
BUbiNG: Massive Crawling for the Masses∗

Paolo Boldi
Dipartimento di Informatica

Università degli Studi di
Milano, Italy

boldi@di.unimi.it

Andrea Marino
Dipartimento di Informatica

Università degli Studi di
Milano, Italy

andrea.marino1@unimi.it
Massimo Santini

Dipartimento di Informatica
Università degli Studi di

Milano, Italy
santini@di.unimi.it

Sebastiano Vigna
Dipartimento di Informatica

Università degli Studi di
Milano, Italy

vigna@acm.org

ABSTRACT
Although web crawlers have been around for twenty years
by now, there is virtually no freely available, open-source
crawling software that guarantees high throughput, over-
comes the limits of single-machine tools and at the same
time scales linearly with the amount of resources available.
This paper aims at filling this gap.

We describe BUbiNG, our next-generation web crawler
built upon the authors’ experience with UbiCrawler [8] and
on the last ten years of research on the topic. BUbiNG is
an open-source Java fully distributed crawler (no central co-
ordination), and single BUbiNG agents using sizeable hard-
ware can crawl several thousands pages (per agent) per sec-
ond respecting strict politeness constraints, both host- and
IP-based. Unlike existing open-source distributed crawlers
that rely on batch techniques (like MapReduce), BUbiNG
job distribution is based on modern high-speed protocols so
to achieve very high throughput.

1. INTRODUCTION
A web crawler (sometimes also known as a (ro)bot or spi-

der) is a system that downloads systematically a large num-
ber of web pages starting from a seed. Web crawlers are, of
courses, used by search engines, but also by companies sell-
ing“Search–Engine Optimization”services, archival projects
such as the Internet Archive, surveillance systems (e.g., that
scan the web looking for cases of plagiarism), and by enti-
ties performing statistical studies of the structure and the
content of the web, just to name a few.

∗The authors were supported by the EU-FET grant NA-
DINE (GA 288956).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

The basic inner working of a crawler is surprisingly simple
form a theoretical viewpoint: it is a form of traversal (for
example, a breadth-first visit). Starting from a given seed
of URLs, a set of associated pages is downloaded, their con-
tent is parsed, and the resulting links are used iteratively to
collect new pages.

Albeit in principle a crawler just performs a visit of the
web, there are a number of factors that make the visit of a
crawler inherently different from a textbook algorithm. The
first and most important difference is that the size of the
graph to be explored is unknown and huge; in fact, infinite.
The second difference is that visiting a node (i.e., download-
ing a page) is a complex process that has intrinsic limits
due to network speed, latency, and politeness—the require-
ment of not overloading servers during the download. Not
to mention the countless problems (errors in DNS resolu-
tions, protocol or network errors, presence of traps) that
the crawler may find on its way.

In this paper we describe the design and implementation
of BUbiNG, our new web crawler built upon the experience
with UbiCrawler [8] and on the last ten years of research on
the topic. BUbiNG aims at filling an important gap in the
range of available crawlers. In particular:

• It is a pure-Java, open-source crawler released under
the Gnu GPLv3.

• It is fully distributed: multiple agents perform the
crawl concurrently and handle the necessary coordi-
nation without the need of any central control; given
enough bandwidth, the crawling speed grows linearly
with the number of agents.

• Its design acknowledges that CPUs and OS kernels
have become extremely efficient in handling a large
number of threads, in particular if they are mainly
I/O-bound, and that large amounts of RAM are by
now easily available at a moderate cost.

• More in detail, we assume that the memory used by
an agent must be constant in the number of discovered
URLs, but that it can scale linearly in the number
of discovered hosts. This assumption simplifies and
makes several data structures more efficient.

• It is very fast: on a 64-core, 64GB workstation it can
download hundreds of million of pages at more than

9 000 pages per second respecting politeness both by
host and by IP, analyzing, compressing and storing
more than 140 MB/s of data.

• It is extremely configurable: beyond choosing the sizes
of the various data structures and the communication
parameters involved, implementations can be speci-
fied by reflection in a configuration file and the whole
dataflow followed by a discovered URL can be con-
trolled by arbitrary user-defined filters, that can fur-
ther be combined with standard Boolean-algebra op-
erators.

• It guarantees that hostwise the visit is an exact breadth-
first visit (albeit the global policy can be customized).

• It guarantees that politeness intervals are satisfied both
at the host and the IP level, that is, that two data
fetch to the same host or IP are separated by at least
a specified amount of time. The two intervals can be
set independently, and, in principle, customized per
host or IP.

When designing a crawler, one should always ponder over
the specific usage the crawler is intended for. This deci-
sion influences many of the design details that need to be
taken. Our main goal is to provide a crawler that can be
used out-of-the-box as an archival crawler, but that can be
easily modified to accomplish other tasks. Being an archival
crawler, it does not perform any refresh of the visited pages,
and moreover it tries to perform a visit that is as close to
breadth-first as possible (more about this below). Both be-
haviors can in fact be modified easily in case of need, but
this discussion (on the possible ways to customize BUbiNG)
is out of the scope of this paper.

We plan to use BUbiNG to provide new data sets for the
research community. Datasets crawled by UbiCrawler have
been used in hundreds of scientific publications, but BUb-
iNG makes it possible to gather data orders of magnitude
larger.

2. RELATED WORKS
Web crawlers have been developed since the birth of the

web. The first generation crawler dates back to the early 90s:
World Wide Web Worm [24], RBSE spider [16], MOMspi-
der [18], WebCrawler [30]. One of the main contributions of
these works has been that of pointing out some of the main
algorithmic and design issues of crawlers. In the meanwhile,
several commercial search engines, having their own crawler
(e.g., AltaVista) were born. In the second half of the 90s,
the fast growth of the web called for the need of large-scale
crawlers, like the crawler of Internet Archive Module [11]
and the first generation of the Google crawler [9]. This gen-
eration of spiders was able to download efficiently tens of
millions of pages. At the beginning of 2000, the scalability,
the extensibility, and the distribution of the crawlers become
a key design point: this was the case of the Java crawler Mer-
cator [28] (distributed version of [19]), Polybot [32], IBM
WebFountain [15], and UbiCrawler [8]. These crawlers were
able to produce snapshots of the web of hundreds of millions
of pages.

