Quantum Nonlocality and Communication Complexity

Richard Cleve
University of Waterloo

February 16, 20, 21, 22, 23 2006
(first 5 lectures) IHP, Paris
Quantum information can apparently be used to substantially reduce *computation* costs for a number of interesting problems, and to provide novel forms of *cryptographic security*.

We’ll explore this question:

How does quantum information affect the *communication costs* of information processing tasks?
Main Topics

1. Nonlocality à la Bell, CHSH, GHZ
2. Communication complexity
3. Nonlocal games
Contents of Lecture 1

• What quantum information cannot do
• The GHZ “paradox”
• The Bell inequality and its violation
 – Physicist’s perspective
 – Computer scientist’s perspective
• What quantum information *cannot* do

• The GHZ “paradox”

• The Bell inequality and its violation
 – Physicist’s perspective
 – Computer scientist’s perspective
How much classical information in n qubits?

$2^n - 1$ complex numbers apparently needed to specify an arbitrary n-qubit pure quantum state:

$$\alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \ldots + \alpha_{111}|111\rangle$$

Does this mean that an exponential amount of classical information is somehow stored in n qubits?

No! Holevo’s Theorem [1973] implies: cannot convey more than n bits of information in n qubits
Holevo’s Theorem

Easy case:

$$|\psi\rangle$$

n qubits

$$U$$

$$b_1 \ b_2 \ ... \ b_n$$ cannot convey more than n bits!

Hard case (the general case):

$$U$$

$$|\psi\rangle$$

n qubits

$$|0\rangle$$

m qubits

(proof omitted here)
Entanglement and signaling

Recall that entangled states, such as \(\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle \),

can be used to perform some intriguing feats, such as \textit{teleportation} and \textit{superdense coding}.

—but they \textit{cannot} be used to “signal instantaneously”.

Any operation performed on one system has no affect on the state of the other system (its reduced density matrix).
Basic communication scenario

Goal: convey n bits from Alice to Bob

$x_1 x_2 \ldots x_n$

Alice

Resources

$x_1 x_2 \ldots x_n$

Bob
Basic communication scenario

Bit communication:
- **Classical**
 - Cost: n

Bit communication & prior entanglement:
- (can be deduced)
 - Cost: n

Qubit communication:
- **Quantum**
 - Cost: n [Holevo’s Theorem, 1973]

Qubit communication & prior entanglement:
- $n/2$ superdense coding
 - [Bennett & Wiesner, 1992]
• What quantum information cannot do
• The GHZ “paradox”
• The Bell inequality and its violation
 – Physicist’s perspective
 – Computer scientist’s perspective
GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]

Input: r

Output: $a \leftarrow r$

Rules of the game:

1. It is promised that $r \oplus s \oplus t = 0$

2. No communication after inputs received

3. They win if $a \oplus b \oplus c = r \lor s \lor t$

<table>
<thead>
<tr>
<th>rst</th>
<th>$a \oplus b \oplus c$</th>
<th>abc</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0 [green]</td>
<td>011</td>
</tr>
<tr>
<td>011</td>
<td>1 [lightgreen]</td>
<td>001</td>
</tr>
<tr>
<td>101</td>
<td>1 [lightgreen]</td>
<td>111</td>
</tr>
<tr>
<td>110</td>
<td>1 [red]</td>
<td>101</td>
</tr>
</tbody>
</table>
No perfect strategy for GHZ

General deterministic strategy:
\[a_0, a_1, b_0, b_1, c_0, c_1 \]

Winning conditions:
\[\begin{align*}
 a_0 \oplus b_0 \oplus c_0 &= 0 \\
 a_0 \oplus b_1 \oplus c_1 &= 1 \\
 a_1 \oplus b_0 \oplus c_1 &= 1 \\
 a_1 \oplus b_1 \oplus c_0 &= 1
\end{align*} \]

Has no solution, thus no perfect strategy exists.
Input and output events can be \textit{space-like} separated: so signals at the speed of light are not fast enough for cheating.

What if Alice, Bob, and Carol \textit{still} keep on winning?
“GHZ Paradox” explained

Prior entanglement: $|\psi\rangle = |000\rangle - |011\rangle - |101\rangle - |110\rangle$

Alice’s strategy:
1. if $r = 1$ then apply H to qubit
2. measure qubit and set a to result

Bob’s & Carol’s strategies: similar

Case 1 ($rst = 000$): state is measured directly …
Case 2 ($rst = 011$): new state $|001\rangle + |010\rangle - |100\rangle + |111\rangle$
(Other cases similar by symmetry)
GHZ: conclusions

• For the GHZ game, any *classical* team succeeds with probability at most $\frac{3}{4}$

• Allowing the players to communicate would enable them to succeed with probability 1

• Entanglement cannot be used to communicate

• Nevertheless, allowing the players to have entanglement enables them to succeed with probability 1

• Thus, entanglement is a useful resource for the task of *winning the GHZ game*
• What quantum information *cannot* do

• The GHZ “paradox”

• The Bell inequality and its violation
 – Physicist’s perspective
 – Computer scientist’s perspective
Bell’s Inequality and its violation

Part I: physicist’s view:

Can a quantum state have *pre-determined* outcomes for each possible measurement that can be applied to it?

qubit:

where the “manuscript” is something like this:

![Table with quantum states and outcomes](image)

called *hidden variables*

[Bell, 1964]

[Clauser, Horne, Shimony, Holt, 1969]
Bell Inequality

Imagine a two-qubit system, where one of two measurements, called M_0 and M_1, will be applied to each qubit:

Define:

- $A_0 = (-1)^{a_0}$
- $A_1 = (-1)^{a_1}$
- $B_0 = (-1)^{b_0}$
- $B_1 = (-1)^{b_1}$

Claim: $A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \leq 2$

Proof: $A_0 (B_0 + B_1) + A_1 (B_0 - B_1) \leq 2$

one is ± 2 and the other is 0

space-like separated, so no cross-coordination
Bell Inequality

$A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \leq 2$ is called a *Bell Inequality* *also called CHSH Inequality*

Question: could one, in principle, design an experiment to check if this Bell Inequality holds for a particular system?

