2012 Eighth Latin American Web Congress

Arc-Community Detection via Triangular Random
Walks

Paolo Boldi

Marco Rosa

Dipartimento di Informatica, Universita degli Studi di Milano, Italy

Abstract—Community detection in social networks is a topic of
central importance in modern graph mining, and the existence of
overlapping communities has recently given rise to new interest in
arc clustering. In this paper, we propose the notion of triangular
random walk as a way to unveil arc-community structure in
social graphs: a triangular walk is a random process that insists
differently on arcs that close a triangle. We prove that triangular
walks can be used effectively, by translating them into a standard
weighted random walk on the line graph; our experiments show
that the weights so defined are in fact very helpful in determining
the similarity between arcs and yield high-quality clustering.
Even if our technique gives a weighting scheme on the line graph
and can be combined with any node-clustering method in the final
phase, to make our approach more scalable we also propose an
algorithm (ALP) that produces the clustering directly without the
need to build the weighted line graph explicitly. Our experiments
show that ALP, besides providing the largest accuracy, it is also
the fastest and most scalable among all arc-clustering algorithms
we are aware of.

I. INTRODUCTION

Complex networks and, especially, social networks often
exhibit a finer internal structure where individuals interact
in small subgroups (called communities or modules), based
on the individuals’ common interests, geographic location,
political opinions etc. Understanding how such subgroups are
structured and evolve in time is essential for applications like
targeted advertising, viral marketing, friend suggestion etc.
Social-network mining traditionally identifies a community as
a densely connected set of nodes that is in turn only loosely
attached to the rest of the network [9]; in this view, community
detection translates into finding a partition of the nodes that
optimizes some quality function. Most of the literature on this
topic focused on the discussion of the mutual merits of various
quality functions and on the comparison of algorithms that try
to optimize (in an exact or approximate way) some of those
functions. It is worth noticing that we are here thinking of
the clustering problem in a situation where the only available
information is the (directed or undirected) graph underlying
the social network, possibly with some weights on its arcs
denoting the strength of that bound'.

The main limit of the approach discussed above is that rarely
a node is part of a single community: more often than not,
communities overlap giving rise to a complex intertwining that

Partially supported by a Yahoo! faculty grant and by by the EU-FET grant
NADINE (GA 288956).

Even if other information about vertices and edges may be available, it is
usually computationally unfeasible to leverage it to detect communities.

978-0-7695-4839-5/12 $26.00 © 2012 IEEE
DOI 10.1109/LA-WEB.2012.19

48

can hardly be reflected into a node partition. For this reason,
recent research (see, for example, [2], [17]) has turned its
attention to the problem of finding overlapping communities,
where each node can be a member of more than one module.

This idea is well motivated and neat for those (frequent)
situations in which membership to multiple communities is an
exception more than a rule, and most nodes belong clearly to
one single communities, with a number of borderline individ-
uals for whom membership is less straightforward. In a large
number of scenarioes, however, belonging to more groups is a
rule more than an exception, and actually the notion of node
community hardly makes sense: like a point in the Cartesian
plane belongs to infinitely many lines, an individual in a
social network plays potentially infinitely many roles. In those
cases, it is often more sensible and interesting to individuate
communities of arcs rather than communities of nodes: this
shift of interest (witnessed in the most recent literature [27])
can be thought of as trying to find the reasons behind relations
rather than trying to find the reason behind individuals. Or,
going on with our metaphor, it is like determining the line to
which two given points belong—a single point lies on infinitely
many lines, but there is only a single line passing through two
given points.

This idea is clear if one thinks of social networks such as
Facebook: every Facebook user has probably many interests
and belongs to a multiplicity of communities; however, every
friendship is probably due to one main reason (working
together, being relatives, having the same hobby etc.). This
thought is so natural that Google+ has explicitly introduced
the notion of “circle”, later adopted also by Facebook.

In this work, we propose to continue along this line of
research trying to exploit the following simple observation:
if xy and yz are two relations that have the same motivation
(e.g., working together), then probably xz will also be present:
in other words, triangles tend to live inside communities.
Based on this intuition, we propose the notion of triangular
random walk, a stochastic process that treats differently tri-
angular and non-triangular arcs; although this process is not
memoryless, we can reduce it to a standard Markov chain on
the line graph (using a tool similar to [8], but in a different
way). With our approach, we obtain a weighted version of
the line graph (a graph whose nodes correspond to the arcs
of the original network). The weighted line graph can in turn
be clustered using standard tools, hence employing state-of-
the-art algorithms for the actual clustering phase: the main

cpss

Conference Publishing Services

limit of this approach is that the line graph is itself some
orders of magnitudes larger than the original graph, so even
its construction can become a computational burden (let alone
the time and resources that the clustering algorithm will then
require). For this reason, we develop an ad hoc version, called
ALP, of a well-known clustering technique that carries out
the clustering on the weighted line graph without having to
compute it explicitly. Experiments on real-world networks of
different sizes and types show that triangular walks can be
extremely helpful in finding meaningful communities, out-
performing significantly all other approaches; moreover, ALP
turns out to be very efficient and can be used on large networks
for which all other approaches would be prohibitive.

To summarize, the main contributions of this paper are: a)
the definition of two weighting schemes (called wr and vr
in this paper) for the arcs of the line graph that allow one
to individuate arc-communities in the underlying graph; b) a
clustering algorithm (ALP) that is able to use such schemes
without the need to compute the line graph explicitly; c)
a series of experiments proving that the weighting schemes
proposed produce a significant improvement over all known
techniques (in terms of quality, independently of the clustering
algorithm adopted), and that ALP in itself can obtain the same
results much more efficiently; in fact, it is the fastest and most
scalable among all arc-clustering algorithms we are aware of.

