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ABSTRACT

In this paper we model the properties of growing communi-
ties in social networks. Our main result is that small com-
munities have higher edge density compared to random sub-
graphs and their edge number follows power law in the num-
ber of nodes. In other words, the smaller the community, the
larger the relative density.

Our observation resembles the densification law of Leskovec,
Kleinberg and Faloutsos who show that the average degree
increases super-linearly as the size of the network grows. In
our settings, however, densification is natural since the aver-
age degree of a random subgraph grows linearly. In contrary,
sublinear growth translates to increased relative density in
smaller subgraphs.

Our experiments are carried over Twitter retweets and
hashtags as well as a detailed music consumption log from
Last.fm. In addition to the social network of Twitter fol-
lowers and Last.fm friends, key in our experiments is that
community subgraphs are defined by media use.

We give theoretical results and simulations to explain our
findings. The observed edge density can be explained by a
mixture of epidemic growth that infects a uniform random
neighbor of the community and a low probability selection
of a completely new, isolated element. We also explore the
relation of graph densification and subgraph sparsification
by simulations over graphs of the Stanford Large Network
Dataset Collection.
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1. INTRODUCTION

1.1 Densification and sparsification

Part of the appeal of Web 2.0 is to find other people who
share similar interests. As an example, Last.fm organizes
its social network around music recommendation: users may
automatically share their listening habits and at the same
time grow their friendship. Based on the profiles shared,
users may see what artists friends really listen to the most.
Companies such as Last.fm use this data to organize and
recommend music to people.

While there are several large network datasets available
for research, only a few contain temporal information. We
exploit the timely information gathered from services of Twit-
ter and Last.fm to obtain microscopic measurements of in-
fluence propagating subgraphs of the social network. We
define sequences of subgraphs by selecting users that have
listened to the same artist, retweeted certain message or used
a given hashtag. In this way we obtain evolving communities
ordered in time in a fixed social network.

Our main result is a “subgraph sparsification law” of evolv-
ing community subgraphs. In time ordered subgraph se-
quences of the Twitter and Last.fm networks, we measure
an increased edge density compared to the average edge den-
sity of the whole network. The edge density, i.e. the average
degree of a node within the community follows power law of
the node count. The exponent is less than two, hence the
edge density growth is slower than quadratic and the relative
density decreases, larger communities are relatively sparser
than smaller communities. To understand the distinction,
let us consider a random subgraph of the same size n as a
selected community. As n approaches the size of the under-
lying network, the community and random subgraphs will
cover roughly the same edges. For smaller n, hence the den-
sity of the community is above that of the random subgraph.
In this sense, small communities that may only choose from
a small n intra-community contacts are relative denser than
the larger ones. Both the absolute and the relative density
follow power law, since the number of edges in a random
subgraph is quadratic.

We experiment over two large data sets. In case of Last.fm,
our experiments are carried over the two-year “scrobble” his-
tory and friendship network of 70,000 Last.fm users with
public profile. Last.fm’s service is unique in that we may
obtain a detailed timeline of how the fan community of an
artist grows in time over the network.

Twitter, a mixture of a social network and a news me-
dia [13], has in the past years became the largest medium



where users may spread information along their social con-
tacts. In our experiments we use the data set of [1] that
consists of the messages and the corresponding user net-
work of four global events. We extend the tweet data with
the list of followers of users with public profile who posted
at least one message in the tweet dataset. The anonymized
network with information spreading subgraphs is available at
https://dms.sztaki.hu/en/download/twitter-influence
subgraphs.

As introduced before, in Last.fm and Twitter community
subgraphs, we measure increasing edge density. As in [1§],
our subgraphs follow the densification law. However, the
relative density decreases compared to the average edge den-
sity of the whole network. Unlike previous models of net-
work growth, in our experiments the network is fixed and
as certain information appears in this network, subgraphs
are defined as the set of infected nodes. While the average
degree is increasing as more nodes join the graph, this may
happen for the simple reason that as larger part of a pre-
existing network is explored, more connections are found for
each node. Our explanation is similar to that of [21] where
a sequence of subgraphs is observed as the network is grad-
ually explored.

