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Abstract. We investigate the statistical properties of votes of customers for spots of France collected by
the startup company NOMAO. The frequencies of votes per spot and per customer are characterized by
a power law distributions which remain stable on a time scale of a decade when the number of votes is
varied by almost two orders of magnitude. Using the computer science methods we explore the spectrum
and the eigenvalues of a matrix containing user ratings to geolocalized items. Eigenvalues nicely map
to large towns and regions but show certain level of instability as we modify the interpretation of the
underlying matrix. We evaluate imputation strategies that provide improved prediction performance by
reaching geographically smooth eigenvectors. We point on possible links between distribution of votes and
the phenomenon of self-organized criticality.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 89.20.Hh World Wide Web, Internet

1 Introduction

The young startup company NOMAO [20] collected a large
database about customer (or users) votes for spots (or
Points of Interest POIs or items) in France. The spots
represent mainly restaurants and hotels with known ge-
olocation coordinates. In this paper we investigate the sta-
tistical properties of these NOMAO votes and ratings of
geolocalized items in a mix of geographic information and
recommendations systems. The geographical distributions
of votes are shown in Fig. 1 for the whole France and more
specifically for Paris. The frequency distributions of votes
per spot and votes per user are shown in Fig. 2 for France
at different time intervals. It shows that these frequency
distributions are stabilized in time and thus we are deal-
ing with an unusual statistical system been at a certain
steady-state. We note that at present a variety of real
systems and networks are found to possess power law dis-
tribution (see e.g. [10]) and thus here we investigate a new
type of such a case with algebraic statistical properties.

To analyze the statistical properties of this real sys-
tem we use the methods of recommender systems [29]
which gained a broad recognition in computer science af-

ter the Netflix Prize competition [28]. In our research,
distance, region and location become a side information
over a multi-objective classification or regression problem.
We concentrate on predicting user preferences by a spec-
tral analysis based collaborative filtering that uses geo-
location in addition to the ratings matrix.

We investigate how user taste, as described by latent
factors, is reflected in the geographic information system.
We compare the latent factors obtained by a full spectral
analysis and by the stochastic gradient method, the stan-
dard recommendation technique applicable for matrices
with a very large fraction of values missing.

The key difficulty in the spectral analysis lies in the
abundance of missing values in the rating matrix: our ma-
trix consists of 99.5% missing values while the Netflix ma-
trix for example is 99% unknown. Several early results
describe expectation maximization based singular value
decomposition (SVD) algorithms dating back to the sev-
enties [13] and [6,23,34] describe the method for a recom-
mender application.

A successful implementation of spectral analysis in rec-
ommender matrices with only a few known elements is de-
scribed by Simon Funk in [12]. His method is a variant of
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Fig. 1: Geographical distribution of votes for spots (POIs)
in the original datasets. Top panel: case of France; (each
square pixel represents 7.8km2); bottom panel: case of
Paris (each square pixel represents 1370m2); color bars
give a number of votes per pixel (cell), a limitation in
number of votes is introduced for a better color represen-
tation.

Stochastic Gradient Descent (SGD) reminiscent of gradi-
ent boosting [11]. SGD computes no eigenvalues and does
not guarantee the orthogonality of the matrix factors. On
the other hand, regularization is easily incorporated in
SGD, which enables a better handling of the very large
amount of missing values in the matrix and in particular,
prevents overfit to training elements and provide better
quality predictions of the unknown ratings.

In this paper, after describing methods and related re-
sults (Section 2) and the NOMAO data sets (Section 3),
we compare and visualize the geo-localization of the ma-
trix factors defined by SVD and SGD under various pa-
rameter settings in Section 4. We show that by imputing
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Fig. 2: Differential frequency distributions of votes for the
case of France for different time intervals until year 2004,
2006, 2008, 2010, 2012. Top panel: differential probability
P (ν) to have ν votes for spots; bottom panel: differential
probability P (µ) to have µ votes per user (customer). Here
the dashed lines show an average algebraic decay with
exponents −1.5 (top), −2.75 (bottom).

ratings to nearby locations we may form factors that yield
a better description of the ratings matrix in Section 5.

2 Methods and related results

Recommenders based on the rank k approximation of the
rating matrix based on the first k singular vectors are
probably first described in [5,21,15,22] and many others
near year 2000.