II. TRIANGULAR RANDOM WALKS

Given a (directed) graph G = (Vg, Ag) with no self-loops,
we letng = |Vg| and mg = |Ag| be the number of nodes and
arcs of G, respectively; for every node x we let Ng (x) be the
set of successors of x and dg(x) = |Ng(x)| (the (out)degree
of x). If G is symmetric (i.e., undirected), we use the term
edge to refer to an unordered pair of nodes that are connected
by an arc. We sometimes write xy to denote the arc (x, y) (or
the edge {(x, y), (v, x)}, if the graph is undirected).

A random walk on a directed graph G is a stochastic process
Xo, X1,... where Xo,--- € V, and for each x,y € V,
P[Xo=x]=1/nand P[X;41 =y | X¢ = x] is 1/d(x) if
y € N(x),0 otherwise?; this definition can be easily extended
to positively weighted graphs (making P[X;+1 = y | X; = x]
proportional to the weight of (x,y)). Intuitively, a random
walk describes the behavior of a surfer wandering in the graph,
who starts from a random node and at each step chooses
uniformly at random (or proportionally to the weights) among
the successors of the current node (jumping to a random node
if the current one has no successors).

The random walk is a Markov chain and if G is undirected,
connected and not bipartite, then the random walk has a unique
stationary distribution v with vy, = d(x)/2m [22]. For a
general graph, however, the random walk is not ergodic, hence
the stationary distribution may not be unique; to circumvent
this problem, one can introduce [4], [13], [24] the notion of
restart.

2For the sake of completeness, when d(x) = 0 we let P[X;4+1 = ¥ |
X; =x]=1/n for all y.

49

For a fixed o € [0, 1], a random walk with restart with
damping factor o on G is a stochastic process Xo, X1,... as
before, but where the surfer chooses the next node as follows:
with probability o she picks a node uniformly at random
among the successors of the current node; with probability
1 — «, instead, she jumps to a random node in the graph?.
The latter event is called teleportation or “restart”. It can be
shown [4] that for all @ < 1 the random walk with restart
has a unique stationary distribution (actually, the PageRank of
G with damping factor «); when o = 1 we get back to the
standard random walks, instead.

One suggestive way to think of this random process is the
following: a random surfer is trying to collect some knowledge
and every node represents an expert that may provide some
piece of information. After the surfer has finished visiting
expert x she receives a list of other possible people that x
trusts; the surfer may decide (with probability «) to accept
Xx’s suggestion and to visit one of them, or may rather decide
to do it her way and to teleport to a random expert instead.

It is interesting to observe that one may also actually
consider the stationary distribution on the arcs of G: the
probability P[X; = x,X;+; = y] that the random surfer
goes along the arc (x,y) is P[X¢41 =y | Xy = x]P[X;
x] = vx(ew(x,y) + (1 — a@)/n), where v is the stationary
distribution on the nodes and w(x, y) is the weight on the arc
(x,y) (that is, 1/d(x) in the unweighted case). We will refer
to this distribution as the arc-stationary distribution.

The main idea of this paper is that we want to introduce
a bias in the behavior of the random surfer, by allowing her
some amount of short-term memory; in particular, the choice
of the next node will not depend only on the current node but
also on the previous one. The bias is finalized to privilege
(or punish) triangles, i.e., suggestions of the current node
that were also suggested by the previous node. Whether we
decide to privilege triangles or to punish them depends on
our interpretation of triangles: if we think that the double
suggestion reinforces the idea that the suggested node is
reliable, we will privilege triangles; if otherwise we suspect
that the double suggestion is rather a form of lobbying, we
will tend to avoid triangles.

Thus, we will define a triangular random walk Xy, X1, ...
on an unweighted* graph using two parameters, o, 8 € [0, 1]:
is a damping factor and will have the same meaning as before
(it is used to decide whether to follow a link or to teleport);
B will instead be used to determine whether triangles or non-
triangles should be privileged.

Two subtly different definitions of triangular random walks
can be given, depending on the specific meaning of §: we will
call them mass-triangular and ratio-triangular, respectively. In
a triangular random walk with parameters o and §, the next
node (x;+1) is chosen depending on the current node x; and

3 As before, if the current node has no successors then the next node is
chosen at random among all nodes in the graph.

4As before, extending this notion to weighted graphs is trivial, but for the
sake of readability in this paper we prefer to limit ourselves to the unweighted
case.

on the previous node x;_;, as follows: (i) with probability
1 — o, we teleport: x;yq is a randomly chosen node; (ii)
otherwise, we choose among the successors N(x;) of the
current node, but treating differently the triangular successors
(the set N(x;) N N(x;—1)) and the non-triangular successors
(the set N(x;)\ N(x;—1))>; here, the two definitions differ: in
the (mass-)triangular random walk, we first decide whether
we shall select a non-triangular successor (with probability)
or a triangular one (with probability 1 — f8); then, the specific
non-triangular or triangular successor is chosen uniformly at
random; in the ratio-triangular random walk, all triangular
successors are selected with the same probability, say p, and
all non-triangular successors with probability Sp (p should be
chosen so that the sum of such probabilities is 1).

