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Lectures by B. Georgeot 1-2: overview

1) Classical and quantum chaos

2) Simulation of quantum chaos maps on quantum computers

3) Extracting information from quantum simulations

4) Simulation of classical chaos on quantum computers
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Classical integrable systems

• Systems with as many constant of motion I1, ..., In as degrees of freedom

• There exists a (canonical) change of variables to action-angle variables such
that Hamilton’s equations of motion become: İi = 0, θ̇i = ωi

• Motion takes place on n-dimensional tori in a 2n-dimensional phase space

• Tori can be rational or irrational

• One degree of freedom: integrable system if energy is conserved

• Examples: square billiard, circular billiards, two-body Kepler problem ...

http://www.quantware.ups-tlse.fr Bertrand Georgeot
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Classical chaos

• No constant of motion ⇒ motion not restricted to tori.

• Lowest degree of chaos: Ergodic motion: most trajectories fill up the energy
shell.

• Next levels (ergodic hierarchy): mixing, K-systems, Bernoulli systems

• Hard chaos: exponential separation of nearby trajectories (⇒ exponential
sensitivity to initial conditions)

• Famous examples of chaotic systems: Sinai billiard, Bunimovich billiard (sta-
dium), three-body Kepler problem...
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Mixed systems

• Most systems have integrable and chaotic zones: mixed systems

• Kolmogorov-Arnold-Moser (KAM) theorem: (smooth) perturbation of inte-
grable systems keeps aspects of integrability and leads to mixed systems

• Result of KAM theory: rational tori disappear as soon as the perturbation
is nonzero, and are replaced by chains of integrable islands (resonances)
surrounded by chaotic layers

• Result of KAM theory: irrational tori survive for nonzero perturbation and
form a set of nonzero measure in phase space. They are first deformed and
finally disappear for stronger perturbation.
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Chaotic maps

• Simplest systems: one-dimensional systems (phase-space of dimension 2) ⇒
needs time-dependence to allow chaotic dynamics

• Example: H(I, θ, t) = I2/2 + kV (θ)
∑

m δ(t −mT ), where θ is a phase and
I corresponds to classical action. Phase space=cylinder (θ in [0, 2π]). Free
rotation, with a “kick” every period.

• Integration over one period ⇒ area-preserving map with discretized time
Ī = I − kV ′(θ); θ̄ = θ + T Ī (bars denote values of (I, θ) after one iteration)

• For many choices of V , dynamics becomes chaotic when K = kT increases.

• Many complex phenomena present in physical systems can be studied in such
models, despite simplicity.
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Example: Chirikov standard map

If V (θ) = cos(θ); the map is Ī = I +
k sin θ; θ̄ = θ+T Ī with (I, θ) = conjugated
momentum (action) and angle variables,

• dynamics on a cylinder (periodicity in θ),
controlled by a single parameter K = kT .

• K = 0 ⇒ system is integrable, all
trajectories lie on one-dimensional tori
(n =constant).

• K > 0 ⇒ transition to chaos (KAM the-
orem).

classical phase space at
K = Kg = 0.9716...
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Transport in Chirikov standard map

• As long as irrational tori are
present, they prevent transport
through them and the onset of
global chaos

• K > Kg ≈ 0.9716... ⇒ last torus
disappears ⇒ global chaos, clas-
sical diffusion

• Diffusion rate D = 〈I2〉/t ≈ k2/2
transport at K = 0.5, 0.9, 1.5, 2
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Quantum chaos

• Quantum mechanics is the “true” mechanics ⇒ what corresponds to chaotic
properties of classical physics?

• Schroedinger equation is linear, principle of superposition ⇒ hard to find
exponential separation in quantum mechanics

• Intrinsic scale h̄, non commutativity of p and q

• Classically integrable systems ⇒ wave functions localized in phase space on
quantized tori

• Classically chaotic systems ⇒ wave functions usually ergodic

• Mixed systems show aspects of both quantum properties
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Semiclassical limit

• Quantum mechanics can be obtained from classical mechanics for small h̄ (i.e.
h̄ is small compared to quantities of same dimension (=actions) in the system)
⇒ semiclassical approximation

• For integrable systems, EBK formulas give semiclassical approximation for
energies, wavefunctions in term of individual torus

• 1970’s: Gutzwiller, Balian and Bloch: trace formulas to connect quantum
observables to a set of classical trajectories (Fourier-like formulas)
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Random Matrix Theory

• Wigner 1960’s: statistical properties of neutron scattering experiments on
nuclei⇒ Replace complex Hamiltonian by large random matrix with Gaussian
distributed entries.

• Density of states d(E) ⇒ Mean value usually system-dependent. Fluctua-
tions of energy levels around mean position: good agreement between nuclear
experiments and Random Matrices, despite no adjustable parameter.

• Bohigas Giannoni Schmit (1984): Random Matrix Theory should describe
statistical properties of spectra of classically chaotic systems (conjecture).
Conjecture verified on numerous examples, but unproven

• Berry-Tabor (1977): for integrable systems, statistical properties of spectra
are Poissonian; i.e. no correlations.
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Symmetry considerations
→ Three different Random Matrix ensembles:

• Gaussian Unitary Ensemble (GUE): hermitian matrices. Corresponds to systems
without time-reversal symmetry.

• Gaussian Orthogonal Ensemble (GOE): real symmetric matrices. Corresponds
to systems with time-reversal symmetry.

