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ABSTRACT
In this paper we give methods for time-aware music rec-
ommendation in a social media service with the potential
of exploiting immediate temporal influences between users.
We consider events when a user listens to an artist the first
time and this event follows some friend listening to the same
artist short time before. We train a blend of matrix factor-
ization methods that model the relation of the influencer, the
influenced and the artist, both the individual factor decom-
positions and their weight learned by variants of stochastic
gradient descent (SGD). Special care is taken since events
of influence form a subset of the positive implicit feedback
data and hence we have to cope with two different defini-
tions of the positive and negative implicit training data. In
addition, in the time-aware setting we have to use online
learning and evaluation methods. While SGD can easily
be trained online, evaluation is cumbersome by traditional
measures since we will have potentially different top recom-
mendations at different times. Our experiments are carried
over the two-year “scrobble” history of 70,000 Last.fm users
and show a 5% increase in recommendation quality by pre-
dicting temporal influences.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
filtering; I.2.6 [Artificial Intelligence]: Learning

Keywords
temporal recommendation and evaluation; social influence;
online matrix factorization; Last.fm; music recommendation

1. INTRODUCTION
Part of the appeal of Web 2.0 is to find other people who

share similar interests. Last.fm organizes its social network
around music recommendation: users may automatically
share their listening habits and at the same time grow their
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friendship. Based on the profiles shared, users may see what
artists friends really listen to the most.

In a recent paper [22], we proved the existence of the in-
fluence of friends on musical taste by carefully decoupling
trends and homophily, the fact that friends are a priori more
likely to have similar taste. In this paper we exploit the
timely information gathered by the Last.fm service on users
with public profile to exploit the potential influence between
friends for recommendation. Last.fm’s service is unique in
that we may obtain a detailed timeline and catch immedi-
ate effects by comparing the history of friends in time and
comparing to pairs of random users instead of friends.

As our main contribution, we give a matrix factorization
mixture model for influence between friends that yield im-
proved collaborative filtering methods. In the simplest set-
ting, we may recommend a new artist a to a user u closely
after a friend v listened to the same artist. When we turn to
modeling the tensor data < u, v, a > that may even involve
the time elapsed since v listening to a, we face a very sparse
problem. Hence instead of modeling the tensor, we flatten
out along the variables and define three matrices in addition
to single-variable effects similar to the ones defined by the
centralization procedures of [4].

Since influence from friends has a very strong time de-
pendence in that only the events of the last few hours or
days may have an effect on the user behavior, in this paper
we consider online learning with very strong time sensitiv-
ity. Compared to standard collaborative filtering methods,
we process events only once and in the order they have ap-
peared. As baseline we use online stochastic gradient de-
scent (SGD) with high learning rate so that recent events
have high contribution to the factor weights. The online fac-
tor model already incorporates not just popularity by using
a high learning rate and involving an online updated item
bias, but also part of friends’ influence. Immediately after
a user listens to an artist, the corresponding factor weights
are relative strongly adjusted due to the high learning rate.
If a friend has similar factor weights e.g. by homophily, the
same artist will have high recommendation score after the
learning step. The online factor model hence involves an im-
plicit variant of an influence recommender by itself that we
will further improve by a direct modeling of the influences.

To obtain the weighted combination of the baseline and
the influence recommenders, we propose a new method for
online learning user-dependent blending weights. If the deriva-
tives of the individual models are available, a single SGD
could optimize both the internal parameters and the blend-
ing weights. However as it turns out, the influence recom-



mender requires a different set of implicit positive items and
a procedure for generating a negative sample than the tra-
ditional online matrix factor model.

In our blend, we obtain a 5% of increase in quality, a
strong result in view of the three-year Netflix Prize com-
petition [6] to improve recommender quality by 10%. The
fact that influences blend well with collaborative filtering
and temporal effects prove that close events in the network
bring in new information: friends’ close events in the past
can be exploited in a recommender system.

