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ABSTRACT
Kernel methods are popular in machine learning tasks. For
Support Vector Machine classification or Support Vector Re-
gression, the central question is the selection of the appro-
priate kernel. The task is difficult in particular if the data
points have complex or multimodal attributes such as time
series or visual content enhanced with geographic, numeric
or text metadata. Unlike earlier approaches of the so-called
Multiple Kernel Learning problem, where a large number of
kernels are fused by wrapper methods as part of the opti-
mization process, in this paper we mathematically derive an
optimal kernel for the data set in question. We begin with se-
lecting appropriate distances for the appropriate modalities,
for example dynamic time warping distance for time series
and Jensen-Shannon distance for the bag of words text rep-
resentation. Our kernel is defined, without needs of wrapper
methods, by considering the distances as attributes gener-
ated by a Markov Random Field. For the Markov Random
Field, the natural kernel is based on the Fisher information
matrix and its exact form can be computed from the data.
We experiment with the above similarity kernel over a wide
variety of data sets, including

• 64-channel EEG data;
• General time series data sets;
• Images with text annotations;
• Web documents;
• Gene expression levels.

Over the complex, multimodal or multiple time series clas-
sification tasks, our method outperforms the state of the art
while reaching identical performance even over the simple
unimodal problems as well, hence our method seems appli-
cable under very general settings.

General Terms
Kernel methods, Classification, Mining rich data types, Similarity-
based methods, Bioinformatics, Web mining
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1. INTRODUCTION
Kernel methods [47] are popular in various fields of data

mining and knowledge discovery such as classification, re-
gression, clustering or dimensionality reduction. Its numer-
ous applications range from relation extraction [57] to the
prediction of protein-protein interactions [4] and other prob-
lems in computational biology [45].

While kernel methods are well-founded from the theoret-
ical point of view, the selection of the appropriate kernel is
essential in many real-world tasks. In order to allow wide
range of applications, various kernels have been introduced
in the last decades such as the general-purpose polynomial
and RBF-kernels as well as application-specific kernels, see
e.g. string-kernels in text mining [6] or computational biol-
ogy [31]. Learning optimal hyperparameters of these kernels
may be computationally prohibitive in case of large datasets.
Furthermore, even if the best hyperparameters have been
found, the resulting kernel may not completely reflect the
true structure of the data, which is likely to manifest in
suboptimal results regardless of the particular analysis task.

The selection of feature set dependent distance or simi-
larity metrics is crucial for learning. Although selecting and
in some cases computing the potential metrics may consti-
tute a challenging task, once metrics are defined, they can
often be used to transform the original complex optimiza-
tion problem to a less challenging one. Most notably, the
Support Vector Machine (SVM) optimization phase is in-
dependent of the underlying metric based on precomputed
kernel values.

An additional and interesting opportunity arise from the
freedom of selecting similarity or distance metrics to define
SVM kernels. In a number of practical applications such
as image or document classification, we have to learn over
multiple representations, often with different kernel func-
tions. Images are often enriched by text description or other
non-visual metadata such as geo-location or date, yielding a
multimodal classification task with each mode (visual, text,
geospatial) having its own natural metric [19]. Another ex-
ample is Web content, where text, hyperlinks and style give
us different kernels when categorizing Web pages or filtering
Web spam [10].

In order to address the kernel selection problem, in this pa-
per, we propose a principled meta-kernel learning approach
based on Fisher information theory. Our new approach is
computationally inexpensive and needs no wrapper methods



for learning a kernel over multiple modalities. In experi-
ments on publicly-available real-world datasets from various
domains such as classification of images, texts, time series
and gene expression data, we show that our approach out-
performs the state-of-the-art.

2. RELATED WORK
In many cases, one single kernel may perform subopti-

mally. In the last decade, this issue has primarily been ad-
dressed in the framework of multiple kernel learning (MKL)
[3, 30, 49, 23]. With proposing a method to learn a ker-
nel over multiple modalities, in this paper, we address a
problem that is related to MKL, but is substantially differ-
ent from MKL in several respects. First, we assume that
all the modalities are used in the kernel, not only a frac-
tion of them. Second, in order to devise a computationally
efficient approach, we only calculate the distance between
each instance and a small set of reference instances. This
is in contrast to MKL techniques that require full kernel
matrices. Last, but not least, our approach runs only one
SVM optimization procedure while most MKL approaches
are wrapper approaches and therefore they execute large
amount of SVM optimizations.

