1. A linear vector
space with com-
plex coefficients
and inner product

<ply> =24y,

2. For polarized
photons two, e.g.
vertical and horizonal

==(7) 1)

3. E.g. for photons,
other polarizations

()~

O=(5)o=(4)

4. Unitary = Linear

+1
-1

and

inner-product preserving.

)

quantum Laws

|. To each physical system
there corresponds a Hilbert
space 1 of dimensionality equal
to the system's maximum num-
ber of reliably distinguishablee
states. 2

2. Each direction (ray) in the
Hilbert space corresponds to a
possible state of the system. 3

3. Spontaneous evolution of an
unobserved system is a unitary 4
transformation on its Hilbert
space.

-- more --

— — ~ O~ N\ —
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1. Thus a two-photon
system can exist in
"product states" such as

<> and <>
but also in "entangled"
states such as

4. The Hilbert space of a com-
posite sysem is the tensor

product of the Hilbert spaces —e — 1]
of its parts. 1 2

/ in which neither
5. Each possible measurement 2 photon has a definite
on a system corresponds to a \ state even though the
resolution of its Hilbert space pair together does

into orthogonal subspaces {P; },

/

where X P; =1. Onstate ,
y theresult j occurs with /
\

/

2 Believers in the "many
worlds interpretation” reject
this axiom as ugly and
unnecessary. For them
measurement is just a unitary
evolution producing an
entangled state of the system

probability |PJ w|2 and the
state after measurement is

P |1/} > and measuring apparatus.
'17 For O[hC‘I'S‘ measurement
I]% |’(// >| / causes the system to behave

probabilistically and forget
S its pre-measurement state,
unless that state happens to
lie entirely within one of the
subspaces Pj .

Mixed States and Density Matrices

The quantum states we have been talking about so far, identified with rays
in Hilbert space, are called pure states. They represent situations of
minimal ignorance, where there is nothing more to know about the system.
Pure states are fundamental in the sense that the quantum mechanics of
any closed system can be completely described as a unitary evolution of

pure states, without need of further notions. However, a very useful
notion, the mixed state, has been introduced to deal with situations

of greater ignorance, in particular

an ensemble £ in which the system in question may be in
any of several pure states 3/ , 7 ... with probabilities p, p ....
1 2 1 2

a situation in which the system in question (call it A ) is
part of larger system AB, which itself is in an entangled

pure state \P(AB).

In open systems, a pure state may naturally evolve into a mixed
state (which can also be described as a pure state of a larger
system comprising the original system and its environment)




A mixed state is represented by a Hermitian,
positive-semidefinite, unit-trace density matrix

P = 12 P, | 7 X lﬂi| for an ensemble

PA) = Tr | WAB) X W(AB)|

for a subsystem

(p = ly Xy for a pure state )

Different ensembles can have the same density matrix. For
example any equal mixture of two orthogonal polarizations has

= 10/2 1/02) What common feature does 0 represent?

Meaning of the Density Matrix

The density matrix represents all and only that information which
can be learned by sampling the ensemble or observing the A part

of the compound system. Ensembles with the same 0 are

indistinguishable. Pure states W(AB) with the same O(A) are
indistinguishable by observing the A part.

If Alice and Bob share a system in state W(AB), then, for any
ensemble £ compatible with O(A), there is a measurement

Bob can do on his subsystem alone, which generates the ensemble,
in the sense that the measurement yields outcome 1 with

probability p; and, conditionally on that outcome having

occurred, Alice's subsystem will be left in pure state I/Jl- .