Finally, as part of our results, we introduce quality mea-
sures for time-aware recommender evaluation. As influence
from friends has only a short, typically few hours effect, we
retrain part of our models after each event and hence po-
tentially give completely new top list of items for each event
in the testing period. We highlight that discounted cumula-
tive gain (DCG) computed individually for each event and
averaged over time is an appropriate measure for real time
recommender evaluation.

The rest of this paper is organized as follows. After de-
scribing our Last.fm data in Section 2, we explore for mea-
surable signs of influence by friends in Section 3. Our main
influence recommender is defined in Section 4, our online
evaluation metric in Section 5, the online blending method
in Section 6 and the baseline algorithms in Section 7. Finally
we show our measurements for improved recommendation
quality in Section 8.

1.1 Related results
The Netflix Prize competition [6] has recently generated

increased interest in recommender algorithms in the research
community and put recommender algorithms under a sys-
tematic thorough evaluation on standard data [5]. The final
best results blended a very large number of methods whose
reproduction is out of the scope of this paper.

Bonchi [7] summarizes the data mining aspects of research
on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless
the role of time in viral marketing is still largely (and sur-
prisingly) unexplored”, an aspect that is key in our result.
Notion of influence similar to ours is derived in [3, 8] for
Flickr and Twitter cascades, respectively.

Closest to our results are the applications of network influ-
ence in collaborative filtering under the term of “social reg-
ularization” [18, 21, 25, 26]. These results add smoothing to
make friends’ model similar. We use social regularization as
one baseline model in our experiments. In other results, only
ratings and no social contacts are given [11], or in [13], both
friendship and view information was present over Flickr, but
the main goal was to measure the strength of the influence
and no measurements were designed to separate influence
from other effects.

Since our goal is to recommend different artists at different
times, our evaluation must be based on the quality of the
top list produced by the recommender. This so-called top-K
recommender task is known to be hard [10]. A recent result
on evaluating top-K recommenders is found in [9].

Music recommendation is considered in several results or-
thogonal to our methods that will likely combine well. Mood
data set is created in [14]. Similarity search based on au-
dio is given in [16]. Tag based music recommenders [12, 23]
and many more, a few of them based on Last.fm tags, use
annotation and fall into the class of content based methods
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Figure 1: The number of the users and friendship edges in
time as the fraction of the values at the time of the data set
creation (2012).

as opposed to collaborative filtering considered in our paper
[15, 19, 20].

2. THE LAST.FM DATA SET
Last.fm became a relevant online service in music based

social networking. For registered users, it collects, “scrob-
bles”1 what they have listened. Each user has its own statis-
tics on listened music that is shown in her profile. Most
user profiles are public, and each user of Last.fm may have
friends inside the Last.fm social network. Therefore one rel-
evant information for the users is that they see their own
and their friends’ listening statistics.

We investigate a data set that consists of the contacts
and the implicit feedback timeline, the “scrobble history”
of the users. Our goal is to exploit the influence of social
contacts for recommendation. For privacy considerations,
throughout our research, we selected an anonymous sample
of users. Anonymity is provided by selecting random users
while maintaining a connected friendship network. We set
the following constraints for random selection:

• User location is stated in UK;

• Age between 14 and 50, inclusive;

• Profile displays scrobbles publicly (privacy constraint);

• Daily average activity between 5 and 500.

• At least 10 friends that meet the first four conditions.

The above selection criteria were set to select a representa-
tive part of Last.fm users and as much as possible avoid users
who artificially generate inflated scrobble figures. In this
anonymized data set of two years of artist scrobble timeline,
edges of the social network are undirected and timestamped
by creation date (Fig. 1). The number of users both in the
time series and in the network is 71,000 with 285,241 edges;
no edges are ever deleted from the network.

The time series contain 979,391,001 scrobbles from 2,073,395
artists and were collected between 01 January 2010 and 31
December 2011. The same user can scrobble an artist sev-
eral times. The number of unique user-artist scrobbles is
57,274,158.

1The name “scrobbling” is a word by Last.fm, meaning the
collection of information about user listening.



Friends of u

(u,a,tu)
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Users scrobbled a before tu

Figure 2: Potential influence on u by other users to scrobble
(u, a, tu).

