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Lectures by B. Georgeot 3: overview

1) Interference in quantum computation

2) Errors and imperfections in quantum computer: random noise
In the gates

3) Static errors in quantum computers: apparition of a quantum
chaos regime
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Measuring interference

D. Braun and B. Georgeot, Phys. Rev. A 73, 022314 (2006)

For a process: p;j = Zk,l P;; kipxi, let us define an interference measure by:
I(P) = i o | Piawal? = 205 i | Pri krel?

For unitary processes it becomes: Z(P(U)) = (N — D ik |U7;k]4>

One has 0 <Z(P(U)) < N -1

Number of “i-bits"n; = log,(Z(P) + 1)

Permutation matrix = Z(P(U)) =0

Fourier and Walsh-Hadamard transforms = Z(P(U)) = N — 1
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Potentially available interference

Interference up to time ¢ for Grover (left, 8 qubits) and Shor (right, 12 qubits,
factorization of 15) algorithms.
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Actually used interference

Interference of the process up to time t for Grover (left, 7 qubits) and Shor
(right, 12 qubits, factorization of 15) algorithms. The initial Hadamard gates

creating the uniform state 1/ N Z,fil ) are now omitted.
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Unitary noise in the gates

P.-H. Song and D. Shepelyansky, Phys. Rev. Lett. (2001); B. Lévi, B.Georgeot and
D. Shepelyansky, Phys. Rev. E (2003).

Numerical simulations of the kicked rotator model on quantum computer

Each gate is replaced by random gate with noise parameter € i. e. each
random gate is rotated by € from exact gate

Expectation: each gate transfers probability of order €* from the exact wave
function.

Problem: depending on the observable, this can lead to vastly different time
scales.
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Fidelity and second moment

Hilbert space dimension N = 2"q, T and k  constant
Fidelity time scale Second moment time scale
F(8) = | < P=(B)[tho(t) > |7 <n? >=< (n—ng)? >

6 - \O\g%@\

4 Q%i
> "%,
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“i‘\‘\

K K Iog(n?zsz) K O
ty =~ Cy/(e?n7)
polynomial in € and n, polynomial in € exponential in n,
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Husimi and Wigner distributions

Plot of Husimi (left) and Wigner (right)
distributions

Hilbert space has dimension N = 2™«¢
with n, =7

K =13> K, and T = 21 /N (phase
space has one cell only)

Top: € = 0; middle: ¢ = 0.002; bottom:
e = 0.004.
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Wigner function

Relative error on the Wigner function
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OW = ([W — W) /{|[W]) for K = K|, l0g(n, ")
T =2x/N, N = 2" and n, = 10 in
the chaotic zone. From bottom to top
e=10"% e=10"%° e=10"".
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Quantum chaos in many-body systems

e Disordered interacting many-body systems: Very common around us (nuclei,
atoms, quantum dots,etc...)

e When interaction is sufficiently large, wavefunctions of the system (eigenfunc-
tions of the Hamiltonian) are often ergodic and their statistical properties are
described by Random Matrix Theory = “Quantum chaos regime”

e Applicability of Random Matrices? Transition to quantum chaos? Critical
interaction strength for apparition of this regime?

e Many works — answers for interacting fermions, atoms, spin glass shards, etc..

e In presence of static imperfections, a quantum computer corresponds to this
type of systems
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Static imperfections in a quantum computer

B.Georgeot and D. Shepelyansky, Phys. Rev. E 62, 3504
(2000); ibid. 62, 6366 (2000).

e energy between the two states of qubits may fluc-

tuate

e interaction between qubits is necessary to perform
two-qubit gates; = residual random couplings

Quantum Computer Model:
H =) Lio; +>..;Jijoi0]
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density of states
disordered quantum

_ _ _ computer
2D lattice; J;; nearest-neighbour coupling random (6 < A)
uniform in [—J, J]; T'; random in [Ag—0/2, Ag+9/2];
o,; Pauli matrices
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n qubits = N = 2" multi-qubit states
(“quantum register states”)

Spectral statistics = transition from an
integrable regime (Poissonian statistics)
at J/0 = 0 to a quantum chaos regime
(Random Matrix statistics) for larger J/§

