

Solid State NMR Quantum Information Processing

Raymond Laflamme

Institute for Quantum Computing

www.iqc.ca

Collaborators:

at IQC: Jonathan Baugh Osama Moussa, Bill Power, Colm Ryan

at MIT Chandrasekhar Ramanathan, Suddha Sinha, Hyung Joon Cho, Tim Havel, David Cory

Institut Henri Poincaré, Février 2006

QIP with solid state NMR

Could we implement a multi-round protocol of quantum error correction?

Need to go to solid state Advantages:

- Stronger couplings (dipolar)
- Slower decoherence
- Higher polarization

How to reach higher polarization?

Cooling techniques:

- Lowering Temperature
- Increasing Energy Gap
- Polarization Transfer
- Optical Pumping
- Dynamic Nuclear Polarization
- Para-Hydrogen (Jones et al.)
- Algorithmic Cooling

Molecule and Characterization

Malonic acid

Molecule and Characterization

	C_1	C_2	$oldsymbol{C}_m$	H_{m1}	H_{m2}	$T_2^*(ms)$	$T_1(s)$
C_1	5.893	0.227	0.935	-1.5	2.0	2.4	160
C_2		1.057	1.070	1.4	1.0	2.0	325
C_m			-3.445	-18.7	-0.9	1.5	315

Decoherence time

The large part of the decoherence is due to dipolar coupling with nearby spins. We can decoupled H and increase dilution of the labelled molecules.

Baugh [2]

Control of Strongly Coupled Systems

In solid state $t_{ m one~qubit~gate} \sim t_{ m two~qubit~gate}$, so how do we control the system?

Answer: Construct a modualted RF waveform that generates the desired evolution [3], i.e minimize F by modifying $H_{rf}(t)$ such that:

$$F = \sum_{\mu} p_{\mu} |{
m Tr}[U_{
m des}^{\dagger}U_{
m cal}^{\mu}]/N|^2$$

with

$$U^{\mu}_{cal} = U(t) = e^{-i\int_{0}^{t}(H^{\mu}_{Bo} + H_{int} + H^{\mu}_{rf}(t))dt}$$

using simplex methods.

Example: Control-Not-Not

Fidelity is 98%, average RF amplitude is 9.4 KHz (magnitude of ${}^{13}C$ Hamiltonian is 7.3KHz), fidelity> 90% over 1KHz range.

Feedback from the coil

Before feedback:

After feedback:

Decay of the 1 and 3 coherence

Baugh [2]

The decoherence time $T_{C_1}^2=8.66$ ms, $T_{C_2}^2=9.07$ ms, $T_{C_m}^2=5.37$ ms, $T_{3Q}^2=2.37$ ms

Algorithmic cooling

Sorensen [5], Schulman and Vazirani [4]

We have seen that we can cool a subset of spins by swapping states. For excample, with 3 spins, implementing a gate that swaps $|011\rangle \leftrightarrow |100\rangle$ will increase the order of the first spin at the expense of the last two. We could concatenate this process to reach polarization of order 1.

$$\begin{split} \rho \sim e^{-\beta H} \sim \frac{1}{2^n} (\mathbbm{1} - \beta \omega (Z_1 + Z_2 + Z_3) + \dots) \\ \rho_{\text{thermal}}^d \approx \frac{\beta \omega}{8} \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 \end{pmatrix} & \Longleftrightarrow \rho_{\text{pol}}^d \approx \frac{\beta \omega}{8} \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -3 \end{pmatrix} \\ \bar{\rho}_{\text{pol}}^d = \text{Tr}_{2,3} \rho_{\text{pol}}^d \approx \frac{3}{4} \beta \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}$$

We could concatenate this process to reach polarization of O(1), but this would take a lot of ressources ($\sim 1/\beta^2$).

Algorithmic cooling with heat bath

Algorithmic cooling with heat bath

Manipulate spins that are coupled to a heat bath. The first six steps of (Schulman, Mor and Weinstein, PRL94, 2005)

Experimental results

Baugh et al. Nature 438, 470, 2005 [1]

Next step: DNP

DNP results on Tempo

Thermal and DNP Polarization Enhancement

natural abundance ¹³C in glycerol/water glass

References

- [1] J. Baugh, O. Moussa, C. Ryan, A. Nayak, and R. Laflamme. A spin-based heat engine: Experimental implementation of heatbath algorithmic cooling. Nature, 438:470, 2005.
- [2] J. Baugh, O. Moussa, C. A. Ryan, R. Laflamme, C. Ramanathan, T. F. Havel, and D. G.Cory. A solid-state nmr threequbit homonuclear system for quantum information processing: control and characterization. Physical Review B, 73:022305, 2005.
- [3] U. Haeberlen and J. S. Waugh. Coherent averaging effect in magnetic resonance. Phys. Rev., 175:453–467, 1968.
- [4] L. J. Schulman and U. Vazirani. Scalable NMR quantum computation. In Proceedings of the 31th Annual ACM Symposium on the Theory of Computation (STOC), pages 322–329, El Paso, Texas, 1998. ACM Press.
- [5] O. W. Sörensen. Polarization transfer experiments in highresolution NMR spectroscopy. Prog. Nucl. Mag. Res. Spect., 21:503–569, 1989.