Recently, a new generation of crawlers was designed, aim-
ing to download billions of pages, like [22]. Nonetheless,
none of them is freely available and open source: BUbiNG

is the first open-source crawler designed to be fast, scalable
and runnable on commodity hardware.

For more details about previous works or in the main is-
sues in the design of crawlers, we refer the reader to [29, 26,
31].

2.1 Open-source crawlers
Although web crawlers have been around for twenty years

by now (since the spring of 1993, according to [29]), the
area of freely available ones, let alone open-source, is still
quite narrow. With the few exceptions that will be discussed
below, most stable projects we are aware of (GNU wget, Ht-
//Dig, mngoGoSearch, to cite a few) do not (and are not
designed to) scale to download more than few thousands or
tens of thousands pages. They can be useful to build an
intranet search engine, but not for web-scale experiments.

Heritrix [1, 27] is one of the few examples of an open-
source search engine designed to download large datasets: it
was developed starting from 2003 by Internet Archive [2] (a
non-profit corporation aiming to keep large archival-quality
historical records of the world-wide web) and it has been
since actively developed. Heritrix (available under the Apache
license) is a single-machine crawler, although it is of course
multi-threaded, which is the main hindrance to its scalabil-
ity. The default crawl order is breadth-first, as suggested
by the archival goals behind its design. On the other hand,
it provides a powerful checkpointing mechanism and a flex-
ible way of filtering and processing URLs after and before
fetching. It is worth noting that Internet Archive proposed,
implemented (in Heritrix) and fostered a standard format
for archiving web content, called WARC, that is now an ISO
standard [4] and that BUbiNG is also adopting for storing
the downloaded pages.

Nutch [21] is one of the best known existing open-source
web crawlers; in fact, the goal of Nutch itself is much broader
in scope, because it aims at offering a full-fledged search en-
gine under all respects: besides crawling, Nutch implements
features such as (hyper)text-indexing, link analysis, query
resolution, result ranking and summarization. It is natively
distributed (using Apache Hadoop as task-distribution back-
bone) and quite configurable; it also adopts breadth-first as
basic visit mechanism, but can be optionally configured to
go depth-first or even largest-score first, where scores are
computed using some scoring strategy which is itself con-
figurable. Scalability and speed are the main design goals
of Nutch; for example, Nutch was used to collect TREC
ClueWeb09 dataset1, the largest web dataset publicly avail-
able as of today consisting of 1 040 809 705 pages, that were
downloaded at the speed of 755.31 pages/s [3], but to do
this they used a Hadoop cluster of 100 machines [12], so
their real throughput was of about 7.55 pages/s per machine.
This figure is not unexpected: using Hadoop to distribute
the crawling jobs is easy, but not efficient, because it con-
strains the crawler to work in a batch fashion. It shouldn’t
be surprising that using a modern job-distribution frame-
work like BUbiNG does increases the throughput by orders
of magnitude.

1The new ClueWeb12 dataset, that is going to be released
soon, was collected using Heritrix, instead: five instances of
Heritrix, running on five Dell PowerEdge R410, were run for
three months, collecting 1.2 billions of pages. The average
speed was of about 38.6 pages per second per machine.

3. ARCHITECTURE OVERVIEW
BUbiNG stands on a few architectural choices which in

some cases contrast the common folklore wisdom. We took
our decisions after carefully benchmarking several options
and gathering the hands-on experience of similar projects.

• The fetching logic of BUbiNG is built around thou-
sands of identical fetching threads performing essen-
tially only synchronous (blocking) I/O. Experience with
recent Linux kernels and increase in the number of
cores per machine shows that this approach consis-
tently outperforms asynchronous I/O. This strategy
simplifies significantly the code complexity, and makes
it trivial to implement features like HTTP/1.1“keepalive”
multiple-resource downloads.

• Lock-free [25] data structures are used to “sandwich”
fetching threads, so that they never have to access
lock-based data structures. This approach is particu-
larly useful to avoid direct access to synchronized data
structures with logarithmic modification time, such as
priority queues, as contention between fetching threads
can become very significant.

• URL storage (both in memory and on disk) is entirely
performed using byte arrays. While this approach
might seen anachronistic, the Java String class can
easily occupy three times the memory used by a URL
in byte-array form (both due to additional fields and
to 16-bit characters) and doubles the number of ob-
jects. BUbiNG aims at exploiting the large memory
sizes available today, but garbage collection has a lin-
ear cost in the number of objects: this factor must be
taken into account.

• Following UbiCrawler’s design [8], BUbiNG agents are
identical and autonomous. The assignment of URLs to
agents is entirely customizable, but by default we use
consistent hashing as a fault-tolerant, self-configuring
assignment function.

In this section, we overview the structure of a BUbiNG
agent: the following sections detail the behavior of each
component. The inner structure and data flow of an agent
is depicted in Figure 1.

The bulk of the work of an agent is carried out by low-
priority fetching threads, which download pages, and parsing
threads, which parse and extract information from down-
loaded pages. Fetching threads are usually thousands, and
spend most of their time waiting for network data, whereas
one usually allocates as many parsing threads as the num-
ber of available cores, because their activity is mostly CPU
bound.

Fetching threads are connected to parsing threads using a
lock-free result list in which they enqueue buffers of fetched
data, and wait for a parsing thread to analyze them. Pars-
ing threads poll the result list using an exponential backoff
scheme, perform actions such as parsing and link extraction,
and signal back to the fetching thread that that the buffer
can be filled again.

As parsing threads discover new URLs, they enqueue them
to a sieve that keeps track of which URLs have been al-
ready discovered (we do not want to download the same
URL twice). A sieve is a data structure similar to a queue
with memory: each enqueued element will be dequeued at

some later time, with the guarantee that an element that is
enqueued multiple times will be dequeued just once. URLs
are added to the sieve as they are discovered by parsing. A
cache sits in front of the sieve to avoid that frequently found
URLs put the sieve under stress. The cache has also an-
other important goal: it avoids that frequently found URLs
assigned to another agent are retransmitted several times.

