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Abstract

In network theory, Pearson’s correlation coefficients are most commonly used to
measure the degree assortativity of a network. We investigate the behavior of these
coefficients in the setting of directed networks with heavy-tailed degree sequences.
We prove that for graphs where the in- and out-degree sequences satisfy a power
law with realistic parameters, Pearson’s correlation coefficients converge to a non-
negative number in the infinite network size limit. We propose alternative measures
for degree-degree dependencies in directed networks based on Spearman’s rho and
Kendall’s tau. Using examples and calculations on the Wikipedia graphs for nine
different languages, we show why these rank correlation measures are more suited
for measuring degree assortativity in directed graphs with heavy-tailed degrees.

Keywords degree assortativity, degree-degree correlations, scale free directed networks,
power laws, rank correlations.

1 Introduction

In the analysis of the topology of complex networks a feature that is often studied is the
degree-degree dependency, also called degree assortativity of the network. A network is
called assortative, when nodes with high degree have a preference to be connected to
nodes of similar large degree. When nodes with large degree have a connection preference
for nodes with low degree the network is said to be disassortative. A measure for degree
assortativity was first given for undirected networks by Newman [16], which corresponds
to Pearson’s correlation coefficient of the degrees at the ends of a random edge in the
network. A similar definition for directed networks was introduced in [17] and later
adopted for analysis of directed complex networks in [9] and [19].

Degree assortativity in networks has been analyzed in a variety of scientific fields such
as neuroscience, molecular biology, information theory and social network sciences and
has been found to influence several properties of a network. In [10] and [12] degree-degree
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correlations are used to investigate the structure of collaboration networks of a social
news sharing website and Wikipedia discussion pages, respectively. Neural networks
with high assortativity seem to behave more efficiently under the influence of noise [8]
and information content has been shown to depend on the absolute value of the degree
assortativity [20]. The effects of degree-degree dependencies on epidemic spreading have
been studied in percolation theory [2, 26] and it has been shown, for instance, that
the epidemic threshold depends on these correlations. Degree assortativity is used in
the analysis of networks under attack, e.g. P2P networks [23, 24]. Networks with high
degree assortativity seem to be less stable under attack, [5]. In the case of directed
networks, recent research [15] has shown that degree-degree dependencies can influence
the rate of consensus in directed social networks like Twitter.

Recently it has been shown [13, 14] that for undirected networks of which the degree
sequence satisfies a power law distribution with exponent γ ∈ (1, 3), Pearson’s correlation
coefficient scales with the network size, converging to a non-negative number in the
infinite network size limit. Because most real world networks have been reported to be
scale free with exponent in (1, 3), c.f. [1, 18, Table II], this could then explain why large
networks are rarely classified as disassortative. In [13, 14] a new measure, corresponding
to Spearman’s rho [22], has been proposed as an alternative.

In this paper we will extend the analysis in [13] to the setting of directed networks.
Here we have to consider four types of degree-degree dependencies, depending on the
choice for in- or out-degree on either side of an edge. Our message is, similar to that
of [13], that Pearson’s correlation coefficients are size biased and produce undesirable
results, hence we should look for other means to measure degree-degree dependencies.

We consider networks where the in- and out-degree sequences have a power law distri-
bution. We will give conditions on the exponents of the in- and out-degree sequences for
which the assortativity measures defined in [9] and [19] converge to a non-negative num-
ber in the infinite network size limit. This result is a strong argument against the use
of Pearson’s correlation coefficients for measuring degree-degree dependencies in such
directed networks. To strengthen this argument we also give examples which clearly
show that the values given by Pearson’s correlation coefficients do not represent the true
dependency between the degrees, which it is supposed to measure. As an alternative
we propose correlation measures based on Spearman’s rho [22] and Kendall’s tau [11].
These measures are based on the ranking of the degrees rather than their value and hence
do not exhibit the size bias observed in Pearson’s correlation coefficients. We will give
several examples where the difference between these three measures is shown. We also
include an example for which one of the four Pearson’s correlation coefficients converges
to a random variable in the infinite network size limit and therefore will obviously pro-
duce uninformative results. Finally we calculate all four degree-degree correlations on
the Wikipedia network for nine different languages using all the assortativity measures
proposed in this paper.

This paper is structured as follows. In Section 2 we introduce notations. Pearson’s
correlation coefficients are introduced in Section 3 and a convergence theorem is given
for these measures. We introduce the rank correlations Spearman’s rho and Kendall’s
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tau for degree-degree dependencies in Section 4. Example graphs that illustrate the
difference between the three measures are presented in Section 5 and the degree-degree
correlations for the Wikipedia graphs are presented in Section 6. Finally, in Section 7
we briefly discuss the results and there interpretation.

2 Definitions and notations

We start with the formal definition of the problem and introduce the notations that will
be used throughout the paper.

2.1 Graphs, vertices and degrees

We will denote by G = (V,E) a directed graph with vertex set V and edge set E ⊆ V ×V .
For an edge e ∈ E, we denote its source by e∗ and its target by e∗. With each directed
graph we associate two functions D+,D− : V → N where D+(v) := |{e ∈ E|e∗ = v}|
is the out-degree of the vertex v and D−(v) := |{e ∈ E|e∗ = v}| the in-degree. When
considering sequences of graphs, we denote by Gn = (Vn, En) an element of the sequence
(Gn)n∈N. We will further use subscripts to distinguish between the different graphs in
the sequence. For instance, D+

n and D−
n will denote the out- and in-degree functions of

the graph Gn, respectively.

2.2 Four types of degree-degree dependencies

In this paper we are interested in measuring dependencies between the degrees at both
sides of an edge. That is, we measure the relation between two vectors X and Y as
a function of the edges e ∈ E corresponding to the degrees of e∗ and e∗, respectively.
In the undirected case this is called the degree assortativity. In the directed setting
however, we can consider any combination of the two degree types resulting in four
types of degree-degree dependencies, illustrated in Figure 1.

From Figure 1 one can already observe some interesting features of these depen-
dencies. For instance, in the Out/In case the edge that we consider contributes to the
degrees on both sides. We will later see that for this reason the Out/In dependency in
fact generalizes the undirected case. More precisely, our result for the Out/In depen-
dencies generalizes the result from [14] when we transform from the undirected to the
directed case by making every edge bi-directional.

For the other three dependency types we observe that there is always at least one
side where the considered edge does not contribute towards the degree on that side. We
will later see that for these dependency types the dependency of the in- and out-degree
of a vertex will play a role.
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Out/In In/Out

Out/Out In/In

Figure 1: Four degree-degree dependency types

3 Pearson’s correlation coefficient

Among degree-degree dependency measures, the measure proposed by Newman [16,
17] has been widely used. This measure is the statistical estimator for the Pearson
correlation coefficient of the degrees on both sides of a random edge. However, for
undirected networks with heavy tailed degrees with exponent γ ∈ (1, 3) it was proved [14]
that this measure converges, in the infinite size network limit, to a non-negative number.
Therefore, in these cases, Pearson’s correlation coefficient is not able to correctly measure
negative degree-degree dependencies. In this section we will extend this result to directed
networks proving that also here Pearson’s correlation coefficients are not the right tool
to measure degree-degree dependencies.

Let us consider Pearson’s correlation coefficients as in [16, 17], adjusted to the setting
of directed graphs as in [9, 19]. This will constitute four formulas which we combine
into one. Take α, β ∈ {+,−}, that is, we let α and β index the type of degree (out-
or in-degree). Then we get the following expression for the four Pearson’s correlation
coefficients:

rβα(G) =
1

σα(G)σβ(G)

(

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− 1

|E|2
∑

e∈E

Dα(e∗)
∑

e∈E

Dβ(e∗)

)

, (1)
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where

σα(G) =

√

√

√

√

1

|E|
∑

e∈E

Dα(e∗)2 −
1

|E|2

(

∑

e∈E

Dα(e∗)

)2

and (2)

σβ(G) =

√

√

√

√

1

|E|
∑

e∈E

Dβ(e∗)2 − 1

|E|2

(

∑

e∈E

Dβ(e∗)

)2

. (3)

Here we utilize the notations for the source and target of an edge by letting the super-
script index denote the specific degree type of the target e∗ and the subscript index the
degree type of the source e∗. For instance r−+ denotes the Pearson correlation coefficient
for the Out/In relation.

