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Abstract

The computation of a peeling order in a randomly generated hypergraph is the most time-
consuming step in a number of constructions, such as perfect hashing schemes, random r-SAT solvers,
error-correcting codes, and approximate set encodings. While there exists a straightforward linear
time algorithm, its poor I/O performance makes it impractical for hypergraphs whose size exceeds
the available internal memory.

We show how to reduce the computation of a peeling order to a small number of sequential scans
and sorts, and analyze its I/O complexity in the cache-oblivious model. The resulting algorithm
requires O(sort(n)) I/Os and O(n logn) time to peel a random hypergraph with n edges.

We experimentally evaluate the performance of our implementation of this algorithm in a real-
world scenario by using the construction of minimal perfect hash functions (MPHF) as our test case:
our algorithm builds a MPHF of 7.6 billion keys in less than 21 hours on a single machine. The
resulting data structure is both more space-efficient and faster than that obtained with the current
state-of-the-art MPHF construction for large-scale key sets.
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1 Introduction
Hypergraphs can be used to model sets of dependencies among variables of a system: vertices correspond
to variables and edges to relations of dependency among variables, such as equations binding variables
together. This correspondence can be used to transfer graph-theoretical properties to solvability conditions
in the original system of dependencies.

Among these, one of the most useful is the concept of peeling order. Given an r-hypergraph, a peeling
order is an order of its edges such that each edge has a vertex of degree 1 in the subgraph obtained
by removing the previous edges in the order. Such an order exists if the hypergraph does not have a
non-empty 2-core, i.e. a set of vertices that induces a subgraph whose vertices have all degree at least 2.

In the above interpretation, if the equations of a system are arranged in peeling order, then each
equation has at least one variable that does not appear in any equation that comes later in the ordering,
i.e., the system becomes triangular, so it can be easily solved by backward substitution. For this reason,
peeling orders found application in a number of fundamental problems, such as hash constructions [3, 6,
9, 10, 11, 12, 21], solving random instances of r-SAT [12, 24, 25], and the construction of error-correcting
codes [15, 20, 23]. These applications exploit the guarantee that if the edge sparsity γ of a random
r-hypergraph is larger than a certain sparsity threshold cr (e.g., c3 ≈ 1.221), then with high probability
the hypergraph has an empty 2-core [25].

The construction of perfect hash functions (PHF) is probably the most important of the aforementioned
applications. Given a set S of n keys, a PHF for S maps the n keys onto the set of the first m natural
numbers bijectively. A perfect hash function is minimal (MPHF) if m = n = |S|. A lower bound by
Mehlhorn [22] states that n log e ≈ 1.44n bits are necessary to represent a MPHF; a matching (up to
lower order terms) upper bound is provided in [16], but the construction is impractical. Most practical
approaches, instead, are based on random 3-hypergraphs, resulting in MPHFs that use about 2c3n ≈ 2.5n
bits [6, 10, 21]. These solutions, which we review in Section 3, build on the MWHC technique [21], whose
most demanding task is in fact the computation of a peeling order.

There is a surprisingly simple greedy algorithm to find a peeling order when it exists, or a 2-core
when it does not: find a vertex of degree 1, remove (peel) its only edge from the hypergraph, and iterate
this process until either no edges are left (in which case the removal order is a peeling order), or all the
non-isolated vertices left have degree at least 2 (thus forming a 2-core). This algorithm can be easily
implemented to run in linear time and space.

MPHFs are the main ingredient in many space-efficient data structures, such as (compressed) full-text
indexes [4], monotone MPHFs [1], Bloom filter-like data structures [5], and prefix-search data structures [2].

It should be clear that the applications that benefit the most from such data structures are those
involving large-scale key sets, often orders of magnitude larger than the main memory. Unfortunately, the
standard linear-time peeling algorithm requires several tens of bytes per key of working memory, even if
the final data structure can be stored in just a handful of bits per key. It is hence common that, while
the data structure fits in memory, such memory is not enough to actually build it. It is then necessary
to resort to external memory, but the poor I/O performance of the algorithm makes such an approach
impossible.

Application-specific workarounds have been devised; for example, Botelho et al. [6] proposed an
algorithm (called HEM) to build MPHFs in external memory by splitting the key set into small buckets
and computing independent MPHFs for each bucket. A first-level index is used to find the bucket of a
given key. The main drawback of this solution is that the first-level index introduces a non-negligible
overhead in both space and lookup time; moreover, this construction cannot be extended to applications
other than hashing.

