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Classical Information Theory Background
• Why Auxiliary Resources (shared randomness and back 
communication) don’t increase capacity
• Classical reverse Shannon theorem

Quantum Channels: Why so many capacities?
• Why Entanglement can increase capacity
• Naturalness of Entanglement Assisted Capacity, quantum 
reverse Shannon theorem
• Why classical communication can increase quantum 
capacity

Approximate randomization and quantum data hiding

Interaction as a Resource: Capacities of interactions and 
isometries



2

Classical Communication Theory—central notions
•Data Compression and Source Entropy
•Error-correcting Codes and Channel Capacity

Encoder Decoder

If an information source is redundant (due to unequal letter 
frequencies or correlations among letters) its output can be 
compressed, then faithfully recovered at the receiving end.  A 
source’s Shannon Entropy is the compressed size above which 
faithful recovery is possible, and below which it is impossible.

Classical Communication Theory—central notions
•Data Compression and Source Entropy
•Error-correcting Codes and Channel Capacity

Encoder Decoder

Error correcting codes can be used to send information with 
arbitrarily high reliability through a noisy channel at any rate
up to but not exceeding the channel’s Capacity. Simplest error 
correcting code is triple repetition.
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C(N) =   maxX [ H(X) + H(N(X)) – H(X,N(X)) ]

In other words, a channel’s capacity is the maximum, over 
input distributions, of the Shannon mutual information 
between input and output. 

The Shannon entropy of a source X and the capacity of a 
noisy channel  N both have simple mathematical 
expressions.

H (X) =  −Σx p(x) log p(x),   

where p(x) is the probability that the random variable X takes the 
value x. 

Besides characterizing sources and channels, classical 
information theory aims to understand the role of auxiliary 
resources, such as shared randomness between sender and 
receiver, and free back communication (feedback) from 
receiver to sender.  

Their role is simple: neither shared randomness nor back 
communication increases the capacity of a classical 
channel.

CR=CB=C

(However shared randomness, in the form of a one-time pad, 
makes it possible to communicate secretly over a public channel. 
Back communication, though it doesn’t increase capacity, 
reduces encoding/decoding effort and latency.)
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Shared randomness is also useful in characterizing the 
ability of channels to simulate one another.  

The classical Reverse Shannon Theorem states that in the 
presence of shared randomness the capacity of a channel 
M to simulate another channel N is simply the ratio of their 
plain capacities. 

CR(M,N)  =  C(M) / C(N)

More precisely, it establishes the ability of M, with shared random-
ness, to exactly simulate the input:output behavior of  N on any block 
size, at an expected rate approaching C(M)/C(N) in the limit of large 
block size.    (BSST quant-ph/0106052, Winter quant-ph/0208131)

Bob

Bob

Alice

Classical Shannon Theorem:  
A noisy channel can  simulate a noiseless channel 

=

Alice

=

Homer Simpson's Reverse Shanon's Theorem:  
A noiseless channel can simulate a noisy channel.

A question so silly it was not asked for the first 50 years of information 
theory:  “Can a noiseless channel efficiently simulate a noisy one?”
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Bob

Alice =

Bob

Alice =
Common
Random
Source

A Better Reverse Shannon Theorem (quant-ph/0106052) 
In the presence of shared random information between sender and receiver,
a noiseless channel can asymptotically simulate a noisy one of equal capacity.

Therefore, in the presence of shared random information,
all classical noisy channels are asymptotically equivalent. 

forward Shannon theorem

Bob

Alice

Common
Random
Source

In the large  m limit,  sending m bits through the noisy channel

can be simulated by sending about   mC noiseless “intrinsic”
bits, which Alice chooses with the help of the input,

together with “extrinsic” random bits, which have 
nothing to do with the channel input, and so can be 
preagreed before Alice receives the input.

intrinsic

extrinsic
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Why don’t shared randomness and feedback improve the capacity 
of a classical channel?  

Shared randomness doesn’t help because any encoder/ decoder 
pair trying to simulate a noiseless channel can be derandomized:  
If the encoder/decoder pair works when the shared information R
is chosen randomly, there must be a particular value  R=r for 
which it also works.  Picking this  r and always using it gives a 
deterministic encoder/decoder that works at least as well as the
randomized one.  