• Gaussian Symplectic Ensemble (GOE): real quaternionic matrices.

→ Same for circular ensembles (evolution operators) CUE, COE, CSE

→ Other symmetries (e. g. spatial symmetries) lead to independent spectra
⇒ should separate these spectra to compare with Random Matrix results

http://www.quantware.ups-tlse.fr Bertrand Georgeot
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Random Matrix Theory: standard quantities
−→ Correlation function C(ω)
C(ω) = 〈d(E)d(E + ω)〉E
Form factor K(t)
K(t) =

∫
exp(2iπωt)C(ω)dω

−→ Nearest-neighbor distribution P (s) or
spacing distribution: short-range quantity
Wigner ⇒ level repulsion at short distances

−→ Spectral variance: variance of the num-
ber of energy levels in a box of size L (in units
of mean level spacing) long-range quantity
RMT: Σ2 ∼ logL for large L
Poisson: Σ2 ∼

√
L for large L
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Wigner distribution (GOE):
PW (s) = (πs/2) exp(−πs2/4)

Poisson: PP (s) = e−s
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Anderson localization

• P. W. Anderson (1958): in a disordered potential, a quantum particle can be
exponentially localized due to quantum interferences

• This happens even though the corresponding classical system is diffusive

• Result: For localization length smaller than system size, localized states
correspond to Poisson statistics. Delocalized (ergodic) states in general
follow Random Matrix predictions.

• In dimension three, presence of a metal-insulator transition ⇒ can be probed
through spectral statistics

• Quantum chaos can mimic disorder: in the kicked rotator model, local-
ization appears due to quasirandomness of chaos
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Quantum maps
Quantization: ψ̄ = Uψ where ψ is the wavefunction and ψ̄ its new value after

one iteration of the evolution operator U = e−ikV (θ)e−iT n̂
2/2. n̂ = −i∂/∂θ.

Example: kicked rotator: quantization of Chirikov standard map

ψ̄ = Ûψ = e−ik cos θ̂e−iT n̂
2/2ψ

where n̂ = −i∂/∂θ, and ψ(θ + 2π) = ψ(θ).

• Quantum dynamics depends on two parameters k and T (classical: one single
parameter K = kT ). T plays the role of an effective h̄

• Classical limit corresponds to k →∞, T → 0 while keepingK = kT =constant
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Transport in quantum kicked rotator
• K < Kg ≈ 0.9716..: quantum diffusion limited by

KAM tori

• K À Kg: classical diffusion replaced by quantum

localization; wave function ∼ exp(−|n − m|/l)/
√
l

with localization length l = D/2 ≈ k2/4

• If localization length is greater than system size ⇒
Random Matrix Theory, ergodicity

The kicked rotator is a paradigmatic model of quantum
chaos, modelizes Rydberg atoms in microwave fields, and
enables to study Anderson localization of electrons. It
has been experimentally realized with cold atoms

wave packet evolution,
K = Kg
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Quantum phase space distribution function: Wigner function

W (p, q) = 1√
2πh̄

∫
e−

i
h̄p.q

′
ψ(q + q′

2 )∗ψ(q − q′
2 )dq′

Real but can take negative values∫
q
W (p, q)dq = |ψ(p)|2∫

p
W (p, q)dp = |ψ(q)|2

On a N -dimensional Hilbert space (e. g. kicked rotator):
use 2N × 2N points.

W (Θ, n) = 1
2N

∑N−1
m=0 e

−2iπ
N n(m−Θ/2)ψ(Θ−m)∗ψ(m)

Figure: Wigner function of a wavepacket for kicked
rotator, K = 0.9 (top), K = 2 (bottom).
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Quantum phase space distribution function: Husimi function

Unlike classical phase space distribution function, Wigner
function can be negative. Smoothing of Wigner function
over cells of size h̄ ⇒ real nonnegative function
Husimi function:
ρH(θ0, n0) = |〈φ(θ0,n0)|ψ〉|2
where φ(θ0,n0)(θ, n) = A

∑
n e

−(n−n0)
2/4a2−iθ0n|n〉

Modified Husimi function:
ρ
(p)
H (θ0, n0) = |〈φ(p)

(θ0,n0)
|ψ〉|2

where φ
(p)
(θ0,n0)

(θ, n) = (1/N1/4)
∑n0+

√
N−1

n=n0
e−iθ0n|n〉

Figure: Modified Husimi function of a wavepacket for
the kicked rotator, K = 0.9 (top), K = 2 (bottom).
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Quantum programming instructions: quantum gates

One acts on the wave function of the quantum computer through unitary
transformation. In practice, One uses elementary quantum gates which are
local and compose them to build the unitary evolution needed.

• Hadamard gate applied to one qubit |0〉 → (|0〉 + |1〉)/√2; |1〉 → (|0〉 −
|1〉)/√2;

• controlled not or CNOT applied to two qubits: |00〉 → |00〉; |01〉 →
|01〉;|10〉 → |11〉; |11〉 → |10〉; the second qubit is changed if the first is in the
state |1〉;

• controlled controlled not or Toffoli gate applied to three qubits: the third
qubit is changed if the first two are both in the state |1〉.
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Quantum computation of functions

⇒ ∑N−1
i=0

∑N−1
j=0 ai|i〉|0...000〉 ⇒ ∑N−1

i=0 ai|i〉|f(i)〉, with f some arithmetical
function

⇒ Example: addition; a quantum computer needs only ≈ 8n quantum
gates and ≈ 3n qubits to perform N2 additions reversibly (N = 2n), with one
workspace register erased at the end

⇒ Multiplications and exponentiations can also be done; it need ∼ n2

(multiplication) and ∼ n3 quantum gates (exponentiation) for ∼ N numbers
encoded in n qubits (N = 2n).

