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ABSTRACT

Recommender systems often deal with a large amount of se-
quential data. For these scenarios, online matrix factoriza-
tion techniques based on online prediction and incremental
updates are often the most promising approaches. Decen-
tralizing the system and keeping the user data on their de-
vices is an important step in the direction of preserving user
privacy. In this paper we propose a peer-to-peer online ma-
trix factorization algorithm that stores the ratings of a user
and her private data local. Additionally, the users have a
local copy of the common part of the factor model and com-
municate with other users to advance towards a consensus
on it. The algorithm is proven to converge to a set of lo-
cal optima in the stationary case, while we show empirically
that the algorithm performs well in the non-stationary case,
both in terms of ranking performance and privacy preserva-
tion.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
filtering; 1.2.6 [Artificial Intelligence]: Learning

Keywords

Recommender systems, Collaborative Filtering, Online learn-
ing, Peer-to-peer networks

1. INTRODUCTION

Recommender systems are now ubiquitous in most online
applications. Approaches based on collaborative filtering
have enjoyed significant success in several competitions, and
became an area of extensive research. In the competitions it
is natural to separate the collected data into a training set
and a test set. However, in most real applications the data
arrives continuously, and the systems need to recommend
some items on the spot. While several authors argued for an
online testing scenario [21, 11], it has received less attention.
Incremental processing also becomes a necessity due to the
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size of the data. In this article we consider the scenario
where users connect to the system sequentially, they request
a recommendation, and the system is updated depending on
the preference of the user.

Most recommender systems have a centralized structure,
negating privacy requirements of the users. It is argued in
[24] that it is paramount for privacy that users keep their
data (e.g. ratings and user specific models) locally. Instead
of storing such data on cloud servers, it is a natural idea
to keep it only on personal devices. Consequently, the pro-
cessing is fully distributed. This would increase the level of
privacy and remove the dependence on a central infrastruc-
ture. An early approach in this direction is [20] that adapts
a neighborhood algorithm to a fully distributed architecture.
More recently, [28] used contextual bandit framework for so-
cial recommender systems. While these are fairly interesting
approaches, we prefer matrix factorization models that have
been proven perhaps the most successful approaches to col-
laborative filtering [18].

In this paper we consider an approach to online matrix
factorization, where the user preferences and user latent vec-
tors are kept locally, along with an instance of the item ma-
trix. Consensus on the item matrix is reached by exchang-
ing parts of the item matrix with other users. This way the
most sensitive data stays local. We assume that revealing
parts of the local copies of the item matrix will not reveal
too much about the users preference. While we believe that
our approach is a right step in improving the privacy of the
users, and we provide an empirical evaluation against a de-
anonymization algorithm, the main focus of the paper is on
the prediction quality of the peer-to-peer algorithm.

For non-stationary stochastic optimization, regret bounds
on the online performance are provided mostly when the ob-
jective function is convex (see e.g., [6]). For batch settings,
[8, 7] show that peer-to-peer stochastic approximation al-
gorithms converge to some local optima when the complete
model is sent. In a stationary online collaborative filtering
framework, we extend their work on two aspects: (1) we
assume that the model has a private component, and this
component is not sent between peers; and (2) only parts of
the common component of the model is sent at a certain
moment. The first aspect is natural from privacy point of
view, while the second may be beneficial for reducing the
necessary communication.

The rest of the paper is organized as follows. In Section 3
we provide a skeleton for peer-to-peer online prediction al-
gorithms. Further, we prove that the algorithm converges
to a set of local optima. In this section we consider a more



general framework than matrix factorization: a model that
has a private and a common component. Centralized online
matrix factorization algorithms are described in Section 4
for rating prediction and for top-K recommendation. The
peer-to-peer version of these matrix factorization algorithms
are described in Section 5. Section 6 discusses the privacy
preserving properties of these algorithms, and describes a
standard de-anonymization algorithm adapted against the
online peer-to-peer algorithms. The empirical performance
of these algorithms in non-stationary setting is evaluated
in Section 7. Conclusions and future work are provided in
Section 8.

2. RELATED RESEARCH

There have been several techniques to parallelize matrix
factorization algorithms, including [3, 13]. However, the
cited techniques require a central component that has ac-
cess to the complete model, and all the user preferences
(ratings). This drawback is circumvented to some respect
in [16] by assigning computational nodes to both users and
items, with the items having access to the private data of
users that interact with. In their setting the space of items
overlaps with that of users, and if items are trusted users,
this approach is sufficient. However, in most cases items are
handled by one or a few service providers, and the privacy
would be compromised using this technique. An approach
very similar to ours was proposed in [15] for singular value
decomposition (SVD). Each row of the matrix is assigned to
a user, along with the corresponding user vectors, and the
item matrices are communicated between the items in order
to achieve consensus. Our approach is different in that we
focus on online ranking prediction (as opposed to SVD on
a fixed data set), which enables a more selective broadcast-
ing of item vectors. A theoretical analysis of such selective
communication strategies is also provided.