URLs that come out of the sieve are ready to be visited,
and they are taken care of (stored, organized and managed)
by the frontier, which is actually itself decomposed into sev-
eral modules.

The most important data structure of the frontier is the
workbench, an in-memory data structure that keeps track of
the visit state of each host currently visited and that can
check in constant time whether some host can be accessed
for download without violating the politeness constraints.
Note that to attain the goal of several thousands downloaded
pages per second without violating politeness constraints it
is necessary to keep track of the visit state of hundreds of
thousands of hosts.

When a host is ready for download, its visit state is ex-
tracted from the workbench and moved to a lock-free todo
queue by a suitable thread. Fetching threads poll the todo
queue with an exponential backoff, fetch resources from the
retrieved visit state2 and then put it back on the workbench.
Note that we expect that once a large crawl has started, the
todo queue will never be empty, so fetching threads will
never have to wait. Most of the efforts of the components of
the frontier are actually geared towards avoiding that fetch-
ing threads ever wait on an empty todo queue.

The only active component (i.e., a thread) of the fron-
tier is the distributor : it is a high-priority thread that pro-
cesses URLs that come out of the sieve (and must therefore
be crawled). Assuming for a moment that memory is un-
bounded, the only task of the distributor is that of iteratively
dequeueing a URL from the sieve, checking whether it be-
longs to a host for which a visit state already exists, and
then either creating a new visit state or enqueuing the URL
to an existing one. If a new visit state is necessary, it is
passed to a set of DNS threads that perform DNS resolution
and then move the visit state on the workbench.

Since, however, breadth-first visit queue grows exponen-
tially, and the workbench can use only a fixed amount of
in-core memory, it is necessary to virtualize it, that is, writ-
ing on disk part of the URLs coming out of the sieve. To
decide whether to keep a visit state entirely in the workbench
or to virtualize it, and also to decide when and how URLs
should be moved from the virtualizer to the workbench, the
distributor uses a complex policy that is described later.

Finally, every agent stores resources in its store (that
may possibly reside on a distributed or remote file system).
The native BUbiNG store is a compressed file in the Web
ARChive (WARC) format (the standard proposed and made
popular by Heritrix). This standard specifies how to com-
bine several digital resources with other information into an
aggregate archive file. In BUbiNG compression happens in
a heavily parallelized way, with parsing threads compressing
independently pages and using concurrent primitives to pass
compressed data to a flushing thread.

3.1 The sieve
2Possibly multiple resources on a single TCP connection us-
ing the “keepalive” feature of HTTP 1.1.

(1)

Sieve Distributor

URL

host ↦ visit state

DNSThread

URL in
new host

workbench entry

IP ↦ workbench entry

Workbench

URL in
known host

visit state
(acquire)

TodoThread

Todo queue
FetchingThreadResults queue

ParsingThread parsed!

visit state
(put back)

URL
cache

Store

Workbench
Virtualizer
(disk queues)

(in memory)

page,
headers

etc.

URLs
found

URL

(2)

other
 agents

(3)URLs

Frontier

DoneThread

Done queue

Figure 1: Overview of the architecture of a BUbiNG agent. Ovals represent data structures, whereas rect-
angles represent threads (or sets of threads).

A sieve is a queue with memory: it provides enqueue
and dequeue primitives, similarly to a standard queue; each
element enqueued to a sieve will be eventually dequeued
later. However, a sieve guarantees also that if an element
is enqueued multiple times, it will be dequeued just one
time. Sieves (albeit not called with this name) have always
been recognized as a fundamental basic data structure for
a crawler: their main implementation issue lies in the un-
bounded, exponential growth of the number of discovered
URLs. While it is easy to write enqueued elements to a
disk file, checking that an element is not returned multiple
times requires ad-hoc data structures, as standard dictionar-
ies would use too much in-core memory.

The actual sieve implementation used by BUbiNG can be
customized, but the default one, called MercatorSieve, is
similar to the one suggested in [19] (hence its name). Each
element known to the sieve is stored as a 64-bit hash in a
disk file. Every time a new element is enqueued, its hash
is stored in an in-memory array, and the element is saved
in an auxiliary file. When the array is full, it is sorted and
compared with the set of elements known to the sieve. The
auxiliary file is then scanned, and previously unseen ele-
ments are stored for later dequeueing. All these operations
require only sequential access to all files involved. Note that
the output order is guaranteed to be the same of the input
order (i.e., elements are appended in the same order in which
they appeared the first time).

A generalization of the idea of a sieve, which adds the

possibility of associating values with elements, is the DRUM
(Disk Repository with Update Management) structure used
by IRLBot and described in [22]. A DRUM provides ad-
ditional operations that retrieve or update the values asso-
ciated with elements. From an implementation viewpoint,
DRUM is a Mercator sieve with multiple arrays, called buck-
ets, in which a careful orchestration of in-memory and on-
disk data makes it possible to sort in one shot sets of ele-
ments an order of magnitude larger than what the Mercator
sieve would allow using the same in-core memory. However,
to do so DRUM must sacrifice breadth-first order: due to
the inherent randomization of key placement in the buckets,
there is no guarantee that URLs will be crawled in breadth-
first order, not even per host. Finally, the tight analysis
in [22] about the properties of DRUM is unavoidably bound
to the single-agent approach of IRLBot: for example, the
authors conclude that a URL cache to reduce the number
of insertions in the DRUM is not useful, but the same cache
reduces significantly network transmissions. Once the cache
is in place, the Mercator sieve becomes much more compet-
itive.

There are several other implementations of the sieve logic
currently used. A quite common choice is to use an ex-
plicit queue and a Bloom filter [7] to remember enqueued el-
ements. Albeit popular, this choice has no theoretical guar-
antee: while it is possible to decide a priori the maximum
number of pages that will ever be crawled, it is very diffi-
cult to bound in advance the size of the discovered URLs,
and this number is essential in sizing the Bloom filter. If

the discovered URLs are significantly more than expected,
several pages are likely to be lost because of false positives.
A better choice is to use a dictionary of fixed-size finger-
prints obtained from URLs using a suitable hash function.
The disadvantage is that the structure would no longer use
constant memory.