As a conclusion, the observed edge density can be ex-
plained by a mixture of epidemic growth that infects a ran-
dom neighbor of the community regardless of the age of its
infection and a low probability selection of a completely new,
isolated element to the community. We also measure the im-
portance of new isolated nodes and show that initially they
dominate the communities.

We find an explanation of the community edge density in
network models where new connections tend to close short
paths. Such models are the forest fire one [18], the trian-
gle closing variants of [15] and, if we add an edge to the
prototype as well, the copying model of |12].

While our prime goal is to model the way communities
build in social media, our models have surprising connections
to densifying graphs [18] 8], and subgraph sampling [21].

Edges in the Last.fm data are timestamped. This gives
us the possibility to investigate the original network densi-
fication law in case of Last.fm. We further investigate the
relation of network densification and subgraph sparsification
by epidemic simulations over graphs of the Stanford Large
Network Dataset Collection and observe that simulated in-
formation spread in these networks follows the same power
law edge density as seen in real communities.

Network growth can be considered as community growth
in an unobservable hidden background network. For exam-
ple, people join social networks (Facebook, LinkedIn, etc.)
and expose their connections; organizations and companies
exposed their relationship by gradually opening their web-
sites in the past decade. Certain networks that are hard to
fit into this category include scientific publications; indeed,
the epidemic simulations in these graphs give somewhat less
self-explaining exponents.

The rest of this paper is organized as follows. First we give
a preview of our main observations, followed by the survey
of related results. In Section [2] we give our new models for
community growth and enumerate some theoretical conse-
quences of different models of the underlying network. In
Section [B] we describe our Last.fm and Twitter data that we
use in our measurements in Section @l The relations of the
observations and models are discussed in Section

1.2 Summary of main observations

1. “Densifying” community subgraphs with edge number
following power law of node number. Note that ac-
tually the smaller subgraphs have higher relative den-
sity compared to a random subgraph of the same size.
This difference however vanishes with the community
growth, the subgraph “sparsifies”.

2. Power law fraction of nodes with at least one edge
within the community, with exponent greater than one.
This means that initially a large fraction of the nodes
are disconnected and these nodes quickly connect to
one another.

3. The edge number in a community as the function of
the number nodes with at least one edge also follows
power law. Surprisingly, the exponent of this process is
the same as the Leskovec-Kleinberg-Faloutsos |18] den-
sification exponent and the exponent of an epidemic
spread subgraph. In other words, information spread-
ing over a network and the dynamic growth of the net-
work are similar and closely related processes. The
network itself can be considered as a community in a
hidden social network.

4. Constant expansion: the number of edges leading out
from the set of infected nodes is linear as long as the
subgraph is not very large.

1.3 Related results

Bonchi [4] summarizes the data mining aspects of research
on social influence. He concludes that “another extremely
important factor is the temporal dimension: nevertheless
the role of time in viral marketing is still largely (and sur-
prisingly) unexplored”, an aspect that is key in our result.

Newman reviews the theoretical background of power-law
functions and distributions observed in empirical datasets in
|20L 7).

As a social media service, Twitter is widely investigated
for influence and spread of information. Twitter influence as
followers has properties very different from usual social net-
works [13]. Deep analysis of influence in terms of retweets
and mentions is given in [5|. Notion of influence similar to
ours is derived in [6, [2| for Flickr and Twitter cascades, re-
spectively. Cha et al. [5] define influence as “. .. the power of
capacity of causing an effect in indirect intangible ways...”.
In their key observation, the influence of a user is best char-
acterized by the size of the audience who retweets rather
than the size of the follower network. We use the Twitter
collection of [1] in our experiments.

Our results build on the measurements and theoretical ex-
planations of network densification detailed in [18] |17} |19}
16]. First of all, these results state that graphs densify over
time, i.e. the number of edges grow super-linearly while the
average distance shrinks in evolving real world networks.
In contrast to this observation, older network models as-
sumed that evolving graphs have constant average degree
and slowly growing diameter. They conclude that it is the
degree sequence and not the edge sequence that has effect
on the diameter of the graph. In 18| two probabilistic gen-
erative models are presented, the Community Guided At-
tachment and the Forest Fire model, that explain edge den-
sification.

