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. INTRODUCTION

Quantum theory, formalised in the first few decades of tHQ(Z!htury, contains elements that are radically differemtfthe
classical description of Nature. An important aspect irs¢hiindamental differences is the existence of quantuneletions
in the quantum formalism. In the classical description ofuxe, if a system is formed by different subsystems, coraplet
knowledge of the whole system implies that the sum of therinfdion of the subsystems makes up the complete information
for the whole system. This is no longer true in the quanturmédism. In the quantum world, there exists states of coni@osi
systems for which we might have the complete informationijevbur knowledge about the subsystems might be completely
random. One may reach some paradoxical conclusions if goleea classical description to states which have chaiatite
guantum signatures.

During the last decade, it was realized that these fundatigmionclassical states, also denoted as “entangledsstaian
provide us with something else than just paradoxes. Theybragedto perform tasks that cannot be acheived with classical
states. As benchmarks of this turning point in our view ofsaienclassical states, one might mention the spectacslenviries



of (entanglement-based) quantum cryptography (1991§jidntum dense coding (1992) [2], and quantum teleport&1li®e3)
[3].

In this chapter, we will focus on bipartite composite sysielve will define formally what entangled states are, preseme
important criteria to discriminate entangled states fremesable ones, and show how they can be classified accoodihgit
capability to perform some precisely defined tasks. Our kedge in the subject of entanglement is still far from cortgle
although significant progress has been made in the recerst §od very active research is currently underway.

Il.  BIPARTITE PURE STATES: SCHMIDT DECOMPOSITION

In this chapter, we will primarily consider bipartite sysite, which are traditionally supposed to be in possessioriogAA)
and Bob (B), who can be located in distant regions. Let Aligiiysical system be described by the Hilbert sfdgeand that
of Bob byH 5. Then the joint physical system of Alice and Bob is describgthe tensor product Hilbert spatés ® Hp.

Def. 1 Product and entangled pure states:

A pure state, i.e. a projectdt)ap) (v ap| Onavectoyap) € Ha ® Hp, is a product state if the states of local subsystems are
also pure states, thatis, b a5) = |¥4) ® [5). However, there are states that cannot be written in thisfoFhese states are
called entangled states.

An example of entangled state is the well-known singleestat ) — |10))/+/2, where|0) and|1) are two orthonormal states.
Operationally, product states correspond to those stiitgiscan be locally prepared by Alice and Bob at two sepaoatgtions.
Entangled states can, however, be prepared only after ttielps of Alice and Bob have interacted either directly gmbeans
of an ancillary system. A very useful representation, omaljd/for pure bipartite states, is the, so-called, Schnagtesentation:
Theorem 1Schmidt decomposition:

Every|vap) € Ha ® Hp can be represented in an appropriately chosen basis as

M

[Wap) =) aile)) @ |f), 1)

i=1

wherele;) (| f;)) form a part of an orthonormal basis iK 4 (Hg), a; > 0, andzg1 a? = 1, whereM < dimH 4, dimHp.

The positive numbers; are known as the Schmidt coefficients|gfsz). Note that product pure states correspond to those
states, whose Schmidt decompositon has one and only ond@duwafficient. If the decomposition has more than one Sdhmi
coefficient, the state is entangled. Notice that the squafréise Schmidt coefficients of a pure bipartite state z) are the
eigenvalues of either of the reduced density matriceé= trgpap) andpp (= trapag) of |[Yap).

lll.  BIPARTITE MIXED STATES: SEPARABLE AND ENTANGLED STATE S

As discussed in the last section, the question whether & ginee bipartite state is separable or entangled is stfaigverd.
One has just to check if the reduced density matrices are pties condition is equivalent to the fact that a bipartitegu
state has a single Schmidt coefficient. The determinaticepérability for mixed states is much harder, and currdatis a
complete answer, even in composite systems of dimensi@mwaadC? ® C*.

To reach a formal definition of separable and entangledsstatesider the following preparation procedure of a bifgestate
between Alice and Bob. Suppose that Alice prepares her géiysistem in the state;) and Bob prepares his physical system
in the statd f;). Then, the combined state of their joint physical systemvsrgby:

lei)(eil @ | fi) (fil- 2

We now assume that they can communicate over a classicaheh@yphone line, for example). Then, whenever Alice prepar
the statde;) (i = 1,2,..., K), which she does with probability;, she communicates that to Bob, and correspondingly Bob
prepares his system in the stafg) (i = 1,2, ..., K). Of course) . p; = 1. The state that they prepare is then

pap = S0 piles)(ed @ | fi) (fil- (3)

The important point to note here is that the state displayéttji. [3) is the most general state that Alice and Bob will He &tp
prepare by local quantum operations and classical commatioic(LOCC) [4].

