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Shannon’s information theory

Claude E. Shannon
1916—2001

A mathematical theory of communication, Bell System
Technical Journal 27 (1948) 379-423 and 623-656.

Communication theory of secrecy systems, Bell System
Technical Journal 28 (1949) 656-715.

This work has laid out the entire foundation of
today’s information technology era.

1. Every kind of information — text, image,
sound — can be associated with an information
content, which quantifies how efficiently it can
be represented with O's and 1's.

2. Any imperfect communication channel —
telephone line, radio channel, satellite link —
has a capacity, which quantifies how much
information can be transmitted reliably over
the channel.



Source coding theorem
(noiseless coding)

Q: What is the highest possible data compres-
sion rate?

A: Shannon’s entropy H = f(source statistics).

011010011101001 —0101011001

. suppressing redundancy: ‘source code”

Channel coding theorem
(noisy channel coding)

Q: What is the highest possible transmission
rate?

A: Shannon’s capacity C = f(noise statistics).

0101011001 —011010011101001

. adding redundancy: “error correcting code”



Example of source coding

Source: random variable X distributed as p(x)

S
Entropy: H(X) = - ) p(z)logsp(x)
r=1
where S is the alphabet size

(1/2 ifz="A"

) 1/4 ifz="8B"
p($)—< 1/8 ifCU:”C”
1/8 if z ="D"

"A” — 00
"B" — 01
"C" — 10
"D’ — 11

Simple code: L = 2 bits/symbol

Average code length L > H(X)

H(X)=34+2432+3 =1 bits <2 bits

1) A!’ _) O
. 1 B” _> 10 . 7 )
Clever code: |, ' 110 L=y bits/symbol

,,DI, H111



Typical sequences

Entropy H(X) is thus the average length of the
shortest description of X. But can we always
reach this irreducible compression?

YES, using ‘typical’ sequences of size n — oo.

Sequence (Xi,...X,) of independent random variables

distributed each as p(x)

—% logo p(z1,...20) = —= |092 Hp(wz) = ——Z logs p(x;)
< IOgQP(X)>X~p(m) H(X)

= p(21,...2n) ~ 27 H(X) for typical sequences.

Normalization: 3 p(Z) ~1 = |Syp| ~ 2"HX)

About nH(X) bits are sufficient, on average,
to code a typical n-symbol sequence, so that
L ~ H(X) bits/symbol.



Example: binary source

PE(B =1 :791/243/4 00001010000100110000
p — P = n=20 Dbits

Typical n-bit sequence contains
~n(l—p)=15%x 0's
~np=>5x 1's.

Probability of emission

p(x1,...xn) = (1 —p) p
~ (1 — p) pt = 2”(1_17) l0g,(1—p)+nplog, p = Q—RH(X)

Number of typical sequences

| Styp| ~ <n) — " use n! ~ np" = 2nlogn
np/ (np)!(n(1 —p))!
log, n+l109, p IOQQ’I’L—'—'JO\QQ(]_—p)

f—/A 7 N
~ onlogon —nplogs(np) —n(l — p)logz(n(l —p)) = onH(X)

Probability of emitting any typical sequences

Note: most frequent sequence 00000000000000000000

IS generally not typical !



Remarkably, Styp is only an exponentially small
part of the set of all sequences, while it has
arbitrarily large probability.

Since 0< H(X)<logs,S
generally  |Spyp| ~ 20 (X) « 2110925 — gn

e [ypical set is sufficiently large to contain
most of the probability

Ve > 0,0 > 0;3dn and Siyp :

Styp| < 2MH(X) +0] and ¥ p@) > 1 -

e [ypical set is the smallest set that contains
most of the probability

Ve > 0,0 >0,;,Vn:

5| < 2nlH(X) =0l = S p@E) <e
xeS



Instantaneous (variable-length) codes
Code C: symbol x — codeword C(x) of length [(x)

C is instantaneous code if no C(x) is a prefix of
another C(z') with 2/ = x

"A” -0
"B" — 10

"C" — 110
"D" - 111

10,0,0,110,0,111,10,...

S
Kraft inequality o—l(z) <1

rz=1
0.
0. ~<_
R
0 -
;-
0.
! i
0
1
"A" uses 27!=1/2 of the decoding tree
"B 272=1/4
" C 2-3=1/8
"D 2-3=1/8

Necessary and sufficient condition for the existence of

instantaneous code



Optimal instantaneous code

s s
min > p(x)l(z) with constraint 2-l=) =1
i Y >

r=1

using Lagrange multiplier

L=3,p@)(x) + 1,2 1)

Z:l ZZI
oL I(x) i) — p(x)
VCU, mzo = p(%)—AQ |n2=0 — 2 == Nin?2

= lopt(x) = —logo p(x) (assuming it is an integer)

= Lopt = )_, p(@)lopt(z) = —_, p(x) logop(z) = H(X)

Bloc coding: typical size-n sequences become
almost equiprobable p(z1, ...zn) ~ 2 H(X)

lopt(x1,...2n) @ nH(X) ~ integer
Lopt ~ nH(X) bits/bloc



No further compression?