In this paper we provide the first efficient algorithm in the cache-oblivious model that, given a random
r-hypergraph with n edges and γn vertices (with r = O(1) and γ > cr), computes a peeling order in
time O(n log n) and with O(sort(n)) I/Os w.h.p., where sort(n) is the I/O complexity of sorting n keys.
By applying this result we can construct (monotone) MPHFs, static functions, and Bloom filter-like
data structures in O(sort(n)) I/Os. In our experimental evaluation, we show that the algorithm makes it
indeed possible to peel very large hypergraphs: an MPHF for a set of 7.6 billion keys is computed in less
than 21 hours; on the same hardware, the standard algorithm would not be able to manage more than
2.1 billion keys. Although we use minimal perfect hash functions construction as our test case, results of
these experiments remain valid for all the other applications due to the random nature of the underlying
hypergraphs.
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2 Notation and tools

Model and assumptions We analyze our algorithms in the cache-oblivious model [14]. In this model,
the machine has a two-level memory hierarchy, where the fast level has an unknown size of M words and
a slow level of unbounded size where our data reside. We assume that the fast level plays the role of a
cache for the slow level with an optimal replacement strategy where the transfers (a.k.a. I/Os) between
the two levels are done in blocks of an unknown size of B ≤M words; the I/O cost of an algorithm is
the total number of such block transfers. Scanning and sorting are two fundamental building blocks in
the design of cache-oblivious algorithms [14]: under the tall-cache assumption [8], given an array of N
contiguous items the I/Os required for scanning and sorting are

scan(N) = O

(
1 +

N

B

)
I/Os and sort(N) = O

(
N

B
logM/B

N

B

)
.

Hypergraphs An r-hypergraph on a vertex set V is a subset E of
(
V
r

)
, the set of subsets of V of

cardinality r. An element of E is called an edge. We call an ordered r-tuple from V an oriented edge; if e
is an edge, an oriented edge whose vertices are those in e is called an orientation of e. From now on we
will focus on 3-hypergraphs; generalization to arbitrary r is straightforward. We define valid orientations
those oriented edges (v0, v1, v2) where v1 < v2 (for arbitrary r, v1 < · · · < vr−1). Then for each edge there
are 6 orientations, but only 3 valid orientations (r! orientations of which r are valid).

We say that a valid oriented edge (v0, v1, v2) is the i-th orientation if v0 is the i-th smallest among the
three; in particular, the 0-th orientation is the canonical orientation. Edges correspond bijectively with
their canonical orientations. Furthermore, valid orientations can be mapped bijectively to pairs (e, v) where
e is an edge and v a vertex contained in e, simply by the correspondence (v0, v1, v2) 7→ ({v0, v1, v2}, v0).
In the following all the orientations are assumed to be valid, so we will use the term orientation to mean
valid orientation.

3 The Majewski–Wormald–Havas–Czech technique
Majewski et al. [21] proposed a technique (MWHC) to compute an order-preserving minimal perfect hash
function, that is, a function mapping a set of keys S in some specified way into [|S|]. The technique
actually makes it possible to store succinctly any function f : S → [σ], for arbitrary σ. In this section we
briefly describe their construction.

First, we choose three random1 hash functions h0, h1, h2 : S → [γn] and generate a 3-hypergraph2

with γn vertices, where γ is a constant above the critical threshold c3 [25], by mapping each key x to
the edge {h0(x), h1(x), h2(x)}. The goal is to find an array u of γn integers in [σ] such that for each key
x one has f(x) = uh0(x) + uh1(x) + uh2(x) mod σ. This yields a linear system with n equations and γn
variables ui; if the associated hypergraph is peelable, it is easy to solve the system. Since γ is larger than
the critical threshold, the algorithm succeeds with probability 1− o(1) as n→∞ [25].

By storing such values ui, each requiring dlog σe bits, plus the three hash functions, we will be able to
recover f(x). Overall, the space required will be dlog σeγn bits, which can be reduced to dlog σen+γn+o(n)
using a ranking structure [17]. This technique can be easily extended to construct MPHFs: we define the
function f : S → [3] as x 7→ i where hi(x) is a degree-1 vertex when the edge corresponding to x is peeled;
it is then easy to see that hf(x)(x) : S → [γn] is a PHF. The function can be again made minimal by
adding a ranking structure on the vector u [6].

