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Lectures by B. Georgeot 3: overview

1) Interference in quantum computation

2) Errors and imperfections in quantum computer: random noise

in the gates

3) Static errors in quantum computers: apparition of a quantum

chaos regime
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Measuring interference

D. Braun and B. Georgeot, Phys. Rev. A 73, 022314 (2006)

For a process: ρ′ij =
∑

k,l Pij,klρkl, let us define an interference measure by:

I(P ) =
∑

i,k,l |Pii,kl|2 −
∑

i,k |Pii,kk|2

For unitary processes it becomes: I(P (U)) =
(
N −∑

i,k |Uik|4
)

One has 0 ≤ I(P (U)) ≤ N − 1

Number of “i-bits”nI = log2(I(P ) + 1)

Permutation matrix ⇒ I(P (U)) = 0

Fourier and Walsh-Hadamard transforms ⇒ I(P (U)) = N − 1
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Potentially available interference

Interference up to time t for Grover (left, 8 qubits) and Shor (right, 12 qubits,
factorization of 15) algorithms.
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Actually used interference

Interference of the process up to time t for Grover (left, 7 qubits) and Shor
(right, 12 qubits, factorization of 15) algorithms. The initial Hadamard gates

creating the uniform state 1/
√
N

∑N
i=1 |i〉 are now omitted.
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Unitary noise in the gates

P.-H. Song and D. Shepelyansky, Phys. Rev. Lett. (2001); B. Lévi, B.Georgeot and

D. Shepelyansky, Phys. Rev. E (2003).

Numerical simulations of the kicked rotator model on quantum computer

Each gate is replaced by random gate with noise parameter ε i. e. each
random gate is rotated by ε from exact gate

Expectation: each gate transfers probability of order ε2 from the exact wave
function.

Problem: depending on the observable, this can lead to vastly different time
scales.
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Fidelity and second moment
Hilbert space dimension N = 2nq, T and k constant

Fidelity time scale
f(t) = | < ψε(t)|ψ0(t) > |2

−8 −6 −4 −2 0

log(nq

2ε2
)

−2

0

2

4

6

8

lo
gt

f

tf ≈ Cf/(ε2n2
q)

polynomial in ε and nq

Second moment time scale
< n2 >=< (n− n0)2 >

0 5 10 15 20
nq

−10

−8

−6

−4

−2

0

2

4

lo
g(

t qε
2 n q)

tq ≈ Cqk
4/(ε2nq22nq)

polynomial in ε exponential in nq

http://www.quantware.ups-tlse.fr B. Georgeot



Husimi and Wigner distributions

Plot of Husimi (left) and Wigner (right)
distributions

Hilbert space has dimension N = 2nq
with nq = 7

K = 1.3 > Kg and T = 2π/N (phase
space has one cell only)

Top: ε = 0; middle: ε = 0.002; bottom:
ε = 0.004.
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Wigner function

Relative error on the Wigner function
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Quantum chaos in many-body systems

• Disordered interacting many-body systems: Very common around us (nuclei,
atoms, quantum dots,etc...)

• When interaction is sufficiently large, wavefunctions of the system (eigenfunc-
tions of the Hamiltonian) are often ergodic and their statistical properties are
described by Random Matrix Theory ⇒ “Quantum chaos regime”

• Applicability of Random Matrices? Transition to quantum chaos? Critical
interaction strength for apparition of this regime?

• Many works → answers for interacting fermions, atoms, spin glass shards, etc..

• In presence of static imperfections, a quantum computer corresponds to this
type of systems
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Static imperfections in a quantum computer
B.Georgeot and D. Shepelyansky, Phys. Rev. E 62, 3504

(2000); ibid. 62, 6366 (2000).

