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Abstract

In network theory, Pearson’s correlation coefficients are most commonly used to
measure the degree assortativity of a network. We investigate the behavior of these
coefficients in the setting of directed networks with heavy-tailed degree sequences.
We prove that for graphs where the in- and out-degree sequences satisfy a power law,
Pearson’s correlation coefficients converge to a non-negative number in the infinite
network size limit. We propose alternative measures for degree-degree correlations
in directed networks based on Spearman’s rho and Kendall’s tau. Using examples
and calculations on the Wikipedia graphs for nine different languages, we show why
these rank correlation measures are more suited for measuring degree assortativity
in directed graphs with heavy-tailed degrees.

Keywords degree assortativity, degree-degree correlations, scale free directed networks,
power laws, rank correlations.

1 Introduction

In the analysis of the topology of complex networks a feature that is often studied is
the degree-degree correlation, also called degree assortativity of the network. A network
has positive degree-degree correlation, is called assortative, when nodes with high degree
have a preference to be connected to nodes of similar large degree. When nodes with
large degree have a connection preference for nodes with low degree the network is said
to have negative degree-degree correlation, it is disassortative. A measure for degree
assortativity was first given for undirected networks by Newman [15], which corresponds
to Pearson’s correlation coefficient of the degrees at the ends of a random edge in the net-
work. A similar definition for directed networks was introduced in [16] and later adopted
for analysis of directed complex networks in [18] and [8]. Analysis of the degree-degree
correlation has been applied to networks in a variety of scientific fields such as neuro-
science, molecular biology, information theory and social network sciences. In [10, 12]
degree-degree correlations are used to investigate the structure of collaboration networks
of a social news sharing website and Wikipedia discussion pages, respectively. Another
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example is [9], where the influence of the phenotopic viability of a family of plants on the
degree-degree correlations of their genetic network is investigated. Degree assortativity
has also been found to influence several properties of networks. For instance, neural
networks with high assortativity seem to behave more efficiently under the influence of
noise [7]. Information content has been shown to depend on the absolute value of the
degree assortativity [19] and networks with high degree assortativity have been shown
to be less stable [4].

Recently it has been shown [13, 14] that for undirected networks of which the degree
sequence satisfies a power law distribution with exponent γ ∈ (1, 3), Pearson’s correlation
coefficient scales with the network size, converging to a non-negative number in the
infinite network size limit. Because most real world networks have been reported to
be scale free with exponent in (1, 3), c.f. [1, 17, Table II], this could then explain why
large networks are rarely classified as disassortative. In the same paper a new measure,
corresponding to Spearman’s rho [20], has been proposed as an alternative.

In this paper we will extend the analysis in [13] to the setting of directed networks.
Here we have to consider four types of degree-degree correlations, depending on the
choice for in- or out-degree on either side of an edge. Our message is, similar to that
of [13], that Pearson’s correlation coefficients are size biased and produce undesirable
results, hence we should look for other means to measure degree-degree correlations.
Although these results give some insights into the workings of these correlations we still
do not fully understand the differences between the four correlation types or what they
mean for the structural properties of the network.

We consider networks where the in- and out-degree sequences have a power law dis-
tribution. We will give conditions on the exponents of the in- and out-degree sequences
for which the assortativity measures defined in [18] and [8] converge to a non-negative
number in the infinite network size limit. This result is a strong argument against the
use of Pearson’s correlation coefficients for measuring degree-degree correlations in such
directed networks. To strengthen this argument we also give examples which clearly
show that the values given by Pearson’s correlation coefficients do not represent the
correlation between the degrees, which it is suppose to measure. As an alternative we
propose correlation measures based on Spearman’s rho [20] and Kendall’s tau [11]. These
measures are based on the ranking of the degrees rather then their value and hence do
not exhibit the size bias observed in Pearson’s correlation coefficients. We will give
several examples where the difference between these three measures is shown. We also
include an example for which one of the four Pearson’s correlation coefficients converges
to a random variable in the infinite network size limit and therefore will obviously pro-
duce uninformative results. Finally we calculate all four degree-degree correlations on
the Wikipedia network for nine different languages using all the assortativity measures
proposed in this paper.

This paper is structured as follows. In Section 2 we introduce notations. Pearson’s
correlation coefficients are introduced in Section 3 and a convergence theorem is given
for these measures. We introduce the rank measures Spearman’s rho and Kendall’s tau
for degree-degree correlations in Section 4. Example graphs that illustrate the differ-
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ence between the three measures are presented in Section 5. Finally the degree-degree
correlations for the Wikipedia graphs are presented in Section 6.

2 Definitions and notations

We start with the formal definition of the problem and introduce the notations that will
be used throughout this paper.

2.1 Graphs, vertices and degrees

We will denote by G = (V,E) a directed graph with vertex set V and edge set E ⊆ V ×V .
For an edge e ∈ E, we denote its source by e∗ and its target by e∗. With each directed
graph we associate two functions D+,D− : V → N where D+(v) := |{e ∈ E|e∗ = v}|
is the out-degree of the vertex v and D−(v) := |{e ∈ E|e∗ = v}| the in-degree. When
considering sequences of graphs, we denote by Gn = (Vn, En) an element of the sequence
(Gn)n∈N. We will further use subscripts to distinguish between the different graphs in
the sequence. For instance, D+

n and D−
n will denote the out- and in-degree functions of

the graph Gn, respectively.

2.2 Four types of degree-degree correlations

In this paper we are interested in measuring the correlation between the degrees at both
sides of an edge. That is, we measure the correlation between two vectors X and Y as
function of the edges e ∈ E corresponding to the degrees of e∗ and e∗, respectively. In
the undirected case this is called the degree-degree correlation. In the directed setting
however, we can consider any combination of the two degree types resulting in four types
of degree-degree correlations, illustrated in Figure 1.

From Figure 1 one can already observe some interesting features of these correlations.
For instance, in the Out/In correlation the edge that we consider contributes to the
degrees on both sides. We will later see that the Out/In correlation actually generalizes
the degree-degree correlation in the undirected case. To be more precise, our result for
this correlation type generalizes the result obtained in [14] when we transform from the
undirected case by making every edge bi-directional.

For the other three correlation types we observe that there is always at least one side
where the considered edge does not contribute towards the degree on that side. We will
later see that for these correlation types the correlation of the in- and out-degree of a
vertex will play a role.