Relative entropy (Kullback “distance’)

_ p(z)
D(pllq) = xglp(:v) [eleP ()

with p(x), g(x) probability distributions.

DGslla) = (~10g2 L ¢
> — Iogz(]%>XNp(m) concavity of log
= — 1095 pr(x)z%
= —log>) , q(x) =0

D(pllq) > O

D(pllg) =0 iff Vx, p(x) = q(z)



L—-H(X)=> plx)l(z)+ >, p(x)log,p(x)
= >, p(z) logs [2{®)p(z)]

2,279 pa) ]
—l(x —1
2—I(x) Zyz (y)

= > . p(x)logs [

2—l(m)

normalized probability distribution

L-HX) =Y p(z)log [p () = ]

X
q(z)  >2,27'W)

_ B ~1(y)
= D(pllq) —logp Y 27!

>0 Y
——
<1 Kraft

>0

The average length L of any instantaneous
code cannot be lower than H(X)

10



Noisy channel coding

X Y
—  pYK)

X = input symbol
Y = output symbol

p(y|xz) = transition probability

Naive picture:

to reduce the error probability Pe
- either increase signal power S

- Oor decrease noise power N

Shannon theory:
as soon as the rate R < C, an arbitrarily low Pe

is achievable in the limit of large blocs n — .

capacity C = B 1og>(1+S/N) (B = bandwidth)

— lene Y CHANNEL |—— DEC —

11



Conditional and mutual entropy
H(X) =—-)_ p(z)logzap(x) = uncertainty of X

H(X|Y) = Zyp(y) H(X|Y =y) = unc. of X if Y known
=S paly) log, p(aly)

p(x,y)
r(y)

= - p(z,y)1092p(z,y) + > p(y)10g2p(y)
T,y Yy

\ 7 \ . 7

= H(X|Y) =->_,,p(y)p(z|y) 09>

H(X.,Y) —H(Y)

X Y
—  PyK

H(X|Y)=H(X,Y)— H(Y) = loss of information

perfect channel H(X|Y) =0
random channel H(X|Y) = H(X)

I(X:Y)=H(X)— H(X|Y) = mutual information
= H(X)+ H(Y) - H(X,Y)

H(X) H(Y)

12



I(XY) =32, yp(z,y) 109> pz(?a(iz)cl’?y()y)

= D(p(z,y)|lp(=)p(y)) > O

X and Y independent < I(X:Y) =0

I(X:Y) measures the statistical dependence
between X and Y

Subadditivity of entropies
I(XY)=HX)4+H(Y)—-H(X,Y)>0
thus | H(X,Y) < H(X) 4+ H(Y)

Strong subadditivity of entropies
I(X:Y|Z) =3 ,p(z) [(X:Y|Z = z)/ >0

o playlz)
2,y P(2:Y]2) 1092 0 s o

. p(z.y,2)p(z)
= Zm,y,z p(z,y,z) 1092 p(z,2)p(y,2)

= H(X,Z)+ H(Y,Z) - H(X,Y,Z) — H(Z)

thus |H(X,Y,Z) + H(Z) < H(X,Z) + H(Y, Z)

13



Interpretation of strong subadditivity

H(X,Y,Z)+ H(Z) < H(X,Z)+ H(Y,Z)
+H(X) +H(X)

H(X)+ H(Z) - H(X, Z)
< H(X)+ H(Y,Z) - H(X,Y,Z)

= [(X:2) < I(X:Y,2)

Discarding the variable Y can only decrease
the mutual information with X

14



Shannon capacity

C = m(a§< I(X:Y) for given channel p(y|x)
p(x

Binary symmetric channel

1I-p
0 0
P
. >< . p=Dbit-flip probability
I-p

I(X:Y)=H(Y) - H(Y|X)
=HY) -, p(x)HY|X =)

= H(Y) — >, p(z)Hz[p]
= H(Y) — H2[p]

with Hz[p] = —(1 —p)logo(1 —p) —plogsp

p(z) = {1/2,1/2} = p(y) = {1/2,1/2} = H(Y) =1

C =1 — Hy[p] bits per use of the channel

0.6
C (bits)
0.5+

15



Quantum information theory

What if information is encoded into quantum
states 7

Bits b € {0,1} — Quantum bits |¢) € {|0),[1)}

Quantum state in a 2-d Hilbert space, regardless the
physical support (e.g., spin 1/2, photon polarization)

