Efficient Quantum Algorithms for Simulating Sparse Hamiltonians

Richard Cleve University of Waterloo

Joint work with: Dominic Berry (Queensland) Graeme Ahokas & Barry Sanders (Calgary)

24 February 2006, IHP, Paris

Sparse Hamiltonians

Given: Hamiltonian		0	0	0	α_{14}	0	α_{16}	0	α_{18}
H (that's d -sparse),	H =	0	α_{22}	0	0	0	0	α_{27}	α_{28}
initial state $ \psi\rangle$,		0	0	α_{33}	0	α_{35}	α_{36}	0	0
time t, accuracy ε		α_{41}	0	0	0	α_{45}	0	$\alpha_{_{47}}$	0
		0	0	α_{53}	α_{54}	0	0	α_{57}	0
Goal: construct the		α_{61}	0	α_{63}	0	0	0	0	α_{68}
state $e^{-iHt} \psi\rangle$		0	α_{72}	0	α_{74}	α_{75}	0	0	0
within precision ϵ		α_{81}	α_{82}	0	0	0	α_{86}	0	0

Can specify $|\psi\rangle$ by an efficient quantum circuit that generates it Can add a final measurement (specified as a quantum circuit) With these modifications, inputs and outputs become *classical*

Specifications of *H*

Decomposition into a sum of local Hamiltonians

 $H = H_1 + H_2 + \dots + H_m$, where each H_j is local, or otherwise of a form that is easily simulatable *a priori*

In this setting, operation e^{-iH_js} , for any *s*, can be considered as a basic operation

Sparse specification [Aharonov, Ta-Shma '03]

Mechanism for determining local relationships among states

Roughly speaking, for every basis state $|x\rangle$, the infinitesmal transitions can be determined

More about this later ...

Trotter formula I

$$e^{-i(H_1+H_2+\dots+H_m)\delta} = \left(e^{-iH_1\delta}e^{-iH_2\delta}\dots e^{-iH_m\delta}\right) + O(\delta^2) \qquad (\delta \text{ small})$$

$$e^{-i(H_1+H_2+\dots+H_m)t} = \left(e^{-iH_1(t/r)}e^{-iH_2(t/r)}\dots e^{-iH_m(t/r)}\right)^r + O(r(t/r)^2)$$

$$= \left(e^{-iH_1(t/r)}e^{-iH_2(t/r)}\dots e^{-iH_m(t/r)}\right)^r + O(t^2/r)$$

Sufficient to set $r \ge t^2/\epsilon$, which leads to a sequence of $O((m/\epsilon)t^2)$ basic operations (of the form e^{-iH_js})

Trotter formula II

$$e^{-i(H_{1}+H_{2}+\dots+H_{m})\delta}$$

$$= \left(e^{-iH_{1}\delta/2}\cdots e^{-iH_{m}\delta/2}\right)\left(e^{-iH_{m}\delta/2}\cdots e^{-iH_{1}\delta/2}\right) + O\left(\delta^{3}\right)$$

$$e^{-i(H_{1}+H_{2}+\dots+H_{m})t}$$

$$= \left(\left(e^{-iH_{1}t/2r}\cdots e^{-iH_{m}t/2r}\right)\left(e^{-iH_{m}t/2r}\cdots e^{-iH_{1}t/2r}\right)\right)^{r} + O\left(r\left(t/r\right)^{3}\right)$$

$$= \left(\left(e^{-iH_{1}t/2r}\cdots e^{-iH_{m}t/2r}\right)\left(e^{-iH_{m}t/2r}\cdots e^{-iH_{1}t/2r}\right)\right)^{r} + O\left(t^{3}/r^{2}\right)$$

Sufficient to set $r^2 \ge t^3/\varepsilon$, which leads to a sequence of $O((2m/\sqrt{\varepsilon})t^{3/2})$ basic operations (of the form e^{-iH_js})

Suzuki formula

$$e^{-i(H_{1}+H_{2}+\dots+H_{m})\delta} = (\lambda_{1},\dots,\lambda_{N} \text{ carefully chosen})$$

$$\begin{pmatrix} e^{-iH_{1}\delta\lambda_{1}}\cdots e^{-iH_{m}\delta\lambda_{1}} \end{pmatrix} \begin{pmatrix} e^{-iH_{m}\delta\lambda_{1}}\cdots e^{-iH_{1}\delta\lambda_{1}} \end{pmatrix}$$

$$\times \begin{pmatrix} e^{-iH_{1}\delta\lambda_{2}}\cdots e^{-iH_{m}\delta\lambda_{2}} \end{pmatrix} \begin{pmatrix} e^{-iH_{m}\delta\lambda_{2}}\cdots e^{-iH_{1}\delta\lambda_{2}} \end{pmatrix} \xrightarrow{(5^{k}m\delta)^{2k+1}} \\ \vdots \\ \times \begin{pmatrix} e^{-iH_{1}\delta\lambda_{N}}\cdots e^{-iH_{m}\delta\lambda_{N}} \end{pmatrix} \begin{pmatrix} e^{-iH_{m}\delta\lambda_{N}}\cdots e^{-iH_{1}\delta\lambda_{N}} \end{pmatrix} + O(\delta^{2k+1}) \end{pmatrix}$$

$$5^{k-1} \text{ clusters}$$

Slicing into intervals of length t/r and repeating r times yields an accumulated error of $O((5^kmt)^{2k+1}/r^{2k})$