3.2 The workbench
The workbench is an in-memory data structure that con-

tains the next URLs to be visited, and can check in constant
time whether a URL is ready for download without violat-
ing politeness limits. It is one of the main novel ideas in
BUbiNG’s design, and it is one of the main reasons why we
can attain a very high throughput.

First of all, URLs associated with a specific host3 are kept
in a structure called visit state, containing a FIFO queue
of the next URLs to be crawled for that host along with
a next-fetch field that specifies the first instant in time
when a URL from the queue can be downloaded, according
to the per-host politeness configuration. Note that inside a
visit state we only store a byte-array representation of the
path and query of a URL: this approach significantly reduces
object creation, and provides a simple form of compression
by prefix omission.

Visit states are further gathered by IP address in work-
bench entries; every time the first URL for a given host is
found, a new visit state is created and then the IP address
is determined (by one of the DNS threads): the new visit
state is either put in a new workbench entry (if no known
host was as yet associated to that IP), or in an existing one.

A workbench entry contains a queue of visit states priori-
tized by their next-fetch field. In other words, a workbench
entry contains all visit states associated with the same IP,
along with an IP-specific next-fetch, containing the first
instant in time when the IP address can be accessed again,
according to the per-IP politeness configuration. The work-
bench is the queue of all workbench entries, prioritized on
the next-fetch field of each entry maximized with the next-
fetch field on the top element of its queue of visit states.
In other words, the workbench is a priority queue of priority
queues of FIFO queues.

We remark that due to our choice of priorities there is a
host that can be visited without violating host or IP politeness
if and only if the first URL of the top visit state of the top
workbench entry can be visited. Moreover, if there is no such
host, the delay after which a host will be ready is given by
the priority of the top workbench entry minus the current
time.

The workbench acts as a delay queue: its dequeue opera-
tion waits, if necessary, until a host is ready to be visited. At
that point, the top entry E is removed from the workbench
and the top visit state is removed from E. The visit state
and the associated workbench entry act as a token that is
virtually passed between BUbiNG’s components to guaran-
tee that no component is working on the same workbench
entry at the same time (in particular, this forces both kinds

3Every URL is made [6] by a scheme (also popularly called
“protocol”), an authority (a host, possibly a port number,
and possibly some user information) and a path to the re-
source, possibly followed by a query (that is separated from
the path by a “?”). BUbiNG’s data structures are built
around the pair scheme+authority, but in this paper we will
use the more common word “host” to refer to it.

of politeness). In practice, as we mentioned in the overview,
dequeueing is performed by a high-priority thread, the todo
thread, that constantly dequeues visit states from the work-
bench and enqueue them to a lock-free todo queue, which is
then accessed by fetching threads. This approach, besides
avoiding contention by thousands of threads on a relatively
slow structure, makes the number of visit states that are
ready for downloads easily measurable: it is just the size
of the todo queue. The downside is that, in principle, using
very skewed per-host or per-IP politeness delays might cause
the order of the todo queue not to reflect the actual priority
of the visit state contained therein.

3.3 Fetching threads
A fetching thread is a very simple thread that iteratively

extracts visit states from the todo queue. If the todo queue
is empty, a standard exponential backoff procedure is used to
avoid polling the list too frequently, but the design of BUb-
iNG aims at keeping the todo queue nonempty and avoiding
backoff altogether.

Once a fetching thread acquires a visit state, it tries to
fetch the first URL of the visit state FIFO queue. If suitably
configured, a fetching thread can also iterate the fetching
process on more URLs for a fixed amount of time, so to
exploit the “keepalive” feature of HTTP 1.1.

Each fetching thread has an associate fetch data instance
in which the downloaded data are buffered. Fetch data in-
clude a transparent buffering method that keeps in memory
a fixed amount of data and dumps on disk the remaining
part. By sizing the fixed amount suitably, most requests
can be completed without accessing the disk, but at the
same time rare large requests can be handled without allo-
cating additional memory.

After a URL has been fetched, the fetch data is put in the
results queue so that one of the parsing threads will parse
it. One the parsing is over, the parsing thread will signal
back so the fetching thread will be able to start working on
a new URL. Once a fetching thread has to work a new visit
state, it puts the current visit state on a done queue, from
which it will be dequeued by a suitable thread that will put
it back on the workbench together with its associated entry.

Most of the time, a fetching thread is blocked on I/O,
which makes it possible to run thousands of them in paral-
lel. Indeed, the number of fetching threads determines the
amount of parallelization BUbiNG can achieve while fetch-
ing data from the network, so it should be chosen as large
as possible, compatibly with the amount of bandwidth avail-
able and with the memory used by fetch data.

3.4 Parsing threads
A parsing thread iteratively extracts from the results queue

fetch data that have been previously enqueued by a fetch-
ing thread. Then, the content of the HTTP response is
analyzed and possibly parsed. If the response contains an
HTML page, the parser will produce a set of URLs that will
be first checked against the URL cache, and then, if not al-
ready seen, either sent to another agent, or enqueued to the
sieve (given that the maximum number of URLs per host
has not been exceeded).

During the parsing phase, a parsing thread computes a sig-
nature of the content of the response. In the case of HTML
pages, some heuristic is used to collapse near-duplicates (e.g.,
most HTML attributes are stripped). The signature is stored

in a Bloom filter [7] and it is used to avoid crawling several
times the same page (or near-duplicate pages).4 Finally, the
content of the response is saved to the store.

The number of parsing threads should be equal to the
number of available cores.

3.5 DNS threads
DNS threads are used to solve host names of new hosts:

a DNS thread continuously dequeues from the list of newly
discovered visit states and resolves its host name, adding it
to a workbench entry (or creating a new one, if the IP itself
is new), and putting it on the workbench.

The number of DNS threads is limited by the kind of
DNS service the crawler relies upon. In our experience, it
is essential to run a local recursive DNS server to avoid the
bottleneck of an external server.