⇒ In computational basis, evolution is described by permutation matrix
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Quantum Fourier Transform
Uses n qubits to transform a vector of size N = 2n by:

∑2n−1
k=0 ak|k〉 −→

∑2n−1
l=0 (

∑2n−1
k=0 e2πikl/2

n
ak)|l〉 =

∑2n−1
l=0 ãl|l〉 .

Can be written through elementary transformations: Hj : Hadamard gate
applied to qubit j, and Bjk: two-qubit gate applied to the qubits j and k, char-
acterised by |00〉 → |00〉; |01〉 → |01〉;|10〉 → |10〉; |11〉 → exp(iπ/2k−j)|11〉).

One can verify that the sequence: Πn
j=1[(Π

n
k=j+1Bjk)Hj]

gives the Fourier transform of a vector of size 2n in n(n+ 1)/2 operations.

Compare with ∼ N logN for the classical Fast Fourier Transform
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Programming a quantum computer

Subroutines

• Quantum addition:

• Quantum multiplication and exponen-
tiation

• Quantum Fourier transform

• Quantum wavelet transform

Known algorithmic tools

• Period finding aka hidden subgroup

• Grover’s search of an unstrucured
database

• Amplitude amplification

• Phase estimation

• Quantum counting
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Simulation of quantum physical systems
Motivation: Many quantum mechanical problems require large Hilbert spaces.

Examples: many-body systems (n particles,m orbitals⇒mn states), semiclassical
limit... A lot of computer time is devoted to such simulations in modern times

History

• Feynman (1982): Use quantum mechanical systems to simulate quantum
mechanics

• Lloyd (1996), Abrams and Lloyd (1997): algorithms to simulate many-body
systems with local interactions.

• Wiesner (1996), Zalka (1998): algorithms simulating Schroedinger equation

Quantum maps are especially simple systems with complex dynamics
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Simulation of quantum maps: baker’s map

R. Schack Phys. Rev. A 57, 1634 (1998)

• Classical: (q, p) → (2q, p2) for 0 ≤ q ≤ 1
2; (q, p) → (2q − 1, p+1

2 ) for 1
2 < q ≤ 1

• Quantum: define Fn N × N matrix with N = 2n by (Fn)kj =
e
−2iπkj

N

N . Then evolution operator on a N -dimensional space, N = 2n is

F−1
n

(
Fn−1 0

0 Fn−1

)

• Fn=discrete Fourier transform ⇒ Quantum Fourier transform ⇒ can be
implemented with n(n− 1) + n(n+ 1)/2 = n(3n− 1)/2 quantum gates.

• Implemented on a NMR quantum computer with 3 qubits (Y. S. Weinstein,

S. Lloyd, J. Emerson, and D. G. Cory, Phys. Rev. Lett. 89, 157902 (2002)).
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Simulating the kicked rotator

B. Georgeot and D. Shepelyansky, Phys. Rev. Lett. 86, 2890 (2001)

On a Hilbert space of dimension N = 2nq:

classical computation: one iteration ⇒ O(N logN) operations

quantum computation: one iteration ⇒ O((logN)3) quantum gates

Two regimes:

a) k and T constant, N increases ⇒ number of cells increases, with fixed
number of states per cell (localization visible)

b) T ∝ 1/N and K = kT constant, N increases ⇒ number of cells fixed,
number of states per cell increase (semiclassical limit visible)
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Quantum algorithm for simulation of kicked rotator I

• Step I preparation of initial state: ψ(0) =
∑N−1

p=0 an|n〉; For example ψ(0) =
|N/2〉

• Step II action of e−iT n̂
2/2:

∑N−1
n=0 an|n〉 ⇒

∑N−1
n=0 ane

−iTn2/2|n〉
( by n2

q = (Log2(N))2 applications of two-qubit gates)

• Step III quantum Fourier transform:
∑N−1

p=0 a′n|n〉 ⇒
∑N−1
i=0 bi|θi〉 with bj =

1
N

∑N−1
n=0 a

′
ne

2iπjn/N ⇒ change from n to θ representation

http://www.quantware.ups-tlse.fr Bertrand Georgeot
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Quantum algorithm for simulation of kicked rotator II

• Step IV construction of the cosines:
∑N−1
i=0 bi|θi〉|0〉 ⇒

∑N−1
i=0 bi|θi〉| cos θi〉

(needs ∼ n3
q gates; )

• Step V action of e−ik cos θ̂:
∑
bi|θi〉| cos θi〉 ⇒

∑
bie

−ik cos θi|θi〉| cos θi〉
(by nq = (Log2(N)) applications of one-qubit gates)

Then
∑N−1
i=0 b′i|θi〉| cos θi〉 ⇒

∑N−1
i=0 b′i|θi〉|0〉 (erasing the cosines)

• Step VI quantum Fourier transform: ⇒ back to n representation

Total complexity: O((logN)3) quantum gates; needs only ∼ logN qubits
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Quantum algorithm for simulation of sawtooth map

G. Benenti, G. Casati, S. Montangero and D. L. She-

pelyansky, Phys. Rev. Lett. 87, 227901 (2001)

Ī = I + k(θ − π); θ̄ = θ + T Ī
ψ̄ = Uψ with the evolution operator

U = e−iT n̂
2/2eik(θ̂−π)2/2.