Answer 1: *no, not directly*, because A_0, A_1, B_0, B_1 cannot all be measured (only one $A_s B_t$ term can be measured)

Answer 2: *yes, indirectly*, by making many runs of this experiment: pick a random $st \in \{00, 01, 10, 11\}$ and then measure with M_s and M_t to get the value of $A_s B_t$

The *average* of $A_0 B_0, A_0 B_1, A_1 B_0, -A_1 B_1$ should be $\leq \frac{1}{2}$

also called CHSH Inequality
Violating the Bell Inequality

Two-qubit system in state
\[|\phi\rangle = |00\rangle - |11\rangle \]

Applying rotations \(\theta_A \) and \(\theta_B \) yields:
\[
\begin{align*}
 |\phi\rangle &= \cos(\theta_A + \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A + \theta_B) (|01\rangle + |10\rangle) \\
 AB &= +1 \\
 AB &= -1
\end{align*}
\]

Define
\(M_0 \): rotate by \(-\pi/16\) then measure
\(M_1 \): rotate by \(+3\pi/16\) then measure

Then \(A_0 B_0, \ A_0 B_1, \ A_1 B_0, \ -A_1 B_1 \) all have expected value \(\frac{1}{2}\sqrt{2} \), which \text{contradicts} the upper bound of \(\frac{1}{2} \)

\[
\cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2}
\]
Bell Inequality violation: summary

Assuming that quantum systems are governed by local hidden variables leads to the Bell inequality
\[A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1 \leq 2 \]

But this is violated in the case of Bell states (by a factor of \(\sqrt{2} \))

Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments along these lines have actually been conducted.
• What quantum information *cannot* do
• The GHZ “paradox”
• The Bell inequality and its violation
 – Physicist’s perspective
 – Computer scientist’s perspective
Bell’s Inequality and its violation

Part II: computer scientist’s view:

input: s

output: a b

Rules: 1. No communication after inputs received
2. They win if $a \oplus b = s \wedge t$

With classical resources, $\Pr[a \oplus b = s \wedge t] \leq 0.75$

But, with prior entanglement state $|00\rangle - |11\rangle$,
$\Pr[a \oplus b = s \wedge t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853\ldots$
The quantum strategy

• Alice and Bob start with entanglement
 \[|\phi\rangle = |00\rangle - |11\rangle\]

• Alice: if \(s = 0\) then rotate by \(\theta_A = -\pi/16\)
 else rotate by \(\theta_A = +3\pi/16\) and measure

• Bob: if \(t = 0\) then rotate by \(\theta_B = -\pi/16\)
 else rotate by \(\theta_B = +3\pi/16\) and measure

\[
\cos(\theta_A - \theta_B) (|00\rangle - |11\rangle) + \sin(\theta_A - \theta_B) (|01\rangle + |10\rangle)
\]

Success probability:
\[
\Pr[a \oplus b = s \land t] = \cos^2(\pi/8) = \frac{1}{2} + \frac{1}{4}\sqrt{2} = 0.853\ldots
\]
The quantum strategy is optimal

Tsirelson [1980]: For any quantum strategy, the success probability is at most \(\cos^2(\pi/8) \)

We’ll prove this in a future lecture, when we get more deeply into nonlocal games
Nonlocality in operational terms

- Information processing task
- Classically, communication is needed
- Quantum entanglement
Preview: magic square game

Problem: Fill in the matrix with bits such that each row has even parity and each column has odd parity.

$$
\begin{array}{ccc}
\begin{array}{ccc}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33 \\
\end{array}
\end{array}
$$

Game: Ask Alice to fill in one row and Bob to fill in one column. They **win** iff parities are correct and bits agree at intersection.

Success probabilities: $\frac{8}{9}$ classical and 1 quantum

[Aravind, 2002] (details omitted here)
THE END
Contents of Lecture 2

• Communication complexity
 – Equality checking
 – Intersection (quadratic savings)
 – Are exponential savings possible?
 – Lower bound for the inner product problem
 – Simultaneous message passing & fingerprinting
• Communication complexity
 – Equality checking
 – Intersection (quadratic savings)
 – Are exponential savings possible?
 – Lower bound for the inner product problem
 – Simultaneous message passing & fingerprinting
Classical communication complexity

[Yao, 1979]

\[f(x, y) \]

E.g. equality function: \(f(x, y) = 1 \) if \(x = y \), and \(0 \) if \(x \neq y \)

Question: can the communication be less than \(n \) bits?
Deterministic cost is n bits (I)

Table of all values of $f(x,y)$:

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Suppose the communication complexity of f is k

Each input in the domain of f fixes a conversation $C \in \{0,1\}^{k+1}$ (k+1-bit conversation)

Several inputs may lead to the same conversation ...