3 Pearson’s correlation coefficient

Among all correlation measures, the measure proposed by Newman [15, 16] has been
widely used. This measure is the statistical estimator for the Pearson correlation coeffi-
cient of the degrees on both sides of a random edge. However, for undirected networks
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Out/In In/Out

Out/Out In/In

Figure 1: Four degree-degree correlation types

with heavy tailed degrees with exponent γ ∈ (1, 3) it was proved [14] that this mea-
sure converges, in the infinite size network limit, to a non-negative number. Therefore,
in these cases, Pearson’s correlation coefficient is not able to correctly measure negative
degree-degree correlations. In this section we will extend this result to directed networks
proving that also here Pearson’s correlation coefficients are not the right tool to measure
degree-degree correlations.

Let us consider Pearson’s correlation coefficients as in [15, 16], adjusted to the setting
of directed graphs as in [8, 18]. This will constitute four formula’s which we combine
into one. Take α, β ∈ {+,−}, that is, we let α and β index the type of degree (out-
or in-degree). Then we get the following expression for the four Pearson’s correlation
coefficients:

rβα(G) =
1

σα(G)σβ(G)

(

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− 1

|E|2
∑

e∈E

Dα(e∗)
∑

e∈E

Dβ(e∗)

)

, (1)

where

σα(G) =

√

√

√

√

1

|E|
∑

e∈E

Dα(e∗)2 −
1

|E|2

(

∑

e∈E

Dα(e∗)

)2

and (2)

σβ(G) =

√

√

√

√

1

|E|
∑

e∈E

Dβ(e∗)2 − 1

|E|2

(

∑

e∈E

Dβ(e∗)

)2

. (3)

Here we utilize the notations for the source and target of an edge by letting the super-
script index denote the specific degree type of the target e∗ and the subscript index the
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degree type of the source e∗. For instance r−+ denotes the Pearson correlation coefficient
for the Out/In correlation.

It is convenient to rewrite the summations over edges to summations over vertices
by observing that

∑

e∈E

Dα(e∗)
k =

∑

v∈V

D+Dα(v)k

and similarly
∑

e∈E

Dα(e∗)k =
∑

v∈V

D−Dα(v)k

for all k > 0. Plugging this into (1)-(3) we arrive at the following definition.

Definition 3.1. Let G = (V,E) be a directed graph and let α, β ∈ {+,−}. Then the
Pearson’s α-β correlation coefficient on G is defined by

rβα(G) =
1

σα(G)σβ(G)

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− r̂βα(G), (4)

where

r̂βα(G) =
1

σα(G)σβ(G)

1

|E|2
∑

v∈V

D+(v)Dα(v)
∑

v∈V

D−(v)Dβ(v), (5)

σα(G) =

√

√

√

√

1

|E|
∑

v∈V

D+(v)Dα(v)2 − 1

|E|2

(

∑

v∈V

D+(v)Dα(v)

)2

, (6)

σβ(G) =

√

√

√

√

1

|E|
∑

v∈V

D−(v)Dβ(v)2 − 1

|E|2

(

∑

v∈V

D−(v)Dβ(v)

)2

. (7)

Just as in the undirected case, c.f. [13, 14], the wiring of the network only contributes
to the positive part of (4). All other terms are completely determined by the in- and out-

degree sequences. This fact enables us to analyze the behavior of rβα(G), see Section 3.1.
Observe also that in contrast to undirected graphs in the directed case the correlation
between the in- and out-degrees of a vertex can play a role, take for instance α = − and
β = +.

Note that in general rβα(G) might not be well defined, for either σα(G) or σβ(G)
might be zero. For example, when G is a directed cyclic graph of arbitrary size. From
equations (2) and (3) it follows that σα(G) and σβ(G) are the variance ofX and Y , where
X = Dα(e∗) and Y = Dβ(e∗), e ∈ E, with probability 1/|E|. Thus, σα(G) 6= 0 is only
possible if Dα(v) 6= Dα(w) for some v,w ∈ V . Moreover, v and w must have non-zero
out-degree for at least one such pair v,w, so that Dα(v) and Dα(w) are counted when
we traverse over edges. This argument is formalized in the next lemma, which provides
necessary and sufficient conditions so that σα(G), σβ(G) 6= 0.
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Lemma 3.2. Let G = (V,E) be a graph and take α, β ∈ {+,−}. Then the following
holds:

1

|E|

(

∑

v∈V

Dα(v)Dβ(v)

)2

≤
∑

v∈V

Dα(v)Dβ(v)2 (8)

and strict inequality holds if and only if there exits distinct v,w ∈ V such that Dα(v),
Dα(w) > 0 and Dβ(v) 6= Dβ(w).

Proof. Recall that |E| =∑v∈V Dα(v) for any α ∈ {+,−}. Then we have:

|E|
∑

v∈V

Dα(v)Dβ(v)2 −
(

∑

v∈V

Dα(v)Dβ(v)

)2

=
∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)Dβ(v)2 −Dα(w)Dβ(w)Dα(v)Dβ(v)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w)2 − 2Dβ(w)Dβ(v) +Dβ(v)2
)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w) −Dβ(v)
)2

≥ 0,

which proves (8). From the last line one easily sees that strict inequality holds if and only
if there exits distinct v,w ∈ V such that Dα(v), Dα(w) > 0 and Dβ(v) 6= Dβ(w).

3.1 Convergence of Pearson’s correlation coefficients

In this section we will prove that under rather general conditions Pearson’s correlation
coefficients (4) converges to a non-negative value. We start by recalling the definition of
big theta.

Definition 3.3. Let f, g : N → R>0 be positive functions. Then f = Θ(g) if there exist
k1, k2 ∈ R>0 and an N ∈ N such that for all n ≥ N

k1g(n) ≤ f(n) ≤ k2g(n).

When we have two sequences (an)n∈N and (bn)n∈N we write an = Θ(bn) for (an)n∈N =
Θ((bn)n∈N).

Next, we will provide the conditions that our sequence of graphs needs to satisfy and
prove the result. Then we will motivate the chosen conditions. From here on we denote
by x ∨ y and x ∧ y the maximum and minimum of x and y, respectively.
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Definition 3.4. For γ−, γ+ ∈ R>0 we denote by Gγ
−
γ+ the space of all sequences of

graphs (Gn)n∈N with the following properties:

G1 |Vn| = n.

G2 There exists and N ∈ N such that for all n ≥ N there exist v,w ∈ Vn with Dα
n(v),

Dα
n(w) > 0 and Dα

n(v) 6= Dα
n(w), for all α ∈ {+,−}.

G3 For all p, q ∈ R>0,

∑

v∈Vn

D+
n (v)

pD−
n (v)

q = Θ(np/γ+∨q/γ
−
∨1).