3. NETWORK INFLUENCE
The key concept in this paper is a user v influencing an-

other u to scrobble a. The sign of an influence is if u scrob-
bles artist a the first time at time tu, after v last scrobbling
the same artist at some time tv < tu before. The time dif-
ference ∆t = tu − tv is the delay, as seen in Fig. 2. Our key
assumption is that we observe such a subsequent first time
scrobbling between non-friends only by coincidence while
some of these events between friends are the result of cer-
tain interaction. Our goal is to prove that friends indeed
influence each other and this effect can be exploited for rec-
ommendations.

Similar influence definitions are given in [3, 8, 13]. As
detailed in [3], one main difference between these definitions
is that in some papers tv is defined as the first and not the
last time when user v scrobbles a. The smaller the delay
∆t between the scrobbles of v and u, the more certain we
are that u is affected by the previous scrobble of v. The
distribution of delay with respect to friends and non-friends
will help us in determining the frequency and strength of
influence over the Last.fm social network.

Out of the 57,274,158 first-time scrobbles of a certain
artist a by some user, we find a friend who scrobbled a be-
fore 10,993,042 times (19%) in the whole time series and
4,203,109 times in the second year. Note that one user can
be influenced by more friends, therefore the total number of
influences is 24,204,977. If we only consider influences with
delay less than one week, this number reduces to 4,625,141.
Note that there is no influencing user for the very first scrob-
bler of a in the data set. For other scrobbles there is always
an earlier scrobble by some other user, however, that user
may not be a friend of u. Some of the observed subsequent
scrobbles may result by pure coincidence, especially when
a new album is released or the popularity of the artist in-
creases for some other reason.

In order to quantify real influence within the set of sub-
sequent first time scrobbles, our goal is to determine the
probability that the subsequent scrobbles are result of in-
fluence. If we condition this probability for friends and by
a limit t on the delay, we should obtain a monotonically
decreasing function Infl(t).

To formalize, let us consider the probability space of sub-
sequent first time scrobbles among all users. Let I denote
the event that an subsequent first time scrobble is the result
of an influence. Ic is the opposite, no influence occurs. Coin-
cidence or other, external reason such as the overall increase
in popularity causes the subsequent first time scrobble in
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Figure 3: Fraction of subsequent first time scrobbles with
delay ∆t ≤ t as the function of t, in case of friends (P (∆t ≤
t | f)) and non-friends (P (∆t ≤ t | fc)) over the entire
timeline (top) and the first 24 hours (bottom).

the time series. Let f denote events between friends and fc

between non-friends. Finally let ∆t ≤ t denote the set of
events with delay at most t. With these notations,

Infl(t) = P (I | ∆t ≤ t, f) = (1)

=
P (I,∆t ≤ t, f)

P (∆t ≤ t, f)
=
P (∆t ≤ t, I | f)P (f)

P (∆t ≤ t | f)P (f)
(2)

=
P (∆t≤t,I|f)
P (∆t≤t|f)

= P (∆t≤t|f)−P (∆t≤t,Ic|f)
P (∆t≤t|f)

. (3)

As non-friends fc should not have any real influence on each
other, we assume that

P (∆t ≤ t, Ic | f) ≈ P (∆t ≤ t, Ic | fc) = P (∆t ≤ t | fc). (4)

Using this approximation, we can compute the probability
of influences between friends as in (1) by expanding (3),

Infl(t) = P (I | ∆t ≤ t, f) ≈ P (∆t≤t|f)−P (∆t≤t|fc)
P (∆t≤t|f)

. (5)

By the above equation, the influence probability can be ap-
proximated by observing the cumulative density curves in
Fig. 3. The estimate of this function as in (5) is shown in
Fig. 4. As expected, Infl(t) is a monotonically decreasing
function of t. However, the decrease is slow unlike in some
recent influence models that propose exponential decay in
time [13]. Therefore, we approximate the influence proba-
bility with a slowly decreasing logarithmic function instead
of an exponential decay,

Infl(t) = 1− c log t, (6)

where c is a constant.

