Quick detection of popular entities
in large directed networks

ABSTRACT

In this paper, we address a problem of quick detection of
popular entities in large online social networks. Practical
importance of the problem is attested by a large number
of companies that continuously collect and update statistics
about popular entities. We suggest an efficient two-stage
algorithm for solving this problem. For instance, our al-
gorithm needs only one thousand API requests in order to
find the top-50 most popular users in Twitter, a network
with more than a billion of registered users. Our algorithm
is easy to implement, it outperforms existing methods, and
serves many different purposes, such as finding most popular
users or most popular interest groups in social networks. An
important contribution of this work is the analysis of the pro-
posed algorithm using the Extreme Value Theory — a branch
of probability that studies extreme events and properties of
largest order statistics in random samples. Using this the-
ory, we derive accurate predictions for the algorithm’s per-
formance and show that the number of API requests for find-
ing top-k most popular entities is sublinear in the number
of entities. Moreover, we formally show that the high vari-
ability among the entities, expressed through heavy-tailed
distributions, is the reason for the algorithm’s efficiency. We
quantify this phenomenon in a rigorous mathematical way.

1. INTRODUCTION

In this paper, we propose a randomized algorithm for
quick detection of popular entities in large online social net-
works. The entities can be, for example, users or interest
groups, user categories, geographical locations, etc. For in-
stance, one can be interested in finding out a list of Twit-
ter users with many followers or Facebook interest groups
with many members. Practical importance of the prob-
lem is attested by a large number of companies that con-
tinuously collect and update statistics about popular enti-
ties (twittercounter.com, followerwonk.com, twitaholic.com,
www.insidefacebook.com, yavkontakte.ru just to name a few).

The problem at hand may seem trivial, if one assumes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

that the network structure and the relation between entities
are known. However, even then finding, for example, top-k
in-degree nodes in a directed graph G of size N takes the
time O(N). For large networks, such linear complexity is al-
ready too high. In fact, for any practical purpose, it is much
more valuable to find an approximate result in a sublinear
time than an exact result in a linear time. Furthermore,
the data of current social graphs is typically available only
to the owners of the social network, and can be obtained
by other interested parties only through API requests. The
rate of allowed API requests is usually quite small. For in-
stance, Twitter has the limit of one access per minute for
one standard API account. Then, in order to crawl the en-
tire network with more than 500 million users one need more
than 950 years. Clearly, we would like to find most popular
entities using only a small number of API requests.
Formally, the problem addressed in this paper is as follows.
Let V be a set of entities, usually users, that can be accessed
using API requests. Let W also be another set of entities
(possibly equal to V). We represent V and W as vertices of a
bipartite graph (V, W, E), where a directed edge (v,w) € E,
with v € V, w € W, represents a relation between v and
w. For instance, if V.= W is a set of Twitter users, then
(v,w) € F may mean that v follows w, or that v retweeted a
tweet from w. Note that any directed graph G = (V, E) can
be represented equivalently by the bi-partite graph (V, V, E).
One can also suppose that V is a set of users and W is a set
of interest groups, while the edge (v, w) represents that user
v belongs to group w. Our goal is to quickly find top-k in-
degree entities in W. In this setting, throughout the paper,
we use the terms ‘nodes’ and ‘entities’ interchangeably.
The algorithm proposed in this paper can detect popu-
lar entities with high precision using very small number of
API requests. Most of our experiments are performed on
the Twitter graph, because it is a good example of a huge
network (billion of registered users) and very limited rate of
requests to API. We use only 1000 API request to find top-
50 Twitter users with very high precision. We also demon-
strate the efficacy of our approach on the example of online
social network (to be specified in the camera-ready version)
which had, at the time of article preparation, more than 200
million registered users. We use our algorithm to quickly
detect most popular interest groups in this social network.
Experiments on random graph models show that our algo-
rithm outperforms the baselines algorithms from [4] and [14].
Moreover, our algorithm can be used in a very general set-
tings for finding most popular entities, while the baseline
algorithms can only be use for finding nodes of largest de-

grees in directed ([14]) or undirected ([4]) graphs.

An important contribution of this work is the novel anal-
ysis of proposed algorithm using classical results of the Ex-
treme Value Theory (EVT) — a branch of probability that
studies extreme events and properties of largest order statis-
tics in random samples. We refer to [8] for a comprehensive
introduction to EVT. Specifically, we treat the largest in-
degrees in W as high order statistics of a heavy-tailed dis-
tribution, and use EVT to obtain the limiting properties of
these order statistics. This way we obtain statistical estima-
tion of the magnitude of the largest in-degrees in W. Using
these mathematical tools, we can, for instance, accurately
predict the average fraction of correctly identified top-100
most followed users in Twitter using only the knowledge of
top-20 degrees, which can be detected by our algorithm very
quickly with practically 100% accuracy.

We derive the complexity of our algorithm in terms of the
number of entities in W show that the complexity is sublin-
ear if the in-degree distribution in W is heavy tailed. Intu-
itively, this should be the case because the high variability
of the in-degrees implies that the largest entities have ex-
tremely large number of in-links and thus are easy to find.
We formalize this argument using the EVT results.