• energy between the two states of qubits may fluc-
tuate

• interaction between qubits is necessary to perform
two-qubit gates; =⇒ residual random couplings

Quantum Computer Model:
H =

∑
i Γiσ

z
i +

∑
i<j Jijσ

x
i σ

x
j

2D lattice; Jij nearest-neighbour coupling random
uniform in [−J, J ]; Γi random in [∆0−δ/2,∆0+δ/2];
σi Pauli matrices
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Transition to quantum chaos

n qubits ⇒ N = 2n multi-qubit states
(“quantum register states”)

Spectral statistics ⇒ transition from an
integrable regime (Poissonian statistics)
at J/δ = 0 to a quantum chaos regime
(Random Matrix statistics) for larger J/δ
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Monitoring the transition
Parameter η: varies continuously from
η = 1 (Poisson) to η = 0 (Wigner)

η =
R s0
0 (P (s)−PW (s))dsR s0
0 (PP (s)−PW (s))ds

.

where s0 = 0.4729... is the intersection
point of PP (s) and PWD(s)

Results: sharp transition (can be
smooth in other systems)
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Energy scales
Hamiltonian: sparse random matrix

two-body interaction ⇒ three energy scales:

∆ n c∆
∆

E

∆0 = one-particle level spacing

∆c = level spacing between directly coupled multi-particle states

∆n = level spacing between multi-particle states: ¿ ∆c
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Quantum chaos border
Quantum chaos sets in for J > Jc.

Chaos ⇒ mixing of exponentially many
multi-qubit states, ergodicity.
⇒ “melting” of the quantum computer.
⇒ destruction of the computer
without coupling to the environment

sharp transition

Energy scales:
Example: nuclear spins, 1000 qubits;
level spacing ∆n ∼ 10−298 K
∆c ∼ 10−3 K
residual interaction J ∼ 10−5 KÀ ∆n.

Quantum computer melting
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Aberg criterion
S. Aberg, Phys. Rev. Lett. 64, 3119 (1990); P. Jacquod and D. Shepelyansky, Phys.

Rev. Lett. 79, 1837 (1997).

Chaos ⇒ Mixing of many-particle states

Higher orders of perturbation theory can be written in terms of two-particle
terms ⇒ mixing of many-particle states should happen when two-particle states
are mixed

⇒ one can expect critical interaction strength to be Jc ≈ ∆c

Confirmed by numerical simulations in many systems with two-body interac-
tions

Note that ∆c À ∆n
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Critical coupling

Theory:

• Aberg criterion Jc ≈ ∆c

• Spectrum for J = 0 (δ ¿ ∆0): n bands
with interband distance 2∆0 and width√
nδ.

• In a central band, one multi-qubit state is
coupled to around n states in an energy
interval 2δ.

• ⇒ Jc ≈ ∆c ∼ δ/nÀ ∆n ∼ n3/22−nδ.

Numerical results:
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Spreading of eigenstates

• Inverse participation ratio (IPR) ξ = 1/
P

i |Wim|4
• Quantum eigenstate entropy Sq = −PiWim log2Wim

Wim =quantum probability to find the quantum register state

|ψi〉 in the eigenstate |φm〉 of the Hamiltonian (Wim =

|〈ψi|φm〉|2).
• Sq = 0 and ξ = 1 if |φm〉 is one quantum register state

(J = 0)

• Sq = 1 and ξ = 2 if |φm〉 is equally composed of two |ψi〉
• Maximal value is Sq = n and ξ = 2n if all 2n states

contribute equally to |φm〉.
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Local density of states (LDOS)

ρW (E − Ei) =
P

mWimδ(E − Em)

• Breit-Wigner form:

ρBW (E − Ei) = Γ
2π((E−Ei)2+Γ2/4)

valid when Γ is smaller than the bandwidth (Γ <√
nδ) and many levels are contained inside this width.

In this regime, the Breit-Wigner width Γ is given by

the Fermi golden rule: Γ = 2πU2
s/∆c, where Us is

the root mean square of the transition matrix element

and 1/∆c is the density of directly coupled states. In

our case Us ∼ J and ∆c ∼ δ/n, so that Γ ∼ J2n
δ .