Unique properties (compared to classical info):

e Superposition principle:

a|0) 4+ B|1) with a2+ |82 =1
Computational basis {|0),|1)} (convention)
Dual basis |+) = \/_(|O) + (1))

e Non-orthogonal states
are not perfectly distinguishable

= quantum data compression, accessible
information, no-cloning principle

e Non-classical correlations (entanglement)
[EPR) = f(|0>|0> +[1)[1))
= S(H)H) +1-)-)

16



Distinguishing quantum states

- %0) prob. (1 —p) -
—> { |¢1> prob. p —>

Source entropy Hx[p] = —plodsp — (1 — p) logs(1 — p)

If (¢gltp1) # 0O, then states cannot be reliably
distinguished, unlike classical bits !

Density matrix p = (1 — p)|vo) (ol + pl1) (¥1]

von Neumann entropy S(p) = —Tr(plogs p)

Diagonalization: p = >; \;le;) (el
S(p) = =2 Ailogo A; = H[A]

S(p) < Ha[p] I (equality iff (¢g[yp1) = 0)

1) “Quantum redundancy” = compression
is possible even if p=1/2.

2) Bob maximizes I(X:Y) but cannot get all
of H»[p] = limited accessible information

17



Quantum redundancy

Source {[v;), pi}
resulting mixture p = ", p;|w;) (W]

Preparer P I »1 — | Source Q I = [3)

Assume that the preparer is in an entangled
state with the source:

PQ) = YV livp g

with [i)p being orthonormal so that pg =, pi W) (3]

e Before measurement of P:

S(P)=5(Q)=S(p)
e After measurement of P:

if P measures i then @Q projected onto |v;)
pp =i pi i) (il = S(P") = H[P)]
p’Q = pg =p (unchanged)

A measurement can only increase the entropy
S(P) < S(P") = S(p) < H[p;]

18



Quantum source coding theorem

(quantum noiseless coding)
B. Schumacher, Phys. Rev. A 51 (1995) 2738

Source {|v¥;),p;} with [¥;))eHandi=1,...m

m
—p= ) pith; with ¢ = [$) (¥
i=1
Information-theoretic meaning of S(p) 7

1)) - - - [¢) —| CODING |— W

n States

fidelity = average of (¢|(]--- (p|W|)|p) - - - [3)

For arbitrarily small € and 4§,

There exists a coding scheme applied to
blocks of n signal states with sufficiently

large n

that uses S(p) +§ qubits per signal state and
gives a fidelity FF > 1 — ¢

Converse: If only S(p) — § qubits are available
per signal state, then blocks of n signal states
will be decoded with fidelity F' < e.

19



Example of quantum coding

Aiice | | V) = VOB |eo) + VBT le1) prob. 1/2
1) = V08 Jeg) — vOIler) prob. 1/2

_ 1 v/0.09 n 1 0.9 —+/0.09
p > 0.1 >\ —v009 0.1

= ( ) diagonal in eigenbasis {eo,e1}
S(p) = —-0.91095,0.9— 0.1 log,0.1

0.47 qubits per signal state

Coding individual states (1 qubit per signal state)

e0) — |0)
le1) — |1)

Coding blocs of 3 signal states into 2 qubits

Rate =1 Fidelity = 1

Project onto 4-dim subspace spanned by states with
majority of |eg) (contains most of the weight):

)
i otherwise replace by |0)|0)
)

_?__
(@)
!
=
SoRO

Rate = 2/3 = 0.67
Prob. of success = (0.9)3 + 3(0.9)?(0.1) = 0.97
Fidelity = 0.97 + 0.03(0.99)3 = 0.99

20



Source {|v¥;),p;} with [¥;)) e Handi=1,...m

m
— p= > pih; with ¢ = [¥) (e
=1

Individual coding scheme: |¢;) - ENC|— W;

with W, keeping “most of the weight” of |v;)

m
— fidelity F = ) p;i(¢;|W;lv;)
i—1

m
Diag: p= ) Aje; with e; = |e;){es
i=1

L = span(l eigenvectors of p with highest eigenvalues)

[-dim subspace of 'H on which p has largest weight
[
N= ) e projector onto L [ <m I
j=1

W, keeps the part of ¢, lying in L

Space £+ (orthogonal complement of £ in H)
IS discarded

21



: ;) € L
If ;) = a4|l;) + o |I) with { Y N
7 1% 7) ) |lz > EL

then W; = |og|° [ + |of|? Jer){eq]
Tr(R ) Tr AL )

Take [ “big enough” so that
l
Tr(Ap) = Z)‘j >1—c€

o= Z pi Tr(Wi v;)

sz(lazlz Tl ), -+t Tr(le ><e1|wz>)

z Ll P = |oul? [(exw)]? >0
> sz' || *
> Zpi (2|ozl-|2 — 1) use z* > 2% — 1
= Y oni(2Tr(Aw) - 1)
— 2THA) - 1