Dorogovtsev and Mendes calls edge densification the “ac-
celerated growth” of the network [8]. They introduce theo-



retical relations between the exponent of the power-law de-
gree distribution and the observed temporal edge densifica-
tion exponent. Their computations are based on the simple
assumption that the degree distribution of the graph is a
power-law function of the size of the graph.

More empirical observations of densification laws can be
found in [10} [22].

Pedarsani et al. investigates densification law in [21]. They
state that edge densification laws can be caused by the fact
that measurements on real networks are usually carried out
on edges samples from the whole network. In other words,
they believe that densification may arise as a feature of the
common edges sampling procedure to measure dynamic net-
works. They show that network growth can be a direct
consequence of the sampling process, therefore the sampling
process itself is a plausible explanation of network densifica-
tion laws.

Our experiments differ from all three lines of research
(Leskovec et al., Dorogovtsev and Mendes, and Pedarsani
et al.) in that we investigate a large number of coexisting
subgraphs of a network that we may even consider fixed
with only the communities evolving inside. Our communi-
ties show the “densification” as in the above results, however,
similar to the observation of [21], we claim that the small
graphs are in fact relative denser compared to the larger
ones.

The results of Leskovec et al., in our terminology, con-
sider extra-community edges as phantom nodes and phan-
tom edges, a part of the network that is not covered by the
dataset. While in a large network, this part has indeed a mi-
nor effect on the properties of edge densification, they play
key role in our investigation of evolving communities.

2. MODELS FOR COMMUNITY GROWTH
2.1 Underlying network models

First we shortly summarize three main types of models
for the purpose of community growth in an evolving net-
work: concentrated degree, triangle closing and preferential
attachment networks.

Certain network models impose constant degree, for ex-
ample the small world models |23 |11]. Concentrated degree
distribution arises in Erés-Rényi graphs [9].

Certain models build the graph by selecting edges that
close triangles or short paths as [15]. The copying model
[12] also falls in this category since

The main preferential attachment model is the Barabdsi-
Albert one [3]. There the probability of connecting to a node
is proportional to its degree, in other words edges connect
to subgraphs based on their density.

2.2 Random node selection

We intend to investigate a model with a fixed underlying
network. Nodes join after each other to the community. In
every step we select a new joining node uniformly at ran-
dom. In case of Last.fm that means uniform artist listening.
In Twitter this model is equivalent to users that post tweets
with a certain hashtag independently from each other. In
this case, the expected value of the number of edges in the
community is power law but with exponent equal to 2. This
can be easily proven. Let FF and N mean the total num-
ber of nodes and edges in the social network. Let user ¢ an
user j be part of the community with probability p, inde-

pendently. The expected total number of nodes and edges
in the subgraph is

(n) =N -p, (e)=E-p-p,
therefore

(e) ~n’.
It means that when we pick nodes uniform randomly, the
average degree within the community is linear function of
the subgraph size.

2.3 Epidemic spread

In the concentrated degree distribution models, the in-
crease in the number of edges by epidemic spread is at least
one and at most the maximum degree (or an upper bound
such that higher degrees are very unlikely). Hence the num-
ber of edges in the community e(n) grow linear with the size
n.

To model an epidemic spread in the preferential attach-
ment model, we use our observation that the edge expansion
is constant, and hence the average degree within the com-
munity is equal to the average degree outside. For this rea-
son, in the preferential attachment model, edges are equally
likely to connect to any node and the results of the pre-
vious subsection apply. Notice that the observation works
only under our assumption of constant expansion. In other
models where infection may reach high degree nodes fast, we
may have a higher probability for an edge connecting into
the community.

Finally in the short path closing models, a new node u
joining the community will connect to several of the close
neighbors of a contact w. Let us select a contact w from
the community A and let k& denote the expected fraction
of “close” contacts of w that are also shared by w. In this
intuitive notion, the increase of the number of edges after u
joins the community is hence

Ae(n) =k - d(w, A). (1)

If we assume that d(w, A) is the average degree within A,
we obtain Ae(n) = k- e(n)/n, and the solution of the above
equation becomes

e(n) = const - n", (2)

that is the edge density exponent is the same as the short
path closing fraction k.

The value of k generalizes the clustering coefficient and
must be at least as large in average. In the triangle closing
model, all new edges close a triangle and hence k is equal to
the clustering coefficient.