The algorithm consists of two stages. The parameters of
the algorithm, n1 and ns, are the number of API requests
used on the first and the second stage, respectively. The
performance of the algorithm is very robust with respect
of the parameters’ values. We find the optimal scaling for
n1 and ne with respect to three measures of the algorithm
performance: the average fraction of correctly identified top-
k entities, the first-error index (the number of the highest
statistics within top-k that was not included in the identified
top-k list), and the the sum of incoming degrees of identified
no entities. Notice that for fixed n, the latter performance
measure does not monotonically grows with na because with
small n1 the number of links received from n; random users
is a poor indication of the node’s actual degree. This can be
clearly seen in Figure 2 for the Twitter graph.

The rest of the paper is organized as follows. In Section 2,
we give a short overview of the related work. In Section 3,
we formally describe our algorithm. We empirically show
the efficiency of our algorithm and compare it to baseline
strategies in Section 4. We present a detailed analysis of the
algorithm in Section 5 and evaluate its optimal parameters
with respect to the above mentioned performance character-
istics. Section 6 concludes the paper.

2. RELATED WORK

Over the last years data sets have become increasingly
massive. For such large data any complexity higher than
linear (in dataset size) is unacceptable, and even linear com-
plexity may be too high. It is also well understood that
an algorithm, which runs in sublinear time, cannot return
an exact answer. In fact, such algorithms often use ran-
domization, and then errors occur with positive probability.
Nevertheless, in practice, a rough but quick answer is often
more valuable than exact but computationally demanding
solution. Therefore, sublinear time algorithms become in-
creasingly important, and many studies of such algorithms
have appeared in recent years (see, e.g., [10, 13, 15, 16]).

An essential assumption of this work is that the network
structure is not available, and has to be discovered using
the API requests. This setting is similar to on-line compu-

tations, when information is obtained and immediately pro-
cessed while crawling the network graph (for instance the
World Wide Web). There is a large body of literature where
such on-line algorithms are developed and analyzed. Many
of these algorithms are developed for computing and updat-
ing the PageRank vector [1, 6]. In particular, the algorithm
recently proposed in [6] computes the PageRank vector in
sublinear time. Furthermore, the probabilistic Monte Carlo
methods [2, 11] allow to continuously update the PageRank
as the structure of the Web changes.

Randomized algorithms are also used for discovering the
structure of social networks. Often random walks are de-
signed in such a way that the desired nodes are easily found.
For example, in [12] an unbiased random walk, where each
node is visited with equal probability, is constructed in or-
der to find the degree distribution on Facebook. A different
random walk is designed in [4] for finding nodes with largest
degrees in undirected graphs. This random walk has jumps,
so that it does not get stuck around just one hub, but unlike
PageRank, its a stationary distribution completely defined
by the nodes’ degrees.

The problem of finding the most popular entities in large
networks has been analyzed in several papers. In Section 4.3
we show that our algorithm outperforms two baselines: the
random walk algorithm in [4], and the crawling algorithm in
[14]. The latter algorithm [14] is designed to efficiently dis-
cover the correct set of pages with largest incoming degrees
in a fixed network, and to track these pages over time when
the network is changing. Their setting is different from ours
in several aspects. For example, in our case we can use API
to get indegree of any given item, while in the World Wide
Web this information is not available. On the other hand,
the algorithm in [14] is designed to discover the graph struc-
ture, and cannot be easily adopted for other tasks, such as
finding most popular use categories or interest groups.

To the best our knowledge, this is the first work that
presents and analyzes an efficient algorithm for retrieving
most popular entities under realistic API constraints.

3. ALGORITHM DESCRIPTION

Recall that we consider a bipartite graph (V, W, E), where
V and W are sets of entities, and (v, w) € E represents a
relation between the entities.

Let n = n1 +ne. Our algorithm has two stages, described
below. See Algorithm 1 for the pseudocode.

First stage. We start by sampling uniformly at random
a set A of ny entities (users, or nodes) vi,...,vn, € V. The
nodes are sampled independently, so the same node may
appear in A more than once, in which case we regard each
copy of this node as a different node. Since multiplicities
occur with very small probability this does not affect the
efficiency of the algorithm but simplifies the implementation.
For each node in A we record its out-neighbors in W. In
practice, we bound the number of recorded out-links by the
maximal number of id’s that can be retrieved within one API
request, thus the first stage uses exactly n1 API requests.

Second stage. Let Sy, w € W, be the number of nodes
in A that have a (recorded) edge to w, and let w; be the node
in W with i-th largest values of S, so that Sy, = Sw, =
-+ 2 Swy. Then we use another ny API requests to retrieve
the actual in-degrees of the ny top-nodes wi, ..., wn,.

The set {wi, w2, ..., wn,} is supposed to contain nodes
from W with large in-degrees. For example, if we are inter-

ested in top-k in-degree nodes in a directed graph, we hope
to identify these nodes with high precision if £ is significantly
smaller than ns.