A rectangle is $R \subseteq \{0,1\}^n \times \{0,1\}^n$ of the form $R = R_A \times R_B$
Deterministic cost is n bits (II)

Table of all values of $f(x,y)$:

<table>
<thead>
<tr>
<th></th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

In fact, the inputs leading to C must constitute a rectangle: if (x,y), (x',y') both lead to C then so do (x',y) and (x,y')

Since each conversation has a unique output, f is constant on each of these rectangles

Need at least 2^{n+1} rectangles to $\{0,1\}$-partition this table

Since this implies $\geq 2^{n+1}$ distinct conversations, $k \geq n$

Therefore, the deterministic communication complexity is n
Probabilistic cost is $O(\log n)$ bits

Start with a “good” classical error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ such that, for all $x \neq y$,

$$\Delta(e(x),e(y)) \geq \delta cn$$

(\Delta means Hamming distance), where c, δ are constants

$x_1 x_2 \ldots x_n$ $y_1 y_2 \ldots y_n$

randomly choose $r \in \{1,2,\ldots,cn\}$

Can repeat to reduce error
Quantum communication complexity

Qubit communication

Prior entanglement

Question: can quantum beat classical in this context?
• Communication complexity
 – Equality checking
 – Intersection (quadratic savings)
 – Are exponential savings possible?
 – Lower bound for the inner product problem
 – Simultaneous message passing & fingerprinting
Appointment scheduling

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq \frac{3}{4}$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. $< \varepsilon$

[KS ‘87] [BCW ‘98]
Search problem

Given: \(x = \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & \ldots & 1
\end{array} \)

accessible via queries

\[
\log n \left\{ \begin{array}{c}
|i\rangle \\
1
\end{array} \right\} \xrightarrow{x} \left\{ \begin{array}{c}
|i\rangle \\
|b\rangle \oplus x_i\rangle
\end{array} \right\}
\]

Goal: find \(i \in \{1, 2, \ldots, n\} \) such that \(x_i = 1 \)

Classically: \(\Omega(n) \) queries are necessary

Quantum mechanically: \(O(n^{1/2}) \) queries are sufficient

[Grover, 1996]
Alice: \[x = \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & 1 & 0 & 1 & 0 \\
\end{array} \ldots 0 \]

Bob: \[y = \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 0 & 1 & 1 & 0 \\
\end{array} \ldots 1 \]

\[x \wedge y = \begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{array} \ldots 0 \]

Communication per \(x \wedge y \)-query: \(2(\log n + 3) = O(\log n) \)
Appointment scheduling: epilogue

Bit communication:

Cost: $\theta(n)$

Qubit communication:

Cost: $\theta(n^{1/2})$ (with refinements)

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Qubit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

[R ’02] [AA ’03]
• Communication complexity
 – Equality checking
 – Intersection (quadratic savings)
 – Are exponential savings possible?
 – Lower bound for the inner product problem
 – Simultaneous message passing & fingerprinting
Restricted version of equality

Precondition (i.e. promise): either \(x = y \) or \(\Delta(x, y) = n/2 \)

(Distributed variant of “constant” vs. “balanced”)

Classically, \(\Omega(n) \) bits communication are necessary
for an exact solution

Quantum mechanically, \(O(\log n) \) qubits communication
are sufficient for an exact solution

[BCW ’98]
Classical lower bound

Theorem: If $S \subseteq \{0,1\}^n$ has the property that, for all $x, x' \in S$, their intersection size is not $n/4$ then $|S| < 1.99^n$

Let *some* protocol solve restricted equality with k bits comm.

- 2^k conversations of length k
- restrict to the $2^n/\sqrt{n}$ input pairs (x, x), where $\Delta(x) = n/2$

There are $2^n/2^k\sqrt{n}$ input pairs (x, x) that yield *same* conv. C

Define $S = \{x : \Delta(x) = n/2$ and (x, x) yields conv. $C \}$

For any $x, x' \in S$, input pair (x, x') *also* yields conversation C

Therefore, $\Delta(x, x') \neq n/2$, implying intersection size is *not* $n/4$

Theorem implies $2^n/2^k\sqrt{n} < 1.99^n$, so $k > 0.007n$

[Frankl and Rödl, 1987]
Quantum protocol

For each \(x \in \{0,1\}^n \), define

\[|\psi_x\rangle = \sum_{j=1}^{n} (-1)^{x_j} |j\rangle \]

Protocol:
1. Alice sends \(|\psi_x\rangle \) to Bob (\(\log n \) qubits)
2. Bob measures state in a basis that includes \(|\psi_y\rangle \)

Correctness of protocol:
If \(x = y \) then Bob’s result is definitely \(|\psi_y\rangle \)
If \(\Delta(x,y) = n/2 \) then \(\langle \psi_x | \psi_y \rangle = 0 \), so result is definitely not \(|\psi_y\rangle \)

Question: How much communication if error \(\frac{1}{4} \) is permitted?
Answer: Just 2 bits are sufficient!
Exponential quantum vs. classical separation in bounded-error models

$O(\log n)$ quantum vs. $\Omega(n^{1/4}/\log n)$ classical communication

Classical description of

$|\psi\rangle$: a $\log(n)$-qubit state

M: two-outcome measurement

Output: binary result of applying M to $U|\psi\rangle$

Classical description of

U: $\log(n)$-qubit unitary op

[Raz, ’99]
• Communication complexity
 – Equality checking
 – Intersection (quadratic savings)
 – Are exponential savings possible?
 – Lower bound for the inner product problem
 – Simultaneous message passing & fingerprinting
Inner product

$$\text{IP}(x, y) = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \mod 2$$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols.