This leads to
$$O\left(\frac{5^{2k}m}{\varepsilon^{1/2k}}\left(mt\right)^{1+1/2k}\right)$$
 basic operations

Generic black-box sparse representation

Essentially, we're given a mechanism that, for any given column of H, computes the positions and values of all non-zero entries

$$\begin{array}{c} x \\ \xrightarrow{\text{(row)}} \end{array} \xrightarrow{} y_1, y_2, \dots, y_d \text{ (nonzero positions in row x)} \\ \xrightarrow{} \alpha_1, \alpha_2, \dots, \alpha_d \text{ (respective entries of H)} \end{array}$$

Alternatively:

$$x \longrightarrow y_k(x) \quad (\textbf{position of } k^{th} \text{ neighbor of } x)$$

$$k \longrightarrow \alpha_k(x) \quad (\text{matrix entry } (x, y_k(x)) \text{ of } H)$$

Simulations of sparse Hamiltonians

Let *H* be a *d*-sparse Hamiltonian (assume ||H|| = O(1)) acting on *n* qubits

Simulation costs for e^{-iHt} within precision ε :

- **polynomial** with respect to $t, n, d, 1/\epsilon$ [Aharonov & Ta-Shma '03]
- growth rate is $t^{3/2}$ and n^9 (later improved to n^2 [Childs '03])

Question: how efficient can the scaling of the simulation be?

We will show: $O(\log^*(n) 5^{2k} d^{4+1/2k} t^{1+1/2k} / \epsilon^{1/2k})$ for all k

Smaller than $O(t^{1+\delta})$ for all $\delta > 0$ (optimizing setting of k)

... but larger than $O(t(\log t)^q)$ for all q > 0

Graph associated with H

Connect *x* to $y_k(x)$ with an edge of weight $\alpha_k(x)$

Symmetrically labeled graphs

Symmetrically labeled graphs

Symmetrically labeled Hamiltonians can be decomposed into sums of simple Hamiltonians, $H_1 + H_2 + \cdots + H_m$, one for each "color", as follows ...

Simulation in symmetric case

[Childs, C, Deotto, Farhi, Gutmann, Spielman '03]

Fact: for any Hermitian *H* and unitary *U*, $e^{-iUHU^{-1}s} = Ue^{-iHs}U^{-1}$

For each fixed label k (color), consider the mapping:

$$\begin{array}{ll} x \rangle |0\rangle |0\rangle \mapsto |x\rangle |y_{k}(x)\rangle |\alpha_{k}(x)\rangle & \text{query (unitary)} \\ & \mapsto \alpha_{k}(x) |x\rangle |y_{k}(x)\rangle |\alpha_{k}(x)\rangle & \text{amplitude in front} \\ & \mapsto \alpha_{k}(x) |y_{k}(x)\rangle |x\rangle |\alpha_{k}(x)\rangle & \text{swap} \end{array} \right\} H \\ & \mapsto \alpha_{k}(x) |y_{k}(x)\rangle |0\rangle |0\rangle & \text{query (its own inverse)} \end{array}$$

This mapping corresponds to the matching Hamiltonian H_k **Note:** $H_k = UHU^{-1}$, and e^{-iH_s} is straightforward to compute **Therefore:** each $e^{-iH_k s}$ is straightforward to compute ¹²

Non-symmetric case

Given a non-symmetric Hamiltonian, it is possible to modify its labeling so as to be symmetric (with an overhead cost)

 $x \xrightarrow{a} b y \text{ with } x < y$

We now have d^2 labels instead of d labels, but a **symmetric** labeling

Graph with monochromatic paths

To break up the paths, we increase the number of colors a bit ...

Breaking up the paths I

J

"Deterministic coin-tossing" [Cole & Vishkin '86]

$$y' \leftarrow (i, y_i)$$
, where $i = \min\{j : y_j \neq z_j\}$
Example: $y = 01100101$
 $z = 01001101$
Then $y' = (010, 1)$

Note: still a valid coloring! $x' \neq y' \& y' \neq z' \& z' \neq w'$

Breaking up the paths II

Cost of making labels symmetric

Summary:

Starting with a given Hamiltonian specification of H with d labels, we obtain a new specification of H with $3d^2$ **symmetric** labels, where each query in the new specification costs $O(\log^* n)$ queries to the original specification

This completes the

$$O(\log^*(n) 5^{2k} d^{4+1/2k} t^{1+1/2k} / \varepsilon^{1/2k})$$

algorithm for simulating sparse Hamiltonians

Lower bound

Theorem: given a general black-box for *H* acting on *n* qubits, the number of queries required to produce an approximation of the state $e^{-iHt}|00...0\rangle$ is $\Omega(t)$ (for $t \le 2^n$)

Proof idea: by a reduction from existing lower bounds on the query complexity of the parity function $X_1 \oplus X_2 \oplus \cdots \oplus X_N$ [Beals, Buhrman, C, Mosca, de Wolf '98][Farhi, Goldstone, Gutmann, Sipser '98]