The names we adopted for the two kinds of random walks
should be evocative of the meaning of B: in the mass-triangular
random walk, f is the overall amount of probability of choos-
ing a non-triangular successor; in the ratio-triangular random
walk, it is the ratio between the probability of choosing a(ny)
non-triangular successor over the probability of choosing a(ny)
triangular one.

The two kinds of processes coincide when 8 = 0 (in
that case, they both only choose triangular successors, except
when teleporting). Moreover, ratio-triangular random walks
reduce to standard random walks with restart when 8 = 1
(because, in that case, the probability of choosing triangles
and non-triangles is the same), whereas there is no choice
of B that makes a mass-triangular random walk the same as
a standard random walk. The latter observation may suggest
that ratio-triangular random walks should be preferred, but the
mathematical treatment of mass-triangular walks is simpler,
and for this reason we shall actually treat the latter as our
“default” type of triangular walk (and omit “mass” in the
following). Triangular walks can have a number of potential
applications; for example, they may be used fruitfully in
bibliometrics to moderate the problem of nepotistic citations
in scientific works (in this case, triangles should be punished
rather than promoted). In this paper, however, we wish to
speculate on the possible usage of triangular walks to single
out arc-communities in social networks, where triangles are
used as a form of reinforcement.

To start playing with our idea, let us consider Zachary’s
famous karate club network [28]: this is an undirected graph
whose nodes represent the members of a karate club and with
an edge between two individuals if they happened to have seen
each other outside of the club for some reason; the club ended
up splitting in two (in our drawings, the nodes are depicted
differently according to the group they will end up in), and
one can hope to find information about how the members
will decide to group based solely on their friendship relations.
We first tried a standard random walk on this dataset to see
how frequently each edge was run through in either direction

SIf either set is empty (or if # = 1) we choose uniformly in N(x;) (or in
V, if the latter is empty), as in a standard random walk. The rationale behind
this choice is that, based on the knowledge that we have (the current node
and the previous one), all the outgoing arcs are equivalent.

(Figure 1): no pattern is evident. But if we do the same with a
triangular walk some edges get more emphasis, witnessing that
some bounds are stronger than others (Figure 2, with 8 = 0.2):
those edges are usually between members that will end up in
the same group (with an exception concerning node 9 that
indeed seems to be more strictly bound to the group of circles
than to the group of squares). If we decrease 8 to 0.01, some
clans would become almost grotesquely evident.

7SN,
ST S N DR
. o ’\‘%&')\

Fig. 1. Standard random walk on the karate club dataset; edge width is
proportional to the frequency with which that edge was run through in either

= D)

.Q)

[\'n o(°e

Fig. 2. Triangular random walk on the karate club dataset, with 8 = 0.2
(see also Figure 1).

A. Triangular walks and line graphs

A triangular random walk is a Markov chain of order 2 [22],
because the next state depends on the current state and on the
previous one. To study the long-term behavior of higher order
chains, it is customary to change the state space and reduce
the stochastic process to an equivalent one that is memoryless;
this is easily solved by using the notion of line graph.

Given a graph G, its line graph L = L(G) has the arcs
of G as vertices (i.e., Vi = Ag), and arcs of the form
(xy,yz) (where xy and yz are two arcs of G). Note that
even when G is symmetric, L(G) is not; for example, if G is
the undirected graph in Figure 3, its corresponding line graph
L(G) is represented in Figure 3 (for the time being, ignore the
colors on its arcs). The idea of using line graphs to study the
behavior of an arc-aware random surfer was already proposed
in [8], but they adopt a subtly different notion of line graph that
is undirected; for our purposes, instead, the directed definition
is much more well-suited (also because it adapts readily to the
case when the original graph is itself directed).

50

Fig. 3. A small undirected graph G (left) and the corresponding line graph
L(G). Continuous (red) arcs correspond to choosing triangular successors;
dashed (black) arcs correspond to the choice of non-triangular successors;
dotted (blue) arcs are used for the cases where either set is empty.

Now, it is easy to see that a triangular random walk with
parameters «, 8 on the (unweighted) graph G is equivalent to
a random walk with damping factor « on the weighted line
graph L(G), where

if ze N(y) N N(x)
if ze N(y) \ N(x).

1-B
INOD)NN ()]
INOGDOAN)]
In other words, every arc in L(G) (that is to say, every two-
step walk x — y — z in the original graph) has a different
weight depending on whether it can be closed by a triangle
(i.e., if x — z was also an arc of G) or not. If you look again
at Figure 3, continuous (red) arcs correspond to the first case
(e.g., 10 — 03 is one such arc, because 13 is also an arc of
G), whereas dashed (black) arcs correspond to the second case
(e.g., 31 — 12); note, in particular, that all arcs of the form
xy — yx fall in the second class®. Some nodes of L(G)
(i.e., arcs of G) require some care, because their outgoing
arcs are all non-triangular; those outgoing arcs are hence not
weighted using the formula above (it would not make sense
since one of the denominators is zero), but they have a constant
weight instead (such arcs are drawn as dotted (blue) arrows in
Figure 3).

For o < 1 the random walk with restart on L(G) weighted
by wr has a stationary distribution vr: note that, since the
nodes of L(G) are arcs of G, vr assigns a probability vr(xy)
with each arc xy of the original graph. Note also that, as
explained in the previous section, the stationary distribution
on the nodes of L(G) induces a stationary distribution on its
arcs:

6]

wr(xy,yz) £

vr(xy, yz) £ vr(xy)(ewr(xy, yz) + (1 —@)/np@). (2)

This is the fraction of time that the random surfer walking on
L(G) with weights wr spends on the path x — y — z, and
can be used as way of weighting the graph L(G) alternative
to (1).