G4 For all p, q ∈ R>0, if p < γ+ and q < γ− then

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q := d(p, q) ∈ (0,∞).

Where the limits are such that for all a, b ∈ N, k,m > 1 with 1/k + 1/m = 1,
a+ p < γ+ and b+ q < γ− we have,

d(a, b)
1

m d(p, q)
1

k > d(
a

m
+

p

k
,
b

m
+

q

k
).

Now we are ready to give the convergence theorem for Pearson’s correlation coeffi-
cients, Definition 3.1.

Theorem 3.5. Let α, β ∈ {+,−}. Then there exists an area Aβ
α ⊆ R

2 such that for

(γ+, γ−) ∈ Aβ
α and (Gn)n∈N ∈ Gγ

−
γ+ ,

lim
n→∞

r̂βα(Gn) = 0

and hence any limit point of rβα(Gn) is non-negative.

Proof. Let (Gn)n∈N be an arbitrary sequence of graphs. It is clear that if r̂βα(Gn) → 0

then any limit point of rβα(Gn) is non-negative. Therefore we need only to prove the first
statement. To this end we define the following sequences,

an =
1

|En|

(

∑

v∈Vn

D+
n (v)D

α
n(v)

)2

, bn =
1

|En|

(

∑

v∈Vn

D−
n (v)D

β
n(v)

)2

,

cn =
∑

v∈Vn

D+
n (v)D

α
n (v)

2, dn =
∑

v∈Vn

D−
n (v)D

β
n(v)

2,

and observe that r̂βα(Gn)
2 = anbn/(cn − an)(dn − bn). Now if (Gn)n∈N ∈ Gγ

−
γ+ then

because of G2 and Lemma 3.2 there exists an N ∈ N such that for all n ≥ N we have
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cn > an and dn > bn, so r̂βα(Gn) is well-defined for all n ≥ N . Next, using G3, we get
that an = Θ(na), bn = Θ(nb), cn = Θ(nc) and dn = Θ(nd) for certain constants a, b, c
and d, which depend on γ−, γ+ and the degree-degree correlation type chosen. Because
r̂βα(Gn) → 0 if and only if r̂βα(Gn)

2 → 0, we need to find sufficient conditions for which
anbn/(cn − an)(dn − bn) → 0. It is clear that either a < c and bn/(dn − bn) is bounded
or b < d and an/(cn − an) is bounded are sufficient. It turns out that this is exactly the
case when either a < c and b ≤ d or a ≤ c and b < d. We will do the analysis for the
In/Out degree-degree correlation. The analysis for the other three correlation types is

similar. Figure 2 shows all four areas Aβ
α.

When α = − and β = + we get the following constants

a, b = 2

(

1

γ+
∨ 1

γ−
∨ 1

)

− 1

c =

(

1

γ+
∨ 2

γ−
∨ 1

)

d =

(

2

γ+
∨ 1

γ−
∨ 1

)

It is clear that when 1 < γ−, γ+ < 2 then a < c and b < d and hence r̂βα → 0.
Now if 1 < γ− < 2 and γ+ ≥ 2 then a = b = d = 1 < c. Using G4 we get that
limn→∞ dn/n = d(2, 1) and

lim
n→∞

bn
n

= lim
n→∞

(
∑

v∈Vn
D−

n (v)D
+
n (v)

)2

n2

n

|En|

= lim
n→∞

(

∑

v∈Vn
D−

n (v)D
+
n (v)

n

)2(∑

v∈Vn
D−

n (v)

n

)−1

=
d(1, 1)2

d(0, 1)
< d(2, 1) = lim

n→∞

dn
n
,

where, for the last part, we again used G4. From this it follows that bn/(dn − bn) is

bounded and so r̂βα → 0. A similar argument applies to the case γ− ≥ 2 and 1 < γ+ < 2,
where the only difference is that a = b = c = 1 < d, hence

A+
− = {(x, y) ∈ R|1 < x < 2, y > 1} ∪ {(x, y) ∈ R|1 < y < 2, x > 1}.

Using similar arguments, we obtain:

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1},

A+
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} and

A−
− = {(x, y) ∈ R

2|1 < y < 3, x > 1}.
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3

1
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Figure 2

Let us now provide an intuitive explanation for the areas Aβ
α, as depicted in Figure 2.

The key observation is that due to G3 the terms with the highest power of either D+
n

or D−
n will dominate in r̂βα(Gn). Therefore, if these moments do not exist, then the

denominator will grow at a larger rate then the numerator, hence r̂βα → 0.
Taking α = + = β, we see that D− only has terms of order one while D+ has terms

up to order three. This explains why A+
+ = {(x, y) ∈ R|1 < x ≤ 3, y > 1}. Area A−

− is
then easily explained by observing that the expression for r−−(G) is obtained from r++(G)
by interchanging D+ and D−.

For the Out/In correlation, i.e. α = + and β = −, we see from equations (5)-(7)
that r̂−+(G) splits into a product of two terms, each completely determined by either in-
or out-degrees,

1
|E|

∑

v∈V Dα(v)2

√

1
|E|

∑

v∈V Dα(v)3 − 1
|E|2

(
∑

v∈V Dα(v)2
)2

,

with α ∈ {+,−}. These terms are of the exact same form as the expression in [13] for
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the undirected degree-degree correlation. Because both D+ and D− have terms of order
three, one sees that

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1}.

Now take a undirected network and make it directed by replacing each undirected edge
with a bi-directional edge. Then D+(v) = D−(v) for all v ∈ V and hence r−+(G) equals
the expression of equation (3.4) in [13] when we replace D by either D+ or D−.

Theorem 3.5 has several consequences. First of all, no matter what mechanism is
used for generating networks, if the conditions of the theorem are satisfied then for
large enough networks the degree-degree correlations will always be non-negative. This
could explain why most large networks are said not to have disassortative degree-degree
correlations. In Section 5 we will give examples where this behavior can be observed.
Second, if the underlying model that governs the topology of the network is in line with
the conditions of the theorem, then one cannot compare networks of different sizes that
arise from this model. For in this case, the degree-degree correlation coefficients rβα will
decrease with the network size.

3.2 Motivation for Gγ
−
γ+

In this section we will motivate Definition 3.4. G1 is easily motivated, for we want to
consider infinite network size limits. G2 combined with Lemma 3.2 ensures that from
a certain N , rβα(Gn) will always be well-defined. Conditions G3 and G4 are related to
heavy-tailed degree sequences that are modeled using regularly varying random variables.