As mentioned before, we are interested in (non-stationary)
online prediction with matrix factorization, which has non-
convex objective functions. There have been very few pa-
pers with theoretical guarantees for non-stationary online
optimization for non-convex functions. The few exceptions,
such as [22], use some form of a global search, which do not
scale very well with the dimensionality of the problem (factor
models have relatively high dimensions). For non-stationary
stochastic optimization, there exists regret bounds on the
online performance when the objective function is convex
(see e.g., [6]). Regret bounds were proven for distributed
optimization of stationary convex functions as well [9, 12,
29]. Most of these approaches have a periodical consen-
sus step to ensure that the local models are identical. Of
these, [9] is perhaps the most interesting on using variance
based dynamic communication. Unfortunately, the objec-
tive functions are not convex in the parameters of a matrix
factorization model, and therefore, these results can not be
applied. There have been several papers on optimization
of non-convex functions in batch settings, including peer-to-
peer stochastic approximation algorithms. The papers that
have the mildest assumptions on the communication proto-
col include [7, 8], which are also the closest to our analysis.
They show that the approximation algorithms converge to
some local optima when the complete model is sent. We
extend their work by facilitating a private part of the model
(the user vectors for matrix factorization), and allowing the
algorithms to send only a part of the common model (e.g.,

only the vector corresponding to the rated item).

One of the aims for peer-to-peer online collaborative fil-
tering is improving the privacy of the users. The vulner-
ability of centrally collected data was also shown by [23].
There have been several attempts to improve privacy of
nearest neighborhood (e.g., [20, 10]) or contextual bandit
approaches [28], but we choose to focus on matrix factor-
ization. [24] suggests extending the server with a crypto-
service provider, which imposes restrictions on the collab-
orative filtering algorithm, and still requires some trust in
the server. An algorithm designed to improve privacy of
collaborative filtering data against attacks described in [23]
is the k-CORATING algorithm [31]. It extends the rating
matrix such that each user has at least k — 1 peers that
rated exactly the same items. The cost of the improved
privacy can be a deterioration of the collaborative filtering
algorithm that uses that extended data (as shown in our
experiments). The peer-to-peer computational architecture
adopted by our approach improves privacy without harm-
ing prediction performance as shown [30] for convex opti-
mization, and as illustrated by our experiments described in
Section 7.3. However, further techniques can be applied to
harden the privacy requirements.

3. CONVERGENCE

In this section we show that peer-to-peer online prediction
algorithms converge to the same set of local optima as their
corresponding centralized algorithms. We consider a more
general framework than matrix factorization: a model that
has a private and a common component.

Assume that we have N users. At every time step n, user u
connects to its local recommender system (RS), and requests
some prediction that can be either a rating of an item or a
list of top items. The local RS observes some context that
includes the item itself in case of rating prediction, as well as
any other relevant information. After receiving the predic-
tion the user reveals its preference (i.e. an item and/or the
rating of an item). The triplet of user activity, context and
user preference will be identified by the random variables
X,,, which are supposed to be independent and identically
distributed (i.i.d.). X, may represent the activity of more
than one user, if several users are active at the same time.

We consider RS’s represented by a model consisting of a
user specific vector ¢* € R%, and a common part § € R4,
For instance, in the case of matrix factorization, the former
is represented by the user vectors, and the latter by the item
vectors. In a peer-to-peer variant of the RS, the local RS will
store the vector specific to its user ¢* and a local instance,
0*, of the common vector.

The performance of the RS is evaluated by a loss function

that can be decomposed into some local functions f* (0%, ¢, X).

The loss functions of inactive users are assumed 0. The func-
tion depends only on the local component of X (the local
context, activity and user preference). The aim is to mini-
mize the global loss function

[7(8,0) =Ef(0,p,X),

where 8 = (0'7, ..., 0" )T p = (o'7...
N u(gu u
F(O,0, X) =3, (0", 9", X).
In order to minimize the loss function, after observing
the user preference, for each user the local RS will update
its parameters in the direction of the negative gradient, as

V)T and



follows:
-
o =

0271 _’Y’nv9fu( 27179071,717)(71) (1)
@Z—l - ’Y’nvtpfu( 11’1—17 802—17 Xn)

Note that for inactive users the local gradients are zero.

To obtain generalization, the local gradient steps are fol-
lowed by a communication step aimed at improving the con-
sensus on the common part of the model. The communica-
tion among users can be represented by a sequence of i.i.d.
random matrices Wy, € RN41Nd1 - and using the notation
0, = 0T,...,08"T we update 6, as follows:

0, = W,0,. )

In the following, first we prove that every 8* converges to
the same limit #*. Then we prove that the pair consisting
of 6% and the limit of ¢,, is a local minimum of f*(6, ¢).
Let us introduce some further notations: 1 = (1,1,..., l)T €
RY. For & € RY¢ we write (x) = 1/N(z! + -+ zV) so
that

(#) = +(1® L)a, 3)

where ® denotes the Kronecker product. Further, J stands
for the projection onto the ’consensus space’:

J:=(11"/N)® I,

whence Jx = 1 ® (x). Let us denote by J, = Iyny — J
the matrix of the orthogonal projection to the consensus
space (here I denotes the identity matrix of dimension d’).
Finally 0 , := J10,.