4. INFLUENCE BASED RECOMMENDATION
Based on the measurements in the previous section, we

model the observed influences and give a method to apply for
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rithm.

recommendation. Influence depends on time and no matter
how relative slow, the influential power of a friend scrobbling
an artist decays as time passes by. For this reason, the
influence based recommender must learn online.

To formalize, let v
a;∆t∈T−−−−−→ u denote the event that user

u scrobbles artist a the first time in her time series, and ∆t
time after her friend v also scrobbled a. The time difference
∆t is restricted to be in a time interval T . As illustrated
in Fig. 5, we would like to decompose the probability that

v
a;∆t∈T−−−−−→ u happens and the reason for this event is influ-

ence (I) between the users into a factor that only depends
on ∆t and another one that is independent of ∆t. First we
decompose the full event into a conditional probability as

P (I, v
a;∆t∈T−−−−−→ u) = P (I | v a;∆t∈T−−−−−→ u) · P (v

a;∆t∈T−−−−−→ u). (7)

When a scrobble event happens at time exactly t after the
scrobble of v, the interval becomes a point and hence we are
looking for the derivative

lim
τ→0

(
P (I, v

a;∆t≤t+τ−−−−−−→ u)− P (I, v
a;∆t≤t−−−−→ u)

)
/τ. (8)

We model the right hand side of (7), the “strength” of the
influence between users u and v, independent of time as

f(v
a−→ u) := P (v

a;∆t∈T−−−−−→ u)/|T |, (9)

hence by equation (7) we may divide the derivative (8) by

f(v
a−→ u) to get

lim
τ→0

(
P (I | v a;∆t≤t+τ−−−−−−→ u)(t+ τ)− P (I | v a;∆t≤t−−−−→ u)t

)
/τ. (10)

We model influence conditional probabilities by a global
function for all users that depend only on the time ∆t elapsed,

P (I | v a;∆t≤t−−−−→ u) ≈ P (I | ∆t ≤ t, f). (11)

By using our function in (5) and (6), equation (10) becomes

lim
τ→0

((1− c log(t+ τ)) · (t+ τ)− (1− c log t) · t) /τ (12)

= 1− c(1 + log t). (13)

Now we give our matrix factorization model for f(v
a−→ u).

We decompose the model into seven terms that give a global
model for one or more of the three variables u, v, a in (v

a−→
u). By replacing variables considered globally by q and not-
ing that the last term with all three variables global is a
constant, we get

f(v
a−→ u) ∼ w0 + w( q q

−→ u) + w(v
q
−→ q) + w( q a−→ q)

+ w( q a−→ u) + w(v
a−→ q) + w(v

q
−→ u).

(14)

We have four global effects, a constant, an influencer, an
influenced, and an artist, and three bivariate terms that can
be modeled by matrix factorization as

f(v
a−→ u) ∼ α0 + α1bv + α2bu + α3ba

+ ~U ~A+ ~A′~V + ~U ′ ~V ′.
(15)

The three bias terms bv, bu and ba correspond to the frequen-
cies of user v influencing, user u being influenced and influ-
ences occurred with artist a. α1, . . . , α3 are learned weights
of the biases, and α0 is the global learned bias. The six
vectors correspond to six different latent vectors.

The final prediction score r̂ is based on (8), by using (15)
and (13) we can write it in a form

r̂(u, a, tu) =
∑

v∈n(u)

(α0 + α1bv + α2bu + α3ba

+ ~U ~A+ ~A′~V + ~U ′ ~V ′)(1− c(1 + log(tu − tv))),

(16)

where we sum up for all neighbors of u and tv is when v
last scrobbled a before tu. For training, we only update
f(v

a−→ u) by the actual positive events and a generated sam-
ple of negative events. In our algorithm we use SGD with
respect to MSE to train the latent factors and the weights
α0, . . . , α3. Notice that the weight of the factor models is
included within the factors, since the entire formula (15) is
trained by a single SGD procedure. As we learn online, the
weight of the effects are also trained by SGD and not by the
least squares optimization procedure proposed in [4].