It is convenient to rewrite the summations over edges to summations over vertices
by observing that

∑

e∈E

Dα(e∗)
k =

∑

v∈V

D+Dα(v)k

and similarly
∑

e∈E

Dα(e∗)k =
∑

v∈V

D−Dα(v)k

for all k > 0. Plugging this into (1)-(3) we arrive at the following definition.

Definition 3.1. Let G = (V,E) be a directed graph and let α, β ∈ {+,−}. Then the
Pearson’s α -β correlation coefficient is defined by

rβα(G) =
1

σα(G)σβ(G)

1

|E|
∑

e∈E

Dα(e∗)D
β(e∗)− r̂βα(G), (4)

where

r̂βα(G) =
1

σα(G)σβ(G)

1

|E|2
∑

v∈V

D+(v)Dα(v)
∑

v∈V

D−(v)Dβ(v), (5)

σα(G) =

√

√

√

√

1

|E|
∑

v∈V

D+(v)Dα(v)2 − 1

|E|2

(

∑

v∈V

D+(v)Dα(v)

)2

, (6)

σβ(G) =

√

√

√

√

1

|E|
∑

v∈V

D−(v)Dβ(v)2 − 1

|E|2

(

∑

v∈V

D−(v)Dβ(v)

)2

. (7)

Just as in the undirected case, c.f. [13, 14], the wiring of the network only contributes
to the positive part of (4). All other terms are completely determined by the in- and out-

degree sequences. This fact enables us to analyze the behavior of rβα(G), see Section 3.1.
Observe also that in contrast to undirected graphs, in the directed case the correlation
between the in- and out-degrees of a vertex can play a role, take for instance α = − and
β = +.
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Note that in general rβα(G) might not be well defined, for either σα(G) or σβ(G)
might be zero, for example, when G is a directed cyclic graph of arbitrary size. From
equations (2) and (3) it follows that σα(G) and σβ(G) are the variances of X and Y ,
where X = Dα(e∗) and Y = Dβ(e∗), e ∈ E, with probability 1/|E|. Thus, σα(G) 6= 0 is
only possible if Dα(v) 6= Dα(w) for some v,w ∈ V . Moreover, v and w must have non-
zero out-degree for at least one such pair v,w, so that Dα(v) and Dα(w) are counted
when we traverse over edges. This argument is formalized in the next lemma, which
provides necessary and sufficient conditions so that σα(G), σβ(G) 6= 0.

Lemma 3.2. Let G = (V,E) be a graph and take α, β ∈ {+,−}. Then the following
holds:

1

|E|

(

∑

v∈V

Dα(v)Dβ(v)

)2

≤
∑

v∈V

Dα(v)Dβ(v)2 (8)

and strict inequality holds if and only if there exits distinct v,w ∈ V such that Dα(v),
Dα(w) > 0 and Dβ(v) 6= Dβ(w).

Proof. Recall that |E| =∑v∈V Dα(v) for any α ∈ {+,−}. Then we have:

|E|
∑

v∈V

Dα(v)Dβ(v)2 −
(

∑

v∈V

Dα(v)Dβ(v)

)2

=
∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)Dβ(v)2 −Dα(w)Dβ(w)Dα(v)Dβ(v)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w)2 − 2Dβ(w)Dβ(v) +Dβ(v)2
)

=
1

2

∑

w∈V

∑

v∈V \w

Dα(w)Dα(v)
(

Dβ(w) −Dβ(v)
)2

≥ 0,

which proves (8). From the last line one easily sees that strict inequality holds if and only
if there exits distinct v,w ∈ V such that Dα(v), Dα(w) > 0 and Dβ(v) 6= Dβ(w).

3.1 Convergence of Pearson’s correlation coefficients

In this section we will prove that Pearson’s correlation coefficients (4), calculated on
sequences of growing graphs satisfying rather general conditions, converge to a non-
negative value. We start by recalling the definition of big theta.

Definition 3.3. Let f, g : N → R>0 be positive functions. Then f = Θ(g) if there exist
k1, k2 ∈ R>0 and an N ∈ N such that for all n ≥ N

k1g(n) ≤ f(n) ≤ k2g(n).

When we have two sequences (an)n∈N and (bn)n∈N we write an = Θ(bn) for (an)n∈N =
Θ((bn)n∈N).
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Next, we will provide the conditions that our sequence of graphs needs to satisfy and
prove the result. These conditions are based on properties of i.i.d. sequences of regularly
varying random variables, which are often used to model scale-free distributions. We will
provide a more thorough motivation of the chosen conditions in Section 3.2. From here
on we denote by x ∨ y and x ∧ y the maximum and minimum of x and y, respectively.

Definition 3.4. For γ−, γ+ ∈ R>0 we denote by Gγ−γ+ the space of all sequences of
graphs (Gn)n∈N with the following properties:

G1 |Vn| = n.

G2 There exists a N ∈ N such that for all n ≥ N there exist v,w ∈ Vn with Dα
n(v),

Dα
n(w) > 0 and Dα

n(v) 6= Dα
n(w), for all α ∈ {+,−}.

G3 For all p, q ∈ R>0,
∑

v∈Vn

D+
n (v)

pD−
n (v)

q = Θ(np/γ+∨q/γ−∨1).

G4 For all p, q ∈ R>0, if p < γ+ and q < γ− then

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q := d(p, q) ∈ (0,∞).

Where the limits are such that for all a, b ∈ N, k,m > 1 with 1/k + 1/m = 1,
a+ p < γ+ and b+ q < γ− we have,

d(a, b)
1

m d(p, q)
1

k > d(
a

m
+

p

k
,
b

m
+

q

k
).

Now we are ready to give the convergence theorem for Pearson’s correlation coeffi-
cients, Definition 3.1.

Theorem 3.5. Let α, β ∈ {+,−}. Then there exists an area Aβ
α ⊆ R

2 such that for

(γ+, γ−) ∈ Aβ
α and (Gn)n∈N ∈ Gγ−γ+ ,

lim
n→∞

r̂βα(Gn) = 0

and hence any limit point of rβα(Gn) is non-negative.

Proof. Let (Gn)n∈N be an arbitrary sequence of graphs. It is clear that if r̂βα(Gn) → 0

then any limit point of rβα(Gn) is non-negative. Therefore we only need to prove the first
statement. To this end we define the following sequences,

an =
1

|En|

(

∑

v∈Vn

D+
n (v)D

α
n(v)

)2

, bn =
1

|En|

(

∑

v∈Vn

D−
n (v)D

β
n(v)

)2

,

cn =
∑

v∈Vn

D+
n (v)D

α
n (v)

2, dn =
∑

v∈Vn

D−
n (v)D

β
n(v)

2,
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and observe that r̂βα(Gn)
2 = anbn/(cn − an)(dn − bn). Now if (Gn)n∈N ∈ Gγ−γ+ then

because of G2 and Lemma 3.2 there exists an N ∈ N such that for all n ≥ N we have
cn > an and dn > bn, so r̂βα(Gn) is well-defined for all n ≥ N . Next, using G3, we get
that an = Θ(na), bn = Θ(nb), cn = Θ(nc) and dn = Θ(nd) for certain constants a, b, c
and d, which depend on γ−, γ+ and the degree-degree correlation type chosen. Because
r̂βα(Gn) → 0 if and only if r̂βα(Gn)

2 → 0, we need to find sufficient conditions for which
anbn/(cn − an)(dn − bn) → 0. It is clear that either a < c and bn/(dn − bn) is bounded
or b < d and an/(cn − an) is bounded are sufficient. It turns out that this is exactly the
case when either a < c and b ≤ d or a ≤ c and b < d. We will do the analysis for the
In/Out degree-degree correlation. The analysis for the other three correlation types is

similar. Figure 2 shows all four areas Aβ
α.