On a Hilbert space of dimension N = 2nq:
Same as above but crucially Steps IV and V (ac-

tion of e−ik cos θ̂) replaced by much simpler action

of eik(θ̂−π)2/2:
∑
bi|θi〉 ⇒

∑
bie

ik(θ̂−π)2/2|θi〉
( by n2

q = (Log2(N))2 applications of two-qubit
gates)
In total needs only 3n2

q + nq quantum gates per
iteration and uses no workspace qubit.
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and D. Cory, quant-ph 0512204).
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Anderson transition map
• Kicked rotator and sawtooth map have localized states for K large enough.

Physical system can also display an Anderson metal-insulator transition

• Can be realized in a generalized kicked rotator model described by

ψ̄ = Ûψ = e−iV (θ,t)e−iH0(n)ψ

with V (θ, t) = k[1 + 0.75 cos(2πt/λ) cos(2πt/λ2)] cos θ with λ = 1.3247...

and H0(n) random phases distributed in (0, 2π)

⇒ Anderson transition at kc ≈ 1.8 between localized and extended states

• Simulation of N -dimensional wave function can be realized in O((logN)2)
operations (A. Pomeransky and D. Shepelyansky, Phys. Rev. A 69, 014302 (2004)).
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Kicked Harper model

B. Lévi and B. Georgeot Phys. Rev. E 70, 056218 (2004)

n̄ = n+K sin θ , θ̄ = θ − L sin n̄
Transition to chaos as K,L increase

Quantization: ψ̄ = e−iL cos(h̄n̂)/h̄e−iK cos(θ̂)/h̄ψ
K = L → 0 gives Harper model with fractal spec-
trum
dynamical localization → similar to Anderson lo-
calization of electrons in solids
transition to a partially delocalized regime, with
coexistence of localized and delocalized states

0 0.2 0.4 0.6 0.8 1
−0.002

−0.001

0

0.001

0.002

������

��	��

�

spectrum for K,L⇒ 0

On a N dimensional Hilbert space with N = 2nq⇒ Exact algorithm (cf kicked
rotator): needs O(logN3) quantum gates for evolution of the wave function +
workspace registers
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Institut Henri Poincaré, Centre Emile Borel Trimester on Quantum Information, Computation and Complexity

Implementing e−ik cos (p θ̂): time-slice algorithm

(cf A. A. Pomeransky and D. L. Shepelyansky, Phys. Rev. A 69, 014302 (2004).)

M(α,U) = HCUHe
iα2σzHCU−2Hei

α
2σzHCUH (CU is U controlled by ancilla)

One has M(α,U) = 1 + iαU+U−1

2 +O(α2)

For U = eipθ then M(α,U) = 1 + iα cos (p θ)σz +O(α2) ≈ eiα cos (p θ̂)

Thus e−ik cos (p θ̂) ≈M(α,U)ns with α = −k
ns

and error O(α2)

Symmetrization: M̃(α,U) = M
(
α
2 , U

)
M

(
α
2 , U

−1
) ⇒ error O(α3)

RzH H

U

Rz H H

U

H H

U−2

�

� ���
θ
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Kicked Harper model: time-slice algorithm
For kicked Harper model on N = 2nq-dimensional space: e−iK cos(θ̂)/h̄ and

e−iL cos(h̄n̂)/h̄ ⇒ 4 + 2(nq − a) + (ns − 1)(7 + 2(nq − a)) gates

QFT ⇒ n2
q gates

Only one ancilla qubit! O(logN)2 quantum gates
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Numerics: localization length eigenphases
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Kicked Harper: Chebychev polynomials algorithm
T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x)

Let us take f(x) a function on [−1, 1], and cj =
2
M

∑M−1
k=0 f

[
cos

(
π(k+1

2)
M

)]
cos

(
πj(k+1

2)
M

)
⇒ for large M ,

∑M−1
j=0 cjTj(x)− 1

2c0

is a very good approximation of f(x) on [−1, 1].

P (x) ≈ cos (π(x+ 1)) ⇒ e−ik cos (p θ̂) ≈ e
−ikP

„
pθ̂
π −1

«

Chebychev polynomial approximation of degree d ⇒ complexity is O(nqd).
Numerics: d = 6 ⇒ very good approximation of the wave function. (N = 2nq)

Dropping the gates with the smallest phases shortens the computation.

No ancilla qubit! O(logN)d quantum gates
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Problem of extraction of information

• Several quantum maps can be efficiently simulated on a quantum computer,
using polynomial resources to simulate exponentially large Hilbert spaces

• Many complex phenomena present in physical systems can be studied through
such maps

• Such maps can be implemented in some cases in present day quantum
computers

• Yet to have a complete quantum algorithm, and assess efficiency, one needs
to take into account the measurement process after producing the final
wavefunction

• How to extract efficiently information from a complex wavefunction?
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Simple approach: coarse grained measurements

• Measure only the first nf qubits → polynomial number of measurements gives
coarse grained image of the wave function

• Possibility of exponential gain

• But polynomial approximation of wavefunction ⇒ should be compared to other
approximations

• Also, quantum wave packets have to spread enough time to get useful
information ⇒ may make the gain much smaller
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Localization length

Kicked rotator, sawtooth map and other models present localized states.
Localization length l measured directly by fitting an exponential function around
maximal values of ψ, obtained by coarse grained measurements ⇒ effective,
no extra cost (G. Benenti, G. Casati, S. Montangero and D. L. Shepelyansky, Phys.