Here, we make three assumptions: (1) the communication
matrix is such that ensures an averaging process for 6,,,
(2) standard conditions on v, that enable the stochastic
approximation to converge, and (3) the objective function
is ‘sufficiently nice’ for the stochastic approximation.

ASSUMPTION 1. Let W,, be a sequence of i.i.d. random
matrices of size Ndi X Nd1 with non-negative elements. The
following conditions hold true:

o W, is row-stochastic for every n: W,1 =1,

o E(W,) is column-stochastic for every n: 1TE(W,,) =
17,

o the spectral norm p of B((W,)T (I — J)W,) is less than
one.

ASSUMPTION 2. Let v, be a monotone non-increasing se-
quence of positive numbers that satisfies the following con-
ditions:

>, 7 < o0,
° Zn'yn = 00, and
® Yn/Ynt1 — 1.

ASSUMPTION 3. Foranyu=1,...,N, f*(0,¢,X) satis-
fies the next assumptions:

o fU(0,p,X) is continuously differentiable with respect
to 6 and @,

o (0,9, X) is bounded from below and

e for all realizations of 0, ¢ and X the gradient Vo f* (0, ¢, X)

satisfies

s%pEHVef“(é’, 0, X)”] < oo.

THEOREM 1. If the matrices W, satisfy Assumption 1,
the sequence v, satisfies Assumption 2 and the function
40,0, X) satisfies Assumption 3, then the variables 6,
in (2) achieve consensus, that is Y., E[|01 ,]°] < co and
0. ., — 0 almost surely as n — oo.

PRrROOF. The proof is based on the proof of Lemma. 1 in [8].
To shorten the notation we use Y, = —Vo f(0n, ¥,,, Xn), s0
we have 0, = W, (6,1 +7,Yr). Using the row-stochas-
ticity of W, it is easy to check that J, . W,J, = JLW,.
Thus (2) can be written as 01, = J I Wp(01 n—1+ 71 Yn).
Whence we conclude the estimation

0L, = OLm1 47 Y) WETWn(0L 1 +vnYn)
< MWITLW)OL a1+ Yal? (4)

where A1 (M) is the largest eigenvalue of the matrix M. Tak-
ing the expectation of (4) and using the Cauchy-Schwarz
inequality we obtain

E[01n"] < p(Wy JLWn)E[61n-1]’]

+ 2B YallVE[0 L n1?] + 1mE[Y7].

In order to conclude Y, E[|01 ,|*] < oo, we need an addi-
tional lemma.

LEMMA 1. Assume that for the sequence v, > 0,
Yo/ nt1 = 1, D0, An = 00, Zn’yi <ooand 0 < p < 1.
Let v, > 0 be such that v, < pvp—1 + VUn—1Yn + 7%. Then
Dol o Vn < 00.

A statement similar to Lemma 1 (with slightly different as-
sumptions) is proved in [8], and we omit the proof for space
limitations. The assertion of Theorem 1 then follows from
the Borel-Cantelli lemma. [

In Theorem 2 we prove that the algorithm converges to a
local minimum. The proof of the convergence is based on
the proof of Theorem 1 in [7]. We will need some additional
assumptions and a lemma.

ASSUMPTION 4. There are two finite constants C1 and C2
such that for all realizations of 61,02, ¢ and X the next
assumptions are satisfied:

o [(Vof(01,0,X)) — (Vof(02,0,X))| < C1|01 — 62,
o [Vof(01,0,X) =V, f(02,0,X)| < C2|01 — 02].

LEMMA 2. If the Assumptions 1, 2, 8 and 4 are satisfied
then there exist some random vectors Cno € R and Cn,p €
RN which satisfy

l
lim sup su iGi,o| =0 and 5
plzglgwc ol (5)

k—oo
!

lim sup sup | Z YiCi,
k—oo >k i—k

=0, (6)

almost surely, such that

<0n> = <0n*1> — Tn <V9f(1 ® <0n*1>7‘Pn—1aXn)> + YnCn,0,
P =Pn1— Ve f(1@(On), P 1, Xn) + Tnln,e-

(7)
(8)



PROOF. Rearranging terms, we obtain (n,e = Vo f(1 ®
(0n), 11, Xn) = Vo f(On,¥,,_1,Xn). Using Assumption 4
and the inequality 2ab < a® + b%, we get

1 l l
DIV REED SRS Sl
i=k i=k

ik
1« 03 <
< §Z|7i|2+722‘9L,i
ik ik

Now (6) follows from Assumption 2 and Theorem 1.
The argument proving (5) is similar to the one in Theorem 1
of [7]. The row-stochastic property of W,, implies W,,J = J.
Using (1), (2) and (3) we obtain
(0n) = (0n-1) =7 (Zn)
where Z,, = W, (Vef(enfly Prn—1> Xn) + 77719J_,n71)-
Rearranging terms, we get
(0n) = (0n-1) — Y (Vof(1®(On-1), 9, 1,Xn))
+ Yn€n,o + ’Yn&n,@