The Singular Value Decomposition (SVD) of a rank ρ
matrix R is given by R = UTΣV with U an m× ρ, Σ
a ρ× ρ and V an n× ρ matrix such that U and V are
orthogonal. By the Eckart-Young theorem [14] the best
rank-k approximation of R with respect to the Frobenius
norm is

||R− UT
k ΣkVk||2F =

∑
ij

(rij −
∑
k

σkukivkj)
2, (1)
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where Uk is an m× k and Vk is an n× k matrix contain-
ing the first k columns of U and V and the diagonal Σk

containing first k entries of Σ.
The rmse differs from the above equation only in that

summation is over known ratings

rmse2 =
∑

ij∈known

err2ij where errij = rij −
∑
k

σkukivkj .

(2)
Early works [22] used SVD for recommenders by defin-

ing various strategies for handling the missing values in the
rating matrix R [18]. The most natural idea is to impute
the missing elements by zeroes, averages, or even repeat-
edly re-fill by predictions. It has turned out that all above
missing value imputation methods overfit to the imputed
values [18]. More recent results emphasize the importance
of regularization to avoid overfitting [3,25]. For this rea-
son, the recommender systems community turned away
from SVD and use other optimization methods for rat-
ing matrices with missing values, most notably stochastic
gradient descent [26] and alternating least squares [16].

In our problem, locality is an additional information
that can be exploited for analyzing the recommender ma-
trix. Surveys on recommendations in location-based so-
cial networks [2,24] combine spatial ratings for non-spatial
items, nonspatial ratings for spatial items, and spatial rat-
ings for spatial items [19]. Flickr geotags are used for travel
route recommendation, concentrating on routes and not
individual places in [17]. User similarity based methods
may combine friendship information with the distance of
the user home locations [31,32].

Most similar to our method is the Probabilistic Matrix
Factorization approach that fuses geographic information
[7] and observes that “users tend to check in around sev-
eral centers, where the check-in locations follow a Gaus-
sian distribution at each center [. . . and] the probability of
visiting a place is inversely proportional to the distance
from its nearest center; if a place is too far away from the
location a user lives, although he/she may like that place,
he/she would probably not go there.”

3 The Nomao Datasets

Nomao is a startup company located in France [20]. It
performs the analysis of point of interest (POI) rating and
reservation services and collects POI information includ-
ing user ratings from France with a special accent on Paris
and Toulouse regions where the company headquarters are
located. The Nomao dataset used in our experiments con-
tain user-POI ratings, and GPS information of the rated
POIs. We investigate two separated datasets. The first one
contains information on POIs in France, while the second
has ratings only on POIs located in Paris. We analyze the
datasets collected during the time period up to year 2012.

Table 1 (top) shows the basic attributes of the orig-
inal datasets. The average number of ratings per item is
relatively large, the average number of ratings per user is
very low. Moreover, only a very few percent of all user-
item scores is known.

Table 1: Attributes of the original (top), and cleaned
(bottom) datasets.

original Paris France
Number of ratings 1,539,964 1,432,601
Number of users 998,127 1,077,568
Number of items 20,576 99,976

Average ratings per user 1.543 1.329
Average ratings per item 74.84 14.32
Ratio of known ratings 0.0075% 0.0013%

cleaned Paris France
Number of ratings 114,352 97,452
Number of users 5,756 9,471
Number of items 2,952 7,605

Average ratings per user 19.87 10.29
Average ratings per item 38.74 12.81
Ratio of known ratings 0.672% 0.135%

Average rating 3.714 3.747

The distribution P (ν) of frequency of votes per spot
ν (or item i) is shown in top panel of Fig. 2. This dis-
tribution is stable in time and is well described by the
power law P (ν) ∝ 1/νa with a ≈ 1.5. Also, the distribu-
tion P (µ) of frequency of votes per customer µ (or user
u) remains stable in time with the power law dependence
P (µ) ∝ 1/µb with b ≈ 2.75. It is important to note that
this distributions remain stable from year 2004 up to year
2012 even if the number of votes increases almost by two
orders of magnitude during this period. At the moment we
cannot prodive theoretical reasons for the values of these
exponents.

We call user activity how many times a user scored
different items. We define item activity similarly. Fig. 3
shows the probability density function (PDF), an the cu-
mulative density function (CDF) of user activities. Fig. 4
shows the same distributions for items. Both user and item
activities follow power-law distributions with the exponent
values being very similar for Farnce and Paris datasets. As
in Fig. 2 we find that the exponent for probability of votes
for POIs is a ≈ 1.5 while the exponent for the exponent
for probability of votes of users is b ≈ 2.75.

To handle the extreme sparsity of the user-item ma-
trices, we selected a smaller subset of the user-item rating
datasets by the following selection criteria:
– We only used ratings between 0-5. Part of the ratings,

probably originating from a different system, were out
of this range.