Def. 2Separable and entangled mixed states:

A mixed state 4 g is separable if and only if it can be represented as a convexbioation of the product of projectors on local
states as stated in EqQ(3). Otherwise, the mixed state dstadie entangled.
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Entangled states, therefore, cannot be prepared localtybyparties even after communicating over a classical cblann
To prepare such states, the physical systems must be brtaggther to interadt[65]. Mathematically, a nonlocal anjt
operatol[66] mushecessarilyact on the physical system describedhy ® Hp, to produce an entangled state from an initial
separable state.

The question whether a given bipartite state is separabietadurns out to be quite complicated. Among the difficultizs
notice that for an arbitrary stajes g, there is no stringent bound on the valuefofin Eq. [3), which is only limited by the
Caratheodory theorem to Hé < (dim H)? with H = H4 ® Hp (seel[5]). Although the general answer to the separability
problem still eludes us, there has been significant progresscent years, and we will review some such directions & th
following sections.

IV. OPERATIONAL ENTANGLEMENT CRITERIA

In this section, we will introduce some operational entanggdnt criteria. In particular, we will discuss the partiahsposition
criterion [7,18], and the majorization criterior [9]. Thesrist several other criteria (see e.g. Refs! [10/11, 1Ajckwwill not
be discussed here. However note that, up to now, a necessaguéicient criterion for detecting entanglement of ariteaby
given mixed state is still lacking.

A. Partial Transposition

Def. 3Letpap be a bipartite density matrix, and let us express it as

Na Np
pap =Y > dl())(ih)a® (m¥)s, 4)
i,7=1 p,v=1
where{]:)} (¢ = 1,2,...,Na; Na < dimHa) {|p)} (v = 1,2,...,Np; Ng < dim Hp)) is a set of orthonormal vectors in
Ha (Hp). The partial transpositionpafj‘g, of p o with respect to subsyter, is defined as

Na N

P = > a(i)ia® ()5 (5)

ij=1pr=1

A similar definition exists for the partial transpositionf z with respect to Bob’s subsystem. Notice thgt, = (%)
Although the partial transposition depends upon the chofctne basis in whictpsp is written, its eigenvalues are basis
independent. We say that a state has Positive Partial Toaitem (PPT) , WheneveﬁAB > 0, i.e. the eigenvalues gf,3}; are
non-negative. Otherwise, the state is said to be Non-pesitder Partial Transposition (NPT). Note here that trasision is
equivalent to time reversal.

Theorem 2[[7]

T
If a statep 5 is separable, thep’y, > 0andplh = (pﬂ%) > 0.

Proof:
Sincep, p is separable, it can be written as

pap = S0 piledleil @ | fi)(fil > 0. (6)

Now performing the partial transposition w.r.t. A, we have
K
A T
Pay = Y pille(e) ® |f:){fi]
=1
K
= Z pile;)e;| ® | fi){fil = 0. (7
i=1

Note that in the second line, we have used the facttiat (4*)". O

The partial transposition criterionfor detecting entanglement is simple: Given a bipartitéesi, s, find the eigenvalues of
any of its partial transpositions. A negative eigenvalumidiately implies that the state is entangled. Examplesabés for
which the partial transposition has negative eigenvalugsde the singlet state.



4

The partial transposition criterion allows to detect inraigthtforward manner all entangled states that are NP&stathis is
a huge class of states. However, it turns out that there BRi$tstates which are not separable, as pointed out in Rgf(4&8
also [14]). Moreover, the set of PPT entangled states is set af measure zerb [15]. Itis, therefore, important to Havier
independent criteria of entanglement detection which fisrio detect entangled PPT states. It is worth mentioniag BT
states which are entangled, form the only known exampldseftiound entangled states” (see Refsl [14, 16] for detdisje
also that both separable as well as PPT states form convex set

Theorem 2 is a necessary condition of separability in anitrarly dimension. However, for some special cases, thagbart
transposition criterion is both, a necessary and suffid@entlition for separability:
Theorem 3[g]
InC? ® C? or C? @ C3, a statep is separable if and only i#”» > 0.