In a mixture of epidemic spread and random node selec-
tion, the edge density stays below that of epidemic spread.
For concentrated degree distributions and preferential at-
tachment graphs, the exponent remains the same one and
two, respectively, with only a smaller constant in the edge
count. For the short path closing models, if we follow the
epidemic spread with probability ¢, we simply replace k by
c - k in equation and hence we may obtain exponents
lower than the clustering coefficient.



3. DATA SETS
3.1 Last.fm
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Figure 1: The number of the users and friendship
edges in time as the fraction of the values at the
time of the data set creation (2012) in the Last.fm
dataset.

Last.fm became a relevant online service in music based
social networking. The idea of Last.fm is to create a rec-
ommendation system based on plugins nearly for all kind of
music listening platforms. For registered users it collects,
“scrobbles’EI what they have listened. Each user has its own
statistics on listened music that is shown in her profile. Most
user profiles are public, and each user of Last.fm may have
friends inside the Last.fm social network. We focus on two
types of user information,

e the timeline information of users: user u “scrobbled”
artist a at time ¢ (u,a,t),
e and the social network of users.

Our data set hence consists of the contacts and the musi-
cal taste of the users. For privacy considerations, through-
out our research, we selected an anonymous sample of users.
Anonymity is provided by selecting random users while main-
taining a connected friendship network. We set the following
constraints for random selection:

User location is stated in UK;

Age between 14 and 50, inclusive;

Profile displays scrobbles publicly (privacy constraint);
Daily average activity between 5 and 500.

At least 10 friends that meet the first four conditions.

The above selection criteria were set to select a represen-
tative part of Last.fm users and as much as possible avoid
users who artificially generate inflated scrobble figures. In
this anonymized data set of two years of artist scrobble time-
line, edges of the social network are undirected and times-
tamped by creation date (Fig. [1). Note that no edges are
ever deleted from the network.

The number of users both in the time series and in the
network is 71,000 with 285,241 edges. The average degree is

The name “scrobbling” is a word by Last.fm, meaning the
collection of information about user listening.
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Figure 2: Degree distribution of the Last.fm social
network. The distribution follows shifted power law
with exponent a = 3.8. The estimated shift is s = 13.

therefore 8. The time series contain 979,391,001 scrobbles
from 2,073,395 artists and were collected between 01 Jan-
uary 2010 and 31 December 2011. Note that one user can
scrobble an artist at different times. The number of unique
user-artist scrobbles is 57,274,158.

As the dataset is based on our selection criteria. That
means it is not a simple connected part of the network, but
a representative part of it. Furthermore, as the edges are
timestamped, we not only see a few snapshots of the net-
work, but have a deeper view on the process.

The degree distribution of the underlying social network
follows shifted power law distribution

Pdw)=k)=C-(k+s),

with exponent a = 3.8 and shift s = 13. The relatively large
shift is the result of our selection rules.

3.2 Twitter

The dataset was collected by Aragén et al. [1] using the
Twitter API that we extended by a crawl of the user net-
work. Our data set hence consists of two parts:

o Tweet dataset: tweet text and user metadata on four
main global events 1 5@ QONEI occupywallstreetﬂ Yo
Soy 1 S’QEI.

o Follower network: The list of followers of users who
posted at least one message in the tweet dataset.

Table [Il shows the number of users and tweets in case of
each dataset. One can see that a large part of the collected
tweets are retweets. Table[2] contains the size of the crawled
social networks. Note that in all four networks, the average
in- and outdegree is relatively high. Fig. 4] shows the in-

http://en.wikipedia.org/wiki/15_October_2011_global_protests

3http:/ /en.wikipedia.org/wiki/20-N
“http://en.wikipedia.org/wiki/Occupy_Wall_Street
Shttp://en.wikipedia.org/wiki/Yo_Soy_132
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the four different Twitter datasets.
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Figure 4: Degree distributions of the Twitter fol-
lower networks.

and outdegree distribution of the collected networks. Fig. [3]
shows the temporal density of tweeting activity in case of the
four different datasets. For each tweet, our data contains

e tweet and user 1D,
e timestamp of creation,
e hashtags used in the tweet.