A

2

where e,,¢ and &, ¢ are defined as

eno = (Vof(On-1,9,_1,Xn))
~(Wa(=Vof (01,051, Xn) + 7 OLn-1))
Eno = (Vof(1®(On-1), ¢, 1,Xn))
—(Vof(On-1,¢,_1,Xn)).
We can prove limsup,,_, ., sup;s | S vifie] = 0 in the

same way as we proved the corresponding statement for ¢; .
On the other hand, a direct computation shows that ;e o
is a martingale difference sequence. Furthermore, the cor-
responding martingale is bounded in L%, hence converges
with probability probability 1 (see e.g. Corollary 2.2 in [14]).
That is, ZZ‘;I Yrer,o exists and is finite almost surely. The
lemma follows. [

Let us define
L={0,¢):Vf(0,¢)=0}

In order to guarantee the convergence (i.e. Theorem 2), we
need some further criteria:

ASSUMPTION 5. o There exists Mo > 0 such that L C
{(0, ) : f7(0, ) < Mo}.

o There exists My € (Mo, 00) such that {(0,¢) : f*(0,¢) <

M} is a compact set.
e The interior of the set f*(L) is empty.

THEOREM 2. If the Assumptions 1, 2, 3, 4, 5 are satisfied
and 0y and @, are such that f*(6o,p,) < Mo then 6, and
@,, converge with probability 1, moreover

Jim inf{[((6), ¢,) = (0,9)], (6,¢) € L} = 0.

PRrROOF. Note that 8, =1 ® (0,) + 01,,. Since in The-
orem 1 we proved that 6, , — 0 almost surely as n — oo,
we only need to examine the convergence of (6,). Lemma 2
says

(On) = (On-1) =7 (Vof (1@ (On-1), 0,1, Xn)) + nCn.o

Lpn = Sonfl - rynV(Pf(l ® <0">7 (Pn71>X") + '}’nC’n,g&-

So we can use Theorem 2.2 and 2.3 from [4] for both (6,)
and ¢, (note that we need Lemma 2 to verify certain as-
sumptions of the cited theorems). The statement of the
Theorem 2 follows. [

In Section 5, we will instantiate the peer-to-peer algorithm
discussed above to matrix factorization. In the following, we
will consider whether the assumption hold for this instance.
An example of a communication protocol when the complete
model (0) is sent and satisfies Assumption 1 is provided in
[5]. For a matrix factorization model it may be preferable
not to send the latent vectors corresponding to all items
but just a small subset of the items. The strategies to se-
lect the items is discussed in Section 5. The conditions on
the learning rate (Assumption 2) are fairly standard for a
stochastic optimization algorithm in stationary setting. If
the environment is non-stationary (as it is in the experi-
ments), it is standard to switch to a constant learning rate.
It is clear that if the loss function is the mean square error,
then the function is continuously differentiable with respect
to the parameters of the matrix factorization model and is
bounded from below. The boundedness of the gradient in
Assumption 3 and Assumption 4 hold if the parameters of
the model stay bounded in the trajectories starting from an
appropriately chosen starting point. This is not necessarily
the case for any dataset, but in our experience it seems that
the parameters stay bounded unless the initial learning rate
is too high. It is clear that if the parameters diverge, they
are likely to do so for the centralized algorithm as well, and
the parameters needs to be projected into a compact set af-
ter the gradient step. In this case, proving Theorem 2 takes
a different course, one that mirrors the proof of Theorem 1
of [8]. Assumption 5 also holds, for instance, the condition
on the empty interior is satisfied by Sard’s theorem if the
loss function is Nd;ds-times differentiable, which is the case
for a matrix factorization model.

4. ONLINE MATRIX FACTORIZATION

In this section we consider the online algorithms for rating
prediction and top-K recommendation that form the base of
the peer-to-peer algorithms presented in Section 5.

Matrix factorization algorithms constitute the most suc-
cessful approaches to collaborative filtering [18, 19]. In these
algorithms, users and items are mapped into a joint latent
factor space of dimensionality d. Accordingly, each user u is
associated with a d-dimensional vector U,, and each item ¢
with a d-dimensional vector V;. The preference of the user
for the specific item is given by the inner product of the two
vectors. Additionally, it is usual to have biases specific to
users b, and items b;. The predicted preference of a user u
for item ¢, #,; is given by the following formula,

Fui = by + b + UL V;. 9)

There are several ways to tune factor models. In an online
scenario, the most natural is the stochastic gradient descent
(SGD) [1]. SGD have been a popular choice for matrix fac-
torization algorithms and in online prediction. The online
rating prediction algorithm for matrix factorization is pre-
sented in Algorithm 1.