A random variable X is called regularly varying with exponent γ if P(X > t) =
L(t)t−γ for some slowly varying function L, that is limt→∞ L(tx)/L(t) = 1 for all x. We
write R−γ for the space of all regularly varying random variables with exponent γ. For a
regularly varying random variable X ∈ R−γ we have that E [Xp] < ∞ for all 0 < p < γ.

Through experiments it has been shown that many real world networks, both directed
and undirected, have degree sequences whose distribution closely resembles a power
law distribution, c.f. Table II of [1] and [17]. Suppose we take two random variables
D+ ∈ Rγ+ , D− ∈ Rγ

−

and consider, for each n, the degree sequences (D±
n (v))v∈Vn

as
i.i.d. copies of these random variables. Then for all 0 < p < γ+ and 0 < q < γ−

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q = E
[

(D+)p(D−)q
]

.

Moreover, since D± is non-degenerate, we have E

[

(D±)
k
]

> E [D±]
k
, and thus by tak-

ing d(p, q) = E [(D+)p(D−)q], we get G4 where the second part follows from Hölder’s
inequality. Although i.i.d. sequences for the in- and out-degrees do not in general con-
stitute a graphical sequence, it is often the case that one can modify this sequence into
a graphical sequence preserving i.i.d. properties asymptotically. Consider for example
[5], where a directed version of the configuration model is introduced and it is proven
that the degree sequences are asymptotically independent.

10



The property G3 is associated with the scaling of the sums
∑

v∈Vn
D+

n (v)
pD−

n (v)
q

and is related to the central limit theorem for regularly varying random variables. When
we model the degrees as i.i.d. copies of independent regularly varying random variables
D+ ∈ R−γ+ , D− ∈ R−γ

−

and take p ≥ γ+ or q ≥ γ− then
∑

v∈Vn
D+

n (v)
pD−

n (v)
q is in

the domain of attraction of a γ-stable random variable S(γ), where γ = (γ+/p ∧ γ−/q),
c.f. [6]. This means that

1

an

∑

v∈Vn

D+
n (v)

pD−
n (v)

q d→ S(γ+/p ∧ γ−/q), as n → ∞ (9)

for some sequence an = Θ(nq/γ
−
∨p/γ+), where

d→ denotes convergence in distribu-
tion. Informally, one could say that

∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ

−
∨p/γ+ when

either the p or q moment does not exist and as n when both moments exist, hence,
∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ

−
∨p/γ+∨1, which is what G3 states. For complete-

ness we include the next lemma, which shows that (9) implies that G3 holds with high
probability. We remark that although this motivation is based on results where the
regularly varying random variables are assumed to be independent the dependent case
can be included. For this one then needs to adjust the scaling parameters in G3 for the
specified dependence.

Lemma 3.6. Let (Xn)n∈N be a sequence of positive random variables such that

Xn

an

d→ X, as n → ∞,

for some sequence (an)n∈N and positive random variable X. Then for each 0 < ε < 1,
there exists an Nε ∈ N and κε ≥ ℓε > 0 such that for all n ≥ Nε

P(ℓεan ≤ Xn ≤ κεan) ≥ 1− ε.

Proof. Let 0 < ε < 1 and take δ > 0, 0 < ℓ ≤ κ such that

P(ℓ ≤ X ≤ κ) ≥ 1− ε+ δ.

Then, because Xn/an
d→ X as n → ∞, there exists an N ∈ N such that for all n ≥ N ,

|P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan)| < δ.

Now we get for all n ≥ N ,

1− ε+ δ − P(ℓan ≤ Xn ≤ κan) ≤ P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan) ≤ δ,

hence P(ℓan ≤ Xn ≤ κan) ≥ 1− ε.
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4 Rank correlations

In this section we consider two other measures for degree-degree correlations, Spearman’s
rho [20] and Kendall’s tau [11], which are based on the rankings of the degrees rather
then their actual value. We will define these correlation measures and argue that they
do not have unwanted behavior as we observed for Pearson’s correlation coefficients.
We will later use examples to enforce this argument and show that Spearman’s rho and
Kendall’s tau are better candidates for measuring degree-degree correlations.

4.1 Spearman’s rho

Spearman’s rho [20] is defined as the Pearson correlation coefficient of the vector of
ranks. Let G = (V,E) be a directed graph and α, β ∈ {+,−}. In order to adjust the
definition of Spearman’s rho to the setting of directed graphs we need to rank the vectors
(Dα(e∗))e∈E and (Dβ(e∗))e∈E . These will, however, in general have many tied values.
For instance, suppose that Dα(v) = m for some v ∈ V , then edges e ∈ E with e∗ = v
satisfy Dα(e∗) = Dα(v). Therefore, we will encounter the value Dα(v) at least m times
in the vector (Dα(e∗))e∈E . We will consider two strategies for resolving ties: uniformly
at random (Section 4.1.1), and using an average ranking scheme (Section 4.1.2).

4.1.1 Resolving ties uniformly at random

Given a sequence {xi}1≤i≤n of distinct elements in R we denote by R(xj) the rank of xj,
i.e. R(xj) = |{i|xi ≥ xj}|, 1 ≤ j ≤ n. The definition of Spearman’s rho in the setting of
directed graphs is then as follows.

Definition 4.1. Let G = (V,E) be a directed graph, α, β ∈ {+,−} and let (Ue)e∈E,
(We)e∈E be i.i.d. copies of independent uniform random variables U and W on (0, 1),
respectively. Then we define the α-β Spearman’s rho of the graph G as

ρβα(G) =
12
∑

e∈E Rα(e∗)R
β(e∗)− 3|E|(|E| + 1)2

|E|3 − |E| , (10)

where Rα(e∗) = R(Dα(e∗) + Ue) and Rβ(e∗) = R(Dβ(e∗) +We).

From (10) we see that the negative part of ρβα(G) depends only on the number of
edges

3(|E| + 1)2

(|E|2 − 1)
= 3 +

6|E|+ 4

|E|2 − 1
,

while for rβα(G) it depended on the values of the degrees, see Definition 3.1. When
(Gn)n∈N ∈ Gγ+,γ

−

, with γ+, γ− > 1 then it follows that |En| = θ(n) hence 3 + (6|E| +
4)/(|E|2−1) → 3, as n → ∞. Therefore we see that the negative contribution will always

be at least 3 and so ρβα(Gn) does not in general converge to a non-negative number while

rβα(Gn) does.
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When calculating ρβα(G) on a graph G one has to be careful, for each instance will
give different ranks of the tied values. This could potentionally give rise to very dif-
ferent results among several instances, see Section 5.1.2 for an example. Therefore, in
experiments, we will take an average of ρβα(G) over several instances of the uniform
ranking.