Algorithm 1: Find entities with large incoming de-
grees

input : Set of entities V of size M, set of entities
W of size N, number of random nodes n1,
number of candidate nodes na

output: Nodes w1, ... wn, € W, their degrees

diy...,dn,
for i+ 1 to N do
| S[i] < 0;

for i < 1 to n1 do
v < random(M);
F < OutNeighbors(v);
foreach j in F' do
Sl <SG+ 1

W, ...y Wny Top_na(S) // Slwil,..., S[wn,] are
top ng values in S;
for i < 1 to n2 do

L d; «+ InDegree(w;);

4. EXPERIMENTS

4.1 Twitter graph

First, we show that our algorithm quickly finds the most
popular users in Twitter graph. Formally, V is a set of
Twitter users, W =V, and (v, w) € E iff v is a follower of w.
Twitter is an example of a huge network with limited access
to its structure. Information on the Twitter graph can be
obtained via Twitter API. The standard rate of requests to
API is one per minute. Every vertex has an id, which is an
integer number starting from 12. The largest id of a user is
~ 1460M (at the time when we performed the experiments).
Due to such id assignment, a random user in Twitter can be
easily chosen. The only problem is that some users in this
range have been deleted, some are suspended, and therefore
errors occur when addressing the id’s of these pages. In our
implementation we usually skip errors and assume that we
do not spend resources on such nodes. The fraction of errors
is ~ 20%.

Given an id of a user, a request to API can return one
of the following: i) the number of followers (indegree), ii)
the number of followees (outdegree), or iii) at most 5000
id’s of followers or followees. If a user has more than 5000
followees, then all their id’s can be retrieved only by using
several API requests. Instead, as described above, we record
only the first 5000 of the followees and ignore the rest. This
does not affect the performance of the algorithm because we
record followees of randomly sampled users, and the fraction
of Twitter users with more than 5000 followees, is small.

In order to obtain the ground truth, we first took nq =
nge = 500000 and found top-1000 users with a very high
precision. We used the obtained list for evaluating the per-
formance of our algorithm.

Figure 1 shows the average fraction of correctly identified
users from top-k for different k£ over 100 experiments, as a

function of ny, when n = 1000. Remarkably, we can find
top-50 users with very high precision.

200

T T
k=50 ——

k=100
180 |- k=150 —— 7]
k=200 ——
160 + T k=250 -
] / N\
S 140 / . J
3
€ 120 .
c
(7}
h=]
% 100 .
o]
o
E & |
c
60 .
40 :
20 | | | | | | | | |

0 100 200 300 400 500 600 700 800 900 1000

Figure 1: The number of correctly identified top-k£ most
followed Twitter users as a function of ns, with n = 1000.

We have also looked at the first-error index — the position
of the first mistake in the top-k list. Formally, if we correctly
identified top-(i—1) users, but did not find the ith user, then
the first-error index is i. Again, we have averaged the results
over 100 experiments. Results are shown in Figure 4 below
(red line). Note that with only 1000 API requests we can
correctly identify more than 50 users without any omission.

The sums of the degrees of the identified top-n2 entities,
with n = 1000, are depicted in Figure 2. Observe that
here the optimal value of ns is larger than in two previously
discussed metrics. Thus, in order to to discover as many true
in-links as possible, we may want to check more incoming
degrees in the second stage of the algorithm, so that we have
a large output list, but with less precision. We will discuss
this in more detail in Section 5.3.

4.2 Finding largest interest groups

Let V' be a set of users, W be a set of interest groups, and
(v,w) € E iff v is a member of w.

We will demonstrate that our algorithm can find the most
popular groups in a large social network with more than
200M registered users (to be specified in the camera-ready
version). As for Twitter, information on the network under
consideration can be obtained via API. Again, all users have
ids: integer numbers starting from 1. Due to this id assign-
ment, a random user in this network can be easily chosen.
In addition, all interest groups also have their own id’s.

We are interested in the following requests to API: i) given
id of a user, return his or her interest groups, ii) given id of
a group return its number of members. If a user decide to
hide the list of groups, then an error occurs. The portion of
such errors is ~ 30%.

As before, first we used our algorithm with n; = ny =
50000 in order to find the most popular groups with high
precision. Table 1 presents some statistics on the most pop-
ular groups. Then, we took n; = 700, ny = 300 and com-

210° - JENy 7

1100/ N

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Figure 2: The sum of incoming degrees of identified users as
a function of n2, n = 1000.

Table 1: The most popular groups

Rank | Number of participants | Topic |

1 4,35M humor
2 4, 1M humor
3 3,76M movies
4 3,69M humor
5 3,59M humor
6 3,58M facts
7 3,36M cookery
8 3,31M humor
9 3,14M humor
10 3,14M movies
100 1,66M success

puted the fraction of correctly identified groups from top-
100. Using only 1000 API requests, our algorithm identifies
on average 73.2 from the top-100 interest groups (averaged
over 25 experiments). The standard deviation is 4.6.

4.3 Comparison with baseline algorithms

In this section we compare our algorithm with the algo-
rithms suggested in [4] and [14]. We start with the descrip-
tion of these algorithms.