At each time step a user connects to the recommender
system and selects an item (line 2). The system predicts
the rating of the item (line 3), after which the user reveals
the ‘true’ rating and the recommender system suffers a loss



Algorithm 1 Online rating prediction
1: for n =1 to T do
2: user u connects to RS and selects item 4
RS predicts rating 7,;
user reveals r,; and RS suffers loss f(7ui, Fut)
Uy — Uu +¥(Tui — Tui)Vi
bu — bu + ’Y(Tui - "A‘uz)
Vi = Vi4+4(rui — Pui) Uy
by «— b + Y(rui — Fui)

Algorithm 2 Online ranking prediction
1: forn =1to T do
user u connects to RS
3 RS recommends top items R
4: user selects item ¢ (and additionally rating ru;)
5: RS suffers loss f'(i, R)
6.
7
8

select negative sample set N’
Uy — Uy +’Y(7"u1 - fuz)‘/l - ’YZ]EN' 72u]‘/j
. bu <_bu+’yt(rui _'ﬁuz)_’yzjej\['ﬁu]
9: Vi—Vi+ ’Y(Tul - 7A‘ui)Uu
10: by bi +y(rui — Tui)
11: for j in A do
12: Vi — V; — 7y Uy
13: bj — bj - ’yfuj

(line 4). The loss function, in our case, is the mean square
error between the predicted and true rating. The model
parameters are then updated in the direction of the nega-
tive gradient with a constant learning rate (line 5-8). In
Section 3 we assumed that the learning rate follows a de-
caying schedule, however, for non-stationary environments,
a constant rate is more appropriate.

While rating prediction has a larger literature due to some
of the competitions, recommending a list of top items is a
more natural task in real applications. Continuing with the
SGD set-up, we use the algorithm suggested in [25] that uses
the visited item as positive training instance and some ran-
domly sampled unvisited items as negative instances. As
shown in Algorithm 2, at each time step, when a user con-
nects to the recommender system, the system ranks the
items, and presents the user the top of this list. The items
are ranked according to the predicted rating, using equa-
tion (9). The system then suffers a loss. There are several
choices of ranking measures, a popular one that is used in
the experiments is NDCG@K [17]. In our case, there is only
one item with non-zero label, and the NDCG@K of a per-
mutation 7 of the items reduces to

otherwise ’

NDCGOK () = { (1)/ log, (rank- (i) + 1) if rank.(i) < K
where ¢ denotes the visited item, and rank. (i) is the posi-
tion of the item in the permutation 7. In the experiments,
for the selection of the negative training instances (line 6
of Algorithm 2), we also consider a mechanism suggested in
[32], namely sample randomly a number of unvisited items,
and then select only a few items from the top of the sam-
pled list (ranked by the model). The update of the model
parameters in Algorithm 2 is shown in lines 7-13.

5. ONLINE PEER-TO-PEER PREDICTION

In Section 3, we presented the framework for a peer-to-
peer online prediction algorithm. For the special case of a
recommender system using matrix factorization, each user
has at hand a local copy of the system, the local model
including the latent vector of the user, U,, the user bias,
bu, a local instance of the item matrix, V*, and a local in-
stance of the item biases, b*. Thus, the user latent vectors
and the user biases from Section 4 correspond to ¢ from
Section 3, and the item vectors and biases correspond to
0. The peer-to-peer online recommender is shown in Algo-
rithm 3. At each time step, when a user connects to its
local system (line 7), the system makes a prediction. The
prediction in the case of rating prediction is estimating the
rating of an item, while in the case of recommendation, a
list of items. After the prediction, the user reveals its pref-
erence, and the system suffers a loss. The preference of the
user is the true rating in the case of rating prediction, and
a selected item for top-K recommendation. For the latter,
the item may or may not be in the recommended list. These
steps, shown succinctly in line 8, are identical to the corre-
sponding steps of Algorithm 1 or Algorithm 2. The gradient
descent update of the local model (line 9) is also identical to
the corresponding centralized variants (including the sam-
pling of negative instances for top-K recommendation). In
line 10 the algorithm selects a set of target users and a set of
items. Subsequently, the local instance of the latent vectors
and biases corresponding to the selected items are sent to
the selected set of target users.' In a simple variant, a fixed
number of users are selected randomly, but more intricate
strategies are also possible. A more elaborated method for
setting the number of target users is described in Section 7,
while users with similar taste could also be given preference.
When a social network of users is available, selecting friends
as target users seems reasonable for privacy reasons. It is
also an easy way to identify users with similar taste. In the
case of rating prediction, the natural choice for the item set
to be sent is the rated item. While for the top-K recom-
mendation task, the item set should include the item visited
by the user and some subsample of the negative set of in-
stances. When the target users receive some vectors, they
combine the vectors with their local copies, using a mixing
coefficient 8 (line 11-13).

The conditions for the peer-to-peer algorithm to mirror
the centralized algorithm are as follows: (1) the set of tar-
get users should include all users, (2) the set of items sent
consists of the rated one and, in the case of top-K recom-
mendation, all negative samples, (3) 8 = 0, and (4) appro-
priately chosen initialization for the latent vectors. The last
condition requires that the same latent user or item vec-
tors are generated when first encountered in the centralized
or peer-to-peer algorithms. If the first three conditions are
met, then the item vectors are the same at each user, disre-
garding items that have not been updated by any user.