In an efficient implementation, since the expression (13)
quickly decays with t, we only need to retrieve the past
scrobbles of all friends of u. This step is computationally
inexpensive unless u has too many friends, when the rec-
ommendation is noisy anyway. To speed up computations,
we only consider influence with delay T not more than a
predefined time frame and hence we set c = 1/ (1 + log T ).
With a sufficiently small parameter of the time frame in
the range of a few days, our algorithm can hence be imple-
mented even to provide recommendations based on real time
updated models.



nu
m

be
r 

of
 n

ew
 (

u,
a)

sc
ro

bb
le

s

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

 

time (days)
0 100 200 300 400 500 600 700

Figure 6: Number of new (u, a) scrobbles as the function of
time.

5. ONLINE EVALUATION
Recommender systems in practice need to rank the best K

items for the user. In this top-K recommendation task [10,
9] the goal is not to rate some of the individual items but to
provide the best candidates. Despite the fact that only pre-
diction for the top list matters in top-K evaluation, several
authors propose models trained for RMSE with good top-K
performance [17, 24] and hence we follow their approach.

In a time sensitive or online recommender that poten-
tially retrains its model after each and every scrobble, we
have to generate new top-K recommendation list for every
single scrobble in the test period. The online top-K task
is hence different from the standard recommender evalua-
tion settings, since there is always a single item only in the
ground truth and the goal is to aggregate the rank of these
single items over the entire testing period. For our task,
we need carefully selected quality metrics that we describe
next.

Out of the two year scrobbling data, we use the full first
year as training period. The second year becomes the testing
period where we consider scrobbles one by one. We allow a
recommender algorithm to use part or full of the data before
the scrobble in question for training and require a ranked
top list of artists as output. We evaluate the given single
actual scrobble a in question against the recommended top
list of length K. As seen in Fig. 6, by the second year, the
number of first-time scrobbles stabilize around 50,000 a day
after the artificial peak in the beginning caused by the lack
of earlier data. For the reason of stability, we measure our
recommender methods in Year 2 of the timeline.

One possible measure for the quality of a recommended
top list of length K could be precision and recall [25, 26].
Note that we evaluate against a single scrobble. Both the
number of relevant (1) and the number of retrieved (K)
items are fixed. Precision is 1/K if we retrieve the single
item scrobbled and 0 otherwise. Recall is 0 if we do not
retrieve the single relevant item and 1 otherwise. The value
of K that maximizes precision is the rank of the item scrob-
bled and hence “maximal precision” follows the function of
1/rank.

Recently, measures other than precision and recall are pre-
ferred for measuring the quality of top-K recommendation
[2]. The most common measure is NDCG that is a normal-
ized version of the discounted cumulative gain (DCG) with
threshold K

DCG@K(a) =

{
0 if rank(a) > K;

1
log2(rank(a) + 1)

otherwise.
(17)
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Since DCG is a slower decreasing function of the rank than
what we observed for maximal precision, DCG is more ad-
vantageous since we have a large number of artists of poten-
tial interest to each user. Our choice is in accordance with
the observations in [2] as well.

Note that in our unusual setting of DCG evaluation, there
is a single relevant item and hence for example no normaliza-
tion is needed as in case of the DCG measure. Also note that
the DCG values will be small since the NDCG of a relative
short sequence of actual scrobbles will roughly be equal to
the sum of the individual DCG values. The DCG measured
over 100 subsequent scrobbles of different artists cannot be
more than the ideal DCG, which is

∑100
i=1 1/ log2(i + 1) =

20.64 in this case (the ideal value is 6.58 for K = 20). Hence
the DCG of an individual scrobble will on average be less
than 0.21 for K = 100 and 0.33 for K = 20.