Selecting the appropriate kernel under multiple modali-
ties can be seen as a special case of the Multiple Kernel
Learning problems where the kernels are computed on dif-
ferent feature sets. Bach et al. [39] suggested to solve the
MKL problem with an iterative, wrapper like, sparse algo-
rithm where in each iteration they solve a standard SVM
dual problem and update the weights of the basic kernels.
Instead of optimizing multiple times over the training set
with a combination of kernel functions, we will define a novel
kernel function combining all the representations into a sin-
gle feature space. Our method is wrapper-free and is hence
scalable for large data sets as well.

Late fusion approaches, see e.g. [56] and the references
therein, combine the outputs of various kernel methods.
Usually, they take an estimated certainty of each kernel
method into account. In contrast to late fusion, our ap-
proach learns a kernel over various modalities instead of
combining the outputs of different kernel methods.

3. THE SIMILARITY KERNEL
A natural idea to handle distances of pairs of observation

is to use kernel methods. A kernel acts as an inner product
between two observations in certain large dimensional space
where Support Vector Machine, a form of a high dimensional
linear classifier, can be used to separate the data points [44].
Under certain mathematical conditions, we have a freedom
to define the kernel function by giving the formula for each
pair of observations.

In this section, we show how the Fisher information ma-
trix defines a natural distance over a possibly multimodal
representation of complex instances. Our goal is to define a
unified kernel function with the following properties:

1. A single kernel should include all modalities to avoid
the computational complexity of the multiple kernel
learning problem and in particular the need for wrap-
per methods.

2. The kernel should be based on an underlying model
that captures the connection and dependencies between
the modalities or the multiple representations.

3. Data points should posses a generative model so that
the Fisher information matrix can be used to define a
mathematically justified optimal kernel.

3.1 Random Field representation
As the first step, we represent our data as a Random Field

by assuming that the data instances are generated by defin-
ing their distances from certain selected instances S. Prac-
tically, we will select the training instances or, in case of too
many of them, a subset of the training set but we may in
fact use an arbitrary sample S.

We will consider our data points as random variables form-
ing a Markov Random Field described by an undirected
graph. For a target instance x, we define a generative model
by a simple graph that has edges between x and each ele-
ments of the sample S.

We define a generative model of x based on its similarity or
distance dist(x, s) to elements of sample S. In this random
field, the factor graph is a star that consists of the pairs of
x connected to the elements s ∈ S. By the Hammersley–
Clifford theorem [40], the joint distribution of the generative
model for X is a Gibbs distribution. Next we derive this
distribution via an appropriate potential function.

3.2 The potential function
Given a Markov Random Field defined by a graph, a wide

variety of proper potential functions can be used to define a
Gibbs distribution. The weak but necessary restrictions are
that the potential function has to be positive real valued,
additive over the maximal cliques of the graph, and more
probable configurations (specific sets of parameters) have to
have lower potential.

Our first and least complex graph is a bipartite graph
connecting only the actual observations and the finite set of
previously known observations. For simplicity first we will
discuss the single modality case. In this graph the maximal
cliques are the pairs of the actual observation and the ele-
ments of the sample set, therefore our potential function can
have a really simple form,

U(X | S, θ = {αi}) =

|S|∑
i=1

αidist(x, si), (1)

where θ is the hyperparameter and si ∈ S is the ith sample.
For K modalities with different distance functions be-

tween the instances, the potential function has the form

U(x | S, θ = {αik}) =

|S|∑
i=1

K∑
k=1

αikdistk(x, si), (2)

where K is the number of different distance functions and
θ = {αik} is the set of the parameters. For simplicity, from
now on we omit S and use θ to denote the hyperparameters.

Given the potential function over the maximal cliques, by
the Hammersley–Clifford theorem [40], the joint distribution
of the generative model for X is a Gibbs distribution

p(X | θ) = e−U(X|θ)/Z(θ) (3)

where

Z(θ) =

∫
X∈X

e−U(X|θ)dX (4)

is the expected value of the energy function over our gener-
ative model, a normalization term called the partition func-



tion. If the model parameters are previously determined, Z
is a constant.

3.3 The Fisher Kernel
According to Jaakkola and Haussler [27], generative mod-

els have a natural kernel function based on the Fisher infor-
mation matrix F .