When α = − and β = + we get the following constants

a, b = 2

(

1

γ+
∨ 1

γ−
∨ 1

)

− 1

c =

(

1

γ+
∨ 2

γ−
∨ 1

)

d =

(

2

γ+
∨ 1

γ−
∨ 1

)

It is clear that when 1 < γ−, γ+ < 2 then a < c and b < d and hence r̂βα → 0.
Now if 1 < γ− < 2 and γ+ ≥ 2 then a = b = d = 1 < c. Using G4 we get that
limn→∞ dn/n = d(2, 1) and

lim
n→∞

bn
n

= lim
n→∞

(
∑

v∈Vn
D−

n (v)D
+
n (v)

)2

n2

n

|En|

= lim
n→∞

(

∑

v∈Vn
D−

n (v)D
+
n (v)

n

)2(∑

v∈Vn
D−

n (v)

n

)−1

=
d(1, 1)2

d(0, 1)
< d(2, 1) = lim

n→∞

dn
n
,

where, for the last part, we again used G4. From this it follows that bn/(dn − bn) is

bounded and so r̂βα → 0. A similar argument applies to the case γ− ≥ 2 and 1 < γ+ < 2,
where the only difference is that a = b = c = 1 < d, hence

A+
− = {(x, y) ∈ R|1 < x < 2, y > 1} ∪ {(x, y) ∈ R|1 < y < 2, x > 1}.

Using similar arguments, we obtain:

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1},

A+
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} and

A−
− = {(x, y) ∈ R

2|1 < y < 3, x > 1}.
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1

1
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1

A
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γ+

1

3

1

A
−
−

Figure 2: Four areas Aβ
α, where rβα converges to a non-negative number.

Let us now provide an intuitive explanation for the areas Aβ
α, as depicted in Figure

2. The key observation is that due to G3 the terms with the highest power of either
D+

n or D−
n will dominate in r̂βα(Gn). Therefore, if these moments do not exist, then the

denominator will grow at a larger rate then the numerator, hence r̂βα → 0.
Taking α = + = β, we see that D− only has terms of order one while D+ has terms

up to order three. This explains why A+
+ = {(x, y) ∈ R|1 < x ≤ 3, y > 1}. Area A−

− is
then easily explained by observing that the expression for r−−(G) is obtained from r++(G)
by interchanging D+ and D−.

For the Out/In correlation, i.e. α = + and β = −, we see from equations (5)-(7)
that r̂−+(G) splits into a product of two terms, each completely determined by either in-
or out-degrees,

1
|E|

∑

v∈V Dα(v)2

√

1
|E|

∑

v∈V Dα(v)3 − 1
|E|2

(
∑

v∈V Dα(v)2
)2

,

with α ∈ {+,−}. These terms are of the exact same form as the expression in [13] for
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the undirected degree-degree correlation. Because both D+ and D− have terms of order
three, one sees that

A−
+ = {(x, y) ∈ R

2|1 < x < 3, y > 1} ∪ {(x, y) ∈ R
2|1 < y < 3, x > 1}.

Now take a undirected network and make it directed by replacing each undirected edge
with a bi-directional edge. Then D+(v) = D−(v) for all v ∈ V and hence r−+(G) equals
the expression of equation (3.4) in [13] when we replace D by either D+ or D−.

Theorem 3.5 has several consequences. First of all, no matter what mechanism is
used for generating networks, if the conditions of the theorem are satisfied then for large
enough networks the degree-degree correlations will always be non-negative. This could
explain why in most large networks strong disassortativity has not been registered. We
will present such examples in Section 5. Second, if the underlying model that governs the
topology of the network is in line with the conditions of the theorem, then one cannot
compare networks of different sizes that arise from this model. For in this case, the
degree-degree correlation coefficients rβα will decrease with the network size.

3.2 Motivation for Gγ−γ+

In this section we will motivate Definition 3.4. G1 is easily motivated, for we want to
consider infinite network size limits. G2 combined with Lemma 3.2 ensures that from a
certain grah size N , rβα(Gn) is always well-defined. Conditions G3 and G4 are related to
heavy-tailed degree sequences that are modeled using regularly varying random variables.

A random variable X is called regularly varying with exponent γ if for all t > 0,
P(X > t) = L(t)t−γ for some slowly varying function L, that is limt→∞ L(tx)/L(t) = 1
for all x > 0. We write R−γ for the class of all such distribution functions and write
X ∈ R−γ to denote a regularly varying random variable with exponent γ. For such a
random variable X we have that E [Xp] < ∞ for all 0 < p < γ.

Through experiments it has been shown that many real world networks, both directed
and undirected, have degree sequences whose distribution closely resembles a power
law distribution, c.f. Table II of [1] and [18]. Suppose we take two random variables
D+ ∈ Rγ+ , D− ∈ Rγ− and consider, for each n, the degree sequences (D±

n (v))v∈Vn
as

i.i.d. copies of these random variables. Then for all 0 < p < γ+ and 0 < q < γ−

lim
n→∞

1

n

∑

v∈Vn

D+
n (v)

pD−
n (v)

q = E
[

(D+)p(D−)q
]

.

Moreover, since D± is non-degenerate, we have E

[

(D±)
k
]

> E [D±]
k
, and thus by tak-

ing d(p, q) = E [(D+)p(D−)q], we get G4 where the second part follows from Hölder’s
inequality. Although i.i.d. sequences generated by sampling from in- and out-degree dis-
tributions do not in general constitute a graphical sequence, it is often the case that one
can modify this sequence into a graphical sequence preserving i.i.d. properties asymp-
totically. Consider for example [6], where a directed version of the configuration model is
introduced and it is proven (Theorem 2.4) that the degree sequences are asymptotically
independent.
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The property G3 is associated with the scaling of the sums
∑

v∈Vn
D+

n (v)
pD−

n (v)
q

and is related to the central limit theorem for regularly varying random variables. When
we model the degrees as i.i.d. copies of independent regularly varying random variables
D+ ∈ R−γ+ , D− ∈ R−γ− and take p ≥ γ+ or q ≥ γ− then

∑

v∈Vn
D+

n (v)
pD−

n (v)
q is in

the domain of attraction of a γ-stable random variable S(γ), where γ = (γ+/p ∧ γ−/q),
c.f. [7]. This means that

1

an

∑

v∈Vn

D+
n (v)

pD−
n (v)

q d→ S(γ+/p ∧ γ−/q), as n → ∞ (9)

for some sequence an = Θ(nq/γ−∨p/γ+), where
d→ denotes convergence in distribu-

tion. Informally, one could say that
∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ−∨p/γ+ when

either the p or q moment does not exist and as n when both moments exist, hence,
∑

v∈Vn
D+

n (v)
pD−

n (v)
q scales as nq/γ−∨p/γ+∨1, which is what G3 states. For complete-

ness we include the next lemma, which shows that (9) implies that G3 holds with high
probability.

We remark that although the motivation for G3 is based on results where the regu-
larly varying random variables are assumed to be independent the dependent case can
be included. For this, one needs to adjust the scaling parameters in G3 for the specified
dependence. In our numerical experiments the in- and out- degrees in Wikipedia graphs
show strong independence, hence G3 holds for networks such as Wikipedia.

Lemma 3.6. Let (Xn)n∈N be a sequence of positive random variables such that

Xn

an

d→ X, as n → ∞,

for some sequence (an)n∈N and positive random variable X. Then for each 0 < ε < 1,
there exists an Nε ∈ N and κε ≥ ℓε > 0 such that for all n ≥ Nε

P(ℓεan ≤ Xn ≤ κεan) ≥ 1− ε.

Proof. Let 0 < ε < 1 and take δ > 0, 0 < ℓ ≤ κ such that

P(ℓ ≤ X ≤ κ) ≥ 1− ε+ δ.

Then, because Xn/an
d→ X as n → ∞, there exists an N ∈ N such that for all n ≥ N ,

|P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan)| < δ.

Now we get for all n ≥ N ,

1− ε+ δ − P(ℓan ≤ Xn ≤ κan) ≤ P(ℓ ≤ X ≤ κ)− P(ℓan ≤ Xn ≤ κan) ≤ δ,

hence P(ℓan ≤ Xn ≤ κan) ≥ 1− ε.