Random walk based algorithm [4]. The algorithm
in [4] is a randomized algorithm for undirected graphs that
finds a top-k list of nodes with largest degrees in sublinear
time. It is based on the random walk with uniform jumps,
described by the following transition probabilities [5]:

(1)

a/N
di+a’

Py = { ad/ﬁ-zlv 1fz has a link to 7, . ‘

if ¢ does not have a link to j,
where N is the number of nodes in the graph and d; is
the degree of node i. The parameter o controls how often
the random walk makes an artificial jump. In [4] it is sug-
gested to take the parameter o equal to the average degree

Algorithm 2: Random walk based algorithm

input : Graph G with N nodes, E edges, number
of steps n, size of output list k, parameter o
output: Nodes v1, ... vk, their degrees di, ..., d
v < random(N);
F <+ Neighbors(v);
D] + size(F);
for i < 2 to n do
sample U[O,l},
. D(v]
if r < Blojta then
L v + random from F’;

else
| v < random(N);

F + Neighbors(v);
| D[] « size(F);
V1, ...,v < Top_k(D) // D[vi1],, D[vk] are top k
values in D;

in order to maximize the number of independent samples.
Interestingly, this implies that the random walk, in station-
arity, makes on average just one step between the jumps.
With such choice of o the random walk method of [4] mim-
ics most closely the suggested algorithm with independent
sampling and exactly one step from entity in V' to entity in
W. We should note that the random walk method could
be very valuable when the independent uniform sampling is
expensive, for example, when the id space is very sparse.

The random walk keeps a candidate list of £ nodes. Once
a new node is discovered according to the transition proba-
bility (1), we check its degree and compare it with degrees
of the nodes in the candidate list. If this newly discovered
node has a degree larger than degrees of some nodes in the
candidate list, the newly discovered node is inserted in the
candidate list and a node with the smallest degree in the
candidate list is pushed out. See Algorithm 2 for more de-
tailed description. The algorithm can be run for a predefined
number of steps or can be terminated according to one of
the stopping criteria provided in [4].

Crawl-Al and Crawl-GAI [14]. At each step we con-
sider one node and ask for its outgoing edges. At step n any
node j has its apparent indegree S;j, j = 1,..., N: the num-
ber of discovered edges pointing to this node. In Crawl-Al
the next node to consider is a random node, with probability
proportional to the apparent indegree. In Crawl-GAI, the
next node is the node with the highest apparent indegree.
After n steps we get a list of nodes with largest apparent
indegrees. See Algorithm 3 for the pseudocode of the algo-
rithm Crawl-GAI

In the experiments of the present paper we take the same
budget for all tested algorithms to compare their perfor-
mance.

Note that we cannot compare the algorithms on the Twit-
ter graph for several reasons. First, Algorithm 2 works only
on undirected graphs. Second, in order to choose a random
edge of a node, we need at least two request to API, to ask
for followees and followers. Also, the random walk often hits
nodes of high degree, and then many additional requests are
needed to retrieve their followers and followees, because the

Algorithm 3: Crawl-GAI
input : Graph G with N nodes, number of steps n,
size of output list k
output: Nodes v1,... vk

for i < 1 to N do
L S[i] « 0;
for i <1 to N do
v+ argmax(S[i]);
F < OutNeighbors(v);
foreach j in F' do
L Sl + S+ 1;
V1,...,0 < Top_k(S) // Slwi],..., S[wk] are top k
values in S;

Table 2: Number of correctly identified nodes from top-100
averaged over 100 experiments, n = 1000.

| Algorithm | mean | standard deviation |
Our (directed) 91.9 4.88
Crawl GAI (directed) 81.9 2.42
Crawl AT (directed) 82.9 2.38
Our (undirected) 97.9 1.71
Random walk (undirected) | 60.7 4.76

number of id’s that can be obtained in one request is lim-
ited (5000 in Twitter). For example, we need 6K request to
get the followers of a user with 30M followers. Algorithm 3
crawls only out-degrees, that are usually much smaller, but
it can potentially suffer from the API constraints, for exam-
ple, when in-degrees and out-degrees are dependent.

Therefore, in order to compare Algorithms 1-3, we have
generated a random directed graph according to the config-
uration model (see [7]). Our artificial graph has 1M nodes,
6M edges, and the parameter of the power law degree dis-
tribution is 2. This directed graph is used to compare our
algorithm to Crawl-Al and Crawl-GAI. In order to compare
our method to the random walk based algorithm, we treat
the generated graph as undirected. As prescribed by [4], we
took « slightly smaller than the average degree in the graph
(in our case w = 10) and we considered a random walk with
1000 steps.

For the algorithm suggested in this paper we took n; =
700, ny = 300. The results of comparison can be seen in
Table 2.

We expect our algorithm with ny = 1000 to be close to
Crawl-GALI Indeed, in the directed case our algorithm with
ny = 1000 identifies 81.4 nodes from top-100 on average (this
number is not presented in the table). Further improvement
of our algorithm over the baselines is obtained because of
the right balance between n; and na.

S. ANALYSIS OF THE ALGORITHM

In this section, we present the theoretical analysis of Al-
gorithm 1. The goal of this analysis is: 1) to mathematically
justify our suggested two-steps procedure; 2) to prove that
the total number of API requests, n, scales sublinearly with
the network size, N; 3) to find the optimal scaling of n1 and
n2 (the number of API requests in the first and the second

stage of the algorithm) with respect to n.