Computing the stationary distribution vz is a well-under-
stood task (it amounts to a weighted version of PageRank)
for which efficient and computationally sound algorithms

(’Differently from [8], we do not reserve stuttering walks (walks of the form
X — y — x) a special treatment.

51

exist [13], [26]; of course, L(G) is larger than G (it has
mg nodes and Y dg(x)? arcs), but not much larger actually
because of the sparsity of G and of the way its degrees are
distributed. In particular, if G is undirected and has ~ Ck™*
nodes of degree k, then L(G) will have ~ C2k~2% nodes of
outdegree k.

III. ARC-CLUSTERING VIA TRIANGULAR RANDOM WALKS:
A) USING AN OFF-THE-SHELF ALGORITHM

As outlined in the previous sections, along the same line
as [8], instead of clustering directly the arcs of G (as done,
for example, by [12]), we turn to some suitably weighted
version of the line graph L(G), where we can make good
use of all the paraphernalia for node-clustering of a directed
graph. In other words, we can use an off-the-shelf node-
clustering algorithm feeding it with the weighted (directed)
graph L(G). As weighting function (on the arcs of L(G)), we
can use either of the weighting schemes defined in (1) and (2).
For comparison, we may consider the weights of a standard
random walk ws(xy,yz) = 1/d(y) or the corresponding
arc stationary distribution vs(xy, yz) (as before, vs(xy) is
the stationary distribution of the standard random surfer on
the node xy); here, the subscript “S” stands for “standard”.
Another baseline is to feed the clustering algorithm with the
unweighted graph L(G) itself.

The main limit of the proposed method is that it cannot
be directly applied to truly undirected graphs: since it is
designed for directed graphs, reciprocal arcs (i.e., parallel
arcs in opposite directions) may end up in two different
communities. In cases when this fact can be a problem, one
has to decide what to do about reciprocal arcs that happened to
be clustered differently—one possible solution is to place the
corresponding edge in either community, or to use a special
community that corresponds to the given pair.

a) Computational issues: Computing the line graph
L(G) and its weights wr is straightforward and can be
performed in time O(mp(g)) (i.e., linear in the output size),
provided that one has direct access to G; moreover, although
their size is obviously larger than the original graph (see
Table I), line graphs turn out to be easily compressible
(about 2 to 3 bits/link in their natural order, much less
if suitably permuted [5]). After L(G) has been produced,
weighted PageRank can be computed very quickly (using
for example the techniques of [7]), and in our experiments
always resulted to converge in less than 20 iterations even for
a = 1—1072. The final node-clustering phase clearly depends
on the algorithm used, but our method of choice [3] turns out
to be reasonably fast — actually, the line graph construction
is almost as expensive as the clustering itself. In fact, the
explicit construction of the line graph is the main limit of
this approach, especially for networks that are comparatively
denser (such as Hollywood).

\ ng | mg =np@) | ML(G)

free word assoc, | 10225 71670 955552

DBLP 986 324 6707236 211808396

Hollywood 2180759 | 228985632 | 242026293 162
TABLE 1

SIZE OF LINE GRAPHS FOR SOME OF THE DATASETS WE SHALL USE IN
SECTION VI; OBSERVE THAT HOLLYWOOD IS COMPARATIVELY DENSER
THAN THE OTHER GRAPHS (WITH AN AVERAGE DEGREE OF ABOUT 105),
WHICH IS WHY THE NUMBER OF ARCS IN L(G) IS SO LARGE (THE
AVERAGE DEGREE IS IN THIS CASE 1 057).

IV. ARC-CLUSTERING VIA TRIANGULAR RANDOM WALKS:
B) USING ALP

When the graph is comparatively denser having to compute
explicitly L(G) can become a serious limitation; nonetheless,
there is conceptually no need to do so—the graph L(G) might
be handled implicitly. If we want to approach the problem
this way, however, we need to develop a specially tailored
clustering algorithm that mimics what it would do on the
(weighted version of) L(G) without having it represented
explicitly.

We tackled this idea by writing an implementation of the
LP (Label Propagation) algorithm [18] that clusters the arcs
of G based on an implicit representation of L(G), weighted
as in (1) or (2): we call this implementation ALP (for “Arc
Label Propagation”); the reason behind the choice of LP with
respect to other clustering algorithms is that it provides a
good compromise between quality and speed. Moreover, due
to its very diffusive nature, LP is best suited to translate into
an algorithm that implicitly propagates information on the
line graph. ALP takes G as input and works almost exactly
as a standard LP [18] would do if run on L(G), with the
following adjustments: (a) LP is natively intended to be run
on unweighted graphs, and it is based on a diffusive process
where each node (arc, for ALP) decides whether to change its
own label based on the majority of the labels in its neighboring
nodes (arcs, for ALP); our adaptation to weighted graphs just
changes the way majority is computed (summing up weights of
neighbors instead of counting them); (b) Since LP is designed
for undirected graphs, ALP actually considers the symmetrized
version of L(G) when being executed; in other words, an
execution of ALP on G is equivalent to an execution of LP
on a symmetrized weighted version of L(G).

A final remark is that, if ALP is to be run with the weights
vr of (2), a preliminary computation of weighted PageRank
on L(G) should be performed; also this step can be carried
out implicitly, without ever having to deal with L(G).