Rev. A 67, 052312 (2003) )

But needs to evolve wave function until size ≈ l ≈ D (D is diffusion
constant). Short time ⇒ diffusive spreading 〈n(t)2〉 ≈ Dt; thus wave packet
needs to be evolved until time t∗ ≈ l2/D ≈ l

Classically: to evolve a vector of dimension ∼ l for time t∗ ⇒ ∼ l2 operations.

Quantum computer: total number of gates ∼ l.

⇒ quadratic improvement for the quantum algorithm.
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Transport properties

Example: kicked Harper model in partially delocalized regime: Coexistence
of localized and delocalized wave functions; wave packet = localization peak +
delocalization plateau; extraction of diffusion constant (of the plateau)

a) away from K = L line: anomalous diffusion (ballistic)

⇒ time evolution up to time t∗: ∼ (t∗)2 operations classically, ∼ t∗ quantum

b) on the K = L line: normal diffusion

⇒ time evolution up to time t∗: ∼ (t∗)3/2 operations classically, ∼ t∗ quantum

⇒ polynomial improvement for the quantum algorithm.

Larger gain for systems where spreading of wavepacket is faster (e. g.
quantum small-world networks where the gain is possibly exponential).
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Measuring the fidelity decay

J. Emerson, Y. S. Weinstein, S. Lloyd and D. Cory, Phys. Rev. Lett. 89, 284102 (2002)

• Needs a quantum map with evolution operator U efficiently implementable on
QC + a perturbed evolution operator Up also efficiently implementable

• Fidelity is F (t) = |〈U tψ0|U tpψ0〉|2 where ψ0 = U0|0〉=initial state

• Then 〈U tψ0|U tpψ0〉 = 〈0|U+
0 (U+)tU tpU0|0〉

• Simulating U+
0 (U+)tU tpU0 and sampling population of the state |0〉 gives the

fidelity

• Possible exponential gain
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Experiment on the fidelity decay

C.A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, R. Laflamme, 2005
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Measuring the form factor
D. Poulin, R. Laflamme, G. J. Milburn and J. P. Paz, Phys. Rev. A 68, 022302 (2003)

Needs an evolution operator U efficiently simulated on quantum computer

Uses one ancilla qubit on which the value of the traces are transfered
(“scattering circuit”). TrUp/N = 〈σz〉 for the probe qubit. For quantum
maps, < TrUp >p gives form factor K(t). Value of form factor near t = 0 ⇒
characterizes Random Matrix , Poisson and intermediate statistics (the

latter can be probed in e. g. the map Û = e−2iπp̂2/Ne2iπαq̂)

→ If < TrUp >p∼ κ
√
N then K(0) = |κ|2 and statistics are integrable

(|κ|2 = 1) or intermediate (|κ|2 < 1)

→ If < TrUp >p∼ 1 then K(0) = 0 (Random Matrix statistics)

Quadratic gain compared to classical computation
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Wigner function
On a N -dimensional Hilbert space: use 2N × 2N points.

W (Θ, n) = 1
2N

∑N−1
m=0 e

−2iπ
N n(m−Θ/2)ψ(Θ−m)∗ψ(m)

Wigner function of a wavepacket for
kicked rotator, K = 0.9.

Wigner function of a wavepacket for
kicked rotator, K = 2 .
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Wigner function on a quantum computer: algorithm I
C. Miquel, J. Paz, M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne, Nature 418, 59

(2002): Measures Wigner function at one given location using an ancilla qubit.

1) Apply one Hadamard gate to the ancilla qubit

2) Apply A(Θ, n) = SΘRV −n exp(2iπΘn/2N) to the system conditioned
by the value of the ancilla qubit (S=shift in Θ basis, S(|Θ〉) = |Θ + 1〉; V=shift
in the n basis; R=reflection operator, R(|n〉) = |N − n〉)

3) Apply one Hadamard gate to the ancilla qubit

Expectation value of the ancilla: 〈σz〉 = Re[Tr(U(Θ, n)ρ)] = 2NW (Θ, n) (ρ
is the density matrix and N = 2nq is the dimension of the Hilbert space).

Problem: values of W are very small, and require exponentially many
iterations.
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Wigner function on a quantum computer: algorithm II
M. Terraneo, B. Georgeot and D. Shepelyansky, Phys. Rev. E 71, 066215 (2005):

builds a state whose amplitudes in a chosen basis gives the Wigner function.

1) Transform|ψ0〉|ψ0〉; into |U tψ0〉|U tψ0〉=
∑
θ,θ′ ψ(θ)ψ∗(θ′)|θ〉|θ′〉. Then

add an extra qubit, transform into
∑

θ,θ′ ψ(θ)ψ∗(θ′)|θ + θ′〉|θ′〉 (addition)

2) Fourier transform of second register ⇒ ∑
Θ

∑
n(

∑
θ′ e

−2iπ
N nθ′ψ(Θ −

θ′)ψ∗(θ′))|Θ〉|n〉 =2
√
N

∑
Θ

∑
nW (Θ, n)e−

2iπ
N nΘ/2|Θ〉|n〉 where Θ = θ + θ′

and Θ varies from 0 to 2N − 1 and n from 0 to N − 1.