We number the nodes in W by 1,2,..., N according to
the number of incoming links, from most popular to least
popular. As prescribed by Algorithm 1, we pick ni nodes
in V uniformly at random. The first important observation
is that S; follows a binomial distribution. Indeed, let F}
be the unknown random in-degree of node j € W, so that
> Fy > ... > Fn. Then, if we label all nodes from V'
that have a edge to j (we call such nodes followers of j),
then S; is exactly the number of labeled nodes in a random

sample of n1 nodes, so its distribution is Binomial (nl, %)

Hence, we have

E(S;|F;) =ma % Var(8;) = m (- W)' (2)

For the top nodes with large F this distribution can be ap-

proximated with the Poisson distribution Poisson(ij)

N

5.1 Candidate list

The quality of the top-k lists produced by Algorithm 1
is defined by the events whether or not the value of Sj,
j=1,...,k, is among the top-n2 values of Si,S2,...,SN,
obtained in the first stage of the algorithm. This is justified
by the intuition that if F; > Fj, then we are likely to see
S; > Si. Note, however, that the case when S; is as small
as 1, the event 1 = S; > S; = 0 is not informative.

EXAMPLE 1. Let us take n1 = ne = 500 in the case of the
Twitter graph. Then the average number of nodes i among
the top-10000 with S; = 1 is already

10* 10* 500F, .
Z P(S; = 1) ~ Z 5710;675001%/5'10 = 2539.1,
i=1 1=1

hence, many more than na nodes will have S; = 1 and can
make it to the top na values of S1,S52,...,5n only with a
small probability.

Motivated by the above considerations, we formulate our
approach in terms of a statistical test as follows. Let our
data be S1, S2,...,Sn. We assume that the observations are
realizations of independent Poisson random variables with
parameters n1 F1 /N,n1F>/N, ... ,n1Fn/N. For the two num-
bers j,l € 1,..., N, we test the null-hypothesis Hy : F; < F}
against the alternative Hy : F; > Fj. Let Si; = Si, = -+ 2>
S¢n2 be the top-n2 order statistics of Si, ..., Sy obtained by
Algorithm 1. Then the first stage of the algorithm is equiv-
alent to rejecting Hy : Fij < F;, forj=1,...,n2 —1such
that

no

Si; > max{S;,,, 1}. (3)

Here the strict inequality is necessary to guarantee that ¢;
is on the top-ng list after the first stage of the algorithm.
If Hy is rejected, then the actual degree of entity i; will be
retrieved in the second stage of the algorithm.

Note that in contrast to the classical hypothesis testing,
here we do not draw the conclusions solely from the observed
random data Si, Se, ..., Sy but we obtain the true values of
the parameters in the second stage of the algorithm. Hence,
if we use S;,, as a proxy for Sp,, then, given F1, F3, ...,
F, the quality of the top-k list is expressed as the power of

the test as follows:
P(node j is found|Fj, F,,)
= P(S; > max{Si,,, 1}|F}, Fi,,) (4)
~ P(S; > max{Suy, 1HE}, Fry)
2, _mPny (pyFp,)®
~ N ~ - 27
; c Nss! >

r>max{s,1}

—mFi (k)"
Nrrl

= Pj(nl), .]:1,,.1{7 (5)

5.2 Performance criteria

The main constraint of Algorithm 1 is the number of API
requests that we can use. In order to measure the perfor-
mance of the algorithm, we propose three objectives, de-
scribed formally in this section.

The first objective is the average number of correctly iden-
tified top-k nodes. This is defined in the same way as in [3]:

Elfraction of correctly indentified top-k entities]
1 1
=7 > P(node j is found|F}, Fr,) & = > Pi(n1). (6)
j=1 j=1

The second objective is the first-error index, which is equal
to 4 if the top (i — 1) entities are identified correctly, but
the top-i entity is not identified. If all top-ns2 entities are
identified correctly, we set the first-error index equal to n+1.
Using that for a discrete random variable X with values
1,2,...,k+1holds E(X) =YF P(X > 1), we obtain the
average first-error index as follows:

ng
E[lst-error index] = Z P(1st-error index > 1)
1=0
1
P(S] > maX{S7;n2 B 1}|F], ey Finz)

1

+

na+1y

Il
M

l

3
|
—-

2 J
R~ Pi(n1). (M)
1i=1

J
Finally, our last objective is the sum of the identified top-
no degrees, that can be written in a very simple form:

ng
U := [sum of identified ny degrees] = Z F;,. (8)
1=1

5.3 EVT performance predictions

In order to compute the values in (6), (7), we need to make
assumptions on the top-nz in-degrees of entities in W: Fi,
Fs, ..., Fy,. To this end, we employ the quantile estimation
techniques from the Extreme Value Theory (EVT).

In most social networks the degrees of the entities show
a great variability. This is often modeled using power laws,
although it has been often argued that classical Pareto dis-
tribution does not always fit the observed data. In our anal-
ysis we assume that the incoming degrees of the entities in
W are independent random variables following a regularly
varying distribution G:

1—G(z) = Lx)z™ ", x>0, 9)
where L(-) is a slowly varying function, that is,

lim L(tx)/L(x)=1, t>0
Tr—r0o0

(L(-) can be, for example, a constant or a logarithm). We
note that (9) describes a broad class of heavy-tailed distri-
butions, for which the EVT arguments presented below are
valid, without imposing the rigid Pareto assumption.