As noted in the introduction, the peeling procedure needed to solve the linear system can be performed
in linear time using a greedy algorithm (referred to as standard linear-time peeling). However, this
procedure requires random access to several integers per key, needed for bookkeeping; moreover, since
the graph is random, the visit order is close to random. As a consequence, if the key set is so large that
it is necessary to spill to the disk part of the working data structures, the I/O volume slows down the
algorithm to unacceptable rates.

1Like most MWHC implementations, in our experiments we use a Jenkins hash function with a 64-bit seed in place of a
fully random hash function.

2Although the technique works for r-hypergraphs, r = 3 provides the lowest space usage [25].
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Practical workarounds (HEM) Botelho et al. [6] proposed a practical external-memory solution:
they replace each key with a signature of Θ(log n) bits computed with a random hash function, so that
no collision occurs. The signatures are then sorted and divided into small buckets based on their most
significant bits, and a separate MPHF is computed for each bucket with the approach described above.
The representations of the bucket functions are then concatenated into a single array and their offsets
stored in a separate vector.

The construction algorithm only requires to sort the signatures (which can be done efficiently in
external memory) and to scan the resulting array to compute the bucket functions; hence, it is extremely
scalable. The extra indirection needed to address the blocks causes however the resulting data structure
to be both slower and larger than one obtained by computing a single function on the whole key set. In
their experiments with a practical version of the construction, named HEM, the authors report that the
resulting data structure is 21% larger than the one built with plain MWHC, and lookups are 30–50%
slower. A similar overhead was confirmed in our experiments, which are discussed in Section 5.

4 Cache-oblivious peeling
In this section we describe a cache-oblivious algorithm to peel an r-hypergraph. We describe the algorithm
for 3-hypergraphs, but it is easy to generalize it to arbitrary r.

4.1 Maintaining incidence lists
In order to represent the hypergraph throughout the execution of the algorithm, we need a data structure
to store the incidence list of every vertex v0, i.e., the list Lv0 = {(v0, v01 , v02), . . . , (v0, v

d−1
1 , vd−12 )} of valid

oriented edges whose first vertex is v0. To realize the peeling algorithm, it is sufficient to implement the
following operations on the lists.

• Degree(Lv0) returns the number of edges d in the incidence list of v0;

• AddEdge(Lv0 , e) adds the edge e to the incidence list of v0;

• DeleteEdge(Lv0 , e) deletes the edge e from the incidence list of v0;

• RetrieveEdge(Lv0) returns the only edge in the list if Degree(Lv0) = 1.

For all the operations above, it is assumed that the edge is given through a valid orientation. Under
this set of operations, the data structure does not need to store the actual list of edges: it is sufficient to
store a tuple (v0, d, ṽ1, ṽ2), where d is the number of edges, ṽ1 =

⊕
j<d v

j
1, and ṽ2 =

⊕
j<d v

j
2, that is, all

the vertices of the list in the same position are XORed together.
The operations AddEdge and DeleteEdge on an edge (v0, v

′
1, v
′
2) simply XOR v′1 into ṽ1 and v′2 into

ṽ2, and respectively increment or decrement d. Since all the edges are assumed valid (i.e., it holds that
v′1 < v′2) these operations maintain the invariant. When d = 1, clearly ṽ1 = v1 and ṽ2 = v2 where
(v0, v1, v2) is the only edge in Lv0 , so it can be returned by RetrieveEdge. If necessary, the data structure
can be trivially extended to labeled edges (v0, v1, v2, `) by XORing together the labels ` into a new field ˜̀.

We call this data structure packed incidence list, and we refer to this technique as the XOR trick. The
advantage with respect to maintaining an explicit list, besides the obvious space savings, is that it is
sufficient to maintain a single fixed-size record per vertex, regardless of the number of incident edges.
This will make the peeling algorithm in the next section substantially simpler and faster. The same trick
can be applied to the standard linear-time algorithm, replacing the linked lists traditionally used. As we
will see in Section 5, the improvements are significant in both working space and running time.

4.2 Layered peeling
The peeling procedure we present is an adaptation of the CORE procedure presented by Molloy [25]. The
basic idea is to proceed in rounds: at each round, all the vertices of degree 1 are removed, and then the
next round is performed on the induced subgraph, until either a 2-core is left, or the graph is empty. In
the latter case, the algorithm partitions the edges into a sequence of layers, one per round, by defining
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each layer as the set of edges removed in its round. It is easy to see that by concatenating the layers the
resulting edge order is a peeling order, regardless of the order within each layer.