4.1.2 Resolving ties with average ranking

A different approach for resolving ties is to assign the same average rank to all tied
values. Consider, for example, the sequence (1, 2, 1, 3, 3). Here the two values of 3 have
ranks 1 and 2, but instead we assign the rank 3/2 to both of them. With this scheme
the sequence of ranks becomes (9/2, 3, 9/2, 3/2, 3/2). This procedure can be formalized
as follows.

Definition 4.2. Let (xi)1≤i≤n be a sequence in R then we define the average rank of an
element xi as

R(xi) = |{j|xj > xi}|+
|{j|xj = xi}|+ 1

2
.

Observe that in the above definition the total average rank is preserved:
∑n

i=1R(xi) =
n(n+1)/2. The difference with resolving ties uniformly at random is that we in general
do not know

∑n
i=1 R(xi)

2, for this depends on how many ties we have for each value.
We now define the average Spearman’s rho of graphs as follows.

Definition 4.3. let G = (V,E) be a directed graph, α, β ∈ {+,−} and denote by

R
α
(e∗) and R

β
(e∗) the average ranks of Dα(e∗) among (Dα(e∗))e∈E and Dβ(e∗) among

(Dβ(e∗))e∈E, respectively. Then we define the average α-β Spearman’s rho of the graph
G by

ρβα(G) =
4
∑

e∈E R
α
(e∗)R

β
(e∗)− |E|(|E| + 1)2

σα(G)σβ(G)
, (11)

where

σα(G) =

√

4
∑

e∈E

R
α
(e∗)2 − |E|(|E| + 1)2

and

σβ(G) =

√

4
∑

e∈E

R
β
(e∗)2 − |E|(|E| + 1)2.

4.2 Kendall’s Tau

Another common rank correlation measure is Kendall’s Tau [11], which measures the
weighted difference between the number of concordant and disconcordant pairs of the

13



joint observations (xi, yi)1≤i≤n. More precisely, a pair (xi, yi) and (xj , yj) of joint obser-
vations is concordant if xi < xj and yi < yj or if xi > xj and yi > yj. They are called
disconcordant if xi < xj and yi > yj or if xi > xj and yi < yj.

Definition 4.4. Let G = (V,E) be a directed graph, α, β ∈ {−,+} and denote by Nc and
Nd, respectively, the number of concordant and disconcordant pairs among

(

Dα(e∗),D
β(e∗)

)

e∈E
.

Then we define the α-β Kendall’s tau of G by

τβα (G) =
2(Nc −Nd)

|E|(|E| − 1)
.

It might seem at first that τ does not suffer from ties. However, note that the
numerator of τ includes only strictly (dis)concordant pairs, while the denominator is
equal to the number of all possible pairs, irregardless of the presence of ties. Hence,
when the number of ties is large, the denominator may become much larger than the
numerator resulting in small, even vanishing in the graph size limit, values of τβα . We will
provide such example in Section 5. Since, as discussed above, the sequences (Dα(e∗))e∈E
and

(

Dβ(e∗)
)

e∈E
naturally have a large number of ties, we cannot expect τβα (G) to take

very large (positive or negative) values.

5 Bridge graph example

In this section we will provide a sequences of graphs to illustrate the difference be-
tween the four correlation measures in directed networks. We start with a deterministic
sequence and will later adapt this to a randomized sequence using regularly varying
random variables.

5.1 A deterministic in-out bridge graph

Let k,m ∈ N>0, then we define the bridge graph G(k,m) = (V (k,m), E(k,m)), displayed
in Figure 3a, as follows:

V (k,m) = v ∪ w ∪
k
⋃

i=1

vi ∪
m
⋃

j=1

wj, E(k,m) = g ∪
k
⋃

i=1

ei ∪
m
⋃

j=1

fj, where

ei = (vi, v), fj = (w,wj) and g = (v,w).

It follows that |E(k,m)| = m+ k + 1. For the degrees of G(k,m) we have:

D+(vi) = 1, D−(vi) = 0, for all 1 ≤ i ≤ k;

D+
n,a(wj) = 0, D−

n,a(wj) = 1, for all 1 ≤ j ≤ m;

D+(v) = 1, D−(v) = k,

D+(w) = m, D−(w) = 1.

14
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Figure 3: A graphical representation of the graphs G(k,m) (a) and Ĝ(k,m) (b).

Looking at the scatter plot of (D−(e∗),D
+(e∗))e∈E(k,m), Figure 4a, we see that the

point (k,m) contributes towards a positive correlations while the points (0, 1) and (1, 0)
contribute towards a negative correlation. Hence, depending on how much weight we
put on each of these points we could argue equally well that this graph has positive or
negative In/Out correlation. We can however extend the in-out bridge graph to a graph
for which we do have a clear expectation for the In/Out correlation.

We define the disconnected in-out bridge graph Ĝ(k,m) = (V̂ (k,m), Ê(k,m)) from
G(k,m) by adding a vertex u and replacing the edge g = (v,w) by the edges g1 = (v, u)
and g2 = (u,w), see Figure 3b. In this graph the node with the largest in-degree, v, is
connected to node u, of out-degree 1. Similarly u, which has in-degree 1, is connected to
the node with the highest out-degree, w. Therefore we would expect a negative In/Out
correlation. This intuition is supported by the scatter plot of (D+(e∗),D−(e∗))e∈Ê(k,m),
Figure 4b.

Now consider for a fixed a ∈ N the sequence of graphs Ga
n := G(n, an) and Ĝa

n :=
Ĝ(n, an). Then, following the above reasoning we would expect that any In/Out corre-
lation measure of Ĝa

n would converge to -1.
In Sections 5.1.1 – 5.1.3 we will show that limn→∞ r+−(Ĝ

a
n) = 0 while the other three

measures indeed yield negative results. Furthermore, we show that limn→∞ r+−(G
a
n) = 1

while limn→∞ ρ+−(G
a
n) = −1 reflecting the two possibilities for the In/Out correlation

represented in the scatter plot, Figure 4a.
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Figure 4: The scatter plots for the degrees of (a) G(k,m) and (b) Ĝ(k,m).