3.6 The workbench virtualizer
The workbench virtualizer is a sequence of k on-disk URL

queues (at the beginning k = 1), called virtual queues; the
last virtual queue is called overflow queue. This design is
inspired by the BEAST module of IRLbot [22], albeit it is
more geared towards maintaining the visit order as close as
possible to a breadth-first visit, rather than using prioriti-
zation.

Conceptually, all URLs that have been extracted from the
sieve but have not yet been fetched are enqueued in the
workbench visit state they belong to, in the exact order in
which they came out of the sieve. Since, however, we aim at
crawling with an amount of memory that is constant in the
number of discovered URLs, part of the queue must be writ-
ten on disk. Each virtual queue contains a fraction of URLs
from each visit state, in such a way that the overall URL
order respects, per host, the original breadth-first order.

Virtual queues are consumed as the visit proceeds, fol-
lowing the natural per-host breadth-first order. As fetching
threads download URLs, the workbench is partially freed
and can be filled with URLs coming from the virtual queues.
When all virtual queues preceding the overflow queue have
been exhausted, the number of virtual queues is increased
(usually doubled) and the content of the overflow queue is
redistributed on the set of new queues based on an estimate
of the future time at which each URL will be needed.

3.7 The distributor
The distributor is a high-priority thread that orchestrates

the movement of URLs out of the sieve, and loads as neces-
sary URLs from virtual queues into the workbench.

As the crawl proceeds, URLs get accumulated in work-
bench visit states at different speeds, both because hosts
have different responsiveness and because websites have dif-
ferent sizes and branching factors. Moreover, the size occu-
pied by the workbench has a (configurable) limit that cannot
be exceeded, as one of the central design goals of BUbiNG
is that the amount of central memory occupied cannot grow
unboundedly in the size of the discovered URLs, but only in
the number of hosts discovered. Thus, filling the workbench
blindly with URLs coming out of the sieve would soon re-
sult in having in the workbench only URLs belonging to a
limited number of hosts.

4In a post-crawl phase, there are several more sophisticated
approaches that can be applied, like shingling [10], simhash
[14], fuzzy fingerprinting [17, 13] and others, like [23].

The front of a crawl, at any given time, is the number
of visit states that is ready for download by politeness con-
straints. The front size determines the overall throughput
of the crawler—because of politeness, the number of dis-
tinct hosts currently being visited is the crucial datum that
establishes how fast or slow the crawl is going to be.

One of the two forces driving the distributor is, indeed,
that the front should always be large enough so that no fetch-
ing thread has ever to wait. To attain this goal, the distrib-
utor enlarges dynamically the required front size: each time
a fetching thread has to wait, although the current front
size is larger than the current required front size, the latter
is increased. After a warmup phase, the required front size
stabilizes to a value that depends on the kind of host visited
and on the amount of resources available. At that point, it is
impossible to have a faster crawl given the resources avail-
able, as all fetching threads are continuously downloading
data. Increasing the number of fetching threads, of course,
may cause an increase of the required front size.

The second force driving the distributor is the (somewhat
informal) requirement that we try to be as close to a breadth-
first visit as possible. Note that this force works in an op-
posite direction with respect to enlarging the front—URLs
that are already in existing visit states should be in principle
visited before any URL in the sieve, but enlarging the front
requires dequeueing from the sieve to find new hosts.

The distributor is also responsible for filling the work-
bench with URLs coming either out of the sieve, or out of
virtual queues (circle numbered (1) in Figure 1). Once again,
staying close to a breadth-first visit requires loading URLs
in virtual queues, but keeping the front large might require
reading URLs from the sieve to discover new hosts.

The distributor balances these two forces by keeping an
eye on the limbo—the set of visit states that currently have
URLs in virtual queues, but few (or no) no URLs in memory:

• if the limbo is large, the distributor will try to read
from the virtual queues, in the hope that the front (the
number of hosts currently being visited) can increase
at the expense of the limbo size;

• if the limbo is small, the distributor will rather read
from the sieve, hoping to find new sites to make the
front larger.

The limbo is considered to be large when it contains more
than a small fraction (typically, 1%) of the visit states with
some URLs in virtual queues. If there is no room in the
workbench, or the front is already large enough, the distrib-
utor just waits. The overall behavior is depicted in Figure 2.

Note that if the distributor takes the decision to read from
the virtual queues (i.e., to read the first URL of the first non-
empty queue), the URL is always put in the workbench (and
will be later fetched). On the other hand, if the workbench
reads a URL from the sieve it can be either put in the work-
bench or written in a virtual queue, depending on the esti-
mate of the future time at which the URL will be needed. If
the distributor decides to write the URL on a virtual queue,
another URL will have to be taken either from the sieve or
from the virtual queues, and so on until the workbench is
full again or until the front is large enough.

3.8 Configuration and Heuristics

Wait

workbench
full ?

front size <
required ?

limbo is large ?

Process one URL
from sieve

Read one URL from
virtual queues and

put it on workbench

keep waiting:
no need
to visit
more hosts

keep waiting:
no space

in memory

No

Yes

No

Yes

Yes

No

Figure 2: How the distributor interacts with the
sieve, the workbench and the workbench virtualizer.

To make BUbiNG capable of a versatile set of tasks and
behaviors, every crawling phase (fetching, parsing, following
the URLs of a page, scheduling new URLs, storing pages) is
controlled by a filter, a Boolean predicate that determines
whether a given resource should be accepted or not. Filters
can be configured both at startup and at runtime allowing
for a very fine-grained control.

The type of objects a filter considers is called the base type
of the filter. In most cases, the base type is going to be a
URL or a fetched page. More precisely, a prefetch filter is
one that has a BUbiNG URL as its base type (typically: to
decide whether a URL should be scheduled for later visit, or
should be fetched); a postfetch filter is one that has a fetched
response as base type and decides whether to do something
with that response (typically: to parse it, to store it, etc.).

Even if it is relatively easy to write a filter, BUbiNG con-
tains a number of filters ready to be used. The prefetch
filters include, for instance filters that accept only URLs
whose host ends with a certain string, or URLs whose path
ends with one of a given set of suffixes. The postfetch filters
include, for instance, filters accepting certain contain types,
or streams that appear to be binary.