11



4 Rank correlations

In this section we consider two other measures for degree-degree dependencies, Spear-
man’s rho [22] and Kendall’s tau [11], which are based on the rankings of the degrees
rather than their actual value. We will define these dependency measures and argue that
they do not have unwanted behavior as we observed for Pearson’s correlation coefficients.
We will later use examples to enforce this argument and show that Spearman’s rho and
Kendall’s tau are better candidates for measuring degree-degree dependencies.

4.1 Spearman’s rho

Spearman’s rho [22] is defined as the Pearson correlation coefficient of the vector of
ranks. Let G = (V,E) be a directed graph and α, β ∈ {+,−}. In order to adjust the
definition of Spearman’s rho to the setting of directed graphs we need to rank the vectors
(Dα(e∗))e∈E and (Dβ(e∗))e∈E . These will, however, in general have many tied values.
For instance, suppose that Dα(v) = m for some v ∈ V , then edges e ∈ E with e∗ = v
satisfy Dα(e∗) = Dα(v). Therefore, we will encounter the value Dα(v) at least m times
in the vector (Dα(e∗))e∈E . We will consider two strategies for resolving ties: uniformly
at random (Section 4.1.1), and using an average ranking scheme (Section 4.1.2).

4.1.1 Resolving ties uniformly at random

Given a sequence {xi}1≤i≤n of distinct elements in R we denote by R(xj) the rank of xj,
i.e. R(xj) = |{i|xi ≥ xj}|, 1 ≤ j ≤ n. The definition of Spearman’s rho in the setting of
directed graphs is then as follows.

Definition 4.1. Let G = (V,E) be a directed graph, α, β ∈ {+,−} and let (Ue)e∈E,
(We)e∈E be i.i.d. copies of independent uniform random variables U and W on (0, 1),
respectively. Then we define the α-β Spearman’s rho of the graph G as

ρβα(G) =
12
∑

e∈E Rα(e∗)R
β(e∗)− 3|E|(|E| + 1)2

|E|3 − |E| , (10)

where Rα(e∗) = R(Dα(e∗) + Ue) and Rβ(e∗) = R(Dβ(e∗) +We).

From (10) we see that the negative part of ρβα(G) depends only on the number of
edges

3(|E| + 1)2

(|E|2 − 1)
= 3 +

6|E|+ 4

|E|2 − 1
,

while for rβα(G) it depended on the values of the degrees, see Definition 3.1. When
(Gn)n∈N ∈ Gγ+,γ− , with γ+, γ− > 1 then it follows that |En| = θ(n) hence 3 + (6|E| +
4)/(|E|2−1) → 3, as n → ∞. Therefore we see that the negative contribution will always

be at least 3 and so ρβα(Gn) does not in general converge to a non-negative number while

rβα(Gn) does.
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When calculating ρβα(G) on a graph G one has to be careful, for each instance will give
different ranks of the tied values. This could potentially give rise to very different results
among several instances, see Section 5.1.2 for an example. Therefore, in experiments,
we will take an average of ρβα(G) over several instances of the uniform ranking.

4.1.2 Resolving ties with average ranking

A different approach for resolving ties is to assign the same average rank to all tied
values. Consider, for example, the sequence (1, 2, 1, 3, 3). Here the two values of 3 have
ranks 1 and 2, but instead we assign the rank 3/2 to both of them. With this scheme
the sequence of ranks becomes (9/2, 3, 9/2, 3/2, 3/2). This procedure can be formalized
as follows.

Definition 4.2. Let (xi)1≤i≤n be a sequence in R then we define the average rank of an
element xi as

R(xi) = |{j|xj > xi}|+
|{j|xj = xi}|+ 1

2
.

Observe that in the above definition the total average rank is preserved:
∑n

i=1R(xi) =
n(n+1)/2. The difference with resolving ties uniformly at random is that we in general
do not know

∑n
i=1 R(xi)

2, for this depends on how many ties we have for each value.
We now define the corresponding version of Spearman’s rho of graphs as follows.

Definition 4.3. let G = (V,E) be a directed graph, α, β ∈ {+,−} and denote by

R
α
(e∗) and R

β
(e∗) the average ranks of Dα(e∗) among (Dα(e∗))e∈E and Dβ(e∗) among

(Dβ(e∗))e∈E, respectively. Then we define the α-β Spearman’s rho with average resolu-
tion of ties by

ρβα(G) =
4
∑

e∈E R
α
(e∗)R

β
(e∗)− |E|(|E| + 1)2

σα(G)σβ(G)
, (11)

where

σα(G) =

√

4
∑

e∈E

R
α
(e∗)2 − |E|(|E| + 1)2

and

σβ(G) =

√

4
∑

e∈E

R
β
(e∗)2 − |E|(|E| + 1)2.

Note that ρβα(G) does not suffer from any randomness in the ranking of the degrees.
Hence, in contrast to (10), here we do not need to take an average over multiple instances.
The next lemma shows that taking the expectation over the uniform ranking is actually
equal to applying the average ranking scheme.

Lemma 4.4. Let G = (V,E) be a graph, e ∈ E and α, β ∈ {+,−}. Then

13



i) E [Rα(e∗)] = R
α
(e∗), E

[

Rβ(e∗)
]

= R
β
(e∗), and

ii) E
[

Rα(e∗)R
β(e∗)

]

= R
α
(e∗)R

β
(e∗)

Proof.

i) We will only prove the first statement. The proof for the second one is similar.
Since Rα(e∗) = R(Dα(e∗)) +Ue and (Ue)e∈E are i.i.d. copies of an uniform random
variable U on (0, 1) we have that

∑

f∈E

I {Dα(f∗) = Dα(e∗)}E [I {Uf ≥ Ue}]

=
∑

f∈E

I {Dα(f∗) = Dα(e∗)}
(

I {f = e}+ 1

2
I {f 6= e}

)

=
1

2

∑

f∈E

I {Dα(f∗) = Dα(e∗)}+
1

2
.

It follows that

E [Rα(e∗)] = E





∑

f∈E

I {Dα(f∗) + Uf ≥ Dα(e∗) + Ue}





=
∑

f∈E

I {Dα(f∗) > Dα(e∗)}+
∑

f∈E

I {Dα(f∗) = Dα(e∗)}E [I {Uf ≥ Ue}]

=
∑

f∈E

I {Dα(f∗) > Dα(e∗)}+
1

2

∑

f∈E

I {Dα(f∗) = Dα(e∗)}+
1

2

= R
α
(e∗).

ii) By definition we have that

Rα(e∗)R
β(e∗) =

∑

f,g∈E

I
{

Dα(f∗) > Dα(e∗)
}

I
{

Dβ(g∗) > Dβ(e∗)
}

+
∑

f,g∈E

I
{

Dα(f∗) > Dα(e∗)
}

I
{

Dβ(g∗) = Dβ(e∗)
}

I
{

Wg ≥ We

}

+
∑

f,g∈E

I
{

Dα(f∗) = Dα(e∗)
}

I
{

Uf ≥ Ue

}

I
{

Dβ(g∗) > Dβ(e∗)
}

+
∑

f,g∈E

I
{

Dα(f∗) = Dα(e∗)
}

I
{

Dβ(g∗) = Dβ(e∗)
}

I {Uf ≥ Ue} I
{

Wg ≥ We

}

.

Therefore, since (Uf )f∈E and (Wg)g∈E are i.i.d. copies of independent uniform
random variables U and W on (0, 1), respectively, the result follows by applying i).
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From Lemma 4.4 we conclude that instead of calculating ρβα several times and then
taking the average we can immediately apply the average ranking which limits the total
calculations to just one. Moreover, we have that

E

[

ρβα(G)
]

=
3σασ

β

|E|3 − |E|ρ
β
α(G), (12)

which emphasizes that the difference between the uniform at random and average ranking
scheme is determined by the number of ties in the degrees.

4.2 Kendall’s Tau

Another common rank correlation is Kendall’s tau [11], which measures the weighted
difference between the number of concordant and discordant pairs of the joint obser-
vations (xi, yi)1≤i≤n. More precisely, a pair (xi, yi) and (xj , yj) of joint observations is
concordant if xi < xj and yi < yj or if xi > xj and yi > yj. They are called discordant
if xi < xj and yi > yj or if xi > xj and yi < yj.