5.1.1 Pearson In/Out correlation

We start with the graph Ga
n. Basic calculations yield that
∑

e∈Ea
n

D−(e∗)D
+(e∗) = an2, (12)

∑

v∈V a
n

D−(v)D+(v) = (1 + a)n, (13)

∑

v∈V a
n

D−(v)2D+(v) = n2 + an, (14)

∑

v∈V a
n

D−(v)D+(v)2 = n+ a2n2, (15)

hence, using (6) and (7), we obtain:

|Ea
n|σ−(Ga

n) =
√

((1 + a)n+ 1)(n2 + an)− (1 + a)2n2

=
√

(1 + a)n3 − (n − 1)an

and

|Ea
n|σ+(Ga

n) =
√

((1 + a)n+ 1)(n + a2n2)− (1 + a)2n2

=
√

(1 + a)n3 − (an − 1)n.

When we plug this into (4) with α = − and β = + we get

r+−(G
a
n) =

|Ea
n|an2 − (1 + a)2n2

|Ea
n|σα(Ga

n)|Ea
n|σβ(Ga

n)

=
a(1 + a)n3 − (a2 + a+ 1)n2

a
√

(1 + a)n3 − (n− 1)an
√

(1 + a)n3 − (an− 1)n
. (16)
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From (16) it follows that if a ∈ N is fixed, then limn→∞ r+−(G
a
n) = 1, thus r+−(G

a
n) in

fact reflects the connection between v and w where the point (n, an) in the scatter plot
received the most mass. However, when we turn to Ĝa

n we get a less expected result.
Splitting the edge g in two adds one to equations (13)-(15), while equation (12) becomes
(a + 1)n which is linear in n instead of quadratic. Because all other terms keep their
scale with respect to n we easily deduce that for a fixed a ∈ N, limn→∞ r+−(Ĝ

a
n) = 0.

This is undesirable for we would expect any correlation measure on Ĝa
n to converge to

−1.

5.1.2 Spearman In/Out correlation

We start by calculation ρ+−(G
a
n). For this observe that by (11) and the definition of Ga

n

we have that,

R
+
((ei)

∗) = 1 +
n+ 1

2
, R

−
((ei)∗) = an+ 1 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 1 +
an+ 1

2
, R

−
((fj)∗) = 1 +

an+ 1

2
;

R
+
(g∗) = 1, R

−
(g∗) = 1.

After some basic calculations we get

ρ+−(G
a
n) =

−(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n

(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n
→ −1 as n → ∞.

This result is in striking contrast to the one for r+−(G
a
n). Indeed, ρ

+
− places all the weight

on the points (0, 1) and (1, 0). However, based on the scatter plot, see Figure 4a, both
results could be plausible.

Let us now compute ρ+−(Ĝ
a
n). For the rankings we have

R
+
((ei)

∗) = 2 +
n

2
, R

−
((ei)∗) = an+ 2 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 2 +
an+ 1

2
, R

−
((fj)∗) = 2 +

an

2
;

R
+
((g1)

∗) = 2 +
n

2
, R

−
((g1)∗) = 1;

R
+
((g2)

∗) = 1, R
−
((g2)∗) = 2 +

an

2
.

Filling this into equation (11) we get

ρ+−(Ĝ
a
n) =

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n − 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

,

where

σ̄−(Ĝ
a
n) =

√

(a2 + a)n3 + (a2 + 4a+ 2)n2 + (3a+ 4)n − 2 and

σ̄+(Ĝa
n) =

√

(a2 + a)n3 + (2a2 + 4a+ 1)n2 + (4a+ 3)n+ 2.
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Because

lim
n→∞

1

n3
σ̄−(Ĝ

a
n)σ̄

+(Ĝa
n) = (a2 + a)

it follows that

lim
n→∞

ρ+−(Ĝ
a
n) = lim

n→∞

1/n3

1/n3

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n− 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

= −1,

which equals limn→∞ ρ(Ga
n). We have already argued that based on the graph and the

scatter plot we would expect negative In/Out correlation for the sequence (Ĝa
n)n∈N.

This result is in agreement with what we would expect, while r+−(Ĝ
a
n) converges to 0 as

n → ∞.
Now we turn to ρ+−(G

a
n). We will show that the choice of ranking of the tied values

can have a great effect on the outcome of the In/Out correlation. In this example we
will pick two rankings, one will yield a positive correlation while the other will give a
negative correlation.

It is clear from the definition of Ga
n that the in- and out-degrees of all ei are the same

and similar for fj. Let us now impose the following ranking of the vectors (D+(e∗))e∈Ea
n

and (D−(e∗))e∈Ea
n
:

R+((ei)
∗) = an+ i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.

Here we ordered the ties by the order of their indices. We calculate that

ρ+−(G
a
n) =

(a3 − 3a2 − 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n

(a3 + 3a2 + 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n
. (17)

Now let us now order (D+(e∗))e∈Ea
n
and (D−(e∗))e∈Ea

n
as follows:

R+((ei)
∗) = (a+ 1)n+ 1− i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = an+ 1− j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.

This order differs from the first one only on the vector (D+(e∗))e∈Ea
n
, where we now

ordered the ties based on the reversed order of their indices. Here we get, after some
calculations,

ρ+−(G
a
n) =

−(a+ 1)3n3 + 3(a + 1)2n2 + 2(a+ 1)n

(a+ 1)3n3 + 3(a+ 1)2n2 + 2(a + 1)n
(18)

When we compare (18) with (17) we see that for the former limn→∞ ρ+−(G
a
n) = −1 for all

a ∈ N while for the latter we have limn→∞ ρ+−(G
a
n) = (a3 − 3a2 − 3a+ 1)/(a+ 1)3. This

means that increasing a will actually increase the limit of (17), which becomes positive
when a ≥ 4. This indicates what was already mentioned in Section 4.1.1, that changing
the order of the ties can have a large impact on the value of ρβα(G).
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5.1.3 Kendall’s Tau In/Out correlation

The last correlation measure we compute is Kendall’s Tau. In order to do this we need
to determine the number of concordant and disconcordant pairs. Starting with Ga

n, we
observe that we have three kinds of joint observations, namely

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

and

III :
(

D−(g∗),D
+(g∗)

)

.

The combinations I and III, and II and III are concordant while I and II are discon-
cordant. From this it follows that Nc = (a + 1)n while Nd = an2. Hence we get, see
Definition 4.4.

τ+− (Ga
n) =

2(a+ 1)n − 2an2

(a+ 1)2n2 + (a+ 1)n
,

which gives limn→∞ τ+− (Ga
n) = − 2a

(a+1)2
.

