesting to compare these new measures to α-CF betweenness.

7 Centrality measures and network vulnerability

We now consider how well the CF-betweenness and α-CF betweenness can indi-
cate the nodes responsible for maintaining the network connectivity. We follow
the methodology in [9]. As measures of connectivity we choose the average in-
verse distance

< d−1 >=
1

n(n− 1)

∑
u,v∈V,u 6=v

1

d(u, v)

and the size of the largest connected component. In the experiment, we remove
the top nodes one by one, according to different betweenness measures, and
observe how the connectivity of the network changes. In Figure 4 the results are
presented for the inversed average distance.

The results for the social graph VKontakte are especially interesting, because
this network turns out to be less vulnerable to the removal of nodes with large de-
gree than nodes with large betweenness and its modifications (CF-betweenness,
α-CF betweenness, and truncated α-CF betweenness). On the small Dolphin



Fig. 4. Inverse average distance as a function of the fraction of removed top-nodes
according to different betweenness centrality measures.

social network there is no much difference in vulnerability with respect to dif-
ferent centrality measures. Finally, on the artificial Watts-Strogatz graph the
CF-betweenness and our proposed two versions of α-CF betweenness find the
nodes that are most essential for the network connectivity.

Another connectivity measure of the network is the size of its larges con-
nected component. In Figure 5 we plot the size of the largest connected com-
ponents against the fraction of removed top-nodes. We do not present the plot
for the Watts-Strogatz graph because it remains entirely connected, so the size
of its largest connected component equals to the number of remaining nodes
irrespectively of which nodes are removed first. For the two real graphs, the
CF-betweenness is most efficient in reducing the size of the giant component.
On the Dolphin graph, α-CF betweenness performs closely to CF-betweenness,
except the interval when 13-18% of nodes are removed. On the graph VKon-
takte, α-CF betweenness and its truncated version perfom comparably to the
CF-betweenness. Again, on this graph, degree and Closeness centrality fail to re-
veal the nodes responsible for the network connectivity. The α-CF betweenness
with α = 0.98 appears to be a better measure for betweenness of a node than
the truncated α-CF betweenness with α = 0.8. The latter however also gives
gives good results, and can be computed easier on large graphs due to the faster
convergence of the power iteration algorithm.

We conclude that both α-CF betweenness and truncated α-CF betweenness
provide an adequate measure for the role of a node in network’s connectivity.
Furthermore, their computational costs are lower than for known measures of
betweenness, and the computations can be done in parallel easily. Thus, α-CF
betweenness can be applied in large graphs, for which computations of other
measures of betweenness are merely infeasible.



Fig. 5. The size of the largest connected component as a function of the fraction of
removed top-nodes according to different betweenness centrality measures.
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