(Hughston-Jozsa-Wootters/Schroedinger theorem)




Schmidt Decomposition
Any pure state W(AB) of a bipartite system is expressible as

YAaB) = Zl )\41/2 |al >| Bl >9
where | OLl- > andl.| ﬁi > are (orthogonal) eigenvectors

and }\‘i the common eigenvalues of the density matrices

O(A) and O(B) obtained by tracing out subsystem

B or A respectively. (Not generally true for tripartite and higher)

Corollary: any two pure states of the AB system
having the same p(B) are interconvertible by a
unitary transformation acting on system A alone.
(important for Bit Commitment No-Go theorem)

The degree of ignorance embodied
in a mixed state is represented by its

von Neumann entropy
= Shannon entropy
of eigenvalues of p

S(p) = -Tr plogp.
For an ensemble {p,, ¥} the von Neumann entropy
is < the Shannon entropy of the probabilities p,,
equality holding iff the states are orthogonal.

When a pure state  is degraded by noise,
the result is a mixed state p. The degree

resemblence or fldellty of wtop is

F= <v|ply>




Unitary evolution is reversible, preserving distinguishability.

But quantum systems in interaction with an environment can
undergo irreversible loss of distinguishability.

* noisy or lossy channels, which lose classical information
* classical wires, which spoil superpositions
* erasure, which destroys distinguishability completely

Any physically possible evolution of an open quantum
system can be modeled as a unitary interaction with an
environment, initially in a standard 0O state.

- -

o U

p——Nf—>Np)

pQ— I NP
E s &)

N(p) =2, 4, p 4
where A rare matrices such that

Kraus representation.

Unitary representation.
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The Church of the Larger Hilbert Space

This is the name given by John Smolin to the habit of always
thinking of a mixed state as a pure state of some larger
system; and of any nonunitary evolution as being embedded in
some unitary evolution of a larger system: No one can stop us
from thinking this way; and Church members find it satisfying
and helpful to their intuition:

This doctrine only makes sense in a quantum context, where
because of entanglement a pure whole can have impure parts:
Classically; a whole can be no purer than its most impure part.

Cf. Biblical view of impurity (Matthew 18:8)

If thy hand or thy foot offend thee, cut them off, and cast them from thee: it
is better for thee to enter into life halt or maimed, rather than having two
hands or two feet to be cast into everlasting fire.

p——{ N F——>Np)

Noisy channel viewed as CLHS invoked to
interaction with environment purify noisiness of
Q channel
R— ——Np)
E U E
0 > &p) CLHS invoked again

. to purify mixedness
Input viewed as entangled

with a reference system R of input
R
R
@ ; P ; RQ
PR p? of TEN @)
— > Np)

0—1 | &)




Church of the Larger Hilbert Space

Its teachings were anticipated by those of the actual
Unitarian Church, as expressed in an unofficial but
well known poem and logo.

He drew a circle that shut me out,

o Heretic, rebel, a thing to flout.
But love and I had the wit to win.
. We drew a circle that took him in.

--Edwin Markham (1852-1940)

Equivalent states
Properly reducible

Incomparable

Reversible and irreversible transformations of quantum states
(eg under Local Operations and Classical Communication)




(entanglement is sexy) A (sexis risky) =

Entanglement Gambling, ie

Sometimes getting a good EPR pair HH +VV

out of a slightly entangled pair HH +w
(but sometimes losing it)

HH+w N

HH

Alice tries to pass her (red) photon through a Brewster window
(which selectively reflects H photons with some probability). If the

photon gets through, both parties are left with the desired HH+VV ;
otherwise they are left with the unentangled state HH.

Measures of entanglement of bipartite pure state ¥

* Schmidt Rank (the number of nonzero Schmidt coefficients) is
conserved by gambling, when it succeeds.

* Entropy of Entanglement E(V), the local entropy of either party,
is asymptotically conserved in entanglement concentration and

dilution
E.g. for ¥= aHH +BVV,  E(¥)=H(oSpP).

For large n, n copies of ¥ can be created from n E(Y) +o(n)
EPR pairs, and can be converted into n E(‘V) -o(n) EPR pairs.




Entanglement Concentration and Dilution

Alice Bob

e

— ||~ | Y
| En’lanfj. Fntanj.
| Concentratio Dilution

Entanglement Concentration (the large n limit of
entanglement gambling) is exact and requires no
communication.