Quantum protocols *also* require $\Omega(n)$ communication.
The Bernstein-Vazirani problem

Let \(f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \mod 2 \)

Given:

\[
\begin{align*}
|b\rangle & \quad \quad |b\rangle \\
|b \oplus f(x_1, x_2, \ldots, x_n)\rangle & \quad \quad |b \oplus f(x_1, x_2, \ldots, x_n)\rangle \\
|x_1\rangle & \quad \quad |x_1\rangle \\
|x_2\rangle & \quad \quad |x_2\rangle \\
\vdots & \quad \quad \vdots \\
|x_n\rangle & \quad \quad |x_n\rangle
\end{align*}
\]

with unknown \(a_1, a_2, \ldots, a_n \)

Goal: determine \(a_1, a_2, \ldots, a_n \)

Classically, \(n \) queries are necessary
The Bernstein-Vazirani problem

Let \(f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n \mod 2 \)

Given:

\[
\begin{align*}
|0\rangle & \quad H \quad H \quad |a_1\rangle \\
|0\rangle & \quad H \quad H \quad |a_2\rangle \\
: & \quad H \quad H \quad : \\
|0\rangle & \quad H \quad H \quad |a_n\rangle \\
|1\rangle & \quad H \quad H \quad |1\rangle
\end{align*}
\]

Goal: determine \(a_1, a_2, \ldots, a_n \)

Classically, \(n \) queries are necessary

Quantum mechanically, 1 query is sufficient
Lower bound for inner product

\[\text{IP}(x, y) = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \mod 2 \]

Proof:

Alice and Bob’s IP protocol

Alice and Bob’s IP protocol inverted

Proof:
Lower bound for inner product

\[\text{IP}(x, y) = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \mod 2 \]

Proof:

Since \(n \) bits are conveyed from Alice to Bob, \(n \) qubits communication necessary (by Holevo’s Theorem)
Contents of Lecture 3

- Quantum fingerprinting
- Hidden matching problem
• Quantum fingerprinting
• Hidden matching problem
Equality revisited in simultaneous message model

Equality function:
\[f(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} \]

Exact protocols: require \(2n\) bits communication
Equality revisited
in simultaneous message model

\[x_1 x_2 \ldots x_n \quad y_1 y_2 \ldots y_n \]

classically correlated

\[f(x,y) \]

Pr[00] = Pr[11] = \(\frac{1}{2} \)

Bounded-error protocols with a shared random key:
require only \(O(1) \) bits communication

Error-correcting code:
\[
e(x) = 1\,0\,1\,1\,1\,1\,0\,1\,0\,1\,1\,0\,0\,1\,1\,0\,0\,1
\]
\[
e(y) = 0\,1\,1\,0\,1\,0\,0\,1\,0\,0\,1\,1\,0\,0\,1\,0\,1\,0
\]

random \(k \)
Equality revisited in simultaneous message model

\[x_1 x_2 \ldots x_n \]

\[y_1 y_2 \ldots y_n \]

Bounded-error protocols \textit{without} a shared key:

\textbf{Classical:} \(\theta(n^{1/2}) \)

\textbf{Quantum:} \(\theta(\log n) \) using quantum fingerprints

\[f(x,y) \]

[A '96] [NS '96] [BCWW '01]
Quantum fingerprints

Question 1: how many orthogonal states in m qubits?

Answer: 2^m

Let ε be an arbitrarily small positive constant

Question 2: how many *almost orthogonal* states in m qubits? (* where $|\langle \psi_x | \psi_y \rangle| \leq \varepsilon$ *)

Answer: 2^{2am}, for some constant $0 < a < 1$

Construction of *almost orthogonal states*: start with a special classical error-correcting code, which is a function $e: \{0,1\}^n \rightarrow \{0,1\}^{cn}$ such that, for all $x \neq y$,

$$\delta cn \leq \Delta(e(x), e(y)) \leq (1-\delta)cn$$

(c, δ are constants)
Construction of almost orthogonal states

Set $|\psi_x\rangle = \frac{1}{\sqrt{cn}} \sum_{k=1}^{cn} (-1)^{e(x)_k} |k\rangle$ for each $x \in \{0,1\}^n$ ($\log(cn)$ qubits)

Then $\langle \psi_x | \psi_y \rangle = \frac{1}{cn} \sum_{k=1}^{cn} (-1)^{[e(x) \oplus e(y)]_k} |k\rangle = 1 - \frac{2\Delta(e(x), e(y))}{cn}$

Since $\delta cn \leq \Delta(e(x), e(y)) \leq (1-\delta)cn$, we have $|\langle \psi_x | \psi_y \rangle| \leq 1 - 2\delta$

By duplicating each state, $|\psi_x\rangle \otimes |\psi_x\rangle \otimes \ldots \otimes |\psi_x\rangle$, the pairwise inner products can be made arbitrarily small: $(1-2\delta)^r \leq \epsilon$

Result: $m = r \log(cn)$ qubits storing $2^n = 2^{(1/c)2^{m/r}}$ different states

(as opposed to n qubits!)
What are these almost orthogonal states good for?

Question 3: can they be used to somehow store n bits using only $O(\log n)$ qubits?

Answer: No—recall that Holevo’s theorem forbids this.

Here’s what we can do: given two states from an almost orthogonal set, we can distinguish between these two cases:

- they’re both the same state
- they’re almost orthogonal

Question 4: How?
Quantum fingerprints

Let $|\psi_{000}\rangle$, $|\psi_{001}\rangle$, ..., $|\psi_{111}\rangle$ be 2^n states on $O(\log n)$ qubits such that $|\langle \psi_x | \psi_y \rangle| \leq \varepsilon$ for all $x \neq y$.

Given $|\psi_x\rangle|\psi_y\rangle$, one can check if $x = y$ or $x \neq y$ as follows:

If $x = y$, $\Pr[\text{output} = 0] = 1$
If $x \neq y$, $\Pr[\text{output} = 0] = (1 + \varepsilon^2)/2$

Intuition: $|0\rangle|\psi_x\rangle|\psi_y\rangle + |1\rangle|\psi_y\rangle|\psi_x\rangle$

Note: error probability can be reduced to $((1 + \varepsilon^2)/2)^r$.
Equality revisited in simultaneous message model

$\begin{align*}
& x_1 x_2 \ldots x_n \\
& y_1 y_2 \ldots y_n
\end{align*}$

Bounded-error protocols \textit{without} a shared key:

\textbf{Classical: } $\theta(n^{1/2})$

\textbf{Quantum: } $\theta(\log n)$

[A '96] [NS '96] [BCWW '01]
Quantum protocol for equality in simultaneous message model

\[x_1 x_2 \ldots x_n \]

Recall that, with a shared key, the problem is easy classically ...
• Quantum fingerprinting
• Hidden matching problem
Hidden matching problem

For this problem, a quantum protocol is exponentially more efficient than any classical protocol—even with a shared key.