Filters can be composed by means of Boolean operators
with a short-circuit semantics. Additionally, we provide a
parser that makes it possible creating filters by reflection.
An example of a textual description of a composed filter is:

(HostEndsWith(foo.bar) and not
ForbiddenHost(http://xxx.yyy/list-of-hosts))

or NoMoreSlashThan(10)

One filter, in particular, accepts only URLs whose path
does not contain too many duplicate segments. Indeed, it is
not uncommon to find URLs generated by badly configured
servers that look like http://.../foo/bar/foo/bar/.... Our
filter will not accept URLs containing a sequence of consecu-
tive segments appearing more times than a given threshold.
The implementation uses ideas from [20] to simulate a suffix-
tree visit on a suffix array, and the approach of [33], for the
linear-time detection of tandem arrays using suffix trees: the

resulting code is one order of magnitude faster than regu-
lar expressions. We observe that, for the same purpose of
avoiding bad URLs (of different kinds), it would be inter-
esting to add a filter implementing the DUSTER (Different
URL’s with Similar Text) technique [5].

3.9 Distributed crawling
BUbiNG crawling activity can be distributed by running

several agents over multiple machines. All agents are iden-
tical instances of BUbiNG, without any explicit leadership,
similarly to UbiCrawler [8]: all data structures described
above are part of each agent.

URL assignment to agent is entirely configurable. By de-
fault, BUbiNG uses just the host to assign a URL to an
agent, which avoids that two different agents can crawl the
same host at the same time. Moreover, since most hyperlinks
are relative, each agent will be himself responsible for the
large majority of URLs found in a typical HTML page [29].
Assignment of hosts to agent is performed using consistent
hashing [8].

Communication of URLs between agents is handled by
the message-passing methods of the JGroups Java library;
in particular, to make communication lightweight URLs are
by default distributed using UDP. More sophisticated com-
munications between the agents rely on the TCP-based JMX
Java standard remote-control mechanism, which exposes most
of the internal configuration parameters and statistics. Most
of the crawler structures are indeed modifiable at runtime,
including, for instance, the number of parsing, fetching and
DNS threads.

4. EXPERIMENTS
Testing a crawler is a delicate, intricate, arduous task:

on one hand, every real-world experiment is obviously in-
fluenced by the hardware at one’s disposal (in particular,
by the available bandwidth). Moreover, real-world tests are
difficult to repeat many times with varying parameters: you
will either end up disturbing the same sites over and over
again, or choosing to visit every time a different portion of
the web, with the risk of introducing artifacts in the evalu-
ation. Given these considerations, we ran two kinds of ex-
periments: one batch was performed in vitro with a HTTP
proxy5 simulating network connections towards the web and
generating fake HTML pages (with a configurable behavior
that includes delays, protocol exceptions etc.), and another
group of experiments were performed in vivo.

4.1 In vitro experiments
To verify the robustness of BUbiNG when varying some

basic parameters, such as the number of fetching threads
or the IP delay, we have run some in vitro simulations on
a group of four machines sporting 64 cores and 64 GB of
core memory. In all experiments, the number of parsing and
DNS threads has been fixed and set respectively to 64 and
10. The size of the workbench has been set to 512MB, while
the size of the sieve has been set to 256MB. Every in vitro
experiment was run for 90 minutes.

Fetching threads. The first thing we wanted to test was
that increasing the number of fetching threads produces a

5The proxy software is distributed along with the rest of
BUbiNG.

Resources Resources/s Speed in MB/s
Crawler Machines (Millions) overall per agent overall per agent

Nutch (ClueWeb09) 100 (Hadoop) 1 200 430 4.3 10 0.1
Heritrix (ClueWeb12) 5 2 300 300 60 19 3.9
IRLBot 1 6 380 1 790 1 790 40 40
BUbiNG (Milano) 3 650 2 200 735 96 32
BUbiNG (Pisa) 1 100 2 500 2 500 71 71
BUbiNG (Pisa) 4 37 5 400 1 350 168 42
BUbiNG (iStella) 1 115 3 700 3 700 135 135
BUbiNG (in vitro) 4 1 000 36 600 9 150 584 146

Table 1: Comparison between BUbiNG and the main existing open-source crawlers. Resources are HTML
pages for ClueWeb09 and IRLBot, but include other data types (e.g., images) for ClueWeb12. For reference,
we also report the throughput of IRLbot [22], although the latter is not open source. Note that ClueWeb09
was gathered using a heavily customized version of Nutch.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

P
ag

es
/s

Number of threads

Figure 3: The average number of pages per second
with respect to the number of threads using a sim-
ulated slow connection. Note the linear increase in
speed until the plateau, due to the limited (300)
number of threads of the simulator.

better usage of the network, and hence a larger number of re-
quests, until the bandwidth is saturated. The results of this
experiment are shown in Figure 3 and have been obtained by
having the proxy simulate a network that saturates quickly,
using no politeness delay. The behavior visible in the plot
tells us that the increase in the number of fetching threads
produces a linear increase in the number of requests until the
available (simulated) bandwidth is reached; after that, the
number of requests stabilizes to a plateau. Also this part of
the plot tells us something: after saturating the bandwidth,
we do not see any decrease in the throughput, witnessing the
fact that our infrastructure does not cause any hindrance to
the crawl.

Politeness. The experiment described so far uses a small
number of fetching threads, because the purpose was to show
what happens before saturation. Now we show what hap-
pens under a heavy load. Our second in vitro experiment
keeps the number of fetching threads fixed but increases the
amount of politeness, as determined by the IP delay. The
IP (respectively host) delay is a lower bound of the time be-
tween two successive requests to the same IP (respectively

host). In our simulations we varied the IP delay and always
set the host delay to be eight times the IP delay. We plot
BUbiNG’s throughput as the IP delay (hence the host delay)
increases in Figure 4 (top): to maintain the same through-
put, the front size (i.e., the number of hosts being visited
in parallel) must increase, as expected. Moreover, this is
independent on the number of threads (of course, until the
network is saturated). In the same Figure we show that the
average throughput is essentially independent from the po-
liteness (and from the number of fetching threads) and the
same is true of the CPU load. Even if this could seem sur-
prising, this is the natural consequence of the following two
observations:

• even with a small amount of fetching threads, BUbiNG
always tries to fill the bandwidth and to maximize the
computational resources;

• even varying the IP and host delay, BUbiNG modifies
the number of hosts under visit in order to tune the
interleaving between their processing.