Entanglement Dilution requires O(Nn) one way classical
communication, and yields the desired diluted state in the
limit of large n.

Entanglement Concentration
Let W "=(HH+vv)" be shared between Alice & Bob

Alice measures how many H’s she has, but not in which positions.
Suppose she gets the result k. This result will be binomially
distributed. (If Bob measured, he would get the same k, through the
magic of entanglement.) The residual state after measuring £ is a
maximally entangled state with (n choose k) equal terms, which can
be converted into about nE(¥) EPR pairs.

Entanglement Dilution: Alice makes the state W n locally in her lab.
She Schumacher-compresses one side of it and teleports it to Bob
using about nE(W) EPR pairs. He then decompresses it. Other
techniques use less classical communication.




Entanglement Concentration

Projects local state p®" into a random one of its
degenerate eigenspaces, resulting in a maximally
entangled state of local entropy =~ nH(p). This

state has low fidelity with respect to the original state, but
retains most of its entanglement.

Schumacher Compression

Projects state p®" into subspace spanned by its Schmidt
eigenvectors of eigenvalue A > A’, setting the threshold A’
so that the remaining eigenvalues, although very
numerous, have negligible total weight.

Result: a high-fidelity approximation to the original
non-maximally entangled state, but living in a smaller
Hilbert space of dimension
~ 2”H ()

‘min 'max

Entanglement Distillation

Alice >

Many Fewer

Pure \[ Classical Pure

EPR messages EPR
Pairs

Pairs

Bob >

Noisy quantum Many Noisy
channels EPR Pairs




Two-way distillation for Bell pairs “recurrence method”

l_\\
v V Wy Phase (¥/®) gets XORed upward
&t AN Va Amplitude (—/+) gets XORed down
——— ’

Keep 09
——M remaining 084 F
}—/ pair if 07+
measure- 06t
ment 05T
results 04T fo
. 03+ e
M agree; 02 2
9_/ discard 01+
it if they 0 t + t +
’ disagree 0 02 04 06 08 1

One-way distillation by random Hashing

An unknown state of N Bell pairs is characterized by a
distribution over 2N bit strings x.

To get a random subset parity s.x of this string, local operations
are performed, then a single pair is measured, and from the
results of the measurement, half the candidates for the
remaining unmeasured pairs can be excluded. Method gives
positive yield if initial Bell mixture has entropy less than 1 bit.

M
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Entanglement Measures for Mixed States

Entanglement Cost or asymptotic entanglement of formation EC
The asymptotic efficiency with which singlets can be converted into the
state in question, using LOCC.

Distillable Entanglement E,,
The asymptotic efficiency with which the state in question can be
converted into singlets, using LOCC.

For Pure Bipartite States, E, = E_., and the amount of classical
communication per state prepared tends to zero in the limit of large n.

For Mixed States, Ej can be less than E.. Indeed some mixed
states (called bound entangled states) have zero distillable entanglement
but positive entanglement of formation.




Recognizing Entanglement p N(p)

Channels map density matrices onto density matrices in a linear fashion.
Are all such positive maps physically possible?
No. Consider the transpose. It maps density matrices onto density

matrices, but when applied to part of a bipartite system, in an entangled
state, produces a nonphysical matrix with negative eigenvalues.

1001 1000
0000 , 0010
0000 partial transpose => 0100
1001 0001
EPR state with Nonphysical
eigenvalues eigenvalues
(1,0,0,0) (-1/2,1/2,1/12,0)

Negativity of partial transpose is a sufficient condition for a
mixed state to be entangled (Peres-Horodecki condition).