Inputs: $x \in \{0,1\}^n$

Output: $(i,j, x_i \oplus x_j)$, such that $(i,j) \in M$

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, ’04]
The hidden matching problem

Inputs: \(x \in \{0,1\}^n \)

\[M = \begin{array}{c}
\text{matching on} \\
\{1,2, \ldots, n\}
\end{array} \]

Output: \((i,j, x_i \oplus x_j), \ (i,j) \in M\)

Classically, one-way communication is \(\Omega(\sqrt{n})\), even with a shared classical key (the proof is omitted here)

Rough intuition: Alice doesn’t know which edges are in \(M\), so she apparently has to send \(\Omega(\sqrt{n})\) bits of the form \(x_i \oplus x_j\) …
The hidden matching problem

Inputs: \(x \in \{0,1\}^n \)

\[M = \begin{array}{ccc}
\text{matching on} & \{1,2, \ldots, n\} \\
\end{array} \]

Output: \((i,j, x_i \oplus x_j), \ (i,j) \in M \)

Quantum protocol: Alice sends \(\frac{1}{\sqrt{n}} \sum_{k=1}^{n} (-1)^{x_k} |k\rangle \) (log \(n \) qubits)

Bob measures in \(|i\rangle \pm |j\rangle \) basis, \((i,j) \in M \), and uses the outcome’s relative phase to determine \(x_i \oplus x_j \)
THE END
Contents of Lecture 4

• Interactive proof systems
• Two-prover interactive proof systems (MIPs)
 – Classical \oplus-MIP = MIP = NEXP
 – Quantum \oplus-MIP* \subseteq EXP

joint work with:

Peter Høyer (Calgary)
Ben Toner (Caltech)
John Watrous (Calgary)
• Interactive proof systems
 • Two-prover interactive proof systems (MIPs)
 – Classical \oplus-MIP = MIP = NEXP
 – Quantum \oplus-MIP* \subseteq EXP
We’ll consider connections between:

Computational proof systems: where one or more “provers” can efficiently convince a “verifier” of a mathematical truth

and ...

Nonlocality: Bell inequalities and entangled systems that violate them

One conclusion: certain interactive proof systems become *weaker* with quantum information
What is the computational cost of the process of being convinced of something?

Consider an instance of 3SAT:

\[f(x_1, \ldots, x_n) = (x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \cdots \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n) \]

\(f(x_1, \ldots, x_n) \) is **satisfiable** iff there exists \(b_1, \ldots, b_n \in \{0,1\} \)

such that \(f(b_1, \ldots, b_n) = 1 \)

Satisfiability is easy to **verify**—if one is supplied with, say, a satisfying assignment

\[\textbf{NP} \] denotes the class of languages \(L \) whose positive instances have such “witnesses” that can be verified in polynomial time
“Complexity Theory 101”

\(\mathbf{P} \): solvable in time \(O(n^c) \)

\(\mathbf{NP} \): positive instances verifiable in time \(O(n^c) \)

\(\mathbf{PSPACE} \): solvable with space \(O(n^c) \)

\(\mathbf{EXP} \): solvable in time \(O(2^{n^c}) \)

\(\mathbf{NEXP} \): positive instances verifiable in time \(O(2^{n^c}) \)

\(\mathbf{P} \subseteq \mathbf{NP} \subseteq \mathbf{PSPACE} \subseteq \mathbf{EXP} \subseteq \mathbf{NEXP} \)
Interactive proof systems

If one can carry out a “dialog” with a prover then the expressive power increases from NP to PSPACE

is $x \in L$?

Verifier \quad \text{questions} \quad \text{responses} \quad \text{Prover}

- The Verifier must be efficient (polynomial time), but the Prover is computationally unbounded
- **Soundness**: if $x \notin L$, no Prover causes the Verifier to accept (small error probability is okay)
- **Completeness**: if $x \in L$, there exists a Prover that causes the Verifier to accept (small error is okay)

[Lund, Fortnow, Karloff, Nisan 1990; Shamir 1990]
• Interactive proof systems

• Two-prover interactive proof systems (MIPs)
 – Classical \(\oplus\text{-MIP} = \text{MIP} = \text{NEXP} \)
 – Quantum \(\oplus\text{-MIP}^* \subseteq \text{EXP} \)
Two provers

With two provers, who cannot communicate with each other, the expressive power increases to NEXP (nondeterministic exponential-time)

- Again, the Verifier must be efficient (polynomial time), and the Provers are computationally unbounded
- The NEXP result assumes the provers are classical
- With quantum strategies, provers can sometimes "cheat"

[Babai, Fortnow, Lund, 1991]
Sample protocol for 3SAT ...