Definition 4.5. Let G = (V,E) be a directed graph, α, β ∈ {−,+} and denote
by Nc and Nd, respectively, the number of concordant and discordant pairs among
(

Dα(e∗),D
β(e∗)

)

e∈E
. Then we define the α-β Kendall’s tau of G by

τβα (G) =
2(Nc −Nd)

|E|(|E| − 1)
.

It might seem at first that τ does not suffer from ties. However, note that the numer-
ator of τ includes only strictly concordant and discordant pairs, while the denominator
is equal to the number of all possible pairs, irregardless of the presence of ties. Hence,
when the number of ties is large, the denominator may become much larger than the
numerator resulting in small, even vanishing in the graph size limit, values of τβα . We will
provide such example in Section 5. Since, as discussed above, the sequences (Dα(e∗))e∈E
and

(

Dβ(e∗)
)

e∈E
naturally have a large number of ties, we cannot expect τβα (G) to take

very large (positive or negative) values. To address this issue an weighted extension
of Kendall’s tau was very recently introduced [27]. This new measure also puts more
emphasis on nodes with large in- or out-degrees.

5 Bridge graph example

In this section we will provide a sequence of graphs to illustrate the difference between the
four correlation measures in directed networks. We start with a deterministic sequence
and will later adapt this to a randomized sequence using regularly varying random
variables.
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Figure 3: A graphical representation of the graphs G(k,m) (a) and Ĝ(k,m) (b).

5.1 A deterministic in-out bridge graph

Let k,m ∈ N>0, then we define the bridge graph G(k,m) = (V (k,m), E(k,m)), displayed
in Figure 3a, as follows:

V (k,m) = v ∪ w ∪
k
⋃

i=1

vi ∪
m
⋃

j=1

wj, E(k,m) = g ∪
k
⋃

i=1

ei ∪
m
⋃

j=1

fj, where

ei = (vi, v), fj = (w,wj) and g = (v,w).

It follows that |E(k,m)| = m+ k + 1. For the degrees of G(k,m) we have:

D+(vi) = 1, D−(vi) = 0, for all 1 ≤ i ≤ k;

D+(wj) = 0, D−(wj) = 1, for all 1 ≤ j ≤ m;

D+(v) = 1, D−(v) = k,

D+(w) = m, D−(w) = 1.

Looking at the scatter plot of (D−(e∗),D
+(e∗))e∈E(k,m), Figure 4a, we see that the

point (k,m) contributes towards a positive dependency while the points (0, 1) and (1, 0)
contribute towards a negative dependency. Hence, depending on how much weight we
put on each of these points we could argue equally well that this graph could have a
positive or negative value for the In/Out dependency. We can however extend the in-out
bridge graph to a graph for which we do have a clearly negative In/Out dependency.

We define the disconnected in-out bridge graph Ĝ(k,m) = (V̂ (k,m), Ê(k,m)) from
G(k,m) by adding a vertex u and replacing the edge g = (v,w) by the edges g1 = (v, u)
and g2 = (u,w), see Figure 3b. In this graph the node with the largest in-degree, v, is
connected to node u, of out-degree 1. Similarly u, which has in-degree 1, is connected
to the node with the highest out-degree, w. Therefore we would expect a negative
value of In/Out dependency measures. This intuition is supported by the scatter plot
of (D+(e∗),D−(e∗))e∈Ê(k,m), Figure 4b.

Now consider for a fixed a ∈ N the sequence of graphs Ga
n := G(n, an) and Ĝa

n :=
Ĝ(n, an). Then, following the above reasoning we would expect any In/Out dependency
measure of Ĝa

n to converge to -1.

16



D+(e∗)

D−(e∗)
k

m

1

1

•
fj

•ei

•g

(a)

D+(e∗)

D−(e∗)
k

m

1

1

•
fj

•ei •g2

•g1

(b)

Figure 4: The scatter plots for the degrees of (a) G(k,m) and (b) Ĝ(k,m).

In Sections 5.1.1 – 5.1.3 we will show that limn→∞ r+−(Ĝ
a
n) = 0 while the other three

measures indeed yield negative values. Furthermore, we show that limn→∞ r+−(G
a
n) = 1

while limn→∞ ρ+−(G
a
n) = −1 reflecting the two possibilities for the In/Out correlation

represented in the scatter plot, Figure 4a.

5.1.1 Pearson In/Out correlation

We start with the graph Ga
n. Basic calculations yield that

∑

e∈Ea
n

D−(e∗)D
+(e∗) = an2, (13)

∑

v∈V a
n

D−(v)D+(v) = (1 + a)n, (14)

∑

v∈V a
n

D−(v)2D+(v) = n2 + an, (15)

∑

v∈V a
n

D−(v)D+(v)2 = n+ a2n2, (16)

hence, using (6) and (7), we obtain:

|Ea
n|σ−(Ga

n) =
√

((1 + a)n+ 1)(n2 + an)− (1 + a)2n2

=
√

(1 + a)n3 − (n − 1)an

and

|Ea
n|σ+(Ga

n) =
√

((1 + a)n+ 1)(n + a2n2)− (1 + a)2n2

=
√

(1 + a)n3 − (an − 1)n.

17



When we plug this into (4) with α = − and β = + we get

r+−(G
a
n) =

|Ea
n|an2 − (1 + a)2n2

|Ea
n|σα(Ga

n)|Ea
n|σβ(Ga

n)

=
a(1 + a)n3 − (a2 + a+ 1)n2

a
√

(1 + a)n3 − (n− 1)an
√

(1 + a)n3 − (an− 1)n
. (17)

From (17) it follows that if a ∈ N is fixed, then limn→∞ r+−(G
a
n) = 1, thus r+−(G

a
n) in

fact reflects the connection between v and w where the point (n, an) in the scatter plot
received the most mass. However, when we turn to Ĝa

n we get a less expected result.
Splitting the edge g in two adds one to equations (14)-(16), while equation (13) becomes
(a + 1)n which is linear in n instead of quadratic. Because all other terms keep their
scale with respect to n we easily deduce that for a fixed a ∈ N, limn→∞ r+−(Ĝ

a
n) = 0.

This is undesirable for we would expect any In/Out correlation on Ĝa
n to converge to

−1.

5.1.2 Spearman In/Out correlation

We start by calculation ρ+−(G
a
n). For this observe that by (11) and the definition of Ga

n

we have that,

R
+
((ei)

∗) = 1 +
n+ 1

2
, R

−
((ei)∗) = an+ 1 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 1 +
an+ 1

2
, R

−
((fj)∗) = 1 +

an+ 1

2
;

R
+
(g∗) = 1, R

−
(g∗) = 1.

After some basic calculations we get

ρ+−(G
a
n) =

−(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n

(a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n
→ −1 as n → ∞.

This result is in striking contrast with r+−(G
a
n). Indeed, ρ+− places all the weight on the

points (0, 1) and (1, 0). However, based on the scatter plot, see Figure 4a, both results
could be plausible.

Let us now compute ρ+−(Ĝ
a
n). For the rankings we have

R
+
((ei)

∗) = 2 +
n

2
, R

−
((ei)∗) = an+ 2 +

n+ 1

2
;

R
+
((fj)

∗) = n+ 2 +
an+ 1

2
, R

−
((fj)∗) = 2 +

an

2
;

R
+
((g1)

∗) = 2 +
n

2
, R

−
((g1)∗) = 1;

R
+
((g2)

∗) = 1, R
−
((g2)∗) = 2 +

an

2
.
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Filling this into equation (11) we get

ρ+−(Ĝ
a
n) =

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n − 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

,

where

σ̄−(Ĝ
a
n) =

√

(a2 + a)n3 + (a2 + 4a+ 2)n2 + (3a+ 4)n − 2 and

σ̄+(Ĝa
n) =

√

(a2 + a)n3 + (2a2 + 4a+ 1)n2 + (4a+ 3)n+ 2.