V. RELATED WORK

Although node-clustering is traditionally much more de-
veloped and better understood (see [21] for an up-to-date
survey), recently many authors advocated the adoption of link-
clustering [27], [8], [12] as a way to overcome the problem of
overlapping communities in complex networks. The advantage
of this approach over the solution of soft or hierarchical node-
clustering [15], [11] is that the latter is better suited for

situations where the presence of a node in many communities
is an exception rather than a rule; on the contrary, using link-
clustering allows one to give multiple membership a more
understandable meaning in the common situations when every
single node is likely to belong to more than one cluster but
each node-to-node relation can be explained as co-affiliation to
some community (like in the well-known model of affiliation
networks [14]). Of course, even in the latter situation co-
affiliation can be due to many reasons (co-affiliation to many
communities), one reason usually prevails.

The usage of line graphs to model link-clustering is espe-
cially promoted by Evans and Lambiotte [8] (who also take
into consideration notions of weighting that deal with the prob-
lem of over-representing high-degree nodes), but they exploit
the undirected version of line graphs instead of the directed
one [10], and they do not distinguish between triangular and
non-triangular arcs. It should be noted that the roles of (open
and closed) triangles in social networks is well known and
studied in the realm of SNA, under the name of triads [25].

As explained, our technique relies on some external node-
clustering algorithm that uses a weighted version of L(G),
with the hope that triangular random walks highlight clear cuts
between communities as they should. To test our hypothesis,
we obviously need a clustering algorithm that can handle large
weighted directed graphs; we tried three different clustering
algorithms which satisfy our requirements and are considered
the state of the art for massive complex networks: clustering
via Potts” model as proposed in [19], the hierarchical Infomap
algorithm presented in [20] and the Louvain method [3]. In our
tests the latter proved to be the fastest among these candidates
and produces also the best results in term of accuracy, so we
will adopt it in our experiments. Actually, however, all the
tested methods improve their performance on the versions of
L(G) that were weighted according to our criterion.

VI. EXPERIMENTS

The experiments that we are going to describe have been run
using public datasets and relying heavily on the WebGraph [6]
framework (in particular, the line-graph transformation was
implemented as a part of it). The remaining tools are available
as “Satellite Software” in the http://law.dsi.unimi.it/ website.
In most of the experiments, we shall need a way to evaluate
the clustering quality. More precisely, we suppose to be given
a graph G with a measure of similarity o between its arcs.
The output of an arc-clustering algorithm is going to be a
labelling function A providing a label for every arc xy of the
input graph. To evaluate the quality of the given arc-clustering
A with respect to the similarity o, we shall use a variant of
the Probabilistic Rand Index (PRI) [23]:

2

Axy)=A(x'y") A(xy)#A(x'y")

The cost of evaluating this quantity is prohibitive (quadratic in
the number of arcs), thus we shall instead estimate its value by
sampling pairs of arcs {xy,x’y’} according to the following
criteria: (i) the two arcs xy and x’y’ are sampled uniformly

PRI(A,0) = o(xy,x'y")— o(xy,x'y").

52

at random (PRI,); (ii) a node x = x’ is chosen uniformly at
random, and we select two of its successors y and y’ again
at random (PRI,); (iii) a node x = x’ is chosen at random
proportionally to its degree, and we select two of its successors
y and y’ at random (PRI;). While the first is an unbiased
estimator of the PRI, the latter two aim at providing a more
fine-grained understanding of the local quality of the clustering
obtained. PRI is a quality measure that indirectly takes the
number of clusters into account: an excessive fragmentation,
for example, will produce bad PRI values, because similar arcs
that are put in different clusters contribute negatively to the
score. Nonetheless, we will also discuss the number of clusters
obtained in our experiments.

b) Parameter tuning: For this set of experiments, we
worked on the DBLP graph’; The DBLP graph is a scientific
collaboration network where each vertex represents a scientist
and two vertices are connected if they have worked together
on an article. The current version (July 2011) of the DBLP
dataset contains 986 324 authors and 2 684 847 publications,
giving rise to 3353618 co-authorship edges. This network
corresponds to the typical situation in which every author
can belong to more than one scientific community (because
typically, during their life, scientists work on many different
and often scarcely related topics), but collaborations usually
correspond to a specific topic. Based on this interpretation,
we labelled each edge of DBLP with the concatenation of all
titles of the co-authored papers, and the similarity between
two edges is computed as the cosine distance between the
corresponding term vectors (we normalized the words though
a Porter’s stemmer and used TF-IDF [1] for term weighting);
this measure of similarity o between edges is our ground truth.

In this experiment we used the weights vr of (2) computed
with different values of @ and B to see how they impact on the
quality of the clustering obtained with respect to similarity; we
used ALP as a clustering algorithm, but in our experiments it
seems that parameter can be tuned pretty much independently
from the clustering algorithm employed. Most probably, it
depends instead from the type of social network considered
(e.g., as observed, whether triangles should be promoted or
demoted); in all the graphs we are using here, however, the
behavior was the same.

In Figure 4 we show the values of PRI, for different
combinations of « and f; we did a similar evaluation for
PRI,,, PRI; and for the number of communities obtained (the
corresponding graphs are not shown).

e For o = 0, the weights vr of (2) become constant and
the behavior of the clustering algorithm degrades (for the
sake of readability, this is not shown in the figure);

e Aslong as a > 0, its value does not seem to impact much
on the local quality measures (PRI,, PRI;) but the overall
quality PRI, decreases for large «’s: our interpretation for
this behavior is that larger values of o produce a more
fragmented clustering (as also witnessed by the number
of communities obtained) because infrequent teleporting

"http://www.informatik.uni-trier.de/~ley/db/.

reduces transitivity.