Instance: \((x_1 \lor \overline{x}_3 \lor x_4) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land (\overline{x}_1 \lor x_5 \lor \overline{x}_n)\)

1. The Verifier randomly chooses a clause and a variable from that clause, and then sends the clause to Alice and the variable to Bob

2. Alice returns a valid truth assignment for the clause, and Bob must return a consistent value for the variable

E.g., for the above instance, the Verifier might send Alice “\((\overline{x}_2 \lor x_3 \lor \overline{x}_5)\)” and send Bob “\(x_5\)”

… and a valid response is Alice sends 1, 0, 0 (values for \(x_2, x_3, x_5\) respectively), and Bob sends 0 (value for \(x_5\))
... and how to cheat the protocol

Recall the **Kochen-Specker Theorem** [1967]: there exists a finite set of vectors v_1, v_2, \ldots, v_n in \mathbb{R}^3 that **cannot** be assigned labels from $\{0,1\}$ simultaneously satisfying:

- For any two orthogonal vectors, they are not both labeled 1
- For any three mutually orthogonal vectors, at least one of them is labeled 1
Kochen-Specker “nonlocality”

Game (essentially a Bell-inequality violation):

• The Verifier sends Alice a triple of orthogonal vectors \((v_i, v_j, v_k)\) and Bob one vector \(v_m\) from that triple

• Alice returns a valid labeling for \((v_i, v_j, v_k)\), and Bob returns a label for \(v_m\)

• The verifier accepts iff the labels are consistent

• By the Kochen-Specker Theorem, the classical success probability is less than one

• There is a perfect quantum strategy using entanglement

 \[|\psi\rangle = |00\rangle + |11\rangle + |22\rangle \]
Cheating the protocol for 3SAT

For an instance of the Kochen-Specker Theorem, the orthogonality conditions can be expressed by the formula

\[f(x_1, \ldots, x_n) = \left[\bigwedge_{v_i \perp v_j} (\overline{x_i} \lor \overline{x_j}) \right] \land \left[\bigwedge_{v_i \perp v_j \perp v_k} (x_i \lor x_j \lor x_k) \right] \]

- By the Kochen-Specker Theorem, this formula is unsatisfiable—therefore, for classical Provers, the Verifier accepts with probability \textit{less than one}

- But, using the quantum strategy for the KS game, the Provers can cause the Verifier to \textit{always} accept
MIP

• Definition: MIP is the class of languages accepted by classical two-prover interactive proof systems

• Theorem [Fortnow, Rompel, Sipser, 1988; Babai, F, Lund, 1991]:
 \(\text{MIP} = \text{NEXP} \)

• Definition: MIP* is the class of languages accepted by quantum two-prover interactive proof systems

• Open questions:
 \(\text{Is } \text{NEXP} \subseteq \text{MIP}^*? \)
 \(\text{Is } \text{MIP}^* \subseteq \text{NEXP}? \)
Restricted protocols that are **one-round** and where:

- Alice and Bob’s responses, a and b, are **single bits**
- The Verifier’s decision is a function of $a \oplus b$ and his questions only
- Any constant gap between the soundness and the completeness success probability is okay

Recall the CHSH version of Bell: $a \oplus b = s \land t$
Theorem 1: \oplus-MIP = NEXP (= MIP)

Theorem 2: \oplus-MIP* ⊆ EXP

Therefore, \oplus-MIP* is strictly weaker than \oplus-MIP (unless EXP = NEXP)
• Interactive proof systems

• Two-prover interactive proof systems (MIPs)
 – Classical \(\oplus \text{-MIP} = \text{MIP} = \text{NEXP} \)
 – Quantum \(\oplus \text{-MIP}^* \subseteq \text{EXP} \)
Proof that $\text{NEXP} \subseteq \oplus\text{-MIP}$ (I)

A *probabilistically checkable proof* (PCP) system is:

A single-prover interactive proof system where the prover is not adaptive (i.e., behaves like an oracle)

![Diagram of verifier and prover interaction](image)

Equivalently, each proof is bit-string, and the verifier accesses a bounded number of bits of the string (of his choosing)

\[0110101001101010011\]

Theorem: $\text{NP} = \oplus\text{-PCP}_{1/2+\varepsilon, 1}[O(\log n), 3]$

[Håstad ’01][Bellare, Goldreich, Sudan ’98]
Proof that \(\text{NEXP} \subseteq \oplus\text{-MIP} \) (II)

Corollary: \(\text{NEXP} = \oplus\text{-PCP}_{1/2+\varepsilon, 1} [n^{O(1)}, 3] \)

\[
\begin{array}{cccccccccc}
0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots & 1 & 0 & 0 \\
x & y & z
\end{array}
\]

Lemma: \(\text{NEXP} = \oplus\text{-PCP}_{11/16+\varepsilon, 1} [n^{O(1)}, 2] \)

A test for \(x \oplus y \oplus z = 0 \)

If \(x \oplus y \oplus z = 0 \) then it is possible to satisfy 12/16 edges

\[
\begin{array}{cccc}
0 & \text{fixed} & & \\
& 1 & \text{fixed} & \\
& & 1 & \text{fixed} \\
\end{array}
\]

\(a \oplus b = 1 \) (different)

\(a \oplus b = 0 \) (same)

[H ’01][BGS ’98]
Proof that $\text{NEXP} \subseteq \oplus\text{-MIP (III)}$

Corollary: $\text{NEXP} = \oplus\text{-PCP}_{1/2+\varepsilon, 1} [n^{O(1)}, 3]$

$\begin{array}{ccccccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots & 1 & 0 & 0
\end{array}$

Lemma: $\text{NEXP} = \oplus\text{-PCP}_{11/16+\varepsilon, 1} [n^{O(1)}, 2]$

A test for $x \oplus y \oplus z = 0$

If $x \oplus y \oplus z = 1$ then it is possible to satisfy at most $10/16$ edges

To test $x \oplus y \oplus z = 1$, set fixed bit to 1 (or switch incident edge colors)

Finally, can “unfix” fixed bit

$a \oplus b = 1$ (different)

$a \oplus b = 0$ (same)
Proof that $\text{NEXP} \subseteq \oplus\text{-MIP (IV)}$

In the $\Theta\text{-PCP}_{1/2+\varepsilon, 1} [n^{O(1)}, 2]$ construction, the underlying graph is bipartite, so each bit can be queried to a separate prover.