B. Majorization

The partial transposition criterion, although powerfslniot able to detect entanglement in a finite volume of stdtes,
therefore, interesting to discuss other independentrizitd he majorization criterion, to be discussed in thissagbion, has
been recently shown to beot more powerful in detecting entanglement. We choose to dsithere, mainly because it has
independent roots. Moreover, it reveals a very interesgtiegnodynamical property of entanglement.

Before presenting the criterion, we must first give the deéiniof majorization|[17].

Def. 3Letz = (z1,22,...,24), andy = (y1,y2,...,y4) be two probablity distributions, arranged in decreasingler;, i.e.
x1 > a9 > ... >1xgandy; > yo > ... > yg. Then we define# majorized byy”, denoted asr < y, as

! !
Z r; < Z Yis (8)
i=1 i=1

wherel = 1,2,...d — 1, and equality holds wheh= d.
Theorem 4[9]
If a statep, s is separable, then

ApaB) < AMpa), and Xpa) < Apa), 9)

whereA(p4p) is the set of eigenvalues pfi 5, and\(p4) and A\(p) are the sets of eigenvalues of the corresponding reduced
density matrix of the states 5, and where all the sets are arranged in decreasing order.

The majorization criterion: Given a bipartite state, it itangled if Eq. [B) is violated. However, it was recentlywhdn
Ref. [18], that a state that is not detected by the positivegldransposition criterion, will not be detected by thajorization
criterion also. Nevertheless, the criterion has other irgoa implications. We will now discuss one such.

Let us reiterate an interesting fact about the singlet stdte global state is pure, while the local states are coralyletixed.
In particular, this implies that the von Neumann entropyfZhe global state is lower than either of the von Neumartrogies
of the local states. The von Neumann entropy can howeverdgetagjuantify disorder in a quantum state. This impliestiineate
exist bipartite quantum states for which the global disoode be more than either of the local disorders. This is alassical
fact as for two classical random variables, the Shannowpyli88] of the joint distribution cannot be smaller thanttb&either.
In Ref. [19], it was shown that a similar fact is true for segide states:

Theorem 5
If a statep g is separable,

S(pag) = S(pa), and S(pap) > S(pp). (10)

Although the von Neumann entropy is an important notion foargifying disorder, the theory of majorization is a more
stringent quantifiel [17]: For two probability distributiexz andy, < y if and only if x = Dy, whereD is a doubly stochastic
matrix[69]. Moreoverg < y implies thatH ({z;}) > H ({y;}). Quantum mechnics therefore allows the existence of states
which global disoder is greater than local disorder evehésense of majorization.

A density matrix that satisfies EQ1(9), automatically $etsEq. [ID). In this sense, Theorem 4 is a generalizatiohebilem
5.

V. NON-OPERATIONAL ENTANGLEMENT CRITERIA

In this section, we will discuss two further entanglemeitecia. We will show how the Hahn-Banach theorem can be used
to obtain “entanglement witnesses”. We will also introdtlee notion of positive maps, and present the entanglemgeation
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based on it. Both the criteria are “non-operational”, in $kease that they are not state-independent. Neverthdieggtovide
important insight into the structure of the set of entanglades. Moreover, the concept of entanglement witnesselsecased

to detect entanglement experimentally, by performing @nfgw local measurements, assuming some prior knowledge of the
density matrix|[20, 21].

1. Technical Preface

The following lemma and observation will be useful for lgpeirposes.
Lemma 1
tr(phoan) = tr(panoyp)-

Observation:
The space of linear operators actingr(denoted by3(H)) is itself a Hilbert space, with the (Euclidean) scalar pretd

(A|IB) =tr(ATB) A, B € B(H). (11)
This scalar product is equivalent to writilgand B row-wise as vectors, and scalar-multiplying them:

(dim H)?
tr(ATB) =Y A;By= > ajbk. (12)
ij k=1

A. Entanglement Witnesses
1. Entanglement Witness from the Hahn-Banach theorem

Central to the concept of entanglement witnesses, is theBamach theorem, which we will present here limited to our
situation and without proof (see e..[22] for a proof of therengeneral theorem):
Theorem 6
Let .S be a convex compact set in a finite dimensional Banach spa&te.lde a point in the space with¢ S. Then there exists
a hyperplan§z(] that separates from S.

FIG. 1: Schematic picture of the Hahn-Banach theorem. Thi(e) unit vector orthonormal to the hyperplane can be tsekbfineright
andleft in respect to the hyperplane by using the signum of the spatatuct.