In case of a retweet, we have all these information not only
on the actual tweet, but also on the original tweet that had
been retweeted.

15 oc yo 20
# users 96,935 371,401 395,988 366,155
# tweets | 410,482 | 1,947,234 | 2,439,109 | 1,947,234
# hashtags | 28,014 93,706 62,008 123,925

Table 1: Sizes of the tweet time series.

15 oc yo 20
# users 83,640 330,677 363,452 336,892
# edges | 3,093,966 | 16,585,837 | 22,054,165 | 18,809,308
avgdeg. 37 50 61 56

Table 2: Sizes of the follower networks.

3.3 SNAP graphs

We use the following graphs of the Stanford Large Net-
work Dataset Collection[14]:

e ArXiv HepPh: Arxiv High Energy Physics paper ci-
tation network (phenomenology),

e ArXiv HepTh: Arxiv High Energy Physics paper
citation network (theory),

number of nodes n

Figure 5: Network densification law in the Last.fm
dataset. The number of edges is power law func-
tion of the number of nodes in the evolving social
network with exponent g =1.14 — 1.17.

DBLP: DBLP collaboration network,

LiveJournal: LiveJournal online social network,
CAIDA: The CAIDA AS Relationships Dataset,
Google: Web graph from Google,

EU email: Email network from a EU research insti-
tution.

4. EXPERIMENTS

4.1 Network densification

As observed in [18], one common property of complex net-
works is the edge densification law. As new nodes join in,
the number of edges follows a power law of the number of
nodes. For Last.fm, we sort the edges by their creation time
and then sort the nodes based on this list. Node by node
we measure the increase of the number of edges Figure
Densification law holds in case of Last.fm with exponent
B =1.14 — 1.17. Note that regarding to Section [3] no edges
were ever deleted from the Last.fm network. Notice that we
do not have temporal information on the Twitter follower
graph.

4.2 Topical communities

Next we introduce three special community related sub-
sets and define topical communities in Last.fm and Twitter.
Let A(t) mean the subset of users in a social network that
have adopted a certain topic before time ¢. As shown in
Figure @, we call a community subgraph the graph of users
in A.

The “non-zero” component is the subgraph of users that
have at least one edge within the community. This compo-
nent contains all the edges within the community. A con-
tains only isolated nodes besides the “non-zero” component.

The “main component” of A is measured as the one reach-
able through directed influence edges from the first infected
node. With high probability, this is also the largest compo-
nent. Note that we consider directed reachability, i.e. we do
not merge two initial seeds of infected nodes into the same
component when they both reach the same new node. Later
we investigate the properties of the community subgraph,



underlying graph

Figure 6: Important subsets of a community sub-
graph.

the non-zero component, and the main component.

In Last.fm, commmunities are formed by users that have
listened to the same artist. A(t) is the subset of users that
have scrobbled a given artist at least once before time ¢.

In case of Twitter a community subgraph is formed by
users that have tweeted a given hashtag before time t. In
other words we investigate artist subgraphs in Last.fm, and
hashtag subgraphs in the Twitter follower network.

In what follows we introduce measurements that result
power-law functions related to community subgraphs. Ta-
bleBlsummarizes the notations and our results in the Last.fm
dataset. Table[d]shows the measured exponents for the four
Twitter datasets. Next we introduce and investigate these
power-law exponents in details. Note that as we have more
hashtags than artists, our measurements are more accurate
in case of Last.fm than in case of Twitter-. In Table [ the
error of the exponents are roughly 0.05.

4.3 Community subgraph density

To deeper understand the properties of a community sub-
graph, we set up the following measurement. For each time
t a new user adopts the community’s topic, we measure the
number of edges e(A, A) in the subgraph as the function of
the number of users n = |A| in the subgraph. We compute
function e(n) for each artist in case of Last.fm and for each
different hashtag in Twitter. We average the e(n) curves in
case of both social networks. Note that the Twitter follower
graph is directed. In that case an edge is part of the sub-
graph if its source joined earlier to the community than its
target. Figure [7] shows our results. In case of Twitter we
have four different curves corresponding to the four different
datasets. One of our key results is that number of edges is
power-law function of the size of the community subgraph

e(n) ~n. (3)

The exponent is 1.52 in Last.fm, and 1.42 — 1.5 in Twit-
ter communities. Note that we not only averaged the final
community subgraphs, but averaged all temporal states of
all community subgraphs. Our conclusion is that subgraphs
of users with the same activity in a social network show
power law growth. Both the number of edges and the aver-
age degree are increasing power law function of the number
of nodes in the graph.