Tr(Ap) >1—€ = F>2(1—€)—1=1-—2¢

22



Block coding

Sequence of n independent signal states
Vi, @ Pin @ ..., € HO™

Diag: p®™ has m™ eigenstates e;, ® e;, ® ...¢;,
with eigenvalues = prob(sequence i1,io,...1n)
= Ai; Ay A

(%
L = typical subspace of H®"
= span(l typical sequences of eigenstates)
nr. of typical eigenstates [ ~ 2nH [\l = onS(p)

typical eigenvalues ~ 2 nH\l = 2-nS5(p)

Ve > 0,0 > 0;dn and L :
Tr(A\) < on[S(p) + 6] ang Tr(Ap®") > 1 —¢

There exists a coding scheme that uses
at most n[S(p) + §] qubits per sequence
of n signal states, and gives a fidelity
greater than 1 — e.

23



Accessible information

(bound on)
A. S. Holevo, Probl. Inf. Transmission 9 (1973) 110

Communication of classical information
over a quantum channel.

Preparer g Measurer
P Alice — Bob M

{pvax}
Alice prepares signal state p, with probability p,
Bob measures signal state, getting outcome y

For any measurement that Bob may do,

H(X:Y) < S(p) — X4z S(pz)
with p = >, pzpz

S(P:Q) = S(pp) + S(pg) — S(ppg) =7

PPQ = Yoz Pz |T)(Z| @ pa with {|z)} orthonormal

pp = 2apz|T)(x| = S(pp) = H(X)
pQ = 2gPzpz=p = S(pg) = S(p)

= S(ppg) = H(X)+ >, pzS(pz) block diagonal

thus S(P:Q) = S(p)—>_, pz S(pz) = Holevo bound
24



Bob's generalized measurement (POVM)
characterized by {Ey} with £y >0, >, By =1
— prob. outcome y = Tr(Ey p)

Before POVM
pPOM = >z Pz |T){(z| ® pr ® |0)(0

After POVM

PPOM = Ly P |2)(@| ® /By pz /By ® |y)(y

with {|y)} orthonormal

Poar = Loy Pe T1(Eypz) o) (z] @ |y)(y]

Pyl
— diagonal matrix with elements pgz y = Pz Dy

S(plp) = H(X)
S(phy) = H(Y)
S(Pppr) = H(X,Y)

thus S(P":M") = H(X:Y) = accessed information

remains to prove that | S(P":M") < S(P:Q) I

25




S(P:Q) = S(P:QM) > S(P":Q"M" > S(P":M"

Including uncorrelated pure state conserves entropy

prQM = PpQ @ |0)(0]
S(prom) = S(ppg) + S(10)(0]) = S(ppg)

~~

0

Discarding a part cannot increase mutual information

S(P:Q'M') =S(P:M")+ S(P:Q'|M")
>0
strong subadditivity !!!

Quantum operation cannot increase mutual information

Operation can be simulated by adding an ancillary sys-
tem A, acting unitarily on the joint system, then dis-
carding the ancillary system A.

S(P:QM) S(P:QMA) including A
S(P":Q'M'A") unitary operation

S(P:Q'M" discarding A

Y

26



Communication over noisy quantum channels

(capacity for classical information)
Holevo, Schumacher, Westmoreland

p —|channel & |— p’

Operator-sum representation of &:

o = E(p) = Xy ExpE]
with > . E,ZEk = [ for trace preservation

If sending blocks
Pz1 @@ - - px,, —|Channel £— pl. ®py @ ph,

C = max (S(p') — X, psS(p,
Hsw = max (S() o peS(0))

ol =EC pepz) =X 4D p;:

Note: Sufficient to maximize over ensembles
of at most d2 pure states

Note: Only product signal states
but joint (entangled) measurements needed

27



Quantum no-cloning principle

Non-orthogonal quantum states cannot

be copied exactly.

If (Yole1) # 0,
then |y;) — CLONER |— |¥;)|v;) is impossible.

Indistinguishability = No-cloning

Assume perfect cloning is possible:
Repeatedly clone the state |vy;) until we get
n — oo perfect copies |W;) = |[v)[v;) - - - ;)

n clones

Since (Wg|W1) — 0, they can be distinguished
arbitrarily well, hence |¢;) can be distinguished
arbitrarily well.

No-cloning = Indistinguishability

Assume |;) are perfectly distinguishable:
Measure to identify whether it is [yg) or |i¥1).

Since the information (0 or 1) is classical, it
can be cloned, hence the n clones |W;) can be
prepared exactly.
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