3) Add an extra qubit in the state |0〉, apply Hadamard gate

and multiply by the phases e−
2iπ
N nΘ/2 and e−

2iπ
N (n−N)Θ/2 ⇒ |ψf〉 =√

2N
∑2N−1

Θ=0

∑2N−1
n=0 W (Θ, n)|Θ〉|n〉

Allows further data treatment (amplitude amplification, wavelet transform).
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Amplitude amplification

(Brassard, Hoyer, Mosca, Tapp, quant-ph/0005055)

⇒ Generalization of Grover’s algorithm. Amplitude amplification increases
the amplitude of a whole subspace H.

⇒ Let P be a projector on this subspace H and V̂ an operator taking
|0〉 to a state having some projection on H. Repeated iterations of V̂ (I −
2|0〉〈0|)V̂ −1(I − 2P ) on V̂ |0〉 will increase the projection. Indeed, if one
write V̂ |0〉 = PV̂ |0〉 + (I − P )V̂ |0〉, the result of one iteration is to rotate
the state toward PV̂ |0〉 staying in the subspace spanned by PV̂ |0〉 and
(I − P )V̂ |0〉. One can check that after one iteration the state has a component
along (I − P )V̂ |0〉 decreased by an amount which depends on |PV̂ |0〉|2

⇒ If N is dimension of total Hilbert space and M the dimension of H,√
N/M iterations needed to bring the probability to be in H close to 1.
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Wavelet transforms

⇒ Wavelet transforms = generalizations of Fourier transform. Wavelet bases:
each basis vector is localized in position as well as momentum, with different
scales (6= Fourier basis = plane waves).

⇒ Basis vectors are obtained by translations and dilations of an original
function and their properties enable to probe the different scales of the data as
well as localized features, both in space and frequency.

⇒ Wavelet transforms are used in a large number of applications involving
classical data treatment, in particular they allow to reach large compression rates
for classical images in standards like MPEG.

⇒ Efficient quantum algorithms for implementing such transforms have
been built, requiring polynomial resources to treat an exponentially large vector.
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Wigner function on a quantum computer: measurements
Numerical results for kicked rotator on a N di-
mensional space after t iterations:
1) Direct measurements: ⇒ quantum al-
gorithm O(tNα) with α ≈ 1.8 − 2; classical
O(tN2 logN) ⇒ Small polynomial gain
2) Coarse-grained measurement ⇒ possible ex-
ponential gain
3) Amplitude amplification on aND×ND square:
O(tN + NDN) classically, O(tNα

DN) quantum
⇒ Small polynomial gain
4) Wavelet transformed: O(tNβ) with 1.4 ≤ β ≤
2 quantum, O(tN2 logN) classical ⇒ Larger
polynomial gain
Gain is larger in chaotic regime
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Husimi function on a quantum computer
Husimi function: J. P. Paz, A. J. Roncaglia and M. Saraceno, Phys. Rev. A 69,

032312 (2004).

ρH(θ0, n0) = |〈φ(θ0,n0)|ψ〉|2 where φ(θ0,n0)(θ, n) = A
∑

n e
−(n−n0)

2/4a2−iθ0n|n〉
is a Gaussian coherent state centered on (θ0, n0) with width a (A is a normalization
constant). Construct a Gaussian using ground state of Harper Hamiltonian.

Much simpler: modified Husimi function: K. M. Frahm, R. Fleckinger and

D. L. Shepelyansky, Eur. Phys. J. D 29, 139 (2004).

ρ
(p)
H (θ0, n0) = |〈φ(p)

(θ0,n0)
|ψ〉|2 where φ

(p)
(θ0,n0)

(θ, n) = (1/N1/4)
∑n0+

√
N−1

n=n0
e−iθ0n|n〉

Quantum Fourier transform to first half of the qubits: ψ ⇒ |ψH〉 =∑
θ,nH(θ, n)|θ〉|n〉 where θ and n take only

√
N values each and |H(θ, n)|2

is the modified Husimi function.
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Modified Husimi function: measurements

Numerical results for kicked rotator on a N di-
mensional space after t iterations:
1) Husimi function O(tNγ) with 0.5 ≤ γ ≤ 0.7;
classical O(tN) ⇒ Polynomial gain for direct
measurements
2) Coarse-grained measurement ⇒ possible ex-
ponential gain
3) Amplitude amplification on aND×ND square:

O(t
√
NN

γ−1/2
D ) quantum, O(tN) classical ⇒

Polynomial gain, independent of system
4) Wavelet transform ⇒ Polynomial gain
Figure: modified Husimi function of kicked ro-
tator for K = 0.9 (top) and K = 2(bottom)
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Standard images
Numerical simulations → wavelet transform
is very efficient at compressing information
for standard images

Largest wavelet coefficients can be ob-
tained in polynomial time for exponen-
tially large images. Total gain depends on
efficiency of encoding the image

But reconstruction of image from such
largest wavelet coefficients leads to large loss
of information
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Spectrum: phase estimation
A. Kitaev, quant-ph/9511026, D. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162

(1999): Given an unitary operator U and an eigenvector |u〉, find efficiently the
associated eigenvalue e2iπωu.