Figure[§]shows the average degree to the community of the
joining node as the function of the community’s size. The
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Figure 7: Community subgraph densification in the
Last.fm (top) and Twitter (bottom) datasets. The
number of edges is power law function of the number
of nodes in a community subgraph.Top: Last.fm,
Bottom: Twitter.

curves are roughly the derivative of the ones in Figure

4.4 Non-zero degree component

We introduce another power-law result as an explanation
of subgraph densification. We can measure the size of the
non-zero component z as the function of the size of the sub-
graph n. That is the number of nodes with non-zero degrees
in the subgraph. Figure[J]shows our results. z(n) is a power-
law function,

z~nd. (4)
Exponent ¢ is between 1.36 — 1.38 for Last.fm artists, and
1.1 for Twitter hashtags. Equations and predict that
edges in the non-zero component densify with another ex-
ponent S,

e(z) ~ 2™, Bz =/6. ()

We can either compute 3. = v/d or plot e as the function of
z (see Fig.[10). In Last.fm B. is between 1.15 - 1.17, while
it is between 1.31 - 1.38 for Twitter hashtags.

4.5 Main epidemic component

As introduced in Section the main component is mea-
sured as the one reachable through directed influence edges
from the first infected node. Our next measurement (see
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Fig is that the number of edges ¢ in the main compo-
nent is power-law function of the size its size m,

€ ~ mB?n. (6)

The corresponding exponent is 1.15 for Last.fm. It is be-
tween 1.32 - 1.37 for Twitter networks.

degree distribution « 3.8
network densification £ 1.14 - 1.17
subgraph densification ~y 1.52

uncorrelated model 7o 2

non-zero nodes 0 1.36 - 1.38
non-zero component densification 5, | 1.15 - 1.17

main component densification [, 1.15
epidemic (. 1.14 - 1.15

Table 3: Summary of the most important exponents
in th Last.fm dataset.

v 0 B: | Bm | Be Br
Occupy 1.47 | 1.1 | 1.37 | 1.36 | 1.35 | 1.19 - 1.22
Yo Soy 132 | 1.49 | 1.1 | 1.36 | 1.37 | 1.27 | 1.19- 1.25
20N 142 | 1.1 | 1.31 | 1.32 | 1.27 | 1.1-1.25
150 1.5 | 1.07 | 1.38 | 1.37 | 1.32 | 1.16-1.3

Table 4: Exponents in the four Twitter datasets.
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Figure 9: Number of nodes with non-zero degrees as
the function of the number of nodes in a community
subgraph. Top: Last.fm, Bottom: Twitter.

4.6 Constant expansion

Figure [[T]shows the number of edges leading out from the
Last.fm and Twitter communities as the function of the sub-
graph size. One can observe that in both cases the function
is linear as long as long as the subgraph is not very large.

4.7 Epidemic simulations

To investigate the model introduced in Section [2] we sim-
ulated epidemic processes in Last.fm, Twitter, and SNAP
networks. Starting from a uniform randomly picked node
we generated infection processes. At each step we select uni-
form randomly a node that is not joined to the community,
but connected to it in the network (see Fig. @ Subgraph
densification holds for these communities with exponent fe..
Figure [I0] shows our results for Last.fm and Twitter net-
works. Exponents can be found in Table [3] and Table
Figure shows our results for SNAP datasets. Table
summarizes the exponents for SNAP data. Figure[T3]shows
for each network the relation of exponent . and the aver-
age clustering coefficient of the network. Figure[[4]shows the
number of edges leading out as the function of the epidemic
generated community’s size.

5. DISCUSSION

In this section we discuss how the network and community
densification laws relate to one another and the predictions
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network clustering coefficient Be
Last.fm 0.18 1.14
ArXiv HepTh 0.323 1.25
ArXiv HepPh 0.283 1.2
DBLP 0.63 1.06
CAIDA 0.208 1.1
LiveJournal 0.283 1.1
Google 0.5143 1.02
Twitter Occupy 0.12 1.35
EU email 0.0671 1.06

Table 5: . and the clustering coefficient in case of
different real-world networks.

of the model in Section [2| Tables summarize all power
law exponents that we discussed. Here we intend to focus
on (3, v and 4.