– We filtered out users and items that have less than A
ratings. In other words, we selected the subgraph of the
user-item rating bipartite graph with users and items
that have degree at least A. For Paris we set A = 10,
for France we set A = 5.

Table 1 (bottom) shows the attributes of the selected
subsets. In what follows we use these datasets in our ex-
periments.

In Fig. 5 we show the score distributions: the top (bot-
tom) panel shows the distributions for the original (cleaned)
datasets. We see that the original and cleaned datasets
have similar distributions of scores.
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Fig. 3: Probability density function (top), and cumulative
density function (bottom) of user activities in the original
datasets.
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Fig. 4: Probability density function (top), and cumula-
tive density function (bottom) of item activities in the
original datasets.

Fig. 6 shows the geographical density of POIs in the
Paris (top) and in the France (bottom) for the original
datasets. The geolocation data of POIs are used in the
following Sections for spectral analysis.

In the following we perform all computations with the
cleaned datasets since the analysis of multiple votes of the
same user provides more reliable statistical data.
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Fig. 5: Score distributions with integer binning. Top:
original dataset, Bottom: cleansed dataset.

4 Spectra of recommender matrices

4.1 Singular value decomposition

The recommender matrix R consists of the preference val-
ues r(u, i) of users u for items i. The values may denote ex-
plicit rating values, e.g. 1-5 stars for Netflix movies [3]. We
may also consider the so-called implicit ratings problem,
where the value is 1 if the user visited POI i and 0 other-
wise. The value of the explicit matrix is missing whenever
the user gave no rating yet. In most of the cases, this ma-
trix is very sparse with only 1% or less known values. The
implicit matrix is always a full 0–1 matrix, however the
0 values are uncertain: the user may not know about the
item or had no time yet to visit it.

The so-called Latent Factor Model is an approximation
R̂ of the original rating matrix R,

r̂(u, a) =

k∑
f=1

pufqaf , (3)

where P = [puf ] and Q = [puf ] are the user and item
factor models, respectively.

For a fixed number of factors k, r̂ approximates r with
the smallest root mean squared error if it is defined by the
singular vectors corresponding to the k largest singular
values,

r̂(u, a) =

k∑
f=1

pufqaf , (4)

where the singular value decomposition (SVD) of R is
UΣV T .

Since

RRT = UΣ2UT and RTR = V Σ2V T , (5)
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Fig. 6: Geographical distribution of POIs in the original
datasets. Top panel: case of France (each square pixel rep-
resents 7.8km2); bottom panel: case of Paris (each square
pixel represents 1370m2); color bars give number of POIs
per pixel (cell); a limitation in number of POIs is intro-
duced for a better color representation.

the spectrum of the recommender matrix R is defined
identically by the square root of the eigenvalues of RRT or
RTR. These latter matrices are symmetric positive semidef-
inite, the spectrum is non-negative real.

If R contains missing values such as in the case of an
explicit rating matrix, SVD is undefined. We may still de-
fine the best root mean square approximation by summing
the error for the known ratings only as in equation (1).

4.2 Stochastic gradient descent: Latent factor
modeling with missing values

We use the regularized matrix factorization method of
[25]. and optimize the minimum squared error of the k-

factor model

r̂(u, i) =

k∑
l=1

pulqil, (6)

where p and q contain the user and item models, respec-
tively. By adding regularization with weight λ, we opti-
mize the quantity

∑
u,i

(
r(u, i)−

∑k
l=1 pulqil

)2
+ λ

∑
u

∑k
l=1 p

2
ul + λ

∑
i

∑k
l=1 q

2
il. (7)

For a single event (u, i) we optimize the coefficients pul
and qil for l = 1, . . ., k by gradient descent with learning
rate lrate as

pul ← pul + lrate ·
(
r(u, i)−

∑k
l=1 pulqil

)
qil − lrate · λpul; (8)

qil ← qil + lrate ·
(
r(u, i)−

∑k
l=1 pulqil

)
pul − lrate · λqil. (9)

Unlike SVD where eigenvalues are sorted, the SGD
factors are not ordered by the above equations. In order
to produce the eigenvector maps, we built ranked factors
by an iterative SGD that optimize only on a single factor
at a time [12].

4.3 Mapping SVD and SGD latent factors

First we set each unknown value of R to zero and com-
puted the SVD decomposition. The first, second, and fourth
singular vectors are plotted over the map of France (Fig. 7,
left) by assigning the value in the vector to the location
of the POI. More specifically, we averaged these values on
a grid to create the final heatmaps. The smoothing algo-
rithm weighted the value of each POI to the closest grid
point inversely proportional to their euclidean distance.