Feedback doesn’t help because of the reverse Shannon theorem.  
If feedback helped a noisy channel, it would help a noiseless one, 
which would violate causality.  If I say n bits to you and by 
talking back you could learn more than  n bits about what I intend 
to say, you could learn something by preemptively guessing. 

A source emitting 0 and 45 degree photons has a peculiarly quantum 
kind of redundancy because the states are nonorthogonal.  
Schumacher compression squeezes out this redundancy with 
arbitrarily little disturbance in the limit of large block size.
More generally any quantum source ρ can be compressed to a size 
equal to its von Neumann entropy  S(ρ) = –Tr(ρ log ρ) ,  but no 
smaller.   
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| 0

| 0

| 0

| 0

|ψ |ψ

Encoder  entangles  input  state  with
four  standard  qubits.  Resulting entangled
state can then withstand the corruption of
any one of  its qubits, and still allow 
recovery of  the exact  initial state by a
decoder at the receiving end of the
channel

Quantum Error Correcting Code

U U −1

Quantum Erasure Channel

Some Simple Quantum Channels

Noiseless Qubit Channel

Depolarizing Channel

Dephasing Channel

input qubit sometimes lost 

input qubit sometimes 
randomized

input qubit sometimes 
gets measured  and
re-sent  en route.

M R

input qubit undisturbed 
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E D ρ' 

N

N

N

N

N

Quantum capacity  Q  of a noisy quantum channel N :

 Q(N) = max { r: ∀ε ∃mn  (m/n >r) & ∀ψ∈Η2
⊗m  〈ψ|ρ'|ψ〉  > 1- ε } 

∞

Classical capacity  C  is given by a similar expression, 

 C(N) = max { r: ∀ε ∃mn (m/n >r) & ∀x∈{0,1}m  〈x|ρ'|x〉  > 1- ε } ,

with inputs  ψ  restricted to product states  |x〉  of the  {|0〉,|1〉}  basis.

∞

= D(N ⊗n(E(|ψ〉〈ψ|)))ψ∈H2
⊗m 

Plain C and Q capacities defined using block encoder and decoder

Q   plain quantum capacity = qubits faithfully trasmitted per channel use, 
       via quantum error correcting codes

C   plain classical capacity = bits faithfully trasmitted per channel use 

QB   quantum capacity assisted by classical back communication
Q2   quantum capacity assisted by classical two-way communication
       (also CB and C2 , but more about these later.)

CE     entanglement assisted classical capacity i.e. bit capacity in the 
         presence of unlimited prior entanglement between sender and
         receiver.

Multiple capacities of Quantum Channels

Bob

AliceAlice
Noisy quantum channel

For quantum channels, these assisted capacities can be greater than the 
corresponding unassisted capacities.
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Robert Owen, Charles Fourier, Edward Bellamy:
Free goods & services will make everything better.

Fourier, Emma Goldman…Haight-Ashbury
Free Love will make everything better

Timothy Leary, Ken Kesey:
Free LSD will make everything better

(Aram Harrow, ITP2001 poster session)
Will  Free Entanglement change the world? 

At least it simplifies the theory of quantum interactions & channels.

Does Free Stuff make the world better?

(Gutenberg, the Internet, LOCC)
Free Classical Communication

N N

Free classical communication gives
Q2, the classically assisted quantum 
capacity, e.g. by entanglement sharing, 
distillation, and teleportation

N

Alice

Bob

Unfortunately, no simple expression is known for this capacity.



10

N N

Alice

Bob

Providing unlimited free entanglement gives CE , 
the entanglement-assisted classical capacity.

By contrast free entanglement does greatly simplify capacity 
theory:  CE is given by a simple expression; and in the 
presence of free entanglement all quantum channels of equal 
CE can simulate one another with unit asymptotic efficiency. 