Figure shows in one plot the result of the epidemic
model, the uniform model, and the measured artist subgraph
densification law in Last.fm. As introduced in Sections
the measured curve is between the epidemic model and the
uniform random model. This indicates that artist densifica-
tion in Last.fm is the mixture of an epidemic and a random
process. This figure also shows how the relative densification
to the random model disappears from the community sub-
graphs. Larger artist subgraphs are relatively sparser then
smaller subgraphs.
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Figure 12: Results of epidemic simulations on vari-
ous real-world graphs.

Next we compare the values of v and . in case of Last.fm
to the exponents measured in case of Twitter. As hashtags
can spread with retweets, v is closer to . in hashtag sub-
graphs than artist subgraphs. In other words information
spreading is much stronger in hashtag defined communities
then in artist defined ones.
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Our next observation is that regarding to Tables ][}
ﬁ:ﬁe :ﬂz :ﬂm, (7)

the four exponents are identical for Last.fm, and similar for
Twitter. This result can be seen in Figure [I0] where we
plotted the curves corresponding to these exponents. Sur-
prisingly, in case of Last.fm, not only the exponents, but the
curves are identical. Note that in case of Last.fm we can also
observe the network densification law with exponent 8. Our
results show that epidemic processes over the network are
similar to the temporal evolution of the network. Moreover,

because of and @,
y=8-3. (8)

This relation between the exponents means that network
densification exponent 3, and the non-zero exponent ¢ con-
trols the subgraph densification exponent. Edge density in
community subgraphs can be explained by a mixture of epi-
demic growth that infects a uniform random neighbor of the
community and a low probability selection of a completely
new, isolated element.

In case of Twitter we computed retweet community sub-
graphs. As shown in Figure [I0] the curve of the epidemic
model and the retweet subgraph densification are similar.
Note that in contrast to Last.fm, the hashtag curve is over
the epidemic curve. However we believe this observation is
caused by the quality of the Twitter data. As it is con-
structed from multiple crawls, we do not have all the edges
of the follower network. Moreover, we have less hashtags
and retweets than artists in Last.fm.

Next we relate the densification coefficients to the clus-
tering coefficient as in the model of Section 2] As seen in
Table |5} for certain networks including Last.fm and the EU
email, the two values are very close and for Twitter, even
B > k, indicating a strong tendency to close short paths and
connect inside a small community.

For a large number of data sets, however, the cluster-
ing coefficient is larger than the densification exponent. As
we have no easy-to-define communities in these graphs, the
measurements simply indicate that epidemic growth in these
networks follow a somewhat different pattern.

In order to investigate graphs with 8 < k further, we
identify the reason for the deviation from equation in



Section There we assumed that the degree d(w, A) of
the existing member of the community who joins the new
member u does not deviate from the average. In particular,
d(w, A) should follow the power law e(n)/n. In Figure[I5 we
see that the more a network deviates from the 5 ~ k rule,
the quicker a decay in the increase of the average degree
happens. The effect of the decayed growth of d(w, A) is lower
edge count compared to our model. While the behavior
of epidemic spread in these networks is not directly in the
scope of this paper, we emphasize this finding as a potential
phenomenon that needs further explanation.

6. CONCLUSIONS

In this paper we investigated the properties of growing
communities in social networks. We used data from popu-
lar social networking sites Last.fm and Twitter to study in
details the evolution of communities in large graphs.

We introduced the community subgraph sparsification law.
To understand this effect, we carried over numerous of mea-
surements, that resulted various power-law functions be-
tween specific quantities related to community subgraphs.
We explained the theoretical background and the relation
of these power-law exponents. The results of our experi-
ments show that the observed edge density in a community
can be explained by a mixture of epidemic growth that in-
fects a uniform random neighbor of the community and a
low probability selection of a completely new, isolated ele-
ment. According to our results epidemic driven community
growth is similar to the original network densification: net-
work growth can be considered as community growth in an
unobservable social network.
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