The heatmaps in Fig. 7, left, indicate that the singu-
lar vectors are strongly geolocation related. The first few
dimensions correspond to the largest cities in France.

Similarly, we investigated the latent vectors of R com-
puted with the SGD algorithm. The first, second and fourth
latent vectors are plotted over the map of France in Fig. 7,
right, similar to the SVD eigenvectors. While the SVD sin-
gular vectors were centralized one-by-one on a large city,
the SGD latent factors are the linear combination of them.
The latent factors are also geolocation related, but not
separated among the main cities like the SVD singular
vectors.

In 8 we mapped the first three singular vectors of the
Paris dataset. The different vectors may focus on different
districts. However, they are not as clearly separated as the
singular vectors of the France dataset.

In Section 5 we use these key observations to improve
the recommendation quality of the SGD.
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Fig. 7: The first, second and fourth singular vectors of the Nomao France rating matrix by SVD (left) and SGD
(right). Here, the SVD eigenvectors correspond to Paris and Toulouse; Bordeaux, Toulouse and Marseille; Bordeaux
and Marseille respectively, while the SGD plots for respective vectors are scattered around several cities.
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5 Prediction for ratings and visits to
locations

5.1 Recommender evaluation

Recommender systems serve to find new products for the
users that are relevant for them. More specifically, for a
given user u an item i a recommender system may retrieve
the predicted relevancy r̂ui. This is called the rating pre-
diction task. The Netflix Prize competition [4] was a chal-
lenge in rating prediction. While in the Netflix Prize com-
petition, contestants were optimizing to predict all ratings
to the users, a recommender system in practice selects the
top rated items for a given user. In this top-K prediction
task [9,8,33], a recommender system should retrieve for a
given user a top list of items with length K. The top list
should contain the most relevant items for the given user.
This problem is more application related than the rat-
ing prediction task. In our experiments we examine both
problems on the NOMAO datasets.

In addition to RMSE defined by equations (1) for full
and (2) for partial matrices, we use two measures that
evaluate the accuracy of the top-K recommendation task.

Recall at k is defined as the number of relevant POIs
among the highest k values of row u in the matrix approx-
imation,

Recallu(k) =
1

|Ru|

k∑
i=1

relu,i, (10)

where relu,i is the actual relevance of POI i for user u
in the evaluation data, and Ru is the number of relevant
items for user u in the dataset. We may average for all
users to obtain

Recall(k) =
1

|U |
∑
u

Recallu(k). (11)

Normalized Discounted Cumulative Gain at k weights the
relevance by the order of the predicted values as

NDCGu(k) =
DCGu(k)

iDCGu(k)
, (12)

where

DCGu(k) =

k∑
i=2

relu,i
log2(i+ 1)

(13)

and

NDCG(k) =
1

|U |
∑
u

NDCGu(k). (14)

In our experiments, we randomly cut the data to train-
ing and test sets. We only use records in the training set
to set the parameters of our model. The lower MSE, and
the higher NDCG and recall we measure on the test set,
the better is our model.

Fig. 8: The first, third and fourth singular vectors of the
Nomao Paris rating matrix obtained by SVD.

5.2 The rating prediction task

As indicated in Table 1, bottom, and in Fig. 5, the scores
have a peaked distribution. This indicates first that the
rating prediction task makes less sense with these datasets.
We trained up an SGD recommender by using 50% of the
datasets and computed NDCG(k) for K = 1 . . . 20. To un-
derstand the performance of the model, we also measured
the performance of a random recommender that predicts
ratings uniform randomly. We repeated our experiments
10 times with 10 different random training and test sets.
Fig. 9 shows the computed ten performance curves for
the SGD and the baseline random recommendation. Both
for SGD and the random prediction the ten curves are
similar. This indicates the stability of our algorithms and
evaluation metrics. We achieved significantly better result
with the SGD recommender. However for the random al-
gorithm, the baseline NDCG is around 0.85. This is due
to the fact that most of the ratings are around the mean
as the score distribution is peaked.
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Fig. 9: Performance of score prediction on the France
(top) and Paris (bottom) datasets.

5.3 Improving top recommendation with rating
imputation

Instead of simply recommending locations near to already
visited places, we expand the training set by relying on
the locality of the ratings. We compare our results by
using SVD or SGD both for the rating matrix and for
simply predicting the visits, i.e. the existence of a rat-
ing regardless of its value. When considering locality, we
may identify the nearest neighbors by taking the absolute
distance and possibly correcting by density: in an area
densely served by POIs, customers may reach more loca-
tions, on the other hand, the speed of travel is likely lower
than in rural areas.