What follows is a $\Theta\text{-MIP}_{0.6875 + \varepsilon, 0.75}$ proof system for NEXP.

Therefore $\text{NEXP} \subseteq \Theta\text{-MIP}$.
• Interactive proof systems

• Two-prover interactive proof systems (MIPs)
 – Classical $\oplus\text{-MIP} = \text{MIP} = \text{NEXP}$
 – Quantum $\oplus\text{-MIP}^* \subseteq \text{EXP}$
⊕-MIP* ⊆ EXP

is \(x \in L? \)

Alice \(\rightarrow \) question \(a \) (1 bit) \(\leftarrow \) Bob

Verifier

question \(b \) (1 bit)
\(\Theta \text{-MIP}^* \subseteq \text{EXP (I)} \)

Theorem [Tsirelson, 1987]: every *quantum* \(\Theta \)-type protocol corresponds to sets of unit vectors \(\{x_s : s \in S\} \) & \(\{y_t : t \in T\} \) in \(\mathbb{R}^n \) such that, for questions \((s,t) \in S \times T\), the responses satisfy

\[
\Pr[a \oplus b = 0] = \frac{1 + x_s \cdot y_t}{2}
\]

Example: vectors in \(\mathbb{R}^2 \) for the CHSH game:
$$\oplus\text{-MIP}^* \subseteq \text{EXP (II)}$$

Example: vectors in \mathbb{R}^2 for the CHSH game:

Overall success probability:

$$\frac{1}{4} \left(\frac{1 + x_0 \cdot y_0}{2} \right) + \frac{1}{4} \left(\frac{1 + x_0 \cdot y_1}{2} \right) + \frac{1}{4} \left(\frac{1 + x_1 \cdot y_0}{2} \right) + \frac{1}{4} \left(\frac{1 - x_1 \cdot y_1}{2} \right)$$

Tsirelson’s Theorem implies that finding the best quantum \oplus-type protocol reduces to finding a set of vectors optimizing an expression of the form $\sum_{st} p_{st} x_s \cdot y_t$

Efficient algorithms (polynomial-time in $|S|$ and $|T|$) are known for this kind of problem, using semidefinite programming
Proof of Tsirelson’s Theorem (I)

Converting a protocol into a vector system:

Start with a quantum \(\Theta \)-type protocol using entanglement \(|\psi\rangle\).

This can be described in terms of a set of binary observables (Hermitian operators with eigenvalues in \(\{+1,-1\}\)) \(\{A_s : s \in S\}\) and \(\{B_t : t \in T\}\), which correspond to Alice and Bob’s respective actions on input \((s,t) \in S \times T\).

The expected outcome is:

\[
\langle \psi | A_s \otimes B_t | \psi \rangle = (\langle \psi | A_s \otimes I \rangle) (I \otimes B_t | \psi \rangle)
\]

which is an inner product of two (complex) vectors.

These vectors can be embedded into \(\mathbb{R}^d\).
Proof of Tsirelson’s Theorem (II)

Converting a vector system into a protocol:

For any k, there exists a set of k binary observables $M_1, M_2, ..., M_k$ such that, for all $i \neq j$, $M_i M_j = -M_j M_i$

They act on a d-dimensional space (where $d = 2^{(k-1)/2}$)

Convert each vector $v = (v_1, v_2, ..., v_k)$ into the observable $M^v = v_1 M_1 + v_2 M_2 + ... + v_k M_k$

Then $(1/d) \text{Tr}(M^v M^w) = v \cdot w$

It follows from this that, setting $|\psi\rangle = |1\rangle|1\rangle + |2\rangle|2\rangle + ... + |d\rangle|d\rangle$ yields the desired protocol
Open questions

• MIP* versus MIP?
• What happens with more than two provers?
• Quantum communication between the provers and a quantum verifier?
• There are interesting “spinoffs” from classical MIP (e.g. a theory of hardness of approximation problems)—what about for MIP*?
• How does “parallel repetition” work for quantum strategies?
THE END
Contents of Lecture 5

- \oplus-MIP* vs one-prover systems
- Nonlocal games (CHSH, KS)
- Quantum versus classical XOR games
- Odd Cycle game (blackboard)
- Magic Square game (blackboard)

joint work with:

Peter Høyer (Calgary)
Ben Toner (Caltech)
John Watrous (Calgary)
• \oplus-MIP* vs one-prover systems
• Nonlocal games (CHSH, KS)
• Quantum versus classical XOR games
• Odd Cycle game (blackboard)
• Magic Square game (blackboard)
⊕-MIP* vs one-prover systems

QIP(2) is all languages accepted by single-prover interactive proof systems with one round of quantum communication between prover and verifier (who must now be quantum)

Theorem [Wehner ’05]: for $0 \leq s < c \leq 1$, $⊕$-MIP*$_{s,c} \subseteq$ QIP$_{s,c}(2)$

Theorem [Kitaev, Watrous ’00]: QIP$_{s,c}(2) \subseteq$ EXP
• \oplus-MIP* vs one-prover systems
• Nonlocal games (CHSH, KS)
• Quantum versus classical XOR games
• Odd Cycle game (blackboard)
• Magic Square game (blackboard)
A nonlocality game G consists of four sets A, B, S, T, a probability distribution π on $S \times T$, and a predicate $V : A \times B \times S \times T \rightarrow \{0,1\}$.

Verifier chooses $(s,t) \in S \times T$ according to π and, after receiving (a,b), accepts iff $V(a,b,s,t) = 1$.

The classical value of G, denoted as $\omega_c(G)$, is the maximum acceptance probability, over all classical strategies of Alice and Bob.
Quantum strategies

- The **quantum value** of G, denoted as $\omega_q(G)$, is the maximum acceptance probability of quantum strategies.