Transition to quantum chaos

1.0
P(s) 1
08
06 -

0.4

0.2 N

0'0 1 1 —

Level statistics for n = 16
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Monitoring the transition

Parameter 7): varies continuously from
T] = ]_ (POisson) to T] — O (Wigner) "
p = Lo (P() =Py (5))ds

[o 2 (Pp(s)— Py (s))ds’ |

where sg = 0.4729... is the intersection
point of Pp(s) and Py p(s)

0.0

Results:  sharp transition (can be | _ ._ | |
Transition for n = 6,9,12,15, 16

smooth in other systems)
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Energy scales

Hamiltonian: sparse random matrix

two-body interaction = three energy scales:

Ay = one-particle level spacing
A. = level spacing between directly coupled multi-particle states

A,, = level spacing between multi-particle states: < A,
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Quantum chaos border
Quantum chaos sets in for J > J..

Chaos = mixing of exponentially many
multi-qubit states, ergodicity.

= “melting” of the quantum computer.

= destruction of the computer

without coupling to the environment

sharp transition

Energy scales:

Example: nuclear spins, 1000 qubits;
level spacing A,, ~ 107298 K Quantum computer melting
A.~ 1073 K

residual interaction J ~ 107° K> A,,.
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Aberg criterion

S. Aberg, Phys. Rev. Lett. 64, 3119 (1990); P. Jacquod and D. Shepelyansky, Phys.
Rev. Lett. 79, 1837 (1997).

Chaos = Mixing of many-particle states

Higher orders of perturbation theory can be written in terms of two-particle
terms = mixing of many-particle states should happen when two-particle states
are mixed

= one can expect critical interaction strength to be J. ~ A,

Confirmed by numerical simulations in many systems with two-body interac-
tions

Note that A, > A,
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Critical coupling
Theory:

e Aberg criterion J. =~ A,

e Spectrum for J =0 (6 < Agp): n bands
with interband distance 2Ay and width

NGT)

e In a central band, one multi-qubit state is
coupled to around n states in an energy
interval 24.

o = J.~A.~6/n> A, ~n3?227"5.

Numerical results:

0 T T
log(dly | ~TTTm——- ~——

I I I I 1
0.8 0.9 1.0 11 1.2

log(n)
Dashed: J_.: critical interaction
measured by spectral statistics
Full: J.s: critical interaction
measured by entropy
Dotted: A, mean level spacing
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Spreading of eigenstates
e Inverse participation ratio (IPR) € = 1/ |[Win|*
e Quantum eigenstate entropy S, = — > . Wi, logy, Wi,

Wim =quantum probability to find the quantum register state
|2;) in the eigenstate |¢,,) of the Hamiltonian (W, =

(Wil pm) 7).

e S, =0and £ = 1if |¢y) is one quantum register state
(J =0)

e S,=1and & = 2if |¢py,) is equally composed of two |1);)

e Maximal value is S; = n and £ = 2" if all 2" states
contribute equally to | ., ).
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nonchaotic eigenstate (top)
and chaotic eigenstate (bottom)

http://www.quantware.ups-tlse.fr

B. Georgeot



Local density of states (LDOS)

pw(E — E;) = Zm Wind(E — En)

e Breit-Wigner form:

pBW(E - EZ) — 27r((E—E£)2—|—F2/4) Iog(l’/S;

valid when T' is smaller than the bandwidth (I" <
v/nd) and many levels are contained inside this width.
In this regime, the Breit-Wigner width I' is given by
the Fermi golden rule: T" = 27TU82/AC, where Uy is
the root mean square of the transition matrix element

A

-0.5 O.‘O E/3 0.5

I
-2.0 -15 -1.0

and 1/A. is the density of directly coupled states. In Tog@r 8
2
our case Ug ~ J and A, ~ §/n, so that I" ~ %. pw for quantum computer

For J > J.:

e Gaussian form: for large J, when I > d,
88 S W VIO oW e e DT~ J2/(ALAL)

becomes close to a Gaussian, whose width grows like
[' ~ J. The change from one dependence to the other

takes place for J > &/nt/4,
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Time scales