So far, we assumed that all users are present in the system
from the start of the protocol until the end of it. A more
realistic setting is when new users are coming continually in
the system. For this setting, Algorithm 3 includes a set-up
phase (line 2-6): the new user requests a copy of item vectors

“When it is clear from the context, for brevity, we will say
sending items instead of sending the corresponding item vec-
tors and biases.



Algorithm 3 Online peer-to-peer prediction

1: for n =1 to T do
2: for each new user v’ do

3: select sources U’
4: for v in U’ do
. v 1 v
5. v T ZUEM/ V@)
6: b — g e B
7: user u connects to local RS
8: local RS predicts rating and suffers loss
9: update U, by, V¥, bgu)
10: select target user set U and item set 7
11: for vin Y and j in Z do
12: ‘/j(v> — ﬂvj(v) + (1 _ ﬁ)vj(u)
13: b\ — BB\ + (1 B)b)

and biases from a random set of users already present in the
system, and then, averages these copies. When the local
copies of item vectors and biases are identical, it is enough
to request from only one user. When, due to a limit on
the amount of communication, this is not the case, it may
be beneficial to request from more users and average their
instances. This issue will be revisited in the experimental
section.

6. PRIVACY

One of the advantages of the peer-to-peer architecture for
recommender systems is that user data is kept locally, pre-
venting an unsolicited party to access it. While the user
data cannot be accessed externally, the communication may
still reveal some private information.

A similar peer-to-peer algorithm was considered by [30]
for online convex optimization, and the authors have shown
that such an algorithm has intrinsic privacy-preserving prop-
erties, i.e. the gradients of the local function cannot be
reconstructed for various topologies of user communication
graphs. While in their case, the full model was transmitted,
for matrix factorization the user vector are kept locally, and
only part of the item vectors are sent at any time. It is easy
to see that the inaccessibility of the user vectors and the
non-convexity of the function to be optimized makes it even
more difficult to reconstruct the gradients.

While the user data is kept locally, and it is sufficiently
difficult to reconstruct the gradients, the communication
may still reveal information about which items are rated
by the user. This vulnerability comes in because the users
are sending the vectors corresponding to a restricted sub-
set of the items that contains the rated items. A natural
choice for ‘attacking’ the data made available to a malicious
party is the SCOREBOARD algorithm of [23]. The algorithm
can handle well noise both in the prior information, and the
information received from the communication. It assumes
that the malicious party gained some auxiliary information
about the preferences of a particular person (such as ratings
available on IMDB, or preferences stated in a discussion),
and attempts to identify the person in the network from the
received communications. Subsequently, the algorithm de-
ciphers additional information in the form of preferences for
various items.

The SCOREBOARD algorithm maintains a score s,, for each
user, reflecting how likely is that the information about the

particular user matches the auxiliary information. The aux-
iliary information is represented by the set of items Auzx.
The algorithm relies on a similarity measure at attribute
(item) level. The similarities of the items in the auxiliary
set, weighted with a function that depends on their respec-
tive frequencies, are combined in the scoring function:

1
su= D D50,
i€ Aux log |TZ1 + 1|
where n,, if number of ratings for item i, r,; is the ratio of
item i received in the messages received from user u, and §
is appropriate threshold.

7. EXPERIMENTS

In this section we will test empirically the performance of
the peer-to-peer online prediction algorithms using two stan-
dard benchmarks: the 1M and the 10M MovieLens datasets.?
The datasets include movie ratings with a timestamp recorded
in seconds. We use the timestamps to establish a sequen-
tial order of the ratings. Ratings with identical timestamps
are considered in random order. The datasets stretch over
several years thus there is a fair amount of non-stationarity.
The learning rate for all experiments is kept constant 0.05,
which was found to perform well for the centralized predic-
tion variants, and kept the same for the distributed ones.
The dimensionality of the latent vectors is set to 10.

Since we consider the top-K recommendation task the
more interesting one, we focus most of our attention on this
task. There is, however, a feature that favours rating predic-
tion: in this task the loss function and the gradient step are
closely tied. In contrast, in top-K recommendation the gra-
dient is computed for a loss function that is only related to
the true objective measure. Since the convergence results of
Section 3 refer to the loss function of which gradient is taken,
the first set of experiments (described in Section 7.1) can
be thought as a bridge between the theoretical results and
the experiments on the top-K recommendation task (Sec-
tion 7.2). Finally, we describe experiments on privacy in
Section 7.3.