Nρ N(ρ)(

U
0 E(ρ)(
E E

ρQ N(ρ)(
Q

U

Φρ ρ
I⊗N))(Φ  )ρ

N(ρ)(

RQρ
Q Q

RρR

0 E(ρ)(
E

Input viewed as entangled 
with a reference system R

Equal entropy

Noisy channel viewed as 
interaction with environment 

CLHS invoked to 
purify noisiness of 
channel

CLHS invoked again 
to purify mixedness 
of quantum source

Church-of-the-Larger-Hilbert-Space view of quantum sources and channels  
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C.H. Bennett Feb. 2002

U

Φρ ρ
I⊗N))(Φ  )ρ

N(ρ)(

RQρ
Q Q

RρR

0 E(ρ)(
E Equal entropy

Entropic quantities related to channel capacities.

C =? Holevo capacity =  max   S(N(ρ)) −Σpi S(N(ρi))

Q = Coherent Info. =  lim max   S(N⊗n(ρ)) −S(E⊗n(ρ))/n

CE = Quantum Mutual Info. = max  S(ρ) + S(N(ρ)) −S(E(ρ))

Q2  ≈ Distillable entanglement = ??

{pi ,ρi}

n→∞ ρ

ρ

Shor,
Lloyd,
Devetak
’02-’03

lim max D2(I⊗N⊗n(Φρ))/n = ?
n→∞ ρ

(Unfortunately D2 has no simple expression,  may be nonconvex)

=  if min.
output en-
tropy is
additive
Shor ’03

BSST 
‘01

Φρ ρ
N⊗I))(Φ  )ρ

N(ρ)(

RQρ
Q Q

RρR

N

Entanglement-Assisted capacity CE of a quantum channel N is equal to 
the maximum, over channel inputs ρ, of the input (von Neumann) entropy 
plus the output entropy minus their “joint” entropy

CE (N) = maxρ S(ρ)  + S(N(ρ)) − S(N⊗I(Φρ))

(entangled 
purification 
of  ρ)

(more precisely the 
joint entropy of the output and a reference system entangled with the late 
input) (BSST 0106052, Holevo 0106075).  

In retrospect, entanglement-assisted capacity, not plain classical capacity,  is 
the natural quantum generalization of the classical capacity of a classical 
channel.  

QE = CE / 2  for all channels, by teleportation & superdense coding.
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N
B

A

B

A

≈N ⊗m(ξ1⊗ξ2...⊗ξm)

CE(N))

Quantum Reverse Shannon Theorem (QRST):   Any quantum channel
can be simulated by shared entanglement and an amount of classical
communication equal to the channel's entanglement-assisted capacity. 
Therefore, in a world full of entanglement, all quatum channels are
qualitatively equivalent, and quantitatively can be characterized by a 
single parameter. 

≈mCE(N) 
classical bits)

ξ1⊗ξ2...⊗ξm

A
B

Φ

m CE(N)
bits

Unexpected complication: Some quantum channels, on general 
non-product inputs, require a stronger form of entanglement 
resource than standard EPR pairs, the so-called entanglement-
embezzling states of Hayden and van Dam (quant-ph/0201041) 
in order to be simulated at a forward communication cost not 
exceeding their CE.  Or they can be simulated with standard EPR 
pairs and some backward communication in addition to the 
forward communication. 

Good 
simulation 
of N ⊗m
acting on 
one half 
of Φ
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Private Quantum Channel and Data Hiding

Private Quantum Channels:
It is well known that two random key bits are necessary and sufficient to 
perfectly encrypt a qubit, so that regardless of the input ψ, the intermediate 
“ciphertext” looks completely mixed. Quantum analog of One Time Pad.

ZX Z Xψ ψ
ρ

r1
r2

perfectly mixed1 qubit state

Uk
ψ ψ

ρ

≈ n bit 
key k

almost perfectly mixedn qubit state
Uk

-1

But if we are willing to settle for asymptotically perfect encryption, then in the 
limit of large block size, only half as much key is needed. 
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Uk
ψ ρ

≈ n bit 
key k

almost perfectly mixedn qubit state

Curiously, this encryption, while hiding pure states almost perfectly, does not 
hide entangled states well at all.  (Hayden, Leung, Shor, Winter 0307104)

Uk
ρ

almost perfectly mixed

Ψ } 
Entangled
2n qubit 
state

Very dependent
on Ψ  because 
support dimension 
is only ≈2n

≈ n bit 
key k

Data Hiding:  A multipartite state which stores classical data 
that can be recovered by a joint measurement, but not by any 
sequence of local measurements and classical communication. 
Like 2 locked boxes each chained to the other’s key .