The main innovation of Jaakkola and Haussler [28] is to
obtain the kernel function directly from a generative proba-
bility model and therefore obtain a kernel quite closely re-
lated to the underlying model. They consider a parametric
class of probability models P (X|θ) where θ ∈ Θ ⊆ Rl for
some positive integer l.

Provided that the dependence on θ is sufficiently smooth,
the collection of models with parameters from Θ can then
be viewed as a (statistical) manifold MΘ. MΘ can be turned
into a Riemannian manifold1 [29] by giving a scalar prod-
uct at the tangent space of each point. P (X|θ) ∈ MΘ via
a positive semidefinite matrix F (θ), which varies smoothly
with the base point θ. Such positive semidefinite matrices
are provided by the Fisher information matrix

F (θ) := E(∇θ logP (X|θ)∇θ logP (X|θ)T ),

where the gradient vector ∇θ logP (X|θ) is

∇θ logP (X|θ) =

(
∂

∂θ1
logP (X|θ), . . . , .. ∂

∂θl
logP (X|θ)

)
,

and the expectation is taken over P (X|θ). In particular,
if P (X|θ) is a probability density function, then the ij-th
entry of F (θ) is

fij =

∫
X

P (X|θ)( ∂

∂θi
logP (X|θ))( ∂

∂θj
logP (X|θ))dX.

In many cases the kernel can actually be viewed as an
inner product:

K(X,Y ) = φTXφY ,

where the feature vectors φX , φY ∈ Rk are obtained via a
fixed, problem specific map X 7→ φX which describes the
examples X in terms of a real vector of length k.

The vector GX = ∇θ logP (X|θ) is called the Fisher score
of the example X. Now the mapping X 7→ φX of exam-

ples to feature vectors can be X 7→ F−
1
2GX (we suppressed

here the dependence on θ), the Fisher vector. Thus, to cap-
ture the generative process, the gradient space of the model
space MΘ is used to derive a meaningful feature vector. The
corresponding kernel function

K(X,Y ) := GTXF
−1GY

is called the Fisher kernel.
An intuitive interpretation is that GX gives the direction

where the parameter vector θ should be changed to fit best
the data X [36].

1A Riemannian manifold M is a smooth real manifold,
where for each point p ∈ M there is an inner product de-
fined on the tangent space of p. This inner product varies
smoothly with p. One can define the length of a tangent
vector via this inner product on the tangent space. This
makes possible to define the length of a curve γ(t) on M by
integrating the length of the tangent vector γ̇(t). This in
turn allows to define a metric on M . The distance between
two points Q and Q′ is just the length of the shortest curve
on M from. Q to Q′.

3.4 Fisher Kernel over Markov Random Fields
In this section we prove that the Fisher Information ma-

trix assuming Gibbs distribution with potential function (1)
is the variance matrix of the distances distk(x, si) for s ∈ S,
and therefore the Fisher kernel is the linear kernel over the
normalized distances.

First, let us calculate the Fisher score based on our general
generative model,

GiX = ∇θi log p(X|θ) (5)

= − ∂(U(X|θ)
∂θi

+ 1
Z(θ)

∫
X∈X eU(X|θ) ∂(U(X|θ)

∂θi
dX.

As we set our model θ fixed, Z(θ) is a constant and our
formula can be simplified as

GiX = Eθ[
∂(U(X|θ)

∂θi
]− ∂(U(X|θ)

∂θi
. (6)

The first part of the formula can be calculated from the
observationX while the expected value (the mean of the gra-
dient of the potential function) is hard to compute. Worth
to mention, if there exists a probability density function
f(X | θ) such that

U(X | θ) = − log f(X | θ) (7)

then the expected term of (6) is zero trivially. For a potential
function as in equation (1), the Fisher score of X has a
simple form,

GiX = Eθ[dist(x, si)]− dist(x, si). (8)

Before we move on to the analysis of the dimensionality,
let us examine the computational properties of the Fisher
information matrix.

3.5 Approximation of the Fisher Kernel over
Gibbs distribution

The computational complexity of the Fisher information
matrix is O(N |θ|2) where N is the size of the training set.
The linearization of the Fisher kernel through Cholesky de-
composition is also an expensive procedure depending only
on the size of the parameter set.

To reduce the complexity to O(N |θ|) we can approximate
the Fisher information matrix with the diagonal as suggested
in [27, 36].