• Start from 1/
√
N

∑N−1
t=0 |t〉|u〉

• Transform it into 1/
√
N

∑N−1
t=0 |t〉|U tu〉 = 1/

√
N

∑N−1
t=0 e2iπωut|t〉|u〉

• Quantum Fourier transform of first register ⇒ |ωu〉|u〉
Problem: needs i) an operator U whose exponentially large iterates are

efficiently implementable and ii) a good approximation of one eigenvector

Note: Shor’s algorithm can be reinterpreted as phase estimation on the
operator U |y〉 = |ay mod(N)〉
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Spectrum: phase estimation + Grover
Works if i) and ii) are not fulfilled; evolution operator should be

efficiently implementable.

• Start with
PN−1

t=0 |t〉|ψ0〉, for example |ψ0〉 = 2−nq
P

n |n〉
• Transform it into 2−nq

PN−1
t=0 |t〉|U tψ0〉 in O(N) operations,

• QFT of the first register ⇒ peaks centered at eigenvalues of U

• Measurement of the first register ⇒ one eigenvalue of U with

good probability in O(N) operations

• Amplitude amplification (Grover): all eigenvalues in a given

interval in O(N
√
N) operations.

Compare with O(N2) operations classically (kicked Harper),

O(N3) (general system)
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Concluding remarks

• Quantum maps: especially simple dynamics, yet complex behaviour

• Adapted to small-size quantum computers; some of them already implemented.

• At least polynomial gain can be obtained; possibly exponential

• Have inspired pseudorandom operators, which can produce efficiently quasi-
random vectors on quantum computers (J. Emerson, Y. Weinstein, M. Sara-
ceno, S. Lloyd and D. Cory, Science 302, 2098 (2003)).
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Simulating classical chaos
(B. Georgeot and D. Shepelyansky, Phys. Rev.

Lett. 86, 5393 (2001))

Arnold cat map:
ȳ = y + x (mod 1)
x̄ = y + 2x (mod 1)
Textbook example of hard chaos.
Classical exponential instability ⇒ hard to
simulate for long times.
Phase-space density on a 2n × 2nlattice:
classical computation: one iteration ⇒
22n+1 additions
quantum computation: one iteration ⇒
16n− 22 quantum gates
“Arnold-Schroedinger cat”

10 iterations of the cat map

http://www.quantware.ups-tlse.fr Bertrand Georgeot



Institut Henri Poincaré, Centre Emile Borel Trimester on Quantum Information, Computation and Complexity

Quantum algorithm:

To simulate phase-space density on a 2n × 2nlattice:

• Step I Preparation of initial wavefunction: ψ(0) =
∑
i,j ai,j|xi〉|yj〉

• Step II Modular addition
∑
i,j ai,j|xi〉|yj〉 ⇒

∑
i,j ai,j|xi〉|yj + xi(mod(1))〉 =

∑
i,j bi,j|xi〉|yj〉

• Step III Modular addition
∑
i,j bi,j|xi〉|yj〉 ⇒

∑
i,j bi,j|xi + yj(mod(1))〉|yj〉 =

∑
i,j ci,j|xi〉|yj〉

only 16n− 22 quantum gates per iteration; needs 3n− 1 qubits
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Strange attractors

=⇒ Dissipative dynamical systems often converge to strange attractors

=⇒ They are characterized by fractal dimensions and chaotic unstable
dynamics of trajectories

=⇒ Applications: turbulence and weather forecast, molecular dynamics,
chaotic chemical reactions, multimode solid state lasers, ecology and physiology,
etc...
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Strange attractors: examples

Lorenz attractor (1963):
Hénon attractor (1976):
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Simulating strange attractors
(M.Terraneo, B.Georgeot and D. Shepelyansky, Eur.

Phys. J. D 22, 127 (2003)).

dissipative deterministic map:
ȳ = y

2 + x (mod 2) , x̄ = y
2 + 2x (mod 1)

Converges to a strange attractor of fractal dimen-
sion ≈ 1.543.
Quantum computation of a density on a 2n× 2n+1

lattice:
one iteration ⇒ 17n− 10 quantum gates
Four registers |x〉, |y〉, |workspace〉, |garbage〉
Garbage register is needed due to irreversibility of
the map
Size of garbage grows like t (simplest algorithm)
or ln t (pebble game)

10 iterations of the map
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Institut Henri Poincaré, Centre Emile Borel Trimester on Quantum Information, Computation and Complexity

Extracting information
• to obtain the full phase space density re-

quires an exponential number of measure-
ments: how to extract information efficiently?

• Fourier coefficients of the discretized phase
space density: apply Quantum Fourier
transform after iterating the map; possibility
of exponential gain.

• Large harmonics −→ exponentially small
scales very quickly populated due to chaos.

Figure: Fourier coefficients for the cat map and
a modified cat map.
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Extracting information II
• For attractor: Spectrum of phase space correlation

functions:

C(t, kx,y) =
∑
e(2iπ(x(t,x0)+y(t,x0)))e2iπ(kxx0+kyy0))

• Needs O(n2) gates (t iterations of the map + 2n + 1
one-qubit rotations + t reverse iterations + Quantum
Fourier Transform). Measure only the first nf qubits →
polynomial number of measurements gives coarse grained
image of |C(t, kx,y)|2 (see example left on top)

• Possibility of exponential gain; numerics: exponentially
faster than classical Monte-Carlo (figure left bottom: open
circle: Monte-Carlo, full circle: quantum algorithm)
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Poincaré recurrences/periodic orbits
(B. Georgeot, Phys. Rev. A 69, 032301 (2004))