Strange Things you can do with Multipartite Entanglement

"Unlock able" 4 party BE state p (Smolin 0001001)
A & B share a random Bell state; C & D share the same random Bell state

A ®+ E (p is symmetric among all 4

parties. Therefore it is not
distillable across any 2:2

Co—t . ) boundary, and certainly not
distillable in its original
1:1:1:1 form)

To unlock the state, A and B get together in the same lab, measure their

Bell state, and tell C the result i. C then performs oF thereby restoring

the Bell state between C and D to standard ®* form. This shows the

original state p must have had at least 1 ebit of entanglement of formation
across the ABC:D boundary (otherwise A, B, and C, even by coming together,
could not have distilled an ebit between themselves and D). Similarly for all
other 3:1 boundaries.




"Superactivation" of Bound Entanglement: two non-distillable states p”®°P
and pBCPE can be combined to form a distillable state p“°‘P @ pBCPE

e, \@\D D

A E

5] 2) (3) 4)

Starting state p"5°P ® pBCPE is shown in (1).

To distill an ebit from this state, B uses the BC EPR pair to teleport his half
of the AB pair to C. This results in configuration (2), where B is gone and AC
share a new ij-rotated EPR pair (brown). Next C uses the CD pair (green) to
teleport her end of this new AC pair to D. This cancels the i rotation, leaving
only a j rotation in the resulting AD pair (3). Finally D teleports his half of the

AD pair to E, resulting in an AE pair in which all rotations have been canceled (4)
(Smolin, Shor, Thapliyal 0005117).

This shows that distillable entanglement is not additive. In fact it is not even
convex, since one can mix two nondistillable states and get a distillable state as
the result. Let P, = |0><0|®@p"B°P and p,=|1><1|®pBCPE andlet p

be an equal mixture of [, and L. Here the first tensor factor is an extra

flag qubit (wlog given to Alice), which enables her to determine (and tell the

other parties) which of W, or W, is present in a given specimen of p. By
measuring the flag qubit on several specimens of W, the parties can, with high
probability accumulate a known specimen each of p”5¢P and pBCPE  from
which a pure ebit can be distilled by LOCC.

Junk Mail =————=p
Banana Peels =———

i £




Quantum Cryptographic Key Distribution (BB84 Protocol)
Alice Sends randomPhotons &\ 1 /7 Tl /N1 77 TAN

Bob Measureson randomAxes + X+ +X X+ X X+ + X +++X X XX

Bob's Measurement Results 1/7te NI2S T2ATLeS2NS
Bob reports axes he used "+x++ x+xx +x+++x x xx"

Alice says whichwereright "+ + X +x + X XX

Photons Alice &Bobshould | { s 12t 24NN
agree on (if no eavesdropping)

Bit Values of Photons 1 1 0 1010 11
Alice Announces Parities "Odd"
of a few Random Subset 1 0 11 ok
of the Bits and Bob verifies "Even”
that they are correct. 1 /1 0o 1fo 10 /11,50

Remaining Shared Secret Bits 0 101 0 11




Data Reconciliation
Alice and Bob start with N bit strings x4, x5
which agree in most positions

They publicly chooses a random index string s

They calculate and publicly compare parities S«X,, SaXp

Each comparison gives Bob and Eve 1 bit of information about
Alice’s string x4.

Privacy amplification

When Bob thinks he knows x, they do a few more
comparisons, they estimate Eve’s partial knowledge, including
what she may have gained from eavesdropping, pulse-splitting,
and listening to the reconciliation. Suppose it is estimated to be
less than K bits. They calculate N-K-m further random subsets
as their final key. Eve expected information on it is
exponentially small in the security parameter m.

Sources of information for Eve

Eavesdropping
Pulse-splitting or photon number splitting PNS

Listening to reconciliation

Remedies for Pulse Splitting:

Single Photon Sources
Bright/Dim coherent pulse method
Decoy states




Key Distribution is
Cold War era
cryptography.

The good guys trust
each other and know
who the bad guy is.

Often today, especially

in the business world, there

is no bad guy per se. But,
human nature being what it is,
the good guys don't trust each
other. Nevertheless they must
cooperate and make joint
decisions. But they wish to do
so circumspectly, as if they
were dealing through a trusted
intermediary. Of course there
is no one they trust well
enough to hire for that job.
What to do? .