Focusing on the diagonal of the Fisher information matrix,
we get

fi,i = Eθ[∇θi log p(X|θ)T∇θi log p(X|θ)] (9)

= Eθ[(Eθ[
∂U(X|θ)
∂θi

]− ∂(U(X|θ)
∂θi

)2]

=
∫
X∈X p(X | θ)(Eθ[

∂U(X|θ)
∂θi

]− ∂U(X|θ)
∂θi

)2dX.

For the potential function of equation (1), the diagonal of
the Fisher kernel is the standard deviation of the distances
from the samples and therefore the Fisher vector of X has
the following form

GiX = F
− 1

2
ii GiX =

Eθ[dist(x, si)]− dist(x, si)

E
1
2
θ [(Eθ[dist(x, si)]− dist(x, si))2]

(10)

The above formula can be directly computed from the dis-
tance matrix of the sample S and the training and testing
instances X. The dimensionality of the Fisher vector (the
normalized Fisher score) is equal to the size of the parame-
ter set of our joint distribution. In our case it depends only
on the size of the sample S and the number of modalities
(K), dimFisher = K · |S|.



4. EXPERIMENTS
We performed experiments on publicly available real-world

datasets from various domains. Next, we briefly describe the
datasets, the underlying domains followed by the experimen-
tal protocol, results and discussion.

In all our experiments, we approximate the mean and vari-
ance of distk(x, si) from the training data to compute the
kernel as defined by equation (10). Since kernel methods are
feasible for regression [38, 44], we also use the methods for
predicting numerical values.

We used LibSVM [12] for classification problems and the
Weka implementation of SMOReg [54][38] for regression.

Table 1: EEG prediction
Method AUC Gain(%)
DTW k-NN k=1 0.7534 +0.0
DTW k-NN k=100 0.7847 +0.0%
SimKer: 64xDTW |S|=100 0.8275 +5.4%
SimKer: MultiDTW |S|=|T| 0.8506 +8.4%

Table 2: Visual concept detection over the Yahoo!
MIR Flickr dataset

Method Mod. MiAP Gain(%)
ColHOG (CH) Vis. 0.3670
SimKer: Flickr tags (Sim.JS) Text. 0.3015
SimKer: CH + JS (Sim.JSCH) Multi 0.4257 +2.0%
L.Comb: CH + Sim.JS Multi 0.4170 +0.0%
L.Comb: Sim.JSCH + CH + Sim.JS Multi 0.4467 +7.1%
SLWF by Liu (2014) [33] Multi 0.4367

Table 3: Quality prediction over the C3 dataset
Method Mod. MAE RMSE Gain(%)
BM25 SVM (BM) Text. 0.6144 0.7915 +0.0%
C3 features GBT (GBT) Netw. 1.3528 1.4961
Lin. Comb.: BM + GBT Multi 0.7459 0.8839
SimKer: BM25 Text. 0.6196 0.8095
SimKer: C3 Netw. 0.6900 0.8278
SimKer: BM25 + C3 Multi 0.5891 0.7753 +4.2%

4.1 Time series classification
We performed experiments on the publicly available EEG

dataset [58] from UCI machine learning repository2 and the
time series datasets from the UCR time series archive.3

For the classification of time-series, the k nearest-neighbor
(k-NN) method using dynamic time warping (DTW) as dis-
tance measure was reported to be competitive, if not su-
perior, to many state-of-the-art time-series classifiers, such
as neural networks, hidden Markov models or support vec-
tor machines, see e.g. [15, 24, 55] and the references therein.
Furthermore, Chen et al. [14] gave theoretical guarantees for
the performance of nearest neighbor-like classifiers for time
series. Therefore, we use k-NN with DTW as baseline.

EEG (electroencephalogram) is usually recorded on multi-
ple channels, therefore, multimodality naturally arises with

2http://archive.ics.uci.edu/ml/datasets/EEG+Database
3www.cs.ucr.edu/˜eamonn/time series data