Observe that Fi, Fb, ..., Fny are the order statistics of G.
Assume now that we know the correct values of the top-
m nodes, m < k. This is plausible because, for instance,
in Twitter, with n = 1000, the top-50 nodes are identified
with a very high precision, see Figure 1. Then, in order
to estimate the value of v, we can use the classical Hill’s
estimator 4, based on the top-m order statistics:

1, 1 i log(F3) — log(Fom). (10)

¥ =
m

Next, we use the quantile estimator, given by formula (4.3)
in [9], but we replace their two-moment estimator by the
Hill’s estimator in (10). This is possible because both esti-
mators are consistent (under slightly different conditions).
Under the assumption v > 0, we have the following estima-
tor f; for the (j — 1)/N-th quantile of G:

.
fi = F (%) ., j>1,j<<N. (11)

We propose to use f; as a prediction of Fj.

Note that our argument is inspired but not entirely justi-
fied by [9] because the consistency of the proposed quantile
estimator (11) is only proved for j < m, while we want to use
it for j > m. However, in the experiments we observe that
expressions (6) and (7) are very robust with respect to the
estimated values F1, ..., Fy,. Moreover, 4 increases with m,
and it is easy to see that with smaller 4 the predictions of
the algorithm performance are more conservative.

In Figure 3 we compare the true fraction of the correctly
identified top-k followed Twitter users to the performance
prediction (6) for n = 1000 and k = 100. The magenta
line shows the prediction for the fraction of correctly iden-
tified nodes in (6), where we used the correct values of
Fy, Fs, ..., Fn,. The green line represents the results for the
estimated values of Fi,..., Fy and Fy,, based on the true
values of the top-20 degrees. We see that it is very close to
the magenta line, which is based on the true values of the
degrees.

Similarly, we use formula (7) and the estimator (11) in
order to provide the prediction of the first-error index. The
results are given in Figure 4. We see again that the EVT
predictions are more pessimistic than the experimental re-
sults, so we find the lower bound for the algorithm’s actual
performance. Note also that the shape of the plot and the
optimal value of na have been captures correctly by both
predictors.

It is also clear that there is a principal difficulty in finding
similar analytical predictions for the objective U in (8) be-
cause is it is based not on the actual degrees Fi, Fb,. .., but
on the degrees Fj,, Fi,, .. S Finy, where S;; = Si, = - >
Siy are the order statistics of the S;’s. The exact expres-
sions for such order statistics are rather messy. However,
we can get some insight in the behavior of U in Figure 2.
Indeed, clearly, the sum of correct top-ny degrees, Y .2, Fj,
is an increasing function of ne. Moreover, if we use the esti-
mator (11), then we observe that the largest values of Fj’s

0.9r

0.8

0.7f

0.6

051

0.4} Poisson+EVT based on top-20
Poisson

Experiment
0.3f 1

02 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

Figure 3: Fraction of correctly predicted nodes out of top-
100 as a function of na, with n = 1000: experiments (red);
prediction (5) based on the true values of the degrees (ma-
genta); prediction (5) based on top-m degrees and estimator
(11) with m = 20, 4 = 2.2 (green).

are of the same order of magnitude:

1—1\7
e (2)'

Thus, as long as n: large enough so that a large entity j
receives large S;, we have that U is comparable to Y12, Fj,
and hence U increases in ne. However, as n; becomes smaller,
then small entities will constitute a large proportion of the
set {i1,42,...,in,. For example, if no = 800, n1 = 200, then
we obtain, for the true values of in-degrees in Twitter graph
with N =~ 500M:

800
> P(S: > 1) = 280.9,

i=1

thus on average about 520 out of the top-800 nodes will
be undistinguishable from other, much smaller nodes (see
Example 1). Moreover, in this case

10°
D P(Si > 1) ~ 485.18,

i=1

thus, on average, more than 300 nodes will be included into
{i1,...,1800} essentially on a random basis. Since large ma-
jority of the nodes has very small degrees, this will drasti-
cally affect the magnitude of U. This is exactly what we
observe in Figure 2.

5.4 Optimal scaling for », and n.

In this section our goal is to find the ratio na to n1 which
maximizes the performance of the Algorithm 1. For sim-
plicity, as a performance criterion we consider the fraction
of correctly identified nodes from top-k in (6):

i

k
Z Pj (’I’Ll) — max.
j=1

70

T
Experiment

Poisson
€0 Poisson+EVT based on top-20 ——
e

50 — B!
40 - -
30 B
20 B!
10 - B!
0 1 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Figure 4: The position of first error as a function of ng, with
n = 1000.

We start with analyzing the optimal scaling for ni. Intu-
itively, after the first stage of the algorithm, only O(n1)
nodes j will have S; > 1, and thus there is no need to check
more than no = O(n1) nodes in the second stage, which im-
plies that n; should grow at least proportionally to n. This
is formalized in the next proposition.

PROPOSITION 1. It is optimal to choose n = O(ny).

ProoOF. Let J be a randomly chosen node, and J;, | =
1,...,n1 be independent realizations of J in the first stage
of Algorithm 1. Denote by M the maximal number of neigh-
bors that a given API allows to retrieve. The first stage of
the algorithm returns a list of candidate nodes, for which we
require S; > 1. Observe that the number of such nodes is
bounded by

1«
U:= 3 ZZ; max{M, out-degree(J;) }.

Assuming that the out-degrees of each node are independent,
we obtain that

EWU) = %nlE(max{M, out-degree(J)}),
Var(U) = imVar(max{M, out-degree(J)}).