As far as B is concerned, small values of B (i.e., more
importance to triangles) produce the best results. As a rule of
thumb, we think that o should be taken small (in the remaining
experiments, we set @« = 0.1) at least for sparse networks;
on denser graphs, larger values of o can be a better option
to avoid that few communities flood all the arcs. As for B,
we used § = 0.01 in our experiments, but the actual value
should be adapted to the specific network under examination,
as already discussed.

0.8
0.7
0.6
0.5
0.4~
0.3
0.2

0.1~

Fig. 4. PRI, computed on DBLP (using the weights vz of (2) and ALP
for clustering) as a function of @ and S.

¢) Quality: We then faced the problem of directly eval-
uating the clustering quality, for the values of the parameters
determined above (¢ = 0.1 and 8 = 0.01). We performed
our experiments on DBLP and on the Hollywood graph:
the latter was obtained from the Internet Movie Database®;
this undirected graph has, in its current version (July 2011),
2180759 nodes (actors and actresses) and 114492816 edges
corresponding to having acted together in some movie. Here
the edge xy is labelled with the multiset of directors that
directed the movies co-acted by x and y, with the interpreta-
tion that a specific actor may have worked in many different
movies, but directors tend often to collaborate with the same
set of “trusted” actors. Similarity between arcs is once again
computed using TF-IDF (here, the vocabulary is made by
director IDs); the idea, this time, is to individuate the “clans”
that typically pop up in the film industry around the figure of
most directors. Note that, again, this idea would not fit with
node clustering (because an actor is often part of more clans,
but typically co-actorship individuates a clan in a quite specific
way).
For this set of experiments, and for each of the two
networks, we clustered the arcs in various ways (see below).

8http://www.imdb.com/.

53

We considered the following combinations:
o we tried our weighting schemes w7 and vr of (1) and (2),
and for comparison the standard random surfer weights
wgs and vg (see Section III), as well as the unweighted
version;
for each weighting scheme above, we used two clustering
algorithms: ALP (Section 1V), that is fed directly with
G (and computes L(G) and its weights only implicitly)
and the Louvain [3] algorithm, that is given the weighted
version of L(G) instead ([3] clusters the nodes of an arc-
weighted graph);
as baseline, we tried to cluster the arcs using the system
proposed by [8] (that works on the undirected version
of the link graph) and LINK, a link clustering technique
proposed in [27]%; both algorithms are specifically aimed
at arc-clustering so they are the natural competitors of
our method; unfortunately (as better explained below) we
could run them only on the smallest of the two datasets,
because of their lack of scalability;
finally, as further baseline, we tried to cluster the arcs
indirectly, through some of the best node clustering tech-
niques; we transform a node clustering into an arc clus-
tering with the following strategy: since a node clustering
algorithm produces a labeling function f : Vg — N, we
map each arc xy to the pair (f(x), f(y)) € N2, and use
the latter as arc label. If the original graph is symmetric,
we can forget about the order of labels and assign an
unique identifier to each unordered pair of labels.

The results obtained for DBLP !0 are shown in Table II,
along with the computation time'!: when using the Louvain [3]
algorithm, we highlight the pre-computation time required to
produce the weighted line graph to be fed to the algorithm;
note also that for the PageRank-based weights vr, there is
some pre-computation time needed to obtain the PageRank
vector (this is true also for ALP). As for Hollywood, the
only arc-clustering method that can be applied is ALP and the
results obtained are also shown in Table II—building explicitly
the line graph is out of question and anyway it would be far
too large to be handled by (the current implementation of) [3];
hence, our only baseline is Louvain run on the base graph G
(we did not get any result from Infomap on the base graph,
and we decided to stop it after 60h). Some comments are in
order:

e Our weighting schemes aim at capturing local communi-
ties more than global ones, and indeed the local measures
of quality (PRI,, and PRI;) we obtain outperform signifi-
cantly all other approaches; the best competitors, that still

9We used the LINK Python implementation that automatically optimizes
its parameters. We also experimented with the software described in [12], but
could not have it work on networks of more than about 100 nodes.

10A]] tests on DBLP were run only on the giant component of the graph
because some of the baseline algorithms (in particular, LINK) requires the
input graph to be connected; we verified, however, that the quality obtained
by ALP is consistently the same even outside of the giant component.

Al experiments were performed on a Linux server equipped with Intel
Xeon X5660 CPUs (2.80 GHz, 12 MB cache size) for overall 24 cores and
128 GB of RAM.

54

do not quite reach the same results, are Evans et al. [8]
and LINK [27]. Both, however, do a rather poor job when
the results are considered globally, but for opposite rea-
sons: [27] seems to fragment the communities too much
(many of them constitute of a single arc), whereas [8]
produces too few communities (putting together too many
“dissimilar” arcs). Apparently this problem presents itself
also when we use our weighting scheme with [3], whereas
ALP is able to produce a more balanced output, giving
good results even on a global scale.

Comparing our results with all the node-oriented ap-
proaches, it seems clear that arc-communities have a
much more distinct structure than node-communities in
the networks we examined.