Table 4: Quality prediction over the C3 dataset
Method Mod AUC Gain(%)
tf SVM linear Text. 0.6531
tf SVM poly. d=2 Text. 0.6498
tf SVM poly. d=3 Text. 0.6530
tf.idf SVM linear Text. 0.6496
tf.idf SVM poly. d=2 Text. 0.6428
tf.idf SVM poly. d=3 Text. 0.6464
BM25 SVM linear (Lin) Text. 0.6923
BM25 SVM poly. d=2 Text. 0.6826
BM25 SVM poly. d=3 Text. 0.6714
C3 features LibFM Netw. 0.6695
C3 features GBT Netw. 0.6688
L.Comb.: Lin + LibFM Multi 0.7100
L.Comb.: Lin + GBT Multi 0.7133 +0.0%
SimKer: tf JS (Sim.JS) Text. 0.6978
SimKer: BM25 L2 (Sim.BM) Text. 0.7141
SimKer: C3 Netw. 0.6571
SimKer: BM+JS+C3 (Sim.All) Multi 0.7363 +3.2%

Table 5: Web Spam detection over ClueWeb dataset
Method Mod. AUC Gain(%)
BM25 SVM Text. 0.8450
Content features Cont. 0.7882
L.Comb.: BM + Cont. Multi 0.8517 +0.0%
SimKer: BM25 Text. 0.8546
SimKer: BM25 + Cont. Multi 0.8622 +1.2%

Table 6: Classification of gene expression data
Method AUC Gain(%)
Linear SVM 0.9338
Cosine SVM 0.9496 +0.0%
SimKer: cosine distance 0.9588 +0.9%

such data. Classification of EEG signals is one of the most
prominent application domains in the light of ongoing Amer-
ican and European large scale research projects dedicated to
study the brain and its disorders, such as the BRAIN Ini-
tiative 4 and the European Human Brain Project5. EEG is
one of the most well-established techniques to capture the
activity of the brain, it is widely used in research and clinical
practice, see e.g. [2, 20, 42]. Paralyzed patients may benefit
from EEG-controlled devices, such as spelling tools [8] or
web browsers [5]. Furthermore, there were attempts to pre-
dict upcoming emergency braking based on EEG signals [26]
which could result in reducing the braking distance of vehi-
cles. A common feature of the aforementioned applications
is that they involve classification of EEG signals.

The UCI EEG collection [58] contains in total 11028 EEG
signals recorded from 122 persons. The total (decompressed)
size of the data is several gigabytes which is roughly three
orders of magnitude larger than the datasets from the UCR
repository. Out of the 122 persons, there are 77 alcoholic
patients and 45 healthy individuals. While capturing EEG,
both alcoholic patients and healthy individuals were exposed
to three different stimuli: subjects were shown either one
picture or two different pictures or the same picture twice.

4http://en.wikipedia.org/wiki/BRAIN Initiative
5https://www.humanbrainproject.eu



The dataset contains recordings for all the tree types of stim-
uli for all the subjects. Each signal was recorded using 64
electrodes at 256 Hz for 1 second. Therefore, each EEG
signal is a 64-dimensional time series of length 256 in this
collection. Multimodality, a core aspect of the proposed
technique, naturally arises with multidimensional time se-
ries: each channel may correspond to a modality.

As a noise filter, a simple preprocessing step, we reduced
the length of the signals from 256 to 64 by binning with a
window size of four, i.e., we averaged four consecutive values
of the signal.

In order to simulate the clinically relevant scenario in
which the classifier is applied to the EEG of new patients,
we randomly assign each person to either training or test
split of the data and all the signals of the same person were
either assigned to the training set or to the test set. In total,
randomly selected 50 % of the all persons were assigned to
the training set, while the remaining persons were assigned
to the test set.

We performed two experiments on EEG data. In the first
experiment, we randomly selected 100 signals as sample set
S and calculated the DTW distances between these reference
signals and other train and test signals for each channel sep-
arately. This experiment simulates application scenarios in
which classification time is essential: in order to classify a
new time series, we only need to calculate its distance to
relatively few reference signals and use these distances as
features in our approach. This allows quick and accurate
classification of new signals. As the third row of Table 1
shows, our approach outperforms the baseline in terms of
AUC.

In the second experiment, we used multivariate DTW as
distance of two EEG signals. For a detailed description of
multivariate DTW we refer to [9]. In this experiment, the
distances from all the training signals were used as features
in our approach, SimKer. While the DTW-calculations in
this scenario require non-negligible computational effort, as
Table 1 shows, this results in further improvements in terms
of classification accuracy as measured by AUC.

Additionally, we performed experiments on the datasets of
UCR time series archive which is one of the most frequently
used benchmark in the time series literature. Note that the
datasets in this collection are rather small, a few megabytes
each, therefore, training advanced models on the datasets
from the UCR collection is inherently difficult. Consequently,
the advantage of complex models to simpler ones may not
be pronounced on the UCR time series datasets, and we do
not expect to observe substantial differences between dif-
ferent models on the UCR time series. In our approach,
SimKer, we used DTW as distance measure and considered
the distances from each training time series.