Raw speed. Finally, we wanted to test the raw speed of a
cluster of BUbiNG agents. We thus ran four agents using a
larger workbench (2 GB) and 1000 fetching threads, IP delay
500 ms and host delay 4 s. We ran the agents until we gath-
ered one billion pages, averaging 36 600 pages per second on
the whole cluster. We also ran the same test on a single
machine, obtaining essentially the same per-machine speed,
showing that BUbiNG scales linearly with the number of
agents in the cluster.

4.2 In vivo experiments
We performed a number of experiments in vivo at different

sites. The main problem we had to face is that a single
BUbiNG agent on sizable hardware can saturate a 1 Gb/s
geographic link, so, in fact, we were not able to perform
any test in which the network was not capping the crawler.
Due to resource constraints, we decided to perform medium-
size experiments on a variety of architectures and network
connections. In the final version of the paper, we will report
data for longer-running experiments.

A first, longer experiment was performed at our univer-
sity (Milano): three BUbiNG agents using the same hard-
ware of the in vitro experiments gathered 650 million pages
from domains of the EU, but the connection was capped at
250 Mb/s. A second set of short-running experiments was

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
er

ag
e

fr
o

n
t

si
ze

 (
IP

s)

IP delay (ms)

125 threads
500 threads

2000 threads

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
er

ag
e

S
p
ee

d
 (

R
eq

u
es

ts
/s

)

IP delay (ms)

125 threads
500 threads

2000 threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

A
v
er

ag
e

C
p
u
 L

o
ad

IP delay (ms)

125 threads
500 threads

2000 threads

Figure 4: The average size of the front, the aver-
age number of requests per second, and the average
CPU load with respect to the IP delay (the host de-
lay is set to eight times the IP delay). Note that
the front adapts linearly to the growth of the IP de-
lay, and, due to the essentially unlimited bandwidth
of the simulator, the number of fetching threads is
irrelevant.

performed at Università di Pisa, using slower hardware (24-
core, 24 GB RAM) capped at 1 Gb/s. Finally, iStella, an
Italian commercial search engine provided us with a 48-core,
512 GB RAM machine capped at 1 Gb/s.

The results confirm the knowledge we have gathered with
our in vitro experiment: in the iStella experiment we were
able to saturate the 1 Gb/s link using a single BUbiNG
agent. The two experiment at Pisa show a single, small-sized
agent being able to download 2 500 pages per second, using
about 2/3 of the available bandwidth, and three agents, sat-
urating the 1 Gb/s link, downloading 5 400 pages per second.
Finally, the long-running experiment at our university, albeit
slow in comparison, shows the steadiness of BUbiNG after a
large number of pages have been downloaded (see Figure 5).

5. COMPARISON
When comparing crawlers, many measures are possible,

and depending on the task at hand, different measures might
be suitable. For instance, crawling all types of data (CSS,
images, etc.) usually yields a significantly higher through-
out than crawling just HTML, as HTML pages are often
rendered dynamically, sometimes causing a significant delay,
whereas most other types are served statically. The crawling
policy has also a huge influence on the throughput: priori-
tizing by indegree (as IRLBot does [22]) or alternative im-
portance measure shifts most of the crawl on sites hosted on
powerful servers with large-bandwidth connection. Ideally,
crawler should be compared on a crawl with given number
of pages in breadth-first fashion from a fixed seed, but some
crawlers are not available to the public, which makes this
goal unattainable.

In this section, as a tradeoff, we briefly give some very sim-
ple comparison with recent crawls made for the ClueWeb
project: ClueWeb09 and ClueWeb12. The data used in
this comparison are those available in [12] along with those
found at http://lemurproject.org/clueweb09/ and http:

//boston.lti.cs.cmu.edu/crawler/crawlerstats.html: no-
tice that the data we have about those collections are some-
times slightly contradictory. We report the throughput de-
clared by IRLBot [22], too, albeit the latter is not open
source.

The results of the comparison are shown in Table 1: they
show quite clearly that the speed of BUbiNG is several
times that of IRLBot and one to two orders of magnitude
greater than that of Heritrix or Nutch. While the com-
parison with the ClueWeb09 crawl is somewhat unfair (the
hardware was “retired search-engine hardware”), it shows
the inherent slowness of batch, Hadoop-based crawlers. The
comparison with ClueWeb12 is more interesting, as the hard-
ware used was recent and very similar to the one used in the
Milano and in the in vitro experiment, sporting 64 GB of
core memory.

All in all, our experiments show that BUbiNG’s design
provides a very high throughput: indeed, from our compar-
ison, the highest throughput. The fact that the throughput
can be scaled linearly just by adding agents makes it by far
the fastest crawling system publicly available.

6. CONCLUSIONS
In this paper we have presented BUbiNG, our next-generation

distributed open-source Java crawler. BUbiNG is order of
magnitudes faster than existing open-source crawlers, scales

Figure 5: Network usage as reported by FlowViewer for the last 24 hours of the Milano experiment. Note
that constant network usage. The peak around midnight is due to an internal data transfer.

linearly with the number of agents, and will provide the sci-
entific community with a reliable tool to gather large data
sets: this is the reason why, in the first place, the develop-
ment of BUbiNG was financed in the framework of the EU-
FET grant NADINE (New Algorithms for DIrected NEt-
works).

Future work on BUbiNG includes integration with spam-
detection software, policies for IP/host politeness throttling
based on download times and site branching speed, and in-
tegration with different stores like HBase, HyperTable and
similar distributed storage systems.