For the graph Ĝa
n we have four kinds of joint observations:

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

,

III :
(

D−(g1∗),D
+(g∗1)

)

and

IV :
(

D−(g2∗),D
+(g∗2)

)

.

Again the combinations I and II are disconcordant, while now I and III, and II and IV
are concordant. Therefore we get Nc = (a+1)n and Nd = an2, hence limn→∞ τ+− (Ga

n) =
− 2a

(a+1)2
which equals the limit for τ+− (Ga

n).

Note that limn→∞ τ+− (Ga
n) decreases when we increase a. This is because the number

of tied values among the degrees increases with a. We already mentioned that τβα gives
smaller values when more ties are involved. Here this behavior is clearly present.

5.2 A collection of random In/Out bridge graphs

Let us now consider a collection of In/Out bridge graphs G(W,Z) as defined in Sec-
tion 5.1, where the values of W and Z are integer regularly varying random variables.

Let X,Y ∈ R−γ be independent and integer valued and fix a ∈ R>0. For each n ∈ N

take (Xi)1≤i≤n and (Yi)1≤i≤n to be i.i.d. copies of X and Y , respectively, and define
Wi = Xi + Yi and Zi = ⌊Xi + aYi⌋. Then we define the graph Ga

n as the disconnected
collection of the graphs (G(Wi, Zi))1≤i≤n. We will calculate r+−(Ga

n) and prove that it
converges to a random variable, which can have support on (ε, 1) for a specific choice of
a.
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Using the calculations in Section 5.1.1 we obtain:

∑

e∈Ea
n

D−(e∗)D
+(e∗) =

n
∑

i=1

(

X2
i + aY 2

i + (1 + a)XiYi

)

,

∑

v∈V a
n

D−(v)D+(v) =
n
∑

i=1

(2Xi + (1 + a)Yi) ,

∑

v∈V a
n

D−(v)2D+(v) =
n
∑

i=1

(

X2
i + Y 2

i + 2XiYi +Xi + aYi

)

,

∑

v∈V a
n

D−(v)D+(v)2 =

n
∑

i=1

(

X2
i + a2Y 2

i + 2aXiYi +Xi + Yi

)

and

|Ea
n| =

n
∑

i=1

(2Xi + (1 + a)Yi + 1) .

By the stable limit law we have a sequence (an)n∈N such that

1

an

n
∑

i=1

X2
i

d→ SX and
1

an

n
∑

i=1

Y 2
i

d→ SY as n → ∞,

where SX and SY are stable random variables. Further, due to Lemma 2.2 in [13] we
have

1

an

n
∑

i=1

XiYi
d→ 0,

1

an

n
∑

i=1

Xi
d→ 0 and

1

an

n
∑

i=1

Yi
d→ 0 as n → ∞.

Combining this we get

1√
an

σ−(Ga
n)

d→
√

SX + SY ,
1√
an

σ+(Ga
n)

d→
√

SX + a2SY as n → ∞,

and hence

r+−(Ga
n)

d→ SX + aSY
√

SX + SY

√

SX + a2SY

as n → ∞,

which has support on (0, 1). Now, take 0 < ε ≤ 1 and consider the function f(x) :
(0,∞) → R defined as

f(x) =
1 + ax

√

1 + x
√
1 + a2x

.

This function attains its minimum in 1/a and by solving f(1/a) = ε for a we get that
for

a =
2− ε2 ±

√
1− ε

ε2

this minimum equals ε. If we now introduce the random variable T = SY /SX we see
that for a defined as above 1+aT√

1+T
√

1+a2T
has support contained in (ε, 1).
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This example shows that Pearson’s correlation coefficients rβα can converge to a non-
negative random variable in the infinite size network limit. This behavior is undesirable
for if we consider two instances of the same model Ga

n then the values of r+− will be random
and hence could be very far apart. Therefore r+− is not suitable for measuring the In/Out
correlation if we would like to find one number (population value) that characterizes the
In/Out correlation in this model.

6 Experiments

In this section we present experimental results for the degree-degree correlations intro-
duced in Sections 3 and 4. For the calculations we used the WebGraph framework [2, 3]
and the fastutil package from The Laboratory for Web Algorithmics (LAW) at the Uni-
versit degli studi di Milano, http://law.di.unimi.it. The calculations where done
on the Wikepedia graphs, http://wikipedia.org, of nine different languages, obtained
from the LAW dataset database. For each Wikipedia graph we calculated all four degree-
degree correlations using the four measures introduced in this paper.

In an attempt to quantify the results we compared them to a randomized setting. For
this we did 20 reconfigurations of the degree sequences of each graph, using the scheme
decribed in Section 3 of [5]. More precisely, we used the erased directed configuration
model. In this scheme we first assign to each vertex v, D+(v) outbound stubs and D−(v)
inbound stubs. Then we randomly select an available outbound stub and combine it
with a inbound stub, selected uniformly at random from all available inbound stubs,
to make an edge. When this edge is a selfloop we remove it. When we end up with
multiple edges between two vertices we combine them into one edge. Proposition 3.7
of [5] now tells us that the distribution of the degrees of the resulting simple graph will,
with high probability, be the the same as the original distribution. For each of these
reconfigurations, all correlations where calculated using all four measures and then for
each correlation type and measure we took the average. The results are presented in
Table 1.

The first observation is that for each Wikipedia graph and correlation type, the
measures ρ, ρ and τ have the same sign while r in many cases has a different sign.
Furthermore, there are many cases where the absolute value of the three rank correlations
is at least an order of magnitute larger than that of Pearson’s correlation coefficients. See
for instance the Out/In correlations for DE, EN, FR and NL or the In/Out correlation
for KO and RU.