The results on the datasets of the UCR archive show that
our approach clearly outperformed the baseline on some of
the datasets of the archive, while the overall difference be-
tween the performance of our approach and the baseline was
not found to be statistically significant using paired t-test at
significance level of 0.05. We note that while we performed
experiments on the data from the UCR time series archive,
we considered only one modality (the DTW-distance of a
time series x from the train time series), because no other
modality was available for this data. Therefore, we could
not exploit one of the major advantages of the proposed
method, i.e., its ability to fuse several modalities.

4.2 Gene Expression
Proteins play essential role in almost all biological pro-

cesses at the cellular level. Genes are particular subse-
quences of DNA that code for proteins. While each cell
of the organism has the same DNA, the activation levels of
genes may vary in different tissues: informally speaking, the
expression level of a gene means how frequently the corre-
sponding DNA fragment is transcribed to RNA and trans-
lated to proteins. Various tissues are characterized by differ-
ent gene expression patterns, furthermore, diseases such as
cancer may be associated with characteristic gene expres-
sion patterns. Therefore, classification of gene expression
data may contribute to diagnosis of various types of cancer
such as colon cancer, lymphoma, lung cancer or subtypes of
breast cancer [32]. In this paper, we used publicly available
gene expression data of breast cancer tissues, colon cancer
tissues, and lung cancer tissues, see [32] and the references
thereoin for details. In these datasets, the expression levels
of 7650, 6500 and 12,600 genes have been measured for 95,
62 and 203 patients in the breast cancer, colon cancer and
lung cancer datasets respectively.

Similarly to [32], we performed experiments according to
the 5-fold crossvalidation protocol. As baselines, we used
SVMs, because SVMs were reported to perform excellently
on these datasets.

Table 6 summarizes our results: we report AUC averaged
over all the three datasets for SimKer and SVMs with linear
and cosine kernel. The results show that SimKer outper-
forms both types of SVMs.

4.3 Web Spam detection over ClueWeb09
The first results on automatic Web quality classification

focus on Web spam [11]. In this section, we show experi-
ments over the Waterloo Spam Rankings [16] of the ClueWeb09
corpus.

Our baseline classification procedures are collected in [48]
by analyzing the results of the Web Spam Challenges and
the ECML/PKDD Discovery Challenge 2010. As our main
conclusion, Web spam can be classified purely based on the
terms used. Over different Web spam and quality corpora
[22], the bag-of-words classifiers based on the top few 10,000
terms performed best and significantly improved the tradi-
tional Web spam features [11]. SVM based content classi-
fication was first used in [1]. In our earlier result, we use
libSVM [12] with several kernels and apply late fusion as
described in [48]. We improve over this later result by using
the Fisher kernel next.

Our most important feature set is the bag of words rep-
resentation of the text over the Web host. Let there be H
hosts consisting of an average ` terms. Given a term t of
frequency f over a given host that contains ` terms, we used
the BM25 term weightning scheme, where the weight of t in
the host becomes

log
H − h+ 0.5

h+ 0.5
· f(k + 1)

f + k(1− b+ b · `
`
)
. (11)

Low k means very quick saturation of the term frequency
function while large b downweights content from very large
Web hosts.

In addition, we use the public feature set [10] that includes
the following values computed for the home page, page with
the maximum pagerank and average over the entire host:



1. Number of words in the page, title;

2. Average word length, average word trigram likelihood;

3. Compression rate, entropy;

4. Fraction of anchor text, visible text;

5. Corpus and query precision and recall.

Here feature classes 1–4 can be normalized by using the av-
erage and standard deviation values over the two collections
while class 4 is likely domain and language independent.

Corpus precision and recall are defined over the k most
frequent words in the dataset, excluding stopwords. Corpus
precision is the fraction of words in a page that appear in
the set of popular terms while corpus recall is the fraction of
popular terms that appear in the page. This class of features
is language independent but rely on different lists of most
frequent terms for the two data sets.

Results for spam detection in Table 5 show 1.2% improve-
ment for the multimodal Similarity kernel over the linear
combination of the predictions of the BM25 based SVM and
the content feature based SVM.