Because

lim
n→∞

1

n3
σ̄−(Ĝ

a
n)σ̄

+(Ĝa
n) = (a2 + a)

it follows that

lim
n→∞

ρ+−(Ĝ
a
n) = lim

n→∞

1/n3

1/n3

(

−(a2 + a)n3 − (a2 + a)n2 + (a+ 1)n − 2

σ̄−(Ĝa
n)σ̄

+(Ĝa
n)

)

= −1,

which equals limn→∞ ρ+−(G
a
n). We have already argued that based on the graph and

the scatter plot we would expect negative In/Out correlation for the sequence (Ĝa
n)n∈N.

This result is in agreement with what we would expect, while r+−(Ĝ
a
n) converges to 0 as

n → ∞.
Now we turn to ρ+−(G

a
n). We will show that the choice of ranking of the tied values

can have a great effect on the outcome of the Spearman’s In/Out correlation. In this
example we will pick two rankings, one will yield ρ+−(G

a
n) > 0 while the other will give

ρ+−(G
a
n) < 0.

It is clear from the definition of Ga
n that the in- and out-degrees of all ei are the

same, and this is also true for fj. Let us now impose the following ranking of the vectors
(D+(e∗))e∈Ea

n
and (D−(e∗))e∈Ea

n
:

R+((ei)
∗) = an+ i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.

Here we ordered the ties by the order of their indices. We calculate that

ρ+−(G
a
n) =

(a3 − 3a2 − 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n

(a3 + 3a2 + 3a+ 1)n3 + 3(a+ 1)2n2 + 2(a+ 1)n
. (18)

Now let us now order (D+(e∗))e∈Ea
n
and (D−(e∗))e∈Ea

n
as follows:

R+((ei)
∗) = (a+ 1)n+ 1− i, R−((ei)∗) = i, for all 1 ≤ i ≤ n;

R+((fj)
∗) = an+ 1− j, R−((fj)∗) = n+ j, for all 1 ≤ j ≤ an;

R+(g∗) = 1 + (a+ 1)n, R−(g∗) = 1 + (a+ 1)n.
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This order differs from the first one only on the vector (D+(e∗))e∈Ea
n
, where we now

ordered the ties based on the reversed order of their indices. Here we get, after some
calculations,

ρ+−(G
a
n) =

−(a+ 1)3n3 + 3(a + 1)2n2 + 2(a+ 1)n

(a+ 1)3n3 + 3(a+ 1)2n2 + 2(a + 1)n
(19)

When we compare (19) with (18) we see that for the former limn→∞ ρ+−(G
a
n) = −1 for all

a ∈ N while for the latter we have limn→∞ ρ+−(G
a
n) = (a3 − 3a2 − 3a+ 1)/(a+ 1)3. This

means that increasing a will actually increase the limit of (18), which becomes positive
when a ≥ 4. If we denote by dan the absolute value of the difference between (18)
and (19), we get that limn→∞ dan = 2(a3 + 1)/(a + 1)3 which converges to 2 as a → ∞.
This agrees with the fact that for (18) it holds that lima→∞ limn→∞ ρ+−(G

a
n) = 1 while

lima→∞ limn→∞ ρ+−(G
a
n) = −1 for (19). We see that changing the order of the ties can

have a large impact on the value of ρβα(G), as was already mentioned in Section 4.1.1.
Now, using equation (12), limn→∞ ρ+−(G

a
n) = −1 and the fact that

σα(G
a
n)σ

β(Ga
n) = (a2 + a)n3 + (a+ 1)2n2 + (a+ 1)n,

we get that limn→∞ E
[

ρ+−(G
a
n)
]

= −2a/(a+1)2. Notice that, unlike ρ+−(G
a
n), this result

still depends on a and converges to 0 as a → ∞. This is not unexpected because the
majority of edges produce ties, hence, most of the ranks are defined by independent
realizations of U and W . These results indicate that Spearman’s rho with average
resolution of ties is the most informative correlation for this graph.

5.1.3 Kendall’s Tau In/Out correlation

In order to compute Kendall’s Tau, we need to determine the number of concordant
and discordant pairs. Starting with Ga

n, we observe that we have three kinds of joint
observations, namely

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

and

III :
(

D−(g∗),D
+(g∗)

)

.

The combinations I and III, and II and III are concordant while I and II are discordant.
It follows that Nc = (a+ 1)n while Nd = an2. Hence we get, see Definition 4.5,

τ+− (Ga
n) =

2(a+ 1)n − 2an2

(a+ 1)2n2 + (a+ 1)n
,

which gives limn→∞ τ+− (Ga
n) = − 2a

(a+1)2
. We observe that this equals limn→∞ E

[

ρ+−(G
a
n)
]

,

calculated in the previous section.
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For the graph Ĝa
n we have four kinds of joint observations:

I :
(

D−(ei∗),D
+(e∗i )

)

,

II :
(

D−(fj∗),D
+(f∗

j )
)

,

III :
(

D−(g1∗),D
+(g∗1)

)

and

IV :
(

D−(g2∗),D
+(g∗2)

)

.

Again the combinations I and II are discordant, while now I and III, and II and IV are
concordant. Therefore we get Nc = (a + 1)n and Nd = an2, hence limn→∞ τ+− (Ĝa

n) =
− 2a

(a+1)2
which equals the limit for τ+− (Ga

n). This is because the tied values, which are

the majority in this example, make the influence of the extra node on the Kendall’s tau
negligible.

Note that limn→∞ τ+− (Ga
n) decreases when we increase a. This is because the number

of tied values among the degrees increases with a. We already mentioned that τβα gives
smaller values when more ties are involved. Here this behavior is clearly present.

5.2 A collection of random In/Out bridge graphs

Let us now consider a collection of In/Out bridge graphs G(W,Z) as defined in Sec-
tion 5.1, where the values of W and Z are integer regularly varying random variables.

Let X,Y ∈ R−γ be independent and integer valued and fix a ∈ R>0. For each n ∈ N

take (Xi)1≤i≤n and (Yi)1≤i≤n to be i.i.d. copies of X and Y , respectively, and define
Wi = Xi + Yi and Zi = ⌊Xi + aYi⌋. Then we define the graph Ga

n as a disconnected
collection of the graphs (G(Wi, Zi))1≤i≤n. We will calculate r+−(Ga

n) and prove that it
converges to a random variable, which can have support on (ε, 1) for any ε ∈ (0, 1]
depending on a specific choice of a.

Using the calculations in Section 5.1.1 we obtain:

∑

e∈Ea
n

D−(e∗)D
+(e∗) =

n
∑

i=1

(

X2
i + aY 2

i + (1 + a)XiYi

)

,

∑

v∈V a
n

D−(v)D+(v) =

n
∑

i=1

(2Xi + (1 + a)Yi) ,

∑

v∈V a
n

D−(v)2D+(v) =

n
∑

i=1

(

X2
i + Y 2

i + 2XiYi +Xi + aYi

)

,

∑

v∈V a
n

D−(v)D+(v)2 =
n
∑

i=1

(

X2
i + a2Y 2

i + 2aXiYi +Xi + Yi

)

and

|Ea
n| =

n
∑

i=1

(2Xi + (1 + a)Yi + 1) .
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By the stable limit law we have a sequence (an)n∈N such that

1

an

n
∑

i=1

X2
i

d→ SX and
1

an

n
∑

i=1

Y 2
i

d→ SY as n → ∞,

where SX and SY are stable random variables. Further, due to Lemma 2.2 in [13] we
have

1

an

n
∑

i=1

XiYi
d→ 0,

1

an

n
∑

i=1

Xi
d→ 0 and

1

an

n
∑

i=1

Yi
d→ 0 as n → ∞.

Combining this we get

1√
an

σ−(Ga
n)

d→
√

SX + SY ,
1√
an

σ+(Ga
n)

d→
√

SX + a2SY as n → ∞,

and hence

r+−(Ga
n)

d→ SX + aSY
√

SX + SY

√

SX + a2SY

as n → ∞,

which has support on (0, 1). Now, take 0 < ε ≤ 1 and consider the function f(x) :
(0,∞) → R defined as

f(x) =
1 + ax

√

1 + x
√
1 + a2x

.

This function attains its minimum in 1/a and by solving f(1/a) = ε for a we get that
for

a =
2− ε2 ±

√
1− ε

ε2

this minimum equals ε. If we now introduce the random variable T = SY /SX we see
that for a defined as above 1+aT√

1+T
√

1+a2T
has support contained in (ε, 1).

