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Sparse Hamiltonians

Given: Hamiltonian o 0 0 a, 0 ag 0 a
H (that’s d-sparse), 0 ayp 0 0 0 0 ay ay
initial state |y), 0 0 ay 0 ay ap 0 0
time ¢, accuracy e 5 _|% 0 0 0 a0 ey 0

0 0 ay a 0 0 as 0
Goal: construct the a, 0 a, O 0 0 0 o«
state e |y) 0 ap 0 ay o5 0 0 0
within precision ¢ |Gy Oy 0 0 0 ay O 0

Can specify |y) by an efficient qguantum circuit that generates it

Can add a final measurement (specified as a quantum circuit)

With these modifications, inputs and outputs become classical
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Specifications of H

Decomposition into a sum of local Hamiltonians

H=H +H,+---+H,, where each H, is local, or otherwise
of a form that is easily simulatable a priori

In this setting, operation e s for any s, can be considered
as a basic operation

Sparse specification [Aharonov, Ta-Shma ’03]

Mechanism for determining local relationships among states

Roughly speaking, for every basis state |x), the infinitesmal
transitions can be determined

More about this later ...



Trotter formula |

e—i(H1+H2+---+Hm )6

_ (e—iHlée—iné e 0 )+ 0(52) (5 small)

e—i(Hl+H2 +oot H o )

_ (e—ifh (t/r)gmita(t/r) | o=l (’”))r + O(r(t/r)z)

_ (e—iHl(t/r)e—in(f/’”) .. .e_iHm(”"))r —+ O(Zz /7')

Sufficient to set 7 > /¢, which leads to a sequence of
0((m/8)t2) basic operations (of the form e %%



Trotter formula Il
~i(H+Hy+-+H, )5
_ (e—iH15/2 e o0/ )(e—iHm5/2 me—iﬂlé/z)_l_ 0(53)
~i(H,+Hy+-+H, )t
_ ((e—iHlt/2r me—iHmz/zr)[ S /2r || i 2 ])r N O[r(t /r)3)
(
€

. . B iy \\ 7 (
_ ((e /2| let/Zr) it /20 zHlt/Zr)) +O\t3 /rz)

Sufficient to set 72 > /g, which leads to a sequence of
0((2m/£)t3/2) basic operations (of the form e 4%




Suzukl formula

e_i(H1 +Hy++H, o (A,..., 4y carefully chosen)

(e—iHI&I v g HaOM )(e—iHmé/ll ..o )

" (e—iHI&Q e o iHn )(e—iﬂm5/12 me—iHla;Lz)

(5 mo)ke | p 51 clusters

o (e—iHI&N .. o Hndhy )(e—iHm&N .. o iy ) N 0( 52k+1)

Slicing into intervals of length #/r and repeating 7 times yields
an accumulated error of O((5kmz)?*+1/r2k)

This leads to O( Sm (mt)”l/%] basic operations

1/2k
&



Generic black-box sparse representation

Essentially, we're given a mechanism that, for any given column
of H, computes the positions and values of all non-zero entries

VYo .-V, (nonzero positions in row x)

(row)

0,0, ...,0; (respective entries of H)

Alternatively:

¥, (x) (position of k™ neighbor of x)

X

(row)

k

(index)

a, (x) (matrix entry (x, y, (x)) of H)

[Aharonov, Ta-Shma '03]



Simulations of sparse Hamiltonians

Let H be a d-sparse Hamiltonian (assume || H|| = O(1)) acting
on n qubits

Simulation costs for €~ within precision &:

« polynomial with respect to Z, 11, d, 1/ [Aharonov & Ta-Shma *03]
e growth rate is > and n° (later improved to 112 [Childs '03])

Question: how efficient can the scaling of the simulation be?

We will show: O(log*(r) 5*kd* V2 112k [¢12KY  gor all k

Smaller than O(#'*9) forall >0 (optimizing setting of k)
.. but larger than O(% (log £)?) for all g > 0 .



Graph associated with H

Connect x to y; (x) with
an edge of weight o (x)

Note: the label structure

may not be symmetric  § M 0> L)z
3
2

3
O (L
3 2 3
1 2 1 2
) '® N1 3
)

1




Symmetrically labeled graphs
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Symmetrically labeled graphs

Matching for each color ()< @S 42
2

(< .
1~ 3 R
(O () (O
2

3
OO
2 2

Symmetrically labeled Hamiltonians can be decomposed into

sums of simple Hamiltonians, H, + H, + --- + H , one for each
“color”, as follows ...
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Simulation in symmetric case

[Childs, C, Deotto, Farhi, Gutmann, Spielman '03]

i 1 :
Fact: for any Hermitian H and unitary U, e """V * =Ue™ U™

For each fixed label & (color), consider the mapping:

)] 0)/0) = |x) v ()}, ()

— ak(x)( x>‘ yk(x)>
— ak(x)( J/k(x»‘
Vi\X

Y
— a, (x) v, (x)) 0)

query (unitary)
amplitude in front

b
swap

query (its own inverse)

This mapping corresponds to the matching Hamiltonian H,

Note: H, =UHU™, and ¢~"* is straightforward to compute

_inS

Therefore: each e

Is straightforward to compute 12



Non-symmetric case

Given a non-symmetric Hamiltonian, it is possible to modify
its labeling so as to be symmetric (with an overhead cost)

O~ b@ with x <y

We now have d? labels

, b , b .
@(a ) )@ instead of d labels, but
a symmetric labeling

(1, 2)

Example:
P (1, 3) (1, 3)(’

O :
1
(1,3) .
S ity <w '

with z<y




Graph with monochromatic paths
()« C\Zl X )1

1 2
(O (3
1 3 5 5 2
(O (O O
1 1 3 1
Or—CO ) :

To break up the paths, we increase the number of colors a bit ...
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Breaking up the paths |

X<y<z<Ww
“Deterministic coin-tossing”
) ©) [Cole & Vishkin '86]

(

010

(

ab, |x > [ x'
o) /@ y' & (i, y;), where i =min{j : y;# z;}
ab, |y > |y’

¥
@ @ Example: y =01100101
' z=01001101

© /@ Then y'=(010,1)

Note: still a valid coloring!
d’2" n log(n)+1 x'#y' &y & =W
colors bits bits

(a,b,

(a,b,
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Breaking up the paths Il

S b b temie 4
o o _—o _— ¢
(“”@y / @y’ / @y" / @y
ST T
d*2" n log(m)+1  log(log(n)+1)+1 2 bits

colors bits bits bits )
Just 5 iterations for n < 101" 1°



Cost of making labels symmetric

Summary:
Starting with a given Hamiltonian specification of A

with d labels, we obtain a new specification of H with
3d? symmetric labels, where each query in the new

specification costs O(log*n) queries to the original
specification

This completes the
0(10g*(7l) 52kd4‘|‘1/2k l—l‘|‘1/2k /81/2k)

algorithm for simulating sparse Hamiltonians
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Lower bound

Theorem: given a general black-box for 1 acting on n qubits,
the number of queries required to produce an approximation

of the state e 100...0) is Q(t) (for t<27)

Proof idea: by a reduction from existing lower bounds on

the query complexity of the parity function X, @ X,®---® X,
[Beals, Buhrman, C, Mosca, de Wolf '98][Farhi, Goldstone, Gutmann, Sipser 98]
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