4.4 Web credibility classification
Mining opinion from the Web and assessing its quality

and credibility became a well-studied area [21]. Classify-
ing various aspects of quality was introduced as part of
the ECML/PKDD Discovery Challenge 2010 tasks [48] and
among others, Microsoft created a reference data set [46].

Recent results on Web credibility assessment [34] use con-
tent quality and appearance features combined with social
and general popularity and linkage. After feature selection,
they use 10 features of content and 12 of popularity by stan-
dard machine learning methods of the scikit-learn toolkit.

In this section we show the performance of the Fisher ker-
nel for the WebQuality 2015 Data Challenge by comparing
prediction methods for the C3 data set. The data set was
created in the Reconcile6 project and contains 22325 Web
page evaluations in five dimensions (credibility, presentation,
knowledge, intentions, completeness) of 5704 pages given by
2499 people. The mTurk platform were used for collecting
evaluations. Ratings are similar to the dataset built by Mi-
crosoft for assessing Web credibility [46], on a scale of four
values 0-4, with 5 indicating no rating. Since multiple val-
ues may be assigned to the same aspect of a page, we simply
average the human evaluations per page. We may also con-
sider binary classification problems by assigning 1 for above
2.5 and 0 for below 2.5.

While we are aware of no other results over the C3 data
set, we collect reference methods from Web credibility re-
search results. Existing results fall in four categories: Bag of
Words; language statistical, syntactic, semantic features; nu-
meric indicators of quality such as social media activity; and
assessor-page based collaborative filtering. User and page-
based collaborative filtering is suggested in [35] in combina-
tion with search engine rankings. Social media and network
based features appear already for Web spam [25, 11]. Con-
tent statistics as a concise summary that may replace the
actual terms in the document were introduced first in the
Web spam research [11]. The C3 data set includes content
quality and appearance features described among others in
[34].

6http://reconcile.pjwstk.edu.pl/

In order to perform text classification, we crawled the
pages listed in the C3 data set. By using the bag of words
representation of the Web page content, our goal is to com-
bine all above methods with known and new kernel based
text classifiers.

Our classifier ensemble consists of the following compo-
nents:

• Gradient Boosted Trees and recommenders
• Standard text classifiers
• Similarity kernel based SVM using not only the text

but also the C3 attributes.

In our experiments the Bag of words models contain the
top 30k term frequencies after stemming. Besides BM25
(see Section 4.3), we experimented with two additional term
frequency normalization schemes:

• Term frequency (tf): simply f , for all terms in the
documents of H.

• Term frequency times inverse document frequency (tf.idf):

log
H − h+ 0.5

h+ 0.5
· f. (12)

One of the main questions is how to select proper distance
measures over the bag of words and C3 features. In addition
to the linear metric over the C3 attributes and the L2 nor-
malized bag of words representations (tf, tf.idf and BM25),
we apply Jensen-Shannon divergence (JS) over the L1 nor-
malized term distributions according to our previous results
[48, 18].

Our most complex Fisher kernel (Sim.All) is based on
three representations: Jensen-Shannon divergence over raw
term distribution, Euclidean distance over L2 normalized
BM25, Euclidean distance over scaled site features.

According the results in in Table 4 the use of Fisher kernel
over the term frequency based Jensen-Shannon divergence
(Sim.JS) already reaches accuracy of the best non Fisher
method with a single modality (Lin, linear SVM over the
BM25 features). Out of the non Fisher methods using only
the C3 attributes the LibFM and the Gradient Boosted Tree
(GBT) perform very similar. The ensemble of GBT and the
linear SVM over BM25 performs 0.713 in AUC, achieving
the accuracy of the best Fisher kernel with only one distance
(Sim.BM).

The best method (Sim.All) outperforms the best non Fisher
method (Linear combination of Lin and GBT) by 3.2% on
average in AUC. The largest difference is 7.2% by classifying
“knowledge”. Similarity kernel performs similarly for regres-
sion (Table 3). We measured 4.2% improvement in MAE
(Mean Absolute Error) and 2.1% in RMSE (Root Mean
Squared Error) over the baseline method.

4.5 Visual concept detection: Yahoo! MIR Flickr
dataset

Images are rarely being present alone, usually we can ex-
tract some content related textual or other non-visual in-
formation such as geo-location or date from their context.
Besides non visual meta features we can think of any visual
representation as an individual modality. Altogether we can
easily define a set of very diverse distance functions over
images.