The layered peeling process terminates in a small number of rounds: Jiang et al. [18] proved that
if the hypergraph is generated randomly with a sparsity above the peeling threshold, then with high
probability the number of rounds is bounded by O(log log n). Moreover, the fraction of vertices remaining
in each round decreases double-exponentially. In the following we show how to implement the algorithm
in an I/O-efficient way by putting special care in the hypergraph representation and the update step.
Hypergraph representation At each round i, the hypergraph is represented by a list Ei of tuples
(v0, d, ṽ1, ṽ2) as described in Section 4.1; each tuple represents the incidence list of v0. Each list Ei is
sorted by v0. Note that each edge e = {v0, v1, v2} needs to be in the incidence list of all its vertices; hence,
all the three orientations of e are present in the list Ei.
Construction of E0 To construct E0, the edge list for the first round, we put together in a list all the
valid orientations of all the edges in the hypergraph. The list is then sorted by v0, and from the sorted
list we can construct the sorted list of incidence lists E0: after grouping the oriented edges by v0, we start
with the empty packed incidence list (v0, 0, 0, 0) and, after performing AddEdge with all the edges in the
group, we append it to E0. The I/O complexity is O(sort(n) + scan(n)) = O(sort(n)).
Round update At the beginning of each round we are given the list Ei of edges that are alive at round
i, and we produce Ei+1. We first scan Ei to find all the tuples L such that Degree(L) = 1; for each tuple,
we perform RetrieveEdge and put the edge in a list Di, which represents all the edges to be removed in
the current round i. The same edge may occur multiple times in Di under different orientations (if more
than one of its vertices have degree 1 in the current round); to remove the duplicates, we sort the oriented
edges by their canonical orientation, keep one orientation for each edge, and store them in a list Pi.

Now we need to remove the edges from the hypergraph. To do so, we generate a degree update list
Ui that contains all the three orientations for each edge in Pi, and sort Ui by v0. Since both Ei and Ui
are sorted by v0, we can scan them both simultaneously joining them by v0; for each tuple Lv0 in Ei, if
no oriented edge starting with v0 is in Ui the tuple is copied to Ei+1, otherwise for each such oriented
edge e, DeleteEdge(Lv0 , e) is called to obtain a new L′v0 which is written to Ei+1 if non-empty. Note that
Ei+1 remains sorted by v0.

For each round, we scan Ei twice and Ui once, and sort Di and Ui. The number of I/Os is then
2 · scan(|Ei|) + scan(|Ui|) + sort(|Di|) + sort(|Ui|). Summing over all rounds, we have

∑
i(2 · scan(|Ei|) +

sort(|Di|) + sort(|Ui|) + scan(|Ui|)) = O(sort(n)) because each edge belongs to at most three lists Di

and three lists Ui. Since the fraction of vertices remaining at each round decreases doubly exponentially
and, thanks to the XOR trick, Ei has exactly a tuple for each vertex alive in the i-th round, the cost of
scanning the lists Ei sums up to O(scan(n)) I/Os. Hence, overall the algorithm takes O(n log n) time and
O(sort(n)) I/Os.

We summarize the result in the following theorem.

Theorem 4.1 A peeling order of a random r-hypergraph with n edges and γn vertices with constant r
and γ > cr, can be computed in the cache-oblivious model in time O(n log n) and with O(sort(n)) I/Os
with high probability.

4.3 Implementation details
We report here the most important optimizations we used in our implementation. The source code used
in the experiments is available at https://github.com/ot/emphf for the reader interested in further
implementation details and in replicating the measurements.
File I/O Instead of managing file I/Os directly, we use a memory-mapped file by employing a C++
allocator that creates a file-backed area of memory. This way we can use the standard STL containers
such as std::vector as if they resided in internal memory. We use madvise to instruct the kernel to
optimize the mapped region for sequential access. We use the madvise system call with the parameter
MADV_SEQUENTIAL on the memory-mapped region to instruct the kernel to optimize for sequential access.
Sorting Our sorting implementation performs two steps: in the first step we divide the domain of the
values into k evenly spaced buckets, scanning the array to find the number of values that belong in each
bucket, and then moving each value to its own bucket. In the second step, each bucket is sorted using
sort of the C++ standard library. The number of buckets is chosen so that with very high probability