Uk
ρ

almost perfectly mixed

Ψ } Resulting 2n qubit 
bipartite mixed state
Hides nearly n bits of 
classical data

Random k Discard
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Interaction as a Resource

Waste 
Heat

Alice

Bob

Prior 
entanglement

Prior 
entanglement

Classi-
cal com-
munication

Physical
Inter-
action

Quantum

Communication

Initial 
state

e-iHt
ρ Q(ρ)

Final state

N

An important goal of quantum information theory is to understand the 
nonlocal resources, and tradeoffs among them, needed to transform one 
state of a multipartite system into another, when local operations are 
unlimited. 

unlimited local operations

unlimited local operations



16

These questions can be asked in an exact setting

Q(ρ)ρ

or in the regularized asymptotic setting characteristic of information 
theory, where one seeks to transform many copies of the input state into 
a high-fidelity approximation to many copies of the desired output state

≈ Q(ρ) ⊗n
ρ⊗n

By appropriate choice of the transformation Q which one seeks to 
implement (a completely positive trace preserving map on multipartite 
states), one can define state properties like distillable entanglement, 
and many sorts of channel capacity

Interaction between two systems, by a gate or Hamiltonian, 
is a fundamental physical resource, which may be viewed 
as a bidirectional channel

How efficiently can interactions be used 
• to generate entanglement
• to perform classical communication
• to simulate other interactions

A

B
U

A

B
U
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Kinds of Interaction

Unitary gate or Hamiltonian: U or e−iHt

Nonunitary (interaction involves other,

inaccessible systems): nonlocal TPCP map
N or   dρ/dt = L[ρ] 

All nonlocal unitary interactions are qualitatively equivalent 
because they can produce entanglement and perform bidirectional 
classical communication.  These resources are sufficient to 
perform any other nonlocal action, eg by teleportation. 

But is there a single scalar measure of an interaction’s 
“strength”?  Or are some interactions better for some jobs and 
others for other jobs?

Nonunitary interactions (bilocal TPCP maps),  are not even 
qualitatively equivalent:  eg some can generate entanglement but
not communicate, some can communicate but only classically, or 
only unidirectionally, and some, such as the Popescu-Rohrlich
“Non-local boxes” cannot communicate in either direction and 
yet are a nontrivial resource in that they reduce communication 
complexity.
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U
A

B

A’

B’

U
A

0

A’

B’

U
A

0 B’

Env

Gate

Isometry,
a.k.a. 
channel
with quantum
feedback

Channel,
a.k.a.     
CPTP map

Gates, Isometries and Channels

Cf classical 
feedback, where 
wlog Bob gets a 
copy of output

A useful isometry, the cobit or coherent bit (Harrow)

A

0

A’

B’

2 cobits            1 ebit  + 1 forward qubit  
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Qualitatively all interactions are
equivalent: 

Any nontrivial interaction can 

• communicate from Alice to Bob
• communicate from Bob to Alice
• generate entanglement

But are a gate’s capacities for doing so necessarily equal?

Yes for 2x2 gates.

No for gates acting on larger Hilbert spaces

Harrow, Shor 0511219
Linden, Smolin, Winter 0511217

Alice’s input
0       1      2       3      4  … 2m-1

Bob’s 
input

0

1

2

3

4

In computational 
basis, gate performs a 
cyclic permutation of 
Bob’s data whenever it 
is less than or equal to 
Alice’s.

doesn’t change Alice’s
data or any other data 
of Bob

For large m,  forward classical capacity (A=>B) is  m bits per channel use.         

But reverse capacity is only  O(logk(m))    

(Harrow QIP2006  talk, HS 0511217,  nontrivial proof)

Gate with Asymmetric Capacities