In our evaluation we discard infrequent artists from the
data set both for efficiency considerations and due to the
fact that our item based recommenders will have too little
information on them. As seen in Fig. 7, top, the number of
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artists with a given scrobble count follow a power-law dis-
tribution with near 60% of the artists appearing only once.
While 90% of the artists gathered less than 20 scrobbles in
two years, as seen in Fig. 7, bottom, they attribute to only
less than 10% of the data set. In other words, by discard-
ing a large number of artists, we only lose a small fraction
of the scrobbles. For efficiency we only consider artists of
frequency more than 14.

As time elapses, we observe near linear increase in the
number of artists that appear in the data set in Fig. 8. This
figure shows artists with at least 14 scrobbles separately.
Their count grows slower but still we observe a large number
of new artist that appear in time and exceed the minimum
count of 14. Very fast growth for infrequent artists may be
a result of noise and unidentified artists from e.g. YouTube
videos and similar Web sources.

6. ONLINE BLENDING
We give two methods based on SGD that learn the online

blending weight of recommender algorithms. Note that the
algorithms may or may not themselves be based on SGD, i.e.
the derivative of the individual models may or may not be
available for the blending optimization procedure. Further-
more, we may blend methods with different definitions of the
implicit feedback data sequence: the positive instances for
the influence based recommender form a small subset of all
the events and hence the influence recommender also needs
different methods for generating negative training samples.

If the derivatives of the individual models are available for
the top level optimizer, we may optimize in a single layer
(top of Fig. 9) by minimizing

F (r̂ua) = F

(∑
m

(αm + βum)r̂mua

)
, (18)

where we sum over all models m, and F is the error measure,
MSE in our case. Notice that we learn a user dependent
blending weight vector βum, hence for example the blending
of a k and a k′ factorization will in theory have at most as
high F as a single k+k′ one, and in our experience performed
only slightly better.

We may take the derivatives for both the constants α and

β and the individual model parameters ~θm:

∂F

∂~θm
=

∂F

∂r̂ua

∂r̂ua
∂r̂mua

∂r̂mua

∂~θm
=

∂F

∂r̂ua
(αm + βum)

∂r̂mua

∂~θm
; (19)

∂F

∂αm
=

∂F

∂r̂ua

∂r̂ua
∂αm

=
∂F

∂r̂ua
r̂mua; (20)

∂F

∂βum
=

∂F

∂r̂ua

∂r̂ua
∂βum

=
∂F

∂r̂ua
r̂mua. (21)

If the derivatives are not available, the individual models are
considered as black box for blending and we have to train in
two layers (bottom of Fig. 9) and we may only use the last
two derivatives (20) and (21).

If different models need different training samples, we can-
not use the derivative (19) either. This is the case if we com-
bine the baseline matrix factorization with the algorithm of
Section 4. If the current positive event is not the result of
an influence (i.e. not a first time scrobble or no friend scrob-
bling the same artist before), then we only update the base-
line models. And if there is at least one possible influencer
v
a−→ u for the current event (u, a), then we generate separate

negative training instances for the baseline and the influence
models. Notice that even a negative influence training data
v′

a−→ u must satisfy that v′ is a friend of u who scrobbled a
and hence we usually have to choose from a restricted small
set. Blending is meaningful only over this restricted set too,
since for other events, the influence recommender has no t
value in equation (16) to compute its prediction. Hence for
blending, we have to use the same negative samples as for
training the influence model.

7. MUSIC RECOMMENDATION BASELINE
METHODS

We describe three baseline methods. The first one is based
on dynamic popularity in Section 7.1. The second one in
Section 7.2 is an online matrix factorization and the third
one in Section 7.3 adds regularization over friendship as in
[18].

All the methods discussed here are online algorithms, as
opposed to the batch methods used in challenges such as
Netflix. In some preliminary experiments the batch algo-
rithms performed significantly worse in the online task com-
pared to their online versions. We plan to compare the per-
formance of batch and online versions of the algorithms in
an online task more extensively in the future.

7.1 Dynamic popularity based recommenda-
tion

Given a predefined time frame T as in Section 4, at time tu
we recommend an artist based on the popularity in time not
earlier than tu−T but before tu. In our algorithm we update
the counts and store artists sorted by the current popularity.
In one time step, we may either add a new scrobble event or
remove the earliest one, corresponding to a count increment
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Figure 10: Online performance of the three different recom-
menders.

or decrement. For globally popular items, the sorted order
can be maintained by a few changes in the order only.