Acknowledgments. We thank our university for provid-
ing bandwidth for our experiments (and being patient with
bugged releases). We thank Giuseppe Attardi, Antonio Cis-
ternino and Maurizio Davini for providing the hardware, and
the GARR Consortium for providing the bandwidth for the
Pisa experiments. Finally, we thank Domenico Dato and
Renato Soru for providing the hardware and bandwidth for
the iStella experiment.

7. REFERENCES
[1] Heritrix web site. https://webarchive.jira.com/

wiki/display/Heritrix/Heritrix.

[2] Internet archive website.
http://archive.org/web/web.php.

[3] The clueweb09 dataset.
http://lemurproject.org/clueweb09/, 2009.

[4] Iso 28500:2009, information and documentation - warc
file format. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=44717, 2009.

[5] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. Do not
crawl in the dust: different urls with similar text. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 111–120, New
York, NY, USA, 2007. ACM.

[6] et al. Berners-Lee. Uniform resource identifier (uri):
Generic syntax.
http://www.ietf.org/rfc/rfc3986.txt, 2005.

[7] Burton H. Bloom. Space-time trade-offs in hash

coding with allowable errors. Comm. ACM,
13(7):422–426, 1970.

[8] Paolo Boldi, Bruno Codenotti, Massimo Santini, and
Sebastiano Vigna. Ubicrawler: A scalable fully
distributed web crawler. Software: Practice &
Experience, 34(8):711–726, 2004.

[9] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
7th International Conference on World Wide Web,
1998.

[10] Andrei Z. Broder, Steven C. Glassman, Mark S.
Manasse, and Geoffrey Zweig. Syntactic clustering of
the web. In Selected papers from the sixth international
conference on World Wide Web, pages 1157–1166,
Essex, UK, 1997. Elsevier Science Publishers Ltd.

[11] M. Burner. Crawling towards eternity: Building an
archive of the world wide web. Web Techniques, 2(5),
1997.

[12] Jamie Callan. The lemur project and its clueweb12
dataset. Invited talk at the SIGIR 2012 Workshop on
Open-Source Information Retrieval.

[13] Soumen Chakrabarti. Mining the web - discovering
knowledge from hypertext data. Morgan Kaufmann,
2003.

[14] Moses Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380–388, 2002.

[15] Jenny Edwards, Kevin McCurley, and John Tomlin.
An adaptive model for optimizing performance of an
incremental web crawler. In Proceedings of the 10th
international conference on World Wide Web, WWW
’01, pages 106–113, New York, NY, USA, 2001. ACM.

[16] D. Eichmann. The RBSE spider: balancing effective
search against web load. In Proceedings of the first
World Wide Web Conference, Geneva, Switzerland,
May 1994.

[17] Dennis Fetterly, Mark Manasse, Marc Najork, and
Janet L. Wiener. A large-scale study of the evolution
of web pages. In Proceedings of the Twelfth Conference
on World Wide Web, Budapest, Hungary, 2003. ACM
Press.

[18] R. Fielding. Maintaining distributed hypertext
infostructures: Welcome to momspider. In Proceedings
of the 1st International Conference on the World
Wide Web, 1994.

[19] Allan Heydon and Marc Najork. Mercator: A scalable,
extensible web crawler. World Wide Web,
2(4):219–229, April 1999.

[20] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo
Arikawa, and Kunsoo Park. Linear-time
longest-common-prefix computation in suffix arrays
and its applications. In Amihood Amir and Gad M.
Landau, editors, CPM, volume 2089 of Lecture Notes
in Computer Science, pages 181–192. Springer, 2001.

[21] R. Khare, D. Cutting, K. Sitaker, and A. Rifkin.
Nutch: A flexible and scalable open-source web search
engine. Oregon State University, 2004.

[22] Hsin-Tsang Lee, Derek Leonard, Xiaoming Wang, and
Dmitri Loguinov. Irlbot: Scaling to 6 billion pages and
beyond. ACM Trans. Web, 3(3):8:1–8:34, July 2009.

[23] Gurmeet Singh Manku, Arvind Jain, and Anish Das
Sarma. Detecting near-duplicates for web crawling. In
WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 141–150, New
York, NY, USA, 2007. ACM.

[24] Oliver A. McBryan. GENVL and WWWW: Tools for
taming the web. In Proceedings of the first World
Wide Web Conference, pages 79–90, 1994.

[25] Maged M. Michael and Michael L. Scott. Simple, fast,
and practical non-blocking and blocking concurrent
queue algorithms. In Proceedings of the fifteenth
annual ACM symposium on Principles of distributed
computing, PODC ’96, pages 267–275. ACM, 1996.

[26] Seyed M Mirtaheri, Mustafa Emre Dincturk, Salman
Hooshmand, Gregor V Bochmann, Guy-Vincent
Jourdan, and Iosif-Viorel Onut. A brief history of web
crawlers. In CASCON, 2013.

[27] Gordon Mohr, Michele Kimpton, Micheal Stack, and
Igor Ranitovic. Introduction to Heritrix, an archival
quality web crawler. In Proceedings of the 4th
International Web Archiving Workshop (IWAW’04),
September 2004.

[28] Marc Najork and Allan Heydon. High-performance
web crawling. In James Abello, Panos M. Pardalos,
and Mauricio G. C. Resende, editors, Handbook of
massive data sets, pages 25–45. Kluwer Academic
Publishers, 2002.

[29] Christopher Olston and Marc Najork. Web crawling.
Foundations and Trends in Information Retrieval,
4(3):175–246, 2010.

[30] Brian Pinkerton. Finding what people want:
Experiences with the WebCrawler. In Anonymous,
editor, Proceedings of the 2nd International World
Wide Web, volume 18(6) of Online & CDROM review:
the international journal of, Medford, NJ, USA, 1994.
Learned Information.

[31] Denis Shestakov. Current challenges in web crawling.
In ICWE, pages 518–521, 2013.

[32] Vladislav Shkapenyuk and Torsten Suel. Design and
implementation of a high-performance distributed web
crawler. In In Proc. of the Int. Conf. on Data
Engineering, pages 357–368, 2002.

[33] Jens Stoye and Dan Gusfield. Simple and flexible

detection of contiguous repeats using a suffix tree.
Theor. Comput. Sci., 270(1-2):843–856, 2002.