• Gaussian form: for large J , when Γ >
√
nδ, ρW

becomes close to a Gaussian, whose width grows like

Γ ∼ J . The change from one dependence to the other

takes place for J > δ/n1/4.
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Time scales

Start with a quantum register state

|ψ(0)〉 = |ψi0(0)〉
Fidelity= F (t) = |〈ψ(t)|ψi0(t)〉|2
Fidelity decay=Fourier transform of local density

of states

For J > Jc:

• Breit-Wigner form width Γ ⇒ exponential

decay ∼ e−Γt

• Gaussian shape width Γ ⇒ gaussian decay

∼ e−Γ2t2

• ⇒ time scale τ ∼ 1/Γ

see also V. Flambaum, Aust. J. Phys. 53, N4

(2000).

Additional presence of phase errors
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Static errors while an algorithm is performed

H =
∑

i Γiσ
z
i +

∑
i<j Jijσ

x
i σ

x
j

2D lattice; Jij nearest-neighbour coupling random uniform in [−J, J ]; Γi
random in [∆0 − δ/2,∆0 + δ/2]; σi Pauli matrices

We make the approximation that this Hamiltonian acts during a time τg
between each gate which is taken as instantaneous.

One single rescaled parameter ε describes the amplitude of these static errors,
with ε = δτg = Jτg.
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Kicked Harper model

B. Lévi and B. Georgeot Phys. Rev. E 70, 056218 (2004)

n̄ = n+K sin θ , θ̄ = θ − L sin n̄
Transition to chaos as K,L increase

Quantization: ψ̄ = e−iL cos(h̄n̂)/h̄e−iK cos(θ̂)/h̄ψ
K = L → 0 gives Harper model with fractal spec-
trum
dynamical localization → similar to Anderson lo-
calization of electrons in solids
transition to a partially delocalized regime, with
coexistence of localized and delocalized states
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Quantum stochastic web: Husimi distribution

K,L very small ⇒ small chaotic layer surround-
ing large integrable islands “stochastic web”
⇒ transport=diffusion through layer+tunneling
⇒much faster than classical

Figure: quantum stochastic web; Left: ε = 0
and from top to bottom nq = 14, nq = 11,
nq = 8 ; right: nq = 14 and from top to bottom
ε = 10−6, ε = 10−5, ε = 10−4.

Effect of static errors: relative error is 1/2 for
th ≈ Ch/(εn1.23

q )
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Localized regime: effect of static imperfections

One should consider the eigenstates of the evolu-
tion operator Û of the unperturbed system (kicked
Harper) instead of quantum register states.
All states localized ⇒ an eigenstate is coupled to
only ∼ l neighbouring states with typical matrix
element Vtyp ∼ εng

√
nq/

√
l

⇒ Quantum chaos border εc ≈ C1/(ng
√
nq
√
l)

ε¿ εc ⇒ l can be measured for very long times
ε À εc ⇒ l can be measured up to t ∼ 1/σ ∼
1/(εng

√
nq)
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Partially delocalized regime: effect of static imperfections

A certain fraction β of eigenstates of Û (unperturbed)
are delocalized.
In this case, matrix element between states with at
least one delocalized is ⇒ Vtyp ∼ εng

√
nq/

√
N

⇒ Quantum chaos border εc ≈ C2/(ng
√
nq
√
N)

exponentially small: N = 2nq! ( cf also G. Benenti
et al, Eur. Phys. J. D 20, 293 (2002))

ε À εc ⇒ observables measurable up to time t ∼
1/σ ∼ 1/(εng
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Concluding remarks

• Quantum chaos tools allow to analyze effects of static imperfections in quantum
computer

• Random Matrix Theory can be applied to give the fidelity decay in presence
of imperfections. Different regimes identified ( K. M. Frahm, R. Fleckinger
and D. L. Shepelyansky, Eur. Phys. J. D 29, 139 (2004)), in general static
imperfections parametrically more dangerous than random noise in the gates.

• PAREC method: error correction of static errors without extra qubits
(O.Kern, G.Alber and D.Shepelyansky, EPJD 2005): destroys coherence of
static errors to bring them on par with random noise.
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