Note that the API restriction simplifies the derivation be-
cause the variance of max{M, out-degree(J)} is finite. The
formal argument for M = oo and infinite variance of out-
degrees will be similar but requires some more work. Using,
e.g. Chernoff bound or Chebyshev bound we obtain that
P(U > EWU)(1+¢)) — 0as ni — oo. Thus, the number of
nodes j with S; > 1 is at most O(n;) with high probability,
so we choose ny = O(n1) which results in n = O(n1). O

Note that if n is large enough, then the top nodes (first,
second, etc.) can be found with very high probability. Fig-
ure 1 shows that if n = 1000, then for a wide range of nq
the fraction of correctly identified nodes from top-50 is the

same. As k grows, the optimization becomes much more
important. Motivated by this observation, we maximize the
value Pj(n1). We prove the following theorem.

THEOREM 1. Assume that k = o(n) as n — oo. The
mazimizer ny of probability Py(n — n2) is close to the maz-
imal root of the equation

1
3k~

2z —n=0, (12)

that 1is,
ny =x(1+o0(1)), as k/ny —0.

If in addition n3 = o(n) as n — oo, then n3 can be given in
a closed-form asymptotic expression

ng = (3’yk'yn)ﬁ + o(n#).

PROOF. Consider first an extreme regime: z = O(k).
Thus, we exclude the regime n — z = o(n). Consequently,
n1 — 0o as n — oo and we can apply the following normal
approximation

nl(Fk_an) nl(Fk+Fn2)
P, ~P|N
% (11) ((N s N >0
n1 Fy — Fn,)

N \/Fi + Fn,

(A completely formal justification can be given by the Berry-
Esseen theorem.) Thus, in order to maximize the above

o1 . . n Fk _Fn
probability, we need to maximize /5 \/F772 From EVT
k+Fng

it follows that Fj decays as k~7. So, we can maximize
Vn1 (k:_“’ —ny 'Y)

A k=7 +ng

Now if z = O(k), v/n—z = /n(1 + o(1)), and the maxi-
mization of (14) mainly depends on the remaining term in
the product, which is an increasing function of ne. This sug-
gests that ny has to be chosen considerably greater than k.
Hence, we proceed assuming the only interesting asymptotic
regime where k = o(n2). In this asymptotic regime, we can
simplify (14) as follows:

vn—x (k77 - x_w) B
VE=7v =

o= (-3(2)) ()

Next, we differentiate the function
3 (k"
fl@):=vn—z 175 —
x

and set the derivative to zero. This results in equation (12).
If we assume further that n3 = o(n), then only the highest
order term will remain in (12) and we immediately obtain
the following approximation

=P (N(O, 1)>— (13)

(14)

ng = (3’yk“’n)ﬁ + O(nﬁ).
|

For example, for n = 1000, k = 100, and v = 0.35 we get
ng ~ 570.

5.5 Sublinear complexity

The normal approximation (13) immediately implies the
following proposition.

PROPOSITION 2. For large enough ni, the inequality

EiFk — Fn2 > x
VN /Ft Foy
guarantees that on average we can find the fraction 1 — & of
top-k nodes in W.

For the inequality in (2) to hold, it is necessary that
\/771(F;C — F,,,) is at least of the same order of magnitude as
N/ F} + F,,. Moreover, it follows from Proposition 1 that
n = O(n1), and thus the complexity n of the algorithm is
defined by n1. In the theorem below we use the results from
Extreme Value Theory to show that n; scales sublinearly
with N.

Theorem 1, and estimator (11), we can already provide a
rough indication of the number of API request we need to
use. Indeed, k& > m, rough estimation with n — no ~n and
Fy >> F,, gives
> Nz?_ kY

F,m?>
For finding top-100 most followed users on Twitter with
good precision, this will result in about 5000 of API requests
(with N =500M, m =20, k =100, x1—. = 2, ¥ = 2.2).
For a better result, we may take into account the value of

(15)

. 1
n2, and substitute the value ny = (3k”n’y) 7+1 obtained in
Proposition 2:

k72 4\ FAT 3 5\ 4

ﬁ (Qn— (Sk n’y)) 1-— 3 <3k: n’y) k
N

F,m?’

2 T1—e

From (15) we can also already anticipate that n is sublin-
ear in N because F,,m” grows with N. This argument is
formalized in Theorem 2 below.

Notice that, interestingly, the obtained complexity is in
terms of the cardinality of W, not V. In particular, this
makes the problem of finding popular groups easier than
the problem of finding popular users.

THEOREM 2. If the in-degrees of the nodes are indepen-
dent realizations of a regularly varying distribution G with
exponent 1/ as defined in (9), and F1 > F>» > --- > Fn are
their order statistics. Let (an)n>1, (bN)n>1 be sequences
such that

lim N(1—Ganz +by)) = (1 +) /7.