7.2 Online matrix factorization
Stochastic gradient descent methods in batch setting may

iterate several times over the training set until convergence.
In an online setting [1], the model needs to be retrained af-
ter each new event and hence reiterations over the earlier
parts of the data is ruled out. We may implement an online
recommender algorithm by allowing a single iteration over
the training data only, and this single iteration processes the
events in the order of time. We used the first time scrobbles
as positive training instances and generated negative train-
ing instances by selecting three random artists uniformly at
the time when a user first scrobbled an artist.

Online recommenders seem more restricted than those
that may iterate over the data set several times and one
would expect inferior quality by the online methods. On-
line methods however have the advantage of giving much
more emphasis on recent events. In some sense, the online
methods may incorporate the notion of influence from Sec-
tion 3: if friends have similar taste and hence similar factor
weights, a friend scrobbling some artist a will in the near
future strengthen the weight for this artist for all users who
have similar taste.

7.3 Social regularization
Ma et al. [18] propose a method to implement constraints

in a factor model based recommender algorithm for keep-
ing the profile of friends similar. We implemented both
the average-based and the individual-based regularization of
[18] and found the latter superior, hence we use individual-
based regularization in our experiments. Note that these
algorithms have no knowledge of time and hence cannot in-
corporate our notion of subsequent first time scrobbles as in
Section 3, even though they may work very well for other,
non-first-time scrobbles that we do not consider in this pa-
per.

8. EXPERIMENTS
In this section we describe the quality of our results for

the second year testing period. Under various settings, we
give daily average DCG@K defined by equation (17).
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Figure 11: Combination of the influence and factor models.

Our experiments were carried out over the single core of an
AMD based virtual server with 128GB RAM. On average, it
took 28 minutes to process one day of scrobble history, up-
date the online models and provide top-K recommendation
corresponding to each user event.

Parameter K in equation (17) controls the length of the
top list considered for evaluation. In other words, K can
be interpreted as the size of the list presented to the user.
Practically K must be small in order not to flood the user
with information. We show results for K = 10 and 100.
In Fig. 10, DCG@100 is shown for two baseline methods,
matrix factorization and temporal popularity, as well as our
influence model.

When combining variants of baseline and influence recom-
mendation predictions, we observed that that social regular-
ization did not improve matrix factorization and temporal
popularity did not blend with online factorization. Indeed
in Fig. 10 we may observe that peaks in temporal popu-
larity performance immediately appear as peaks in matrix
factorization performance, since online factorization learns
temporal trends very well.

In Fig. 11, one can see that the online combination with
influence recommendation improves over online matrix fac-
torization both for DCG@10 and DCG@100. The aver-
age improvement is roughly 7% for DCG@10, and 3% for
DCG@100. Over the same figure, we plot the performance
of the constant term alone in equation (15). This simple rec-
ommender corresponds to adding up all the (1− c(1 + log t))
values for possible influencers without model building be-



yond learning the blending weight involved. At first this
simple model blends best with the baseline, however, as the
factor models get more training data, they become superior
and the importance of the constant term α0 in the model
diminishes.

Conclusions
Based on a 70,000-entry sample of Last.fm users, we were
able to exploit the effect of users influencing the taste of
friends for improving the quality of music recommendation.
Over static baseline recommenders, we achieved a 5% im-
provement in recommendation accuracy when presenting artists
from friends’ past scrobbles that the given user had never
seen before.

Our system has very strong time-awareness: when we rec-
ommend, we look back in the near past and combine friends’
scrobbles with the baseline methods. The influence from a
friend at a given time is certain function of the observed
influence in the past and the time elapsed since the friend
scrobbled the given artist.

All of our methods learn online and provide top-K recom-
mendation lists recomputed for every user query. Because
of the inherent time dependence, we defined average DCG
as our evaluation metric and gave a new online blending
procedure that learns online user-dependent weights.
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