This example shows that Pearson’s correlation coefficients rβα can converge to a non-
negative random variable in the infinite size network limit. This behavior is undesirable
for if we consider two instances of the same model Ga

n then the values of r+− will be random
and hence could be very far apart. Therefore r+− is not suitable for measuring the In/Out
correlation if we would like to find one number (population value) that characterizes the
In/Out correlation in this model.

6 Experiments

In this section we present experimental results for the degree-degree correlations intro-
duced in Sections 3 and 4. For the calculations we used the WebGraph framework [3, 4]
and the fastutil package from The Laboratory for Web Algorithmics (LAW) at the Uni-
versit degli studi di Milano, http://law.di.unimi.it. The calculations were executed
on the Wikepedia graphs, http://wikipedia.org, of nine different languages, obtained
from the LAW dataset database. For each Wikipedia graph we calculated all four degree-
degree correlations using the four measures introduced in this paper.
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The in- and out-degree distributions of these networks satisfy conditions of scale-free
distributions with parameters between 1 and 2.5. Moreover, we evaluated the depen-
dency between in- and out-degrees of the vertices, using angular measure [21, p. 313],
and found them to be independent. Therefore one could consider the Wikipedia networks
as being generated by a model satisfying the conditions of Definition 3.4.

In an attempt to quantify the results we compared them to a randomized setting. For
this we did 20 reconfigurations of the degree sequences of each graph, using the scheme
described in Section 4.2 of [6]. More precisely, we used the erased directed configuration
model. In this scheme we first assign to each vertex v, D+(v) outbound stubs and D−(v)
inbound stubs. Then we randomly select an available outbound stub and combine it
with a inbound stub, selected uniformly at random from all available inbound stubs,
to make an edge. When this edge is a self loop we remove it. When we end up with
multiple edges between two vertices we combine them into one edge. Proposition 4.2
of [6] now tells us that the distribution of the degrees of the resulting simple graph will,
with high probability, be the the same as the original distribution. For each of these
reconfigurations, all four types of degree-degree dependencies were evaluated using the
four measures discussed above, and then for each dependency type and each measure we
took the average. The results are presented in Table 1.

The first observation is that for each Wikipedia graph and dependency type, the
measures ρ, ρ and τ have the same sign while r in many cases has a different sign.
Furthermore, there are many cases where the absolute value of the three rank correlations
is at least an order of magnitude larger than that of Pearson’s correlation coefficients. See
for instance the Out/In correlations for DE, EN, FR and NL or the In/Out correlation
for KO and RU.

These examples illustrate the fact that Pearson’s correlation coefficients are scaled
down by the high variance in the degree sequences which in turn gave rise to Theorem 3.5,
while the rank correlations do not have this deficiency. Another interesting observation is
that the values for ρ and ρ are almost in full agreement with each other. This would then
suggest that, looking back at equation (12), that 3σασ

β ≈ |E|3 − |E| for the Wikipedia
networks. Therefore one could freely change between these two when calculating degree-
degree correlations. Note that ρ is somewhat computationally easier than ρ because
there is no need to compute σασ

β.
Finally, we notice that for the configuration model instances of the graphs, all corre-

lation measures are close to zero, and the difference between different realizations of the
model is remarkably small (see the values of σ). However, at this point very little can be
said about statistical significance of these results because, as we proved above, r shows
pathological behavior on large power law graphs and the setting of directed graphs is
very different from the setting of independent observations. This raises important and
challenging questions for future research: which magnitude of degree-degree dependen-
cies should be seen as significant and how to construct mathematically sound statistical
tests for establishing such significant dependencies.
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7 Discussion

From Theorem 3.5 and the examples in Section 5 it is clear that Pearson’s correlation
coefficients have undesirable properties, based on their limiting behavior when the graph
size goes to infinity. The question of whether or not rank correlations converge to correct
population values in infinite graph size limit, has not been addressed in this paper, but
it can be already answered affirmatively. For undirected graphs, it has been proved in
[13], and the results for directed graphs are the subject of our current research and will
be presented in our upcoming paper [25]. This provides sufficient motivation for using
such rank correlation measures instead of Pearson’s correlation coefficients for measuring
degree-degree dependencies in directed networks with heavy-tailed degrees.

Nevertheless, we have also seen that when using rank correlations one needs to be
careful when resolving the ties amongst the degrees. Furthermore, Spearman’s rho and
Kendall’s tau turn very skewed distributions into uniform ones, thus they do not detect
the influence of important hubs, as we saw in the example of the Ga

n graph in Section 5.1.
Possibly, these measures should be considered in combination with measures for extremal
dependencies, such as angular measure. Angular measure for two vectors (Xi)i=1,...,n

and (Yi)i=1,...,n is a rank correlation measure that characterizes whether Xi and Yi tend
to attain extremely large values simultaneously. We used this measure to verify the
independence between in- and out- degrees of a node in Wikipedia graphs.

There is also an intriguing question of whether the four types of dependencies are
related to one another. For instance, it is reasonable to think that if the Out/In and
Out/Out correlations are highly positive, then the other two must also be (highly)
positive. Indeed, if we take a node v with high in-degree then it tends to have nodes of
high out-degree connecting to it. Hence, out-degree of v tends to be high as well because
of the high positive Out/Out dependency. Therefore, if v connects to another node
w, then w tends to have large in- and out-degree implying positive In/In and In/Out
dependencies. It is very interesting to understand what are the feasibility bounds for
possible combinations of the four dependency types in terms of different correlation
measures.

Finally, although the results from percolation theory and the analysis of network
stability under attack give some insights in the impact of degree assortativity, it remains
an open question what specific values of degree-degree correlation measures mean for
the topology of directed networks in general. This shows that there are still many
fundamental questions regarding degree-degree correlations in scale-free directed graphs.

Acknowledgments This work is supported by the EU-FET Open grant NADINE
(288956).
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Pearson Spearman uniform Spearman average Kendall
Randomized Randomized Randomized Randomized

Graph α/β Data µ σ Data µ σ Data µ σ Data µ σ

DE wiki

+/- -0.0552 -0.0178 0.0001 -0.1434 -0.0059 0.0002 -0.1435 -0.0059 0.0002 -0.0986 -0.0038 0.0008
-/+ 0.0154 -0.0030 0.0002 0.0481 -0.0008 0.0002 0.0484 -0.0008 0.0002 0.0.326 -0.0005 0.0001
+/+ -0.0323 -0.0091 0.0002 -0.0640 -0.0048 0.0002 -0.0640 -0.0048 0.0002 -0.0446 -0.0006 0.0001
-/- -0.0123 -0.0060 0.0001 0.0119 -0.0009 0.0002 0.0120 -0.0009 0.0002 0.0074 -0.0032 0.0001

EN wiki

+/- -0.0557 -0.0180 0 -0.1999 -0.0064 0.0001 -0.1999 -0.0064 0.0001 -0.1364 -0.0043 0.0001
-/+ -0.0007 -0.0015 0.0001 0.0239 -0.0011 0.0001 0.0240 -0.0011 0.0001 0.0163 -0.0008 0.0001
+/+ -0.0713 -0.0125 0.0001 -0.0855 -0.0053 0.0001 -0.0855 -0.0053 0.0001 -0.0581 -0.0035 0.0001
-/- -0.0074 -0.0024 0.0001 -0.0664 -0.0013 0.0001 -0.0666 -0.0013 0.0001 -0.0457 -0.0009 0.0001

ES wiki

+/- -0.1031 -0.0336 0.0002 -0.1429 -0.0186 0.0003 -0.1429 -0.0186 0.0003 -0.0972 -0.0126 0.0002
-/+ -0.0033 -0.0071 0.0002 -0.0407 -0.0047 0.0003 -0.0417 -00048 0.0003 -0.0294 -0.0034 0.0002
+/+ -0.0272 -0.0201 0.0002 0.0178 -0.0125 0.0003 0.0178 -0.0125 0.0003 0.0119 -0.0084 0.0002
-/- -0.0262 -0.0116 0.0001 -0.1627 -0.0071 0.0003 -0.1669 -0.0072 0.0003 -0.1174 -0.0051 0.0002