'-‘:—-—-——'-)-
W
v |

Alice

Bob

Eve
2 Good Guys and 1 Bad Guy

_
&___.___.

O

2 Good Guys who don'’t trust each other

Private Communication

Bob

Bob

Discreet Decision Making
O
O

O
. O.

Alice Bob
A
O
< o)
Alice Bob




Simple examples of Discreet 2-Party Tasks

Dating problem = Logical AND of Alice’s bit x and Bob’s bit y.
Alice and Bob want to go out together if both are willing, while
minimizing the hurt feelings in case only one is willing. If they
use a trusted intermediary, and only Alice is willing, the date is
off, but Alice is spared the embarrassment of having Bob learn
that she wanted it. Of course there is no way to spare her the
disappointment of learning that Bob didn’t want it, since she
can infer that from her input and the common output.

Bit Commitment: Alice wishes to send Bob a bit of her choosing
but in a form he cannot read. Then, later, at a time of her
choosing, she wishes to enable Bob to read the bit. Between
these two times, Bob should be unable to read the bit, and Alice
should be unable to change it. A concrete example would be
sending Bob a locked box containing the bit, then later sending the
key. Mayers and Yao showed that a secure bit commitment, if it
existed, could be combined with other quantum primitives to
calculate any function of two inputs discreetly. Unfortunately there
is no secure bit commitment..

BB84 Bit Commitment, and how to Cheat

To commit to 0(1)

Alice sends n ran-
dom +(x) photons | — | I o '_’I [ —1 1] I

Bobmeasuresin v 4+ 4+ x + x x + x x + +
random bases,

getting results: No— I/‘—' o I\ / I I

Toopenhercom-
it t, Ali

;nr:rzzi:ceslgﬁ “I — I I '_’ '_’I I'_’I I I”
her polarizations

Bob thinks she’s telling the truth, because her photons agree
with all his + measurement results, and are uncorrelated with
his x measurement results.




Instead of + or x photons, Alice actually sent n halves of
EPR pairs, saving the other halves in her laboratory.

Bob measures in
random bases, X + +#X + X X+X X+ +

getting random /! I — I S/ I NN\ I —
To open her “commitment” as a 0, Alice measures the saved
halves in the + basis, obtaining data perfectly correlated with
the Bob’s + measurements. She announces, e.g.

«/ 1 =N /NIN /=

To open her “commitment” as a 1, Alice measures the saved
halves in the x basis, obtaining data perfectly correlated with
the x measurements. She announces, e.g.

«/— 1/ SN N—]

Mayers' No-Go theorem for quantum bit commitment

0 or 1, the classical value Alice commits to

v

Alice L Bob
\Qb%‘tui)
and/or
<~classical—
commun-
Icatl
L
J T
Stage at which or two globally orthogonal
corr?mitment has been Po O P jointg statesywhichgshould

made but not yet opened look the same to Bob.




Go to the "Church of the Larger Hilbert Space" by
including Alice's and Bob's environments.

Now all operations are unitary, all communications
are quantum and all states are pure.

Oor1
Alice L — Bob Honest
Alice's ™~ T Bob's ggt%?gg)al
environ-|,— —] > environ- unitary
ment . €| ment i known to
T ~—~ i both parties.
e — e H
Alice’s | ioooeeeeeef oo i ------------------- l
quantum
computer
or two globally orthogonal
Yo or ¥4 ure ‘states which are known
Honest protocol outcomes o both parties and which
are therefore related by a unitary look the same to Bob.

transformation on Alice's side alone,
so if Bob plays honestly, Alice can

initially make a "commitment” to ¥, and then later
unilaterally change it to y;, without Bob's knowledge or cooperation!

Other ways of obtaining bit commitment

Adrian Kent’s relativistic method quant-ph/9906013 v6

’A1 AZ‘

’B‘l BZ‘

Certifiably Noisy channel

P> —

Reference Frame uncertainty HOT’05