5

https://github.com/ot/emphf


each bucket fits in internal memory; since the graph is random, its edges are uniformly distributed, which
makes uniform bucketing balanced with high probability. To distribute the values into the k buckets,
we use a buffer of size T for each bucket; when the buffer is full, it is flushed to disk. Note that this
algorithm is technically not cache-oblivious, since it works as long as the available memory M is at
least kT ; choosing k to be Θ(S/M), where S is the size of the data to be sorted, requires that M be
Ω(
√
TS). In our implementation we use T ≈ 1MiB, thus for example M = 1GiB is sufficient to sort

≈1TiB of data. When this condition holds, the algorithm performs just three scans of the array and it is
extremely efficient in practice. Furthermore, contrary to existing cache-oblivious sorting implementations,
it is in-place, using no extra disk space.
Reusing memory The algorithm as described in Section 4.2 uses a different list Ei for each round.
Since tuples are appended to Ei+1 at a slower pace than they are read from Ei, we can reuse the same
array. A similar trick can be applied to Di and Ui. Overall, we need to allocate just one array of γn
packed incidence lists, and one for the 3n oriented edges.
Lists compression Reducing the size of the on-disk data structures can significantly improve I/O
efficiency, and hence the running time of the algorithm. The two data structures that take nearly all
the space are the lists of packed incidence lists Ei and the lists of edges Pi. Since the lists are read and
written sequentially, we can (de)compress them on the fly.

Recall that the elements of Ei are tuples of the form (v0, d, ṽ1, ṽ2) sorted by v0. The first components v0
of these tuples are gap-encoded with Elias γ codes. The overall size of the encoding is

∑|Ei|
k=1(2blog gkc+ 1)

bits, where gk is the k-th gap. 3. Since the gaps sum up to γn, by Jensen’s inequality the sum is maximized
when the gaps gk are all equal to γn

|Ei| giving a space bound of 2|Ei|(log γn
|Ei| + 1) bits. Furthermore, this

space bound is always at most 2γn bits because it is maximized when Ei has size γn/2. The degrees d
are encoded instead with unary codes; since the sum of the degrees is 3ni, where ni is the number of
edges alive in round i, the overall size of their encoding is always upper bounded by 3n bits. The other
two components, as well as the nodes in Pi, are represented with a fixed-length encoding using dlog γne
bits each. With γ = 1.23, and thanks to the memory reusing technique described above, the overall disk
usage is approximately (5.46 + 11.46dlog γne)n bits. On our largest inputs, using compression instead of
plain 64-bit words makes the overall algorithm run about 2.5 times faster.
Exploiting the tripartition Many MWHC-based implementations, when generating the r-hypergraph
edges {h0(x), . . . , hr−1(x)}, use random hash functions hi with codomain [i|V |/r, (i+ 1)|V |/r) instead of
[0, |V |), thus yielding a r-partite r-hypergraph. The main advantage is that by construction hi(x) 6= hj(x)
for i 6= j, so the process cannot generate hypergraphs with degenerate edges; this reduces considerably the
number of trials needed to find a peelable hypergraph (in practice, just one trial is sufficient). Botelho et
al. [7] proved that hypergraphs obtained with this process have the same peeling threshold as uniformly
random hypergraphs. Jiang et al. [18] proved that the bound on the number of rounds of the layered
peeling process also holds for random r-partite r-hypergraphs, so we can adopt this approach as well.

An additional advantage of the r-partition is that the first vertex of any 0-orientation is smaller than
the first vertex of any 1-orientation, and so on; in general, if (u0, . . . , ur−1) is an i-orientation, (v0, . . . , vr−1)
is a j-orientation, and i < j, then u0 < v0. We exploit this in our algorithm in the construction of E0:
since our graph is 3-partite, instead of creating a list with every valid orientation of each edge and then
sorting it by v0, we create a list with just the 0-orientations, sort it by v0, and append the obtained packed
incidence lists to E0. Then we go through the sorted list, switch all the oriented edges to 1-orientation,
and repeat the process. The same is done for the 2-orientations.

Thanks to this optimization the amount of memory required in the first step of the algorithm, which
is the most I/O intensive, is reduced to one third.
Avoiding backward scans For MWHC-based functions construction, the final phase that assigns the
uis needs to scan the edges in reverse peeling order. Unfortunately, operating systems and disks are
highly optimized for forward reading, by performing an aggressive lookahead. However, as we noted in
Section 4.2, the ordering of the edges within the layers is irrelevant; thus it is sufficient to scan the layers
in reverse order, but each layer may be safely scanned forward. The number of forward scans is then
bounded by the number of rounds, which is negligible. The performance improvement of the assignment
phase with respect to reading the array backwards is almost ten-fold.