- An upper bound on $\omega_c(G)$ is a **Bell inequality**.

- A quantum strategy with success probability greater than $\omega_c(G)$ is a **Bell inequality violation**.

- An upper bound on $\omega_q(G)$ is a **Tsirelson inequality**.
\[V(a, b, s, t) = 1 \text{ iff } a \oplus b = s \land t \]
\[\omega_c(G) = \frac{3}{4} = \frac{1}{2} \left(1 + \frac{1}{2} \right) \]
\[\omega_q(G) \geq \cos^2(\pi/8) = \frac{1}{2} \left(1 + \frac{1}{2}\sqrt{2} \right) \]
Kochen-Specker game

• The Verifier sends Alice a triple of orthogonal vectors \(s = (v_i, v_j, v_k) \) and Bob one vector \(t = v_m \) from the triple

• Alice returns \(a \), a valid labeling for \((v_i, v_j, v_k) \), and Bob returns \(b \), a label for \(v_m \)

• The verifier accepts iff the labels are consistent

• By the Kochen-Specker Theorem, \(\omega_c(G) < 1 \)

• There is a perfect quantum strategy using entanglement \(|\psi\rangle = |00\rangle + |11\rangle + |22\rangle \), therefore \(\omega_q(G) = 1 \)
• \oplus-MIP* vs one-prover systems
• Nonlocal games (CHSH, KS)
• **Quantum versus classical XOR games**
• Odd Cycle game (blackboard)
• Magic Square game (blackboard)
XOR Games

- An **XOR game** is a nonlocality game where:
 - Alice and Bob’s messages, a and b, are bits
 - TheVerifier’s decision is a function of $s, t, a \oplus b$

- **Example**: the CHSH game is an XOR game
\(\omega_q \text{ vs } \omega_c \text{ for XOR games (I)} \)

Theorem: for \(\gamma \approx 0.72 \) (formally, where a line through the origin meets the function \(x \mapsto \sin^2(\pi x/2) \)), for any XOR game,

\[
\begin{cases}
\omega_q(G) \leq \sin^2\left(\frac{\pi}{2} \omega_c(G)\right) & \text{if } \omega_c(G) > \gamma, \\
\omega_q(G) \leq \lambda \omega_c(G) & \text{if } \omega_c(G) \leq \gamma,
\end{cases}
\]

where \(\lambda = \pi \sin (\pi \gamma)/2 \approx 1.14 \)

Informally: for small \(\varepsilon \), if \(\omega_c(G) = 1 - \varepsilon \) then \(\omega_q(G) \leq 1 - c\varepsilon^2 \), where \(c \approx \pi^2/4 \approx 2.46 \)

Corollary: for the CHSH game, \(\omega_q(G) \leq \cos^2(\pi/8) \)
$\omega_q \textit{ vs } \omega_c \textit{ for XOR games (II)}$

To prove the theorem, we make use of

Theorem [Tsirelson ’87]: for any XOR games, it’s quantum strategies can be characterized by sets of vectors $\{x_s : s \in S\}$ and $\{y_t : t \in T\}$ in \mathbb{R}^n such that, on input $(s,t) \in S \times T$,

$$\Pr[a \oplus b = 0] = \frac{1 + x_s \cdot y_t}{2}$$

E.g., vectors in \mathbb{R}^2 for the CHSH game:
ω_q vs ω_c for XOR games (III)

Contrapositive: ω_q(G) > 1 – cε² implies ω_c(G) > 1 – ε

For a quantum strategy, we have \{x_s : s \in S\}, \{y_t : t \in T\}

Classical strategy:

- Alice and Bob share a random vector \(\lambda \in \mathbb{R}^n \)
- On input \(s \), Alice outputs 0 if \(x_s \cdot \lambda \geq 0 \) and 1 otherwise
- On input \(t \), Bob outputs 0 if \(y_t \cdot \lambda \geq 0 \) and 1 otherwise
\(\omega_q \text{ vs } \omega_c \text{ for XOR games (IV)} \)

- Classical protocol:
 \[p_c = \Pr[a \oplus b = 1] = \frac{\theta}{\pi} \]

- Quantum protocol:
 \[p_q = \Pr[a \oplus b = 1] = \frac{1 - \cos(\theta)}{2} \]

- Therefore,
 \[p_q = \frac{1 - \cos(\pi p_c)}{2} = \sin^2\left(\frac{\pi p_c}{2}\right) \]

The quantum success probability is a convex combination of probabilities of the above form (averaged over all possible questions \((s, t) \in S \times T\))
\(\omega_q\) vs \(\omega_c\) for XOR games (V)

Upper bound of \(\omega_q(G)\) in terms of \(\omega_c(G)\) for XOR games

Tight bound for Odd Cycle games and Chained Bell Inequality games [Braunstein, Caves, 1990]

For nondegenerate XOR games, better bound when \(0.5 \leq \omega_c(G) < 0.61\)
Binary nonlocality games

Binary: $|A| = |B| = 2$ (but not necessarily XOR)

Theorem 2: for any binary game G, if $\omega_c(G) < 1$ then $\omega_q(G) < 1$

Note: no corresponding result if “binary” is relaxed to “ternary-binary”: $|A| = 3$ and $|B| = 2$

Example: the Kochen-Specker game is ternary-binary with $\omega_c(G) < 1$ and $\omega_q(G) = 1$
• \oplus-MIP* vs one-prover systems
• Nonlocal games (CHSH, KS)
• Quantum versus classical XOR games
• Odd Cycle game (blackboard)
• Magic Square game (blackboard)
• \oplus-MIP* vs one-prover systems
• Nonlocal games (CHSH, KS)
• Quantum versus classical XOR games
• Odd Cycle game (blackboard)
• Magic Square game (blackboard)
THE END