For our imputation methods, let E be the set of known
ratings and Nj the neighbors of location j. We modify the
training set as follows. For all (u, i),

r̂u,i =


ru,i if (u, i) ∈ E
f(Ru, Nu,i) if (u, i) /∈ E and for some j, (u, j) ∈ E and i ∈ Nj

missing otherwise,
(15)

where f is function of Ru, the set of known ratings by
user u, and Nu,i, the set locations visited by u in the
neighborhood of i.

In our model, we expand the list of locations per user
with the neighbors of visited places by the two strategies:

Constant:
f(Ru, Nu,i) = c (16)

Ratings Average:

f(Ru, Nu,i) =
1

|Nu,i|
∑

j∈Nu,i

ru,j (17)

The performance for expansion with the original rat-
ings (see (17)) on the France dataset is seen in Fig. 10
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Fig. 10: Recall@100 and NDCG@100 for expansion with
the original ratings.

where we observe that expansion by the 30-40 nearest
POIs improves significantly the matrix approximation by
the first few eigenvectors.

We may also consider the task of predicting which
POIs the user will visit, regardless of the actual rating
given by the user. In this so-called implicit recommenda-
tion task, we consider a 0–1 matrix. Although the matrix
is fully known, the meaning of a “1” is certain while a
“0” may simply mean that the user has not yet had a
chance to visit the POI or does not even know about it.
Based on (16), the performance of the implicit task with
expansion for the France dataset is seen in Fig. 11 show-
ing an improvement compared to Fig. 10. However, for
the Paris dataset, both in case of the ratings and implicit
expansion experiments, we could not improve further the
original SVD. This can be due to the fact that the Paris
dataset is more dense geographically.

5.4 Improving recommendation with fixed factors

Results of Fig. 7 indicate that while SGD finds the most
important cities in France, it can not separate them pre-
cisely. Furthermore, not recommending to a user POIs,
that he/she have not visited, can be easily implemented
without using SGD. Indeed, SGD should learn the taste
of the different users like in case of the movie prediction
task of Netflix. To fix this issue in the France dataset, we
selected the top t cities in France. For a given item, we
fixed the first ith factor to 1, if the item is located in the
ith city, and 0 otherwise. We set the user factors similarly
according to the places visited by the user in the test set.
We then trained a k dimensional latent factor model where
we updated only the remaining k− t dimensions. We com-
pared this recommender with a traditional k dimensional
SGD recommender.
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France dataset.

In our experiments we included the top t = 10 cities,
in order Paris, Marseille, Lyon, Toulouse, Nice, Nantes,
Strasbourg, Montpellier, Bordeaux, and Lille. Fig. 12 shows
the MSE on the test set as the function of the number of
iterations on the training set. With the fixed factor model
we can achieve significantly better MSE. Furthermore, our
best result is achieved with half less iterations compared
to the number needed to train the original latent factor
model.

6 Discussion

Our statistical analysis of NOMAO votes of customers for
spots of France shows that it is described by a power law
frequency distributions with exponents a ≈ 1.5 (for spots)
and b ≈ 2.75 (for customers) which remain stable in time
even is the number of votes is increased almost by two or-
ders of magnitude during this time period. Further stud-
ies are required to establish the physical origins of such
laws and to clarify for universal they are. It is possible
that the physical reasons for emergence of such type dis-
tributions have certain similarities with the phenomenon

of self-orgnanized criticality broadly discussed in physical
systems (see e.g. [1,27,30]). It is interesting to note that
the exponent of cluster distribution in self-critical models
in 3D has an exponent close to 1.4 [1] being not so far
from the exponet a = 1.5 we find for spots.

We explored the spectrum and the singular vectors of a
POI ratings matrix of customer votes for spots of France.
The fact that the matrix consists of 99.5% missing values
makes the spectrum highly dependent on how we handle
the missing values. We computed the SVD of the full 0–
1 “implicit” matrix of the visits without considering the
rating. For the ratings matrix, we used SGD, a popular
approach that uses only the known values to compute the
factors. We observed that SGD and SVD factors are sim-
ilar but SVD has stronger geo-localization. SVD singu-
lar vectors with highest eigenvalues are mostly correlated
with a particular place. As key practical observations, we
found that imputing the missing ratings for the neighbors
of visited places could increase the performance, and that
defining fixed Geographic factors could improve SGD rec-
ommendation quality.

We expect that a broader analysis of a larger number
of similar type datasets of votes will allow to gain better
understanding of underlying physical process and provide
better recommendations for specific customers and spots.
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