Start with a quantum register state

$(0)) = [45(0)) 2

Fidelity= F(t) = |(3 ()i, (1))

Fidelity decay=Fourier transform of local density

of states
For J > J_:

e Breit-Wigner form width I" = exponential
decay ~ et

e Gaussian shape width I' = gaussian decay

—r24? Fidelity decay for

J/6=04>J./6
from left to right

~ €

e = timescale v ~ 1/

see also V. Flambaum, Aust. J. Phys. 53, N4 n =16,15,12,9, 6.
(2000). Inset: chaotic time scale T
Additional presence of phase errors as a function of 1/T".
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Static errors while an algorithm is performed

H =) Tio] +2 i Jijol 0§

2D lattice; J;; nearest-neighbour coupling random uniform in [—J, J|; T}
random in [Ag — /2, Ag + §/2]; o; Pauli matrices

We make the approximation that this Hamiltonian acts during a time 7,
between each gate which is taken as instantaneous.

One single rescaled parameter € describes the amplitude of these static errors,
with € = 07, = J7,,.
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Kicked Harper model

B. Lévi and B. Georgeot Phys. Rev. E 70, 056218 (2004)
n=n+ Ksinf, § =60 — Lsinn
Transition to chaos as K, L increase )
Quantization: ?7; 2 cos(hﬁ)/he—iK cos(Q)/hw

K = L — 0 gives Harper model with fractal spec-
dynamical localization — similar to Anderson lo- DY
calization of electrons in solids v
transition to a partially delocalized regime, with SPectrum for K, L =0
coexistence of localized and delocalized states

0.001

hE, ©

-0.001
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Quantum stochastic web: Husimi distribution

K, L very small = small chaotic layer surround-
ing large integrable islands “stochastic web”
= transport=diffusion through layer-+tunneling
=much faster than classical

Figure: quantum stochastic web; Left: ¢ = 0
and from top to bottom n, = 14, n, = 11,
ng = 8 ; right: n, = 14 and from top to bottom
e=10"%¢e=10"% e =10""

Effect of static errors: relative error is 1/2 for

ty, ~ Ch/(Encll'QS)
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Localized regime: effect of static imperfections

One should consider the eigenstates of the evolu-
tion operator U of the unperturbed system (kicked
Harper) instead of quantum register states.

All states localized =- an eigenstate is coupled to
only ~ [ neighbouring states with typical matrix  example of wave function,

element Vi, ~ eng/Mg/ V1 for e = 0,107,103
= Quantum chaos border ¢ &~ Cl/(ng\/nTI\/Z) [ ]
£ < €. = [ can be measured for very long times \
e > e, = | can be measured up to t ~ 1/0 ~

1 / (8 Ng \/Wq ) I mg(n::q“z)

critical €

log(ly(n)[*)

log(e,)
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Partially delocalized regime: effect of static imperfections

A certain fraction § of eigenstates of U (unperturbed)
are delocalized.

In this case, matrix element between states with at
least one delocalized is = Vi, ~ eng,/ng/VN

log(lw(n)l?)

example of wave function
= Quantum chaos border ¢, ~ C/(ng,/ngV'N) for e =0,1077,1077
exponentially small: N = 274l ( cf also G. Benenti *
et al, Eur. Phys. J. D 20, 293 (2002))

log(e,)
& 5 L
.
/
.
.

£ > €. = observables measurable up to time ¢t ~

1/0 ~ 1/(eng/mg)

critical €
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Concluding remarks

e Quantum chaos tools allow to analyze effects of static imperfections in quantum
computer

e Random Matrix Theory can be applied to give the fidelity decay in presence
of imperfections. Different regimes identified ( K. M. Frahm, R. Fleckinger
and D. L. Shepelyansky, Eur. Phys. J. D 29, 139 (2004)), in general static
imperfections parametrically more dangerous than random noise in the gates.

e PAREC method: error correction of static errors without extra qubits
(O.Kern, G.Alber and D.Shepelyansky, EPJD 2005): destroys coherence of
static errors to bring them on par with random noise.
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