FR wiki

+/- -0.0536 -0.0252 0.0001 -0.1065 -0.0123 0.0002 -0.1065 -0.0123 0.0002 -0.0720 -0.0083 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0119 -0.0016 0.0003 0.0121 -0.0016 0.0003 0.0085 -0.0011 0.0002
+/+ -0.0512 -0.0173 0.0002 -0.0126 -0.0093 0.0002 -0.0126 -0.0090 0.0015 -0.0087 -0.0063 0.0001
-/- -0.0094 -0.0054 0.0001 -0.0262 -0.0021 0.0003 -0.0267 -0.0025 0.0015 -0.0186 -0.0015 0.0002

HU wiki

+/- -0.1048 -0.0378 0.0003 -0.1280 -0.0220 0.0006 -0.1280 -0.0220 0.0006 -0.0877 -0.0148 0.0004
-/+ 0.0120 -0.0056 0.0005 0.0525 0.0002 0.0005 0.0595 0 0.0006 0.0442 0 0.0004
+/+ -0.0579 -0.0261 0.0005 -0.0207 -0.0157 0.0005 -0.0207 -0.0157 0.0004 -0.0140 -0.0107 0.0003
-/- -0.0279 -0.0084 0.0004 0.0051 0.0004 0.0005 0.0060 0.0002 0.0006 0.0050 -0.0001 0.0005

IT wiki

+/- -0.0711 -0.0319 0.0001 -0.0964 -0.0158 0.0002 -0.0964 -0.0158 0.0002 -0.0653 -0.0106 0.0002
-/+ 0.0048 -0.0031 0.0002 0.0468 -0.0013 0.0002 0.0469 -0.0013 0.0003 0.0319 -0.0009 0.0002
+/+ -0.0704 -0.0204 0.0002 -0.0277 -0.0121 0.0002 -0.0277 -0.0122 0.0002 -0.0189 -0.0081 0.0001
-/- -0.0115 -0.0050 0.0001 -0.0428 -0.0016 0.0002 -0.0429 -0.0016 0.0002 -0.0296 -0.0011 0.0002

KO wiki

+/- -0.0805 -0.0562 0.0004 -0.2696 -0.0476 0.0037 -0.2722 -0.0482 0.0038 -0.1985 -0.0328 0.0073
-/+ 0.0157 -0.0009 0.0030 0.1760 0.0019 0.0046 0.2323 0.0034 0.0046 0.1902 0.0031 0.0035
+/+ -0.1697 -0.0357 0.0035 0.0016 -0.0267 0.0041 0.0191 -0.0272 0.0040 0.0170 0.0298 0.0415
-/- -0.0138 -0.0034 0.0015 -0.0493 0.0062 0.0045 -0.0618 0.0083 0.0042 -0.0463 0.0065 0.0032

NL wiki

+/- -0.0585 -0.0346 0.0001 -0.3017 -0.0211 0.0002 -0.3018 -0.0211 0.0002 -0.2089 -0.0142 0.0002
-/+ 0.0100 -0.0025 0.0003 0.0727 -0.0007 0.0003 0.0730 -0.0007 0.0003 0.0504 -0.0004 0.0003
+/+ -0.0628 -0.0194 0.0001 0.0016 -0.0104 0.0003 0.0016 -0.0104 0.0003 0.0015 -0.0070 0.0002
-/- -0.0233 -0.0091 0.0001 -0.1498 -0.0019 0.0003 -0.1505 -0.0019 0.0003 -0.1048 -0.0013 0.0002

RU wiki

+/- -0.0911 -0.0225 0.0004 -0.1080 -0.0093 0.0015 -0.1084 -0.0093 0.0015 -0.0755 -0.0064 0.0010
-/+ 0.0398 -0.0006 0.0009 0.1977 0 0.0008 0.2200 0.0001 0.0009 0.1655 0.0001 0.0007
+/+ 0.0082 -0.0038 0.0010 0.2472 0.0002 0.0015 0.2480 0.0001 0.0015 0.1736 0.0001 0.0010
-/- -0.0242 -0.0030 0.0007 0.0236 0.0009 0.0011 0.0255 0.0007 0.0015 0.0187 0.0006 0.0007

Table 1: Degree-degree correlations for Wikipedia graphs. The data in the columns Randomized correspond to the results
for the reconfigurations of the given Wikipedia network.
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network performance via assortativity. Physical Review E, 83(3):036114, 2011.

[9] Jacob G. Foster, David V. Foster, Peter Grassberger, and Maya Paczuski. Edge
direction and the structure of networks. Proceedings of the National Academy of
Sciences, 107(24):10815–10820, 2010.

[10] Andreas Kaltenbrunner, Gustavo Gonzalez, Ricard Ruiz De Querol, and Yana
Volkovich. Comparative analysis of articulated and behavioural social networks in a
social news sharing website. New Review of Hypermedia and Multimedia, 17(3):243–
266, 2011.

[11] Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,
1938.

[12] David Laniado, Riccardo Tasso, Yana Volkovich, and Andreas Kaltenbrunner.
When the wikipedians talk: Network and tree structure of wikipedia discussion
pages. In ICWSM, 2011.

[13] Nelly Litvak and Remco van der Hofstad. Degree-degree correlations in random
graphs with heavy-tailed degrees. arXiv preprint arXiv:1202.3071, 2012. To appear
in Internet Mathematics.

26



[14] Nelly Litvak and Remco van der Hofstad. Uncovering disassortativity in large scale-
free networks. Physical Review E, 87(2):022801, 2013.

[15] Xiao Fan Liu and Chi Kong Tse. Impact of degree mixing pattern on consensus
formation in social networks. Physica A: Statistical Mechanics and its Applications,
407:1–6, 2014.

[16] Mark E.J. Newman. Assortative mixing in networks. Physical review letters,
89(20):208701, 2002.

[17] Mark E.J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126,
2003.

[18] Mark E.J. Newman. The structure and function of complex networks. SIAM review,
45(2):167–256, 2003.

[19] Mahendra Piraveenan, Mikhail Prokopenko, and Albert Zomaya. Assortative mix-
ing in directed biological networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 9(1):66–78, 2012.

[20] Mahendra Piraveenan, Mikhail Prokopenko, and Albert Y. Zomaya. Assortative-
ness and information in scale-free networks. The European Physical Journal B,
67(3):291–300, 2009.

[21] Sidney I Resnick. Heavy-tail phenomena: probabilistic and statistical modeling.
Springer, 2007.

[22] Charles Spearman. The proof and measurement of association between two things.
The American journal of psychology, 15(1):72–101, 1904.

[23] Animesh Srivastava, Bivas Mitra, Niloy Ganguly, and Fernando Peruani. Correla-
tions in complex networks under attack. Physical Review E, 86(3):036106, 2012.

[24] Animesh Srivastava, Bivas Mitra, Fernando Peruani, and Niloy Ganguly. Attacks
on correlated peer-to-peer networks: An analytical study. pages 1076–1081, 2011.

[25] Pim van der Hoorn and Nelly Litvak. Convergence of rank based degree-degree
correlations. Current research to appear on ArXiv.

[26] Alexei Vázquez and Yamir Moreno. Resilience to damage of graphs with degree
correlations. Phys. Rev. E, 67:015101, Jan 2003.

[27] Sebastiano Vigna. A weighted correlation index for rankings with ties. arXiv
preprint arXiv:1404.3325, 2014.

27


	1 Introduction
	2 Definitions and notations
	2.1 Graphs, vertices and degrees
	2.2 Four types of degree-degree dependencies

	3 Pearson's correlation coefficient
	3.1 Convergence of Pearson's correlation coefficients
	3.2 Motivation for G-+

	4 Rank correlations
	4.1 Spearman's rho
	4.1.1 Resolving ties uniformly at random
	4.1.2 Resolving ties with average ranking

	4.2 Kendall's Tau

	5 Bridge graph example
	5.1 A deterministic in-out bridge graph
	5.1.1 Pearson In/Out correlation
	5.1.2 Spearman In/Out correlation
	5.1.3 Kendall's Tau In/Out correlation

	5.2 A collection of random In/Out bridge graphs

	6 Experiments
	7 Discussion