As far as the difference between the two types of weights,
the gain in using the arc-stationary state v instead of the
simple triangular weights wr is marginal; yet PageRank
computation is so fast that the effort is anyway worth.

d) Karate club (revisited): To visually appreciate the
results of our clustering technique, we tried it on the karate
club dataset; we set « = 0.1 as usual, but this time the density
of the network suggests using a larger B than we did with
the other graphs. Figure 5 shows the outcome obtained for
B = 0.2 (smaller values of 8 tend to fragment the network
too much). The algorithm finds 6 communities, but two of
them (the red and green arcs) are definitely dominant and cor-
respond largely to the edges between homogeneous members.
The two second-largest communities, in blue and violet, are
rather dense internally but poorly linked to the other nodes.
For comparison, in Figure 5 you can see the same network
clustered with LINK, that individuates 22 communities.

e) Clustering of the word association network: For this
experiment, we considered the Free Word Association net-
work [16]; this is a directed graph describing the results of an
experiment of free word association performed by more than
6000 participants in the United States: its nodes correspond
to words and arcs represent a cue-target pair (the arc xy
means that the word y was output by some of the participants
based on the stimulus x). This graph contains 10617 words
and 71176 associations (arcs). We used ALP and Louvain
to cluster it according to our two schemes (as usual, we set
a = 0.1 and 8 = 0.01). For comparison, we considered also
the communities found by Evans et al. [8] and by LINK [27]
on the same graph. In this case we do not have any ground
truth to compare to, hence our analysis can only be based on
some preliminary observations.

The number of communities found by ALP is 7070 with wr
and 7221 with vy, showing that the use of PageRank tends in
this case to obtain slightly smaller communities (the average
size passes from 10.06 to 9.86). As for the other methods, [8]
produces only 33 huge communities (the average size is 2 157),
whereas [27] fragments the graph into 43 182 communities
(the average size is 1.65).

An interesting observation is that of the 8384 reciprocal
arcs (an arc xy is reciprocal if also yx is an arc, the 11.8% of

clusters PRI, | PRI; | PRI; | computing time

v 613203 0.74 0.71 0.75 1s+32s

Wt 592562 0.72 0.75 0.75 32s

ALP (Section IV) vs 48025 | 0.02 | 0.16 0.18 24s

ws 38498 | 0.02 | 0.08 0.03 22s

- 38498 | 0.02 | 0.08 0.03 22s

vT 1493 0.01 0.69 0.53 157s+337s

DBLP W 2116 0.02 0.71 0.53 122s+334s

Louvain [3] vs 230% | 0.01 | 0.44 0.39 137s+943s

ws 232 | 0.01 0.43 0.39 114s+914s

- 250 | 0.01 0.16 0.15 925+224s

Evans et al. [8] - 200 0.01 0.58 0.44 46min

LINK [27] - 1415245 | 0.28 | 0.31 0.51 50h

Infomap [20] - 62680 | 0.05 | 0.27 0.29 874s

Louvain (on G) [3] | - 6442 | 0.01 0.28 0.28 13s

vT 383780 0.80 0.78 0.56 1h+16h

W 424 094 0.77 0.71 0.48 13h

ALP (Section IV) vs 255247 | 0.00 | 0.03 0.03 3h

Hollywood ws 277859 | 0.00 | 0.02 0.01 3h

- 277859 | 0.00 | 0.02 0.01 3h

Infomap [20] - - - - - > 60h

Louvain (on G) [3] | - 23807 | 0.01 0.18 0.19 242s
TABLE II

CLUSTERING QUALITY OBTAINED USING DIFFERENT TECHNIQUES ON THE DBLP AND HOLLYWOOD GRAPHS (IN BOLDFACE, THE TWO TRIANGULAR
WEIGHTS SUGGESTED IN THIS PAPER, USING & = 0.1 AND 8 = 0.01). THE UPPER GROUP REFERS TO THE APPLICATION OF THE ALP OR LOUVAIN
ALGORITHM TO VARIOUS (WEIGHTED OR UNWEIGHTED) VERSIONS OF L(G) (IN THE CASE OF LOUVAIN, THE LINE GRAPH MUST BE EXPLICITLY
BUILT); THE MIDDLE GROUP CONSISTS OF ALGORITHMS THAT PRODUCE AN ARC-CLUSTERING ON G'; THE BOTTOM GROUP, INSTEAD, PRODUCE A
NODE-CLUSTERING ON G, THAT WE INTERPRET AS AN ARC-CLUSTERING.

Fig. 5.

the arcs are such in this graph), only a minority are assigned
by ALP the same label in the two directions (3038 for wr,
3028 for vr): this witnesses the fact that ALP does not behave
“as if” the graph was symmetric.

On a purely anecdotal base, we present in Figure 6 the
subgraph induced by the word “KEYBOARD” and its succes-
sors, as it is clustered by Louvain with vy (top) and by Evans
et al. [8] (bottom); note that the algorithm used is actually
the same, so the difference is only in the weighting scheme.
Although there is clearly a group of successors that are related

55

Clustering of the karate club dataset: (top) using triangular weights (v7) and the ALP clustering algorithm, (bottom) using LINK [27].

to music and another one that is related to computers, [8] puts
all arcs going out of “KEYBOARD” in the same community
(even if the community of computer-related word is in fact
recognized, because the internal arcs connecting the three
words “COMPUTER”, “TYPEWRITER” and “TYPE” have
a different colour than the other ones). With our weighting
scheme the arcs going toward the music group are clearly
separated from the other.