3Elias Gamma code [13] uses 2blog jc+ 1 bits to encode any integer j ≥ 1.
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5 Experimental analysis
Although our code can be easily extended to construct any static function, to evaluate experimentally
the performance of the peeling algorithm we tested it on the task of constructing a minimal perfect hash
function, as discussed in Section 3. In this task, the peeling process largely dominates the running time.
Testing details The tests of MPHF construction were performed on an Intel Xeon i7 E5520 (Nehalem)
at 2.27GHz with 32GiB of RAM, running Linux 3.5.0 x86-64. The storage device is a 3TB Western Digital
WD30EFRX hard drive. Before running each test, the kernel page cache was cleared to ensure that all the
data were read from disk. The experiments were written in C++11 and compiled with g++ 4.8.1 at -O3.

We tested the following algorithms.

• Cache-Oblivious: The cache-oblivious algorithm described in Section 4.

• Standard+XOR: The standard linear-time peeling implemented using the packed incidence list, with
the purpose of evaluating the impact of the XOR-trick by itself.

• cmph: A publicly available, widely used and optimized library for minimal perfect hashing4, im-
plementing the same MWHC-based MPHF construction with the standard in-memory peeling
algorithm.

Datasets We tested the above algorithms on the following datasets.

• URLs: a set of ≈4.8 billion URLs from the ClueWeb09 dataset5 (average string length ≈67 bytes,
summing up to ≈304GiB);

• ngrams: a set of ≈7.6 billion {1, 2, 3}-grams obtained from the Google Books Ngrams English
dataset6 (average string length ≈23 bytes, summing up to ≈168GiB).

Since the strings are hashed in the first place, the nature of the data is fairly irrelevant: the only
aspect that may be relevant is the average string length (that affects the time to load the input from
disk). In fact tests on randomly generated data produced the same results.
Experimental results The running time of the algorithms as the number of keys increases is plotted
in Figure 1; to evaluate the performance in the regime where the working space fits in main memory, the
figure also shows an enlarged version of the first part of the plot.

The first interesting observation is that the cache-oblivious algorithm performs almost as well as cpmh,
with Cache-Oblivious being slightly slower because it has to perform file I/O even when the working space
would fit in memory.

We can also see that the XOR trick pays off, as shown by the performance of Standard+XOR, which
is up to 3 times faster than cmph, and the smaller space usage enables to process up to almost twice the
number of keys for the given memory budget. Both non-external algorithms, though, cease to be useful as
soon as the available memory gets exhausted: the machine, then, starts to thrash because of the random
patterns of access to the swap. In fact, we had to kill the processes after 48 hours. Actually, one can make
a quite precise estimate of when this is going to happen: cpmh occupies 34.62 bytes/key, as estimated by
the authors, whereas Standard+XOR occupies about 26.76 bytes/key, and these figures almost exactly
justify the two points where the construction times slow down and then explode. On the other hand,
Cache-Oblivious scales well with the input size, exhibiting eventually almost linear performance in our
larger input ngrams, while remaining competitive even on small key sets.
Comparison with HEM Finally, we compare our algorithm with HEM [6]. Recall that their technique
consists in splitting the set of keys into several buckets and building a separate MPHF for every bucket;
at query time, a first-level index is used to drive the query to the correct bucket. Choosing a sufficiently
small size for the buckets allows the use of a standard internal memory algorithm to construct the bucket
MPHF. Although technically not a peeling algorithm, this external-memory solution is simple and elegant.

To make a fair comparison, we re-implemented the HEM algorithm using our sort implementation
for the initial bucketing, and the Standard+XOR algorithm to build the bucket MPHFs. The signature

4We used cmph 2.0, available at http://cmph.sourceforge.net/.
5Downloaded from http://lemurproject.org/clueweb09/.
6Downloaded from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html.
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Figure 1: Above: construction times on the two datasets. Below: close-up for n up to 1.6 · 109 keys.

function is the same 96-bit hash function used in [6] (which suffice for sets of up to 248 keys), but we
employed 64-bit bucket offsets in place of 32-bit, since our key sets are larger than 232/γ.