These examples illustrate the fact that Pearson’s correlation coefficients are scaled
down by the high variance in the degree sequences which in turn gave rise to Theorem 3.5,
while the rank correlations do not have this deficiency. Another interesting observation
is that the values for ρ and ρ are almost in full agreement with each other. This would
then suggest that one could freely change between these two when calculating degree-
degree correlations. Because for ρ both the average and the variance are known upfront,
it is computationally easier than ρ while the latter is easier to analyze in a non-random
setting.
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Finally, we notice that in the synthetic configuration model, all correlation measures
are close to zero, and the difference between different realizations of the model is re-
makarbly small (see the values of σ). However, at this point very little can be said about
statistical significance of these results because, as we proved above, r shows pathological
behaviour on large power law graphs and the setting of directed graphs is very different
from the setting of independent observations. This raises important and challenging
questions for future research: which magnitude of degree-degree dependencies should
be seen as significant and how to construct mathmatically sound statistical tests for
establishing such significant dependencies.
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Pearson Spearman uniform Spearman average Kendall
Randomized Randomized Randomized Randomized

Graph α/β Data µ σ Data µ σ Data µ σ Data µ σ

DE wiki

+/- -0.0552 -0.0178 0.0001 -0.1434 -0.0059 0.0002 -0.1435 -0.0059 0.0002 -0.0986 -0.0038 0.0008
-/+ 0.0154 -0.0030 0.0002 0.0481 -0.0008 0.0002 0.0484 -0.0008 0.0002 0.0.326 -0.0005 0.0001
+/+ -0.0323 -0.0091 0.0002 -0.0640 -0.0048 0.0002 -0.0640 -0.0048 0.0002 -0.0446 -0.0006 0.0001
-/- -0.0123 -0.0060 0.0001 0.0119 -0.0009 0.0002 0.0120 -0.0009 0.0002 0.0074 -0.0032 0.0001

EN wiki

+/- -0.0557 -0.0180 0 -0.1999 -0.0064 0.0001 -0.1999 -0.0064 0.0001 -0.1364 -0.0043 0.0001
-/+ -0.0007 -0.0015 0.0001 0.0239 -0.0011 0.0001 0.0240 -0.0011 0.0001 0.0163 -0.0008 0.0001
+/+ -0.0713 -0.0125 0.0001 -0.0855 -0.0053 0.0001 -0.0855 -0.0053 0.0001 -0.0581 -0.0035 0.0001
-/- -0.0074 -0.0024 0.0001 -0.0664 -0.0013 0.0001 -0.0666 -0.0013 0.0001 -0.0457 -0.0009 0.0001

ES wiki

+/- -0.1031 -0.0336 0.0002 -0.1429 -0.0186 0.0003 -0.1429 -0.0186 0.0003 -0.0972 -0.0126 0.0002
-/+ -0.0033 -0.0071 0.0002 -0.0407 -0.0047 0.0003 -0.0417 -00048 0.0003 -0.0294 -0.0034 0.0002
+/+ -0.0272 -0.0201 0.0002 0.0178 -0.0125 0.0003 0.0178 -0.0125 0.0003 0.0119 -0.0084 0.0002
-/- -0.0262 -0.0116 0.0001 -0.1627 -0.0071 0.0003 -0.1669 -0.0072 0.0003 -0.1174 -0.0051 0.0002

FR wiki

+/- -0.0536 -0.0252 0.0001 -0.1065 -0.0123 0.0002 -0.1065 -0.0123 0.0002 -0.0720 -0.0083 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0119 -0.0016 0.0003 0.0121 -0.0016 0.0003 0.0085 -0.0011 0.0002
+/+ -0.0512 -0.0173 0.0002 -0.0126 -0.0093 0.0002 -0.0126 -0.0090 0.0015 -0.0087 -0.0063 0.0001
-/- -0.0094 -0.0054 0.0001 -0.0262 -0.0021 0.0003 -0.0267 -0.0025 0.0015 -0.0186 -0.0015 0.0002

HU wiki

+/- -0.1048 -0.0378 0.0003 -0.1280 -0.0220 0.0006 -0.1280 -0.0220 0.0006 -0.0877 -0.0148 0.0004
-/+ 0.0120 -0.0056 0.0005 0.0525 0.0002 0.0005 0.0595 0 0.0006 0.0442 0 0.0004
+/+ -0.0579 -0.0261 0.0005 -0.0207 -0.0157 0.0005 -0.0207 -0.0157 0.0004 -0.0140 -0.0107 0.0003
-/- -0.0279 -0.0084 0.0004 0.0051 0.0004 0.0005 0.0060 0.0002 0.0006 0.0050 -0.0001 0.0005

IT wiki

+/- -0.0711 -0.0319 0.0001 -0.0964 -0.0158 0.0002 -0.0964 -0.0158 0.0002 -0.0653 -0.0106 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0468 -0.0013 0.0002 0.0469 -0.0013 0.0003 0.0319 -0.0009 0.0002
+/+ -0.0704 -0.0204 0.0002 -0.0277 -0.0121 0.0002 -0.0277 -0.0122 0.0002 -0.0189 -0.0081 0.0001
-/- -0.0115 -0.0050 0.0001 -0.0428 -0.0016 0.0002 -0.0429 -0.0016 0.0002 -0.0296 -0.0011 0.0002

KO wiki

+/- -0.0805 -0.0562 0.0004 -0.2696 -0.0476 0.0037 -0.2722 -0.0482 0.0038 -0.1985 -0.0328 0.0073
-/+ 0.0157 -0.0009 0.0030 0.1760 0.0019 0.0046 0.2323 0.0034 0.0046 0.1902 0.0031 0.0035
+/+ -0.1697 -0.0357 0.0035 0.0016 -0.0267 0.0041 0.0191 -0.0272 0.0040 0.0170 0.0298 0.0415
-/- -0.0138 -0.0034 0.0015 -0.0493 0.0062 0.0045 -0.0618 0.0083 0.0042 -0.0463 0.0065 0.0032

NL wiki

+/- -0.0585 -0.0346 0.0001 -0.3017 -0.0211 0.0002 -0.3018 -0.0211 0.0002 -0.2089 -0.0142 0.0002
-/+ 0.0100 -0.0025 0.0003 0.0727 -0.0007 0.0003 0.0730 -0.0007 0.0003 0.0504 -0.0004 0.0003
+/+ -0.0628 -0.0194 0.0001 0.0016 -0.0104 0.0003 0.0016 -0.0104 0.0003 0.0015 -0.0070 0.0002
-/- -0.0233 -0.0091 0.0001 -0.1498 -0.0019 0.0003 -0.1505 -0.0019 0.0003 -0.1048 -0.0013 0.0002

RU wiki

+/- -0.0911 -0.0225 0.0004 -0.1080 -0.0093 0.0015 -0.1084 -0.0093 0.0015 -0.0755 -0.0064 0.0010
-/+ 0.0398 -0.0006 0.0009 0.1977 0 0.0008 0.2200 0.0001 0.0009 0.1655 0.0001 0.0007
+/+ 0.0082 -0.0038 0.0010 0.2472 0.0002 0.0015 0.2480 0.0001 0.0015 0.1736 0.0001 0.0010
-/- -0.0242 -0.0030 0.0007 0.0236 0.0009 0.0011 0.0255 0.0007 0.0015 0.0187 0.0006 0.0007

Table 1: Degree-degree correlations for Wikipedia graphs.
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