Other way to extract information

• For classical bounded conservative systems

Theorem of Poincaré → some points from an arbitrary small phase space
domain A will eventually come back to A. ⇒ recurrence times. Very long
times, hard to find numerically

• For more general systems: periodic orbits: orbits which come back exactly to
their starting position in phase space. ”Backbone” of classical dynamics

→ Enable to compute diffusion coefficients, properties of strange attractors

→ Enter classical and semiclassical trace formulas
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Arnold Cat map
ȳ = y + x (mod 1) , x̄ = y + 2x (mod 1)

action of the 2× 2 matrix L =
(

2 1
1 1

)
on

(
x
y

)

periodic points = rational points → they all belong to some g × g lattice of
{(p1/g, p2/g)}, p1, p2 = 0, 1...g

On such lattice, the map acts on numerators only as ȳ = y+x (mod g) , x̄ =

y + 2x (mod g) , or

(
x̄
ȳ

)
= L

(
x
y

)
(mod g) , with x, y, x̄, ȳ integers

Lattice period function α(g)= smallest integer such that after α(g) iterations
all points in the lattice have come back to the initial position

α(g)=smallest integer t such that Lt = I (mod g)
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α(g)

α(g)= very erratic function of g, of order g
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The lattice period function α(g) for the Arnold cat map.
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Quantum computing α(g)

• Start with N−1/2
∑N−1

t=0 |t〉|1〉|0〉|0〉|1〉 where N = 2nq with nq ∼ log2 g

• Transform it into N−1/2
∑N−1
t=0 |t〉|At〉|Bt〉|Ct〉|Dt〉

where (At, Bt, Ct, Dt) are entries of matrix Lt mod g, periodic function of t

• Measure the last registers. Result: |A〉|B〉|C〉|D〉corresponding to matrix
K. Total state: M−1/2ΣM−1

j=0 |tj〉|A〉|B〉|C〉|D〉 where tj are all t such that
Ltj = K, and M ≈ 2nq/α(g).

• Fourier Transform first register → peaks at multiples of M ≈ 2nq/α(g).

In total O((log g)3) operations and ∼ 9 log g qubits

very similar to Shor algorithm
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Period r of a function
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More generally

-start from an initial point and look for periodicities of its iterates

-use discretized (unitary) map on a lattice xi = i/N , i = 0, ..., N − 1 and
yj = j/N , j = 0, ..., N − 1, with N = 2nq

-initial state 2−p/2
∑2p−1

t=0 |t〉|x0〉|y0〉 with p ≈ nq

-transform efficiently to 2−p/2
∑2p−1
t=0 |t〉|Lt(x0)〉|Lt(y0)〉

-Quantum Fourier transform the first register

-Efficient if fast (polynomial) classical computation of (L2k) is possible
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If it does not work
-iterates of L are not efficiently computable, but L efficiently computable

(often the case)

-choose a time t fixed and a subdomain A; simple case: square of size P × P
with P = 2p in phase space of size N ×N where N = 2nq

-initial state is |ψ0〉 = 2−p
∑2p−1
i=0

∑2p−1
j=0 |xi〉|yj〉

-|ψ0〉→ 2−p
∑2p−1
i=0

∑2p−1
j=0 |Lt(xi)〉|Lt(yj)〉

-give a (-1) phase to the values of |Lt(xi)〉|Lt(yj)〉 ending a trajectory returning

to A, then invert everything →2−p
∑2p−1
i=0

∑2p−1
j=0 ε|xi〉|yj〉, where ε = ±1

-use this as an oracle in Grover iterations; one return among M is found in
O(tP/

√
M) operations, as opposed to O(tP 2/M) classically
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Periodic orbits

-one can also obtain periodic orbits of period t

-start from all the N ×N points of the lattice with N = 2nq

-|ψ0〉→ 2−nq
∑2nq−1
i=0

∑2nq−1
j=0 |xi〉|yj〉|Lt(xi)〉|Lt(yj)〉

-after t iterations the value of the iterate is compared to the initial value; a
minus sign is given if it is the same;then invert the process

→ 2−nq
∑2nq−1
i=0

∑2nq−1
j=0 ε|xi〉|yj〉

-use this as an oracle in Grover iterations; one periodic orbit among M is
found in O(tN/

√
M) operations, as opposed to O(tN2/M) classically
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Examples
Classical maps of the form: n̄ = n− kV ′(θ)(mod 2πL); θ̄ = θ+T n̄(mod 2π)

-V (θ) = cos θ: Chirikov standard map; discretized map on a 2nq × 2nq
lattice can be performed in O(n3

q) gates → quadratic gain

-V (θ) = −θ2/2: sawtooth map; discretized mapping: Ȳ = Y +
[NK(2πX/N − π)/(2π)](modN); X̄ = X + Ȳ (modN)

integer K→ exponential gain

non integer K→ quadratic gain

K = ±1/2 for return times → only 3 registers

domain 4× 4 in a 8× 8 lattice→ only 8 qubits
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Discretized vs continuous system

-It is known that discretized unitary maps can be built for any area-preserving
maps; they can be studied for their own’s sake.

-Periodic orbits found are exact periodic orbits of the discretized systems

-Shadowing theorem (hyperbolic systems): an exact trajectory will remain
close to the dynamics of each discretized point for arbitrary times.

⇒ Results of the algorithms above are Poincaré recurrence times of the
continuous system.
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Concluding remarks

• Quantum computers can solve problems of classical chaos

• Gain depends on the system and the quantity considered

• More work to be done...
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