The result, as shown in Figure 2, is a construction time between 2 and 6 times smaller than Cache-
Oblivious. However, this efficiency has a cost in term of lookup time (because of the double indirection)
and size (because of the extra space needed for the first-level index). Since, in most applications, MPHFs
are built rarely and queried frequently, the shorter construction time may not be worth the increase in
space and query time.

Indeed, as shown in Table 1, the space loss is 17% to 27%. The variability in space overhead is due to
the fact that in HEM the number of buckets must be a power of 2, hence the actual average bucket size
can vary by a factor of 2 depending on the number of keys. We also include the space taken by cmph on
the largest inputs we were able to construct in-memory. Despite using the same data structure as our
implementation of MWHC, its space occupancy is slightly larger because it uses denser ranking tables.

URLs ngrams
0.76 · 109 keys 4.8 · 109 keys 0.76 · 109 keys 7.6 · 109 keys

MWHC 2.61 b/key 2.61 b/key 2.61 b/key 2.61 b/key
HEM 3.16 b/key 3.31 b/key 3.16 b/key 3.05 b/key
cmph 2.77 b/key - 2.77 b/key -

Table 1: Space comparison of MWCH, HEM, and cmph.

The evaluation of lookup efficiency is much subtler, as it depends on a number of factors, some of
which are subject to hardware architecture. For this reason, we decided to perform the experiments on
three different machines: an Intel Intel i7-4770 (Haswell) at 3.40GHz, the same Intel i7 (Nehalem) machine
used for the construction experiments (see above), and an AMD Opteron 6276 at 2.3GHz.
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Figure 2: Construction time with the Cache-Oblivious algorithm and HEM [6].

For both machines and both datasets we performed lookups of 10M distinct keys, repeated 10 times.
Since lookup times are in the order of less than a microsecond, it is impossible to measure individual
lookups accurately; for this reason, we divided the lookups into 1,525 batches of 216 keys each, and
measured the average lookup time for each batch. Out of these average times, we computed the global
average and the standard deviation. The results in Table 2 show that HEM is slower than MWHC in
all cases. On AMD Opteron the slowdown is the smallest, ranging from 17% to 20%; on the Intel i7
(Nehalem) the range goes up to 19%–26%; on the Intel i7 (Haswell), the most recent and fastest CPU,
the slowdown goes up to 30%–35%, suggesting that as the speed of the CPU increases, the cost of the
causal cache miss caused by the double indirection of HEM becomes more substantial. In all cases, the
standard deviation is negligibly small, making the comparison statistically significant.

We also remark that our implementation of the MWHC lookup (which is used also in HEM) is roughly
twice as fast than cmph despite using a sparser ranking table; this is because to perform the ranking we
adopt a broadword [19] algorithm that counts the number of non-zero pairs in a 64-bit words in just a
few non-branching instructions, rather than a linear bit scan with a loop; the smaller ranking table also
imposes a lower cache pressure. Finally, we use a 64-bit implementation of the Jenkins hash function,
which is faster on long strings than the 32-bit one used in cmph.

URLs ngrams
0.76 · 109 keys 4.8 · 109 keys 0.76 · 109 keys 7.6 · 109 keys

Intel i7 (Haswell)

MWHC 219 ns ± 0.3% 253 ns ± 1.3% 199 ns ± 0.2% 251 ns ± 1.8%
HEM 284 ns ± 0.3% 335 ns ± 1.1% 262 ns ± 0.3% 338 ns ± 0.9%
cmph 466 ns ± 0.3% - 303 ns ± 0.3% -

Intel i7 (Nehalem)

MWHC 365 ns ± 0.1% 433 ns ± 0.1% 334 ns ± 0.1% 422 ns ± 0.2%
HEM 450 ns ± 0.1% 523 ns ± 0.1% 420 ns ± 0.1% 502 ns ± 0.7%
cmph 799 ns ± 0.1% - 532 ns ± 0.1% -

AMD Opteron

MWHC 415 ns ± 0.1% 419 ns ± 0.1% 373 ns ± 0.1% 386 ns ± 0.1%
HEM 484 ns ± 0.1% 493 ns ± 0.1% 442 ns ± 0.2% 463 ns ± 0.1%
cmph 908 ns ± 0.2% - 578 ns ± 0.3% -

Table 2: Lookup-time comparison (with relative standard deviation) of MWCH, HEM, and cmph.
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