N —oo
Then Algorithm 1 finds (1 —€) of the top-k nodes with high
probability in
n1 = O(N/an),
of API requests. In particular, n scales sublinearly in N,
and

log(n1) = (1 —) log(N).
PRrROOF. For a regularly varying G, Theorem 2.1.1 in [§]
can be applied, and thus for any finite m

F1 71)1\7 Fm*bN
anN ’ an

converges in distribution, as N — oo, to

(Bt e B o)
’y ?) ’y i

where E;’s are independent exponential random variables
with parameter 1. This implies, in particular, that an /by =
O(1) and that for large enough N and any € > 0, there exist
l;, u; such that Pll;an < F; < uzan] > 1—e. It follows that
for fixed k

& VE: = 0(1)

with high probability when n1 = O(N/an), and the first
statement of the theorem follows because k = o(n2) implying
that Fr, = o(F%). In particular, if G is a Pareto distribution,
1—G(z) = Cz™ Y7, & > xo, then

any =vC"N?, by =C"n".

For a general regularly varying distribution in (9) the slowly
varying function will influence an but the logarithmic asymp-
totics of any will be still determined by the power law:

log(an) = vlog(N),
which gives the result. []

6. CONCLUSION

We proposed a randomized algorithm for quick detection
of popular entities in large online social networks whose ar-
chitecture has underlying directed graphs. Examples of so-
cial network entities are users and interest groups. We have
analyzed the algorithm with respect to three criteria and
compared with two baseline methods. Our analysis demon-
strates that the algorithm has nonlinear complexity on net-
works with heavy-tailed in-degree distribution and that the
performance of the algorithm is robust with respect to the
values of its few parameters. The algorithm outperforms
the two baseline methods and has much wider applicability.
An important ingredient of our analysis is substantial use of
the extreme value theory. The extreme value theory is not
so well know in computer science and sociology but appears
to be a very useful tool in the analysis of social networks.
We feel that our work could be a good reference point for
other researchers to start applying EVT in social network
analysis. We have validated our theoretical results on two
very large online social networks.

We see several extensions of the present work. A top list
of popular entities is just one type of properties of social
networks. We expect that our approach based on extreme
value theory and using referral links can be extended to infer
and to analyze other properties such as power law index
and the tail, network functions and network motifs, degree-
degree correlation. It will be very interesting and useful
to develop quick and effective statistical tests to check for
network assortativity and presence of heavy tails.

Since our approach requires very small numbers of APT ac-
cesses, we believe that it will trace well network changes. Of
course, a formal justification of the algorithm applicability
for dynamic networks is needed.

7. REFERENCES

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive
on-line page importance computation. Proceedings of

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

the 12-th International World Wide Web Conference,
2003.

K. Avrachenkov, N. Litvak, D. Nemirovsky, and

N. Osipova. Monte carlo methods in pagerank
computation: When one iteration is sufficient. STAM
J. Numer. Anal., 45(2):890-904, 2007.

K. Avrachenkov, N. Litvak, D. Nemirovsky,

E. Smirnova, and M. Sokol. Quick detection of top-k
personalized pagerank lists. In Proceeding on the 8th
Workshop on Algorithms and Models for the Web
Graph, WAW 2011, pages 50-61. Springer, 2011.

K. Avrachenkov, N. Litvak, M. Sokol, and D. Towsley.
Quick detection of nodes with large degrees. In
Proceeding on the 9th Workshop on Algorithms and
Models for the Web Graph, pages 54—65. Springer,
2012.

K. Avrachenkov, B. Ribeiro, and D. Towsley.
Improving random walk estimation accuracy with
uniform restarts. In Proceeding on the 7th Workshop
on Algorithms and Models for the Web Graph, WAW
2010, pages 98-109. Springer, 2010.

C. Borgs, M. Brautbar, J. Chayes, and S.-H. Teng. A
sublinear time algorithm for pagerank computations.
Lecture Notes in Computer Science, 7323:41-53, 2012.
T. Britton, M. Deijfen, and A. Martin-Lof. Generating
simple random graphs with prescribed degree
distribution. J. Stat. Phys., 124(6):1377-1397, 2006.
L. De Haan and A. Ferreira. Extreme value theory.
Springer, 2006.

A. L. M. Dekkers, J. H. J. Einmahl, and L. de Haan.
A moment estimator for the index of an extreme-value
distribution. The Annals of Statistics,
17(4):1833-1855, 1989.

E. Fischer. The art of uninformed decisions: A primer
to property testing. Bull. Eur. Assoc. Theor. Comput.
Sci. EATCS, 75:97-126, 2001.

D. Fogaras, B. Récz, K. Csalogany, and T. Sarlésa.
Towards scaling fully personalized pagerank:
Algorithms, lower bounds, and experiments. Internet
Mathematics, 2(3):333-358, 2005.

M. Gjoka, M. Kurant, C. T. Butts, and

A. Markopoulou. Walking in facebook: A case study
of unbiased sampling of osns. Proceedings of IEEE
INFOCOM’10, 2010.

O. Goldreich. Combinatorial property testinnga
survey. Randomization Methods in Algorithm Design,
DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,
pages 45-60, 1998.

R. Kumar, K. Lang, C. Marlow, and A. Tomkins.
Efficient discovery of authoritative resources. IEEE
24th International Conference on Data Engineering,
pages 1495-1497, 2008.

R. Rubinfeld and A. Shapira. Sublinear time
algorithms. STAM J. Discrete Math., 25(4):1562-1588,
2011.

M. Sudan. Invariance in property testing. Property
Testing: Current Research and Surveys, O. Goldreich,
ed., Lecture Notes in Comput. Sci., pages 211-227,
2010.