7.1 Rating prediction

We consider a ’fixed’ communication protocol where the
number of target users is kept the same at each time step.
Recall from Section 5 that in the case of rating prediction,
only the vector and bias corresponding to the rated item
are sent in each iteration. The average mean square er-
ror (MSE) for the two datasets are shown in Figure 1 and
Figure 2. Each data point corresponds to a run where the
number of selected targets is kept at a certain value. In both
figures the data points with most messages correspond to the
situation when the vectors are sent to all users and the loss
obtained is the same as the one resulting from a centralized
algorithm. We observe that the loss increases logarithmi-
cally with decreasing the number of messages sent (target
users selected). In the figures two simple dynamic sched-
ules that depend on the suffered loss (MSE) are included
as well: namely the number of target users selected equals
(N —=1)/(1+c¢/ fn), where f, is the loss at time step n, and ¢
is constant that is varied in the figure. One can notice that
for both datasets a slight improvement can be obtained with
the dynamic communication schedule.

http://grouplens.org/datasets/movielens/
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Figure 1: Peer-to-peer rating prediction on the 1M
MovieLens dataset. The x-axis shows the average
number of item vectors sent per time step.
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Figure 2: Peer-to-peer rating prediction on the 10M
MovieLens dataset.

7.2 Top-K recommendation

For the top-K recommendation, first, we choose the strat-
egy of selecting negative samples (line 6 in Algorithm 2).
In Figure 3 we plot the performance of four strategies on
the 1M dataset: (1) select randomly 10 unvisited items, (2)
select randomly 60 items, (3) select randomly 60 items and
use only the top ten of these, and (4) select to top ten of
1000 random ones. The performance is measured as average
cumulative NDCG@10. More precisely, at each time step
n, we sum the instantaneous NDCG@10 up to that point,
and divide it with n. While in Algorithm 2 we refer to the
measure as loss function, for NDCG the higher is the better.
The performance seems very sensitive to the chosen nega-
tive sampling. The best performing strategy is to select ran-
domly 60 item, and use the top 10 for the update step. We
will use this strategy for the remaining set of experiments.

Turning to the peer-to-peer recommendation, the first ques-
tion is how to mix the received vectors with the local ones
(8 in Algorithm 3). In this experiment the vectors of the
positive instance and all negative instances are sent to the
target users. The number of target users is fixed (in a simi-
lar way as in the fixed protocol above) to a particular value
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Figure 3: Centralized top-K recommendation on the
1M MovieLens dataset with different strategies to
select negative training instances.
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Figure 4: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset with varying mixing rate.

that is varied. Figure 4 shows the performance on the 1M
dataset with different values for 3. The average cumulative
NDCG®@10 is shown in this figure and the subsequent ones
for the whole dataset. Thus, the data point on these figures
correspond to the last measurement in Figure 5 (i.e. for the
data point with largest number of time steps). The perfor-
mance of the centralized algorithm is indeed identical to the
performance of the peer-to-peer algorithm for the data point
that satisfies the conditions enumerated in Section 5. Recall
that the conditions include sending all negative items to all
users and having 8 = 0. It is clear from Figure 4 that the
best result is obtained for 3 = 0, in which case the received
latent vector and bias replaces the local instance. In the
following we will use this setting.

The next experiment investigates if all (10) negative in-
stances should be sent, or just a random subset of these,
along with the positive one. Therefore, in Figure 5 we plot
the performance if 3, 5, 7, or 10 (all) negative instances
are sent. Note that if we select the same number of target
users and send only vectors corresponding to five negative
instances the amount of communication is reduced (almost
halved). The results for the four values are rather interest-
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Figure 5: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset with varying item selec-
tion.

ing. First, it is clear that if the number of messages are kept
small, then it is better to select less items and use the reduc-
tion in the message to send to more users. Surprisingly, when
all (or almost all) users are targets, performance gain can be
obtained by not sending all negative items. In fact, this re-
sults in a performance gain over the centralized algorithm.
We do not have a clear explanation for the improvement, it
could be due to some additional diversity among the copies
of the models, but this is purely a conjecture.

Up to this point, we assumed that users were in the system
during the whole episode. In the final experiment we con-
sider the situation when this is not the case. It is difficult to
know from the data when a particular user was active, and
we set this time frame as ranging from the first rating of the
user until the last one (naturally the user could have regis-
tered much earlier, and could have been using the system for
much later without performing any rating). In this scenario
lines 2—6 of Algorithm 3 become relevant, and we have to
decide from how many users to 'pull’ the model. The results
are shown in Figure 6 with different number of source users.
The performances are shown for the case when five negative
instances are sent after a gradient update (a combination of
all negatives sent and one source user polled is also shown).
It seems obvious from the figure that the communication ef-
ficient strategy is to request the model from only one user.
If we send to the same number of target users (after gradient
update) pulling models from more users increases the per-
formance, but it comes at a cost of increased communication
that can be better used after the gradient update.

For top-K recommendation, the results were presented
for the 1M dataset. We observed a similar pattern of re-
sults for the 10M dataset (not shown). Finally, we would
like to draw some comparison between how the performance
degrades with decreasing communication for the two types
of tasks, i.e. rating prediction and top-K recommendation.
If we compare Figures 1 and 2 with Figures 4 and 5, the
curves seems fairly similar taken into account that for the
first task we minimize the measure, while for the second, we
maximize. Figure 6 shows a different pattern. We observe a
plateau at the end of each curve, clearest being for the curve
corresponding to sending all negative samples and request-
ing from only one user (neg=10, pull=1). This suggests that
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Figure 6: Peer-to-peer top-K recommendation on
the 1M MovieLens dataset in the case of dynamic
user availability.

if at each time step we are only concerned to send items that
are active, then we do not lose in performance even if we the
amount of communication drops by an order of magnitude.