Vast amount of tagged images is available over photo shar-
ing services or even the public Web. In our experiments we



used the Yahoo! MIR Flickr dataset containing 15k im-
ages as the training set and 10k images as a test set [51].
The dataset was used for various challenges such as Image-
CLEF 2012 Photo Annotation task [51] and in recent articles
[33][7][50]. The aim is to detect the presence of 94 categories
(a wide variety of concepts not limited to objects, e.g. day-
light, indoor, underwater or citylife) in terms of their visual
and textual features.

Among large number of Bag of Visual Words models (su-
per vector [59], kernel codebook [52], locality-constrained
[53] to name a few), Gaussian Mixture based Fisher encod-
ing [37] appears best out of BoVW models by the evalu-
ation work of [13][43], hence we choose the same method.
The Fisher metric over Gaussian mixtures is a well-known
method to measure the distance between two images based
on their visual content [36, 13, 43]. The model extracts a
large amount of local descriptors over various parts of the
image. The Gaussian Mixture model describes the set of de-
scriptors of the image assuming naive independence between
the descriptors. In our experiments we calculated grayscale
HOG (Histogram of Oriented Gradients [17]) and RGB color
moments over a dense grid and multiple scales using four
different macroblock sizes (24x24, 32x32, 48x48 and 64x64
pixels per block). Both descriptors were L2 normalized. To
reduce the dimension of the descriptors we transformed the
vectors by Principal Component Analysis (PCA). The pro-
cedure resulted approximately 140k descriptors per image.
The final visual Fisher vectors with 512 Gaussians were cal-
culated over the descriptors per image. Moreover we splitted
the images into three parts according to Lazebnik et al. [41]
increasing the number poolings per image.

Additionally, we computed Jensen-Shannon divergence of
the images based on their Flickr tags. As a baseline, we
combined linearly the predictions of the linear SVM over
the Gaussian Mixture based visual Fisher kernel and the
Similarity kernel of the Jensen-Shannon divergence over the
Flickr tags. The multimodal Similarity kernel (JSCH) out-
performs the baseline by 2% (see Table 2) in MiAP (Mean
interpolated Average Precision, the metric at the task [51]).
Our best method, surprassing the baseline by 7.1%, is a lin-
ear combination of the predictions using the visual Fisher
kernel and the Similarity kernels, both textual and multi-
modal.

In comparison to recent results, our method outperforms
the Selective Weighted Late Fusion (Liu et al. [33]) by
2.28%, the best result published to our knowledge over the
MIR Flickr dataset.

5. CONCLUSIONS
From a generative model based on instance similarities,

we derived a “similarity” kernel applicable for SVM classifi-
cation and regression. The method is capable of defining a
single unified kernel even in the case of rich data types, in-
cluding multimodal or multiple time series data. The param-
eters of the kernel are directly computable from the data and
hence we may avoid the high computational costs of multi-
ple kernel learning and in particular the need for wrapper
methods.

We evaluated our methods on a variety of publicly avail-
able real data sets, including multi-channel EEG, univariate
time series, gene expression data, Web spam and credibil-
ity as well as image content with text annotation. Besides
the presence of multiple modalities, complexity of classifi-

cation and regression tasks in the aforementioned domains
arise from various additional sources, such as high dimen-
sionality (compared to the number of available instances),
interdependence between attributes, presence of noise and
uncertainty. Our experiments show that the proposed ap-
proach is able to successfully solve the underlying machine
learning tasks, even under the presence of such additional
domain and data complexity.

In particular, on all the aforementioned data sets, our
method reaches and in many cases improves over the state-
of-the-art. Hence we conclude generative models based on
instance similarities with multiple modes is a generally ap-
plicable model for classification and regression tasks ranging
over various domains, including but not limited to the ones
presented in this paper.
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Dms-sztaki@ imageclef 2012 photo annotation. In
CLEF (Online Working Notes/Labs/Workshop), 2012.

[20] J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki. A
comparative study of synchrony measures for the early
diagnosis of alzheimer’s disease based on eeg.
NeuroImage, 49(1):668 – 693, 2010.

[21] K. Dave, S. Lawrence, and D.M. Pennock. Mining the
peanut gallery: Opinion extraction and semantic
classification of product reviews. In Proceedings of the
12th international conference on World Wide Web,
pages 519–528. ACM, 2003.
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