m COMPUTER
Crmeware >
@“ G
l\‘\\‘lr
CGoneS Crmo’S
n,,, COMPUTER
Cewnmen >
e

Fig. 6. Clustering of the word association network (subgraph around
“KEYBOARD?”): (top) using Louvain with vz as weighting scheme, (bottom)
using Evans et al. [8].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new kind of random process
that helps in singling out arc communities in social networks;
this can be seen as a Markov chain on the line graph whose
arc-stationary state contains a big deal of information on
the communities, and can be fruitfully used to gain a more
accurate and fine-grained resolution, at least at a local level.
In our experiments, using this information ended up in pro-
ducing more reasonable and significant clusters, with a limited
computational cost. These results are preliminary but very
encouraging; we also believe that the weights proposed here
can be beneficial for other types of mining tasks. Such tasks
can be made reasonably scalable by exploiting the possibility
(here explored with ALP) of writing implicit versions of
mining algorithms that work on the weighted line graph
without having to build it explicitly.

ACKNOWLEDGEMENTS

We thank Hawoon Jeong, Youngdo Kim, Dario Malchiodi and
Federico Pedersini for their help in preparing the paper.

REFERENCES

[1] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999.

Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik
Magdon-Ismail, and Nathan Preston. Finding communities by clustering
a graph into overlapping subgraphs. In IADIS AC’05, pages 97-104,
2005.

V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008:P10008, 2008.

(21

(31

56

[4

=

[5

[l

[6

—

[7

—

(8]

[9

—

[10]

[11]

(12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]

[27]

(28]

Paolo Boldi, Violetta Lonati, Massimo Santini, and Sebastiano Vigna.
Graph fibrations, graph isomorphism, and PageRank. RAIRO Inform.
Théor., 40:227-253, 2006.

Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna.
Layered label propagation: A multiresolution coordinate-free ordering
for compressing social networks. In Sadagopan Srinivasan, Krithi
Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi
Kumar, editors, Proceedings of the 20th international conference on
World Wide Web, pages 587-596. ACM, 2011.

Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 595-601, Manhattan, USA,
2004. ACM Press.

Gianna M. Del Corso, Antonio Gulli, and Francesco Romani. Fast
pagerank computation via a sparse linear system. Internet Mathematics,
2:118-130, 2004.

T. S. Evans and R. Lambiotte. Line graphs, link partitions, and
overlapping communities. Phys. Rev. E, 80(1):016105, Jul 2009.

Santo Fortunato and Claudio Castellano. Community structure in graphs.
In Robert A. Meyers, editor, Encyclopedia of Complexity and Systems
Science, pages 1141-1163. Springer, 2009.

R. L. Hemminger and L. W. Beineke. Line graphs and line digraphs.
In L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph
Theory, pages 271-305. Academic Press Inc., 1978.

Chen Jianbin, Fang Deying, and Shi Tong. A graph partition-based soft
clustering algorithm. In Proceedings of the 2008 Second International
Symposium on Intelligent Information Technology Application - Volume
02, pages 572-577, Washington, DC, USA, 2008. IEEE Computer
Society.

Youngdo Kim and Hawoong Jeong.
community. CoRR, abs/1105.0257, 2011.
Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet
Mathematics, 1(3):355-400, 2004.

Silvio Lattanzi and D. Sivakumar. Affiliation networks. In Proceedings
of the 41st annual ACM symposium on Theory of computing, STOC 09,
pages 427-434, New York, NY, USA, 2009. ACM.

Bo Long, Mark Zhang, Philip S. Yu, and Tianbing Xu. Clustering on
complex graphs. In Proceedings of the 23rd national conference on
Artificial intelligence - Volume 2, pages 659-664. AAAI Press, 2008.
D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The university of
south florida word association, rhyme, and word fragment norms. http:
/Iwww.usf.edu/FreeAssociation/, 1998.

Gergely Palla, Illes J. Farkas, Peter Pollner, Imre Derenyi, and Tamas
Vicsek. Directed network modules. New J.Phys., 9:186, 2007.

Usha N. Raghavan, Réka Albert, and Soundar Kumara. Near linear
time algorithm to detect community structures in large-scale networks.
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
76(3), 2007.

Peter Ronhovde and Zohar Nussinov. Local resolution-limit-free potts
model for community detection. Phys. Rev. E, 81(4):046114, Apr 2010.
Martin Rosvall and Carl T. Bergstrom. Multilevel compression of
random walks on networks reveals hierarchical organization in large
integrated systems. PLoS ONE, 6(4):¢18209, 04 2011.

Satu Elisa Schaeffer. Graph clustering. Computer Science Review,
1(1):27-64, 2007.

E. Seneta. Non-negative matrices and Markov chains. Springer—Verlag,
New York, 1981.

Ranjith Unnikrishnan and Martial Hebert. Measures of similarity. In 7¢h
IEEE Workshop on Applications of Computer Vision / IEEE Workshop
on Motion and Video Computing (WACV/MOTION 2005), pages 394—
400. IEEE Computer Society, 2005.

Sebastiano Vigna. Spectral ranking, 2009.

Stanley Wasserman and Katherine Faust. Social network analysis:
Methods and applications. Cambridge Univ Press, 1994.

Wenpu Xing and Ali Ghorbani. Weighted pagerank algorithm. Com-
munication Networks and Services Research, Annual Conference on,
0:305-314, 2004.

Sune Lehmann Yong-Yeol Ahn, James P. Bagrow. Link communities
reveal multiscale complexity in networks. Nature, 466(7307):761-764,
August 2010.

W. W. Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33:452-473, 1977.

The map equation for link