7.3 Privacy

The privacy preserving properties of the peer-to-peer rec-
ommendation system is tested with the SCOREBOARD algo-
rithm described in Section 6. We consider the top-K recom-
mendation task on the 1M MovieLens dataset with varying
item selection and with continuous presence of all users (thus
the same set-up as for Figure 5). We consider two scenarios:
when the adversary knows 10 percent of the items rated by a
particular user and when all ratings of the user are known.
The probability of correctly identifying the user from the
messages received is averaged over all users. If the adver-
sary has access to the whole data set the detection proba-
bility is 0.48 and 0.96, respectively. The detection probabil-
ity against the peer-to-peer algorithm is plotted in Figure 7
and Figure 8. In both figures the threshold § was set to 0.5
which was found to result the highest probability of identi-
fying correctly the users. The value plotted was chosen as
the highest value at any time for a given set-up. In both sce-
narios (10 percent and all ratings) the detection probability
is hugely decreased compared to the above mentioned base-
lines. Sending more negative items increases privacy (i.e.
decreases detection probability) as well as sending to items
to less peers.

Next, we compare the ranking performance/privacy trade-
off for the peer-to-peer algorithm and the centralized one
using the k-CORATING algorithm to improve privacy. k-
CORATING extends the rating matrix in a heuristic way such
that for any user there are at least & — 1 other users that
rated exactly the same items. In an online scenario this is
fairly difficult to achieve, but we assume that there is an
oracle that knows in advance all the ratings and extends the
rating matrix with ratings such that the above property will
hold at the end. The artificial ratings are spread uniformly
over the episode, and set to an average value.®> The training
for the centralized algorithm is performed on the extended

3The rating value is not critical since the ranking perfor-
mance is not sensitive to the actual rating (cf. the equation
of NDCG@QK in Section 4).
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Figure 9: Detection probability vs. ranking perfor-
mance.

rating sequence, the ranking performance is measured on
the original sequence, and the detection probability (with
the SCOREBOARD algorithm) on the extended sequence.

The detection probability corresponding to various levels
of ranking performance is plotted in Figure 9. For the peer-
to-peer algorithm, we included the results with all negative
items sent, with the number of target users varied (as in
Figure 7 and 8, while for the centralized algorithm with k-
CORATING the value k is varied. Again the adversary knows
all ratings of a user or ten percent of it. We observe that
to obtain a reasonable ranking performance k-CORATING
is unable to ensure high level of privacy (values of k close
to 1), while the peer-to-peer algorithm can achieve a good
ranking performance and in the same time offer consider-
able privacy. It is interesting that k-CORATING can achieve
perfect privacy and still provide a meaningful ranking, while
the peer-to-peer algorithm is unable to achieve this in the
considered version. It is expected that if more items are sent
(other than the positive and negative samples) the privacy
can be further improved without deteriorating the ranking
performance. This comes however with the expense of in-
creased communication costs.

8. CONCLUSIONS

In this paper we proposed an online peer-to-peer collab-
orative filtering algorithm that stores the ratings of a user
and the private data local. Additionally, the users have a
local copy of the common part of the factor model and com-
municate with other users to advance towards a consensus
on it. A general form of the algorithm is proven to converge
to a set of local optima in the stationary case. In a more
specific form, we provided peer-to-peer matrix factorization
algorithms for rating prediction and top-K recommendation.

We note that the general form is straightforward to instan-
tiate to more intricate models such as factorization machines
[26], or extend with context-aware features [2]. In the same
way, it is easy to replace the negative sampling and gradient
update step in the top-K recommendation algorithm with
other choices employed in a centralized algorithm, e.g., [27]
or [32]. Essentially, most algorithms where the private data
can be separated, and use some form of stochastic gradient
descent can be distributed in the same way as we did with
our matrix factorization model in Section 5.

The online peer-to-peer matrix factorization algorithms
were evaluated on the two larger MovieLens datasets that
seem to us fairly non-stationary. We observed that the mean
square error increases logarithmically with decreasing com-
munication, and we suggested a simple way to control the
amount of communication more efficiently. We expect that
targeting users with similar tastes could make the commu-
nication more efficient, but we leave this issue for future
research. For top-K recommendation we compared a few
negative sampling strategies, and we showed how to handle
new users. Crucially, we observed that sending only a subset
of the negative samples could not only make the communi-
cation more efficient, but it could improve on the perfor-
mance of the centralized algorithm. Understanding why the
improvement is possible could help to improve centralized
recommendation algorithms as well.

The peer-to-peer recommendation algorithm was shown to
offer improved privacy without deteriorating the recommen-
dation performance, which was not the case for the baseline
algorithm tested.
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