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Sparse HamiltoniansSparse Hamiltonians
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Given: Hamiltonian 
H (that’s d-sparse), 
initial state |ψ〉, 
time t, accuracy ε

Goal: construct the 
state e−iHt |ψ〉
within precision ε

Can specify |ψ〉 by an efficient quantum circuit that generates it

Can add a final measurement (specified as a quantum circuit)
With these modifications, inputs and outputs become classical
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Specifications of Specifications of HH

Mechanism for determining local relationships among states

Roughly speaking, for every basis state |x〉, the infinitesmal
transitions can be determined

More about this later ...

Decomposition into a sum of local Hamiltonians
,  where each Hj is local, or otherwise 

of a form that is easily simulatable a priori
mHHHH +++= L21

Sparse specification [Aharonov, Ta-Shma ’03]

In this setting, operation e−iHj s , for any s, can be considered 
as a basic operation
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Trotter formula ITrotter formula I
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Sufficient to set r ≥ t2/ε, which leads to a sequence of 
basic operations (of the form e−iHj s )( )( )2tmO ε
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Trotter formula IITrotter formula II
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Sufficient to set r2 ≥ t3/ε, which leads to a sequence of 
basic operations (of the form e−iHj s )( )( )2/3/2 tmO ε
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Suzuki formulaSuzuki formula

5k–1 clusters

Slicing into intervals of length t/r and repeating r times yields 
an accumulated error of  O((5kmt)2k+1/r2k)

This leads to                                       basic operations⎟⎟
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Generic blackGeneric black--box sparse representationbox sparse representation
Essentially, we’re given a mechanism that, for any given column 
of H, computes the positions and values of all non-zero entries

[Aharonov, Ta-Shma ’03]

Hx
α1,α2,…,αd (respective entries of H)

y1,y2,…,yd (nonzero positions in row x)
(row)

H
x

αk (x) (matrix entry (x, yk (x)) of H )

yk (x) (position of k th neighbor of x)
(row)

k
(index)

Alternatively:
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Simulations of sparse HamiltoniansSimulations of sparse Hamiltonians

• polynomial with respect to t, n,d, 1/ε [Aharonov & Ta-Shma ’03]

• growth rate is t 3/2 and n9 (later improved to n2 [Childs ’03])

We will show:  O(log*(n) 52kd4+1/2k t1+1/2k /ε1/2k ) for all k

Let H be a d-sparse Hamiltonian (assume ║H║ = O(1)) acting 
on n qubits

Simulation costs for e−iHt within precision ε:

Smaller than  O(t1+δ) for all δ > 0   (optimizing setting of k)

... but larger than  O(t (log t)q ) for all q > 0

Question: how efficient can the scaling of the simulation be?
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Graph associated with Graph associated with HH
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Connect x to yk (x) with 
an edge of weight αk (x)

Note: the label structure 
may not be symmetric
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SymmetricallySymmetrically labeled graphslabeled graphs
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SymmetricallySymmetrically labeled graphslabeled graphs
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Matching for each color

Symmetrically labeled Hamiltonians can be decomposed into 
sums of simple Hamiltonians, H1 + H2 + / + Hm, one for each 
“color”, as follows ...
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Simulation in symmetric caseSimulation in symmetric case

Fact: for any Hermitian H and unitary U, 11 −−− =
−

UUee iHssiUHU

For each fixed label k (color), consider the mapping:

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) 00

00

xyx

xxxyx

xxyxx

xxyxx

kk

kkk

kkk

kk

α

αα

αα

α

a

a

a

a query (unitary)

query (its own inverse)

amplitude in front
swap

Note: Hk =UHU−1, and            is straightforward to computeiHse−

H

This mapping corresponds to the matching Hamiltonian Hk

siH ke−Therefore: each              is straightforward to compute

[Childs, C, Deotto, Farhi, Gutmann, Spielman ’03]



13

NonNon--symmetric casesymmetric case
Given a non-symmetric Hamiltonian, it is possible to modify 
its labeling so as to be symmetric (with an overhead cost)

(a, b)
We now have d2 labels 
instead of d labels, but 
a symmetric labeling

a bx y with x < y

x y

(1, 3)
(1, 2)

(1, 3)

with z < y

with y < w

x y

z

w

1 3
2

1

1

3

Example:

Problem!

(1, 3)

(1, 2)

(1, 3)

(a, b)
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Graph with monochromatic pathsGraph with monochromatic paths
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To break up the paths, we increase the number of colors a bit ...
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Breaking up the paths IBreaking up the paths I

x

y

z

w

(a,b, x

(a,b, y

(a,b, z

(a,b, w

n 
bits

x

y

z

w

x′

y′

z′

w′

d 2 2n

colors
log(n)+1
bits

y′ (i, yi), where i = min{ j : yj ≠ zj}

Then   y′ = (010,1)

Example: y = 01100101
z = 01001101

010

x < y < z < w

Note: still a valid coloring!
x′ ≠ y′ &  y′ ≠ z′ &  z′ ≠ w′

“Deterministic coin-tossing”
[Cole & Vishkin ’86]
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Breaking up the paths IIBreaking up the paths II
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(a,b, z

(a,b, w

n 
bits

x

y

z

w

y′
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w′

x′
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x′′
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d 2 2n

colors
log(n)+1
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log(log(n)+1)+1
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x

y

z

w

x′′′

y′′′

z′′′

w′′′

2 bits

...

...

...

...

O(log*(n)) 
iterations

Just 5 iterations for n ≤ 101037
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Cost of making labels symmetricCost of making labels symmetric
Summary:
Starting with a given Hamiltonian specification of H
with d labels, we obtain a new specification of H with 
3d 2 symmetric labels, where each query in the new 
specification costs O(log*n) queries to the original 
specification

This completes the 

O(log*(n)52kd4+1/2k t1+1/2k /ε1/2k ) 
algorithm for simulating sparse Hamiltonians
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Lower boundLower bound

Theorem: given a general black-box for H acting on n qubits, 
the number of queries required to produce an approximation 
of the state  e−iHt|00...0〉 is  Ω( t ) (for  t ≤ 2n)

Proof idea: by a reduction from existing lower bounds on 
the query complexity of the parity function  X14X24/4XN
[Beals, Buhrman, C, Mosca, de Wolf ’98][Farhi, Goldstone, Gutmann, Sipser ’98]
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