The statement of the theorem is illustrated in figdre 1. Theréignotivates the introduction of a new coordinate system
located within the hyperplane (supplemented by an orthabeectori? which is chosen such that it points away frah
Using this coordinate system, every statean be characterized by its distance from the plane, by gtiogep onto the chosen
orthonormal vector and using the trace as scalar prodactiilV p). This measure is either positive, zero, or negative. We now
suppose thaf is the convex compact set of all separable states. Accotdiogr choice of basis in figuid 1, every separable
state has a positive distance while there are some entasiglied with a negative distance. More formally this can baggd
as:

Def. 4 A hermitian operator (an observabl#y is called an entanglement witness (EW) if and only if

dp suchthat #Wp) <0, while Vo e S, tr(Wo) > 0. (13)



EW1
PPT P,

FIG. 2: Schematic view of the Hilbert-space with two statesand p> and two witnesse& W1 and EW?2. EW1 is a decomposable EW,
and it detects only NPT states likg. E1W2 is an nd-EW, and it detects also some PPT statesplikeNote that neither witness detectt
entangled states.

Def. 5An EW is decomposable if and only if there exists operayr§ with

W=P+Q™,  PQ>0 (14)
Lemma 2
Decomposable EW cannot detect PPT entangled states.
Proof:

Leto be a PPT entangled state aiitlbe a decomposable EW. Then
tr(We) = tr(Po) + tr(QT46) = tr(P¢) + tr(Qs) > 0. (15)

Here we used Lemmall.
Def. 6 An EW is called non-decomposable entanglement withesg\idif and only if there exists at least one PPT entangled
state which is detected by the witness.
Using these definitions, we can restate the consequendes bishn-Banach theorem in several ways:
Theorem 7[8,123,124] 25]

1. pis entangled if and only if} a witnessiV, such thatr(pW) < 0.
2. pis a PPT entangled state if and onlydfa nd-EW,W, such thatr(pWW) < 0.
3. o is separable if and only ¥ EW,tr(Wo) > 0.

From a theoretical point of view, the theorem is quite powkrflowever, it does not give any insight of how to constructd
given statep, the appropriate witnes operator.

2. Examples

For a decomposable witness

W' =P+ QT4, (16)

tr(W'o) >0, 17)

for all separable states

Proof:

If o is separable, then it can be written as a convex sum of pragetors. So if Eq.[(A7) holds for any product vecfarf),
any separable state will also satisfy the same.

tr(W'le, f)(e, fI) = (e, fIW'le, f)
= (e, fIPle, f)+ (. FlQ™ e, [), (18)

>0 >0




because

(e, f1Q™ e, f) = r(Q"le, f)(e, fI) = r(Qle”, f){e”, f]) > 0. (19)

Here we used Lemma 1, af Q > 0. O This argumentation shows thidf = Q74 is a suitable witness also.
Let us consider the simplest caseldf® C2. We can use

1
Ty = —(|00) + ]11)), 20
[¢7) ﬁ(l )+ 1)) (20)
to write the density matrix
1
5010
_ Ta _ 2

@=looo0o | TeM@'=1g14 (1)

1001 0001

One can quickly verify that indedd” = Q7 fulfills the witness requirements. Using

[97) = 5 (102) = J10). (22)
we can rewrite the witness:
W= QT = o (12 ) (). (23)
This witness now detects~):
(W [o) () = —5. (24)

B. Positive maps
1. Introduction and definitions

So far we have only considered states belonging to a Hillpaxtes{, and operators acting on the Hilbert space. However,
the space of operato{ ) has also a Hilbert space structure. We now look at transfoomsof operators, the so-called maps
which can be regarded asiperoperators As we will see, this will lead us to an important charactatian of entangled and
separable states. We start by defining linear maps:

Def. 7 A linear, self-adjoint map is a transformation

e:B(Hp) — B(Hc), (25)
which
e islinear, i.e.
€(a01 + 02) = ae(Oy) + pe(O2) YO1, Oy € B(Hp), (26)
whereq, 8 are complex numbers,
e and maps hermitian operators onto hermitian operators, i.e

e(Oh) = (e(O)" VO € B(Hp). (27)

For brevity, we will only write “linear map”, instead of “lar self adjoint map”. The following definitions help to fuer
characterize linear maps.
Def. 8A linear mape is called trace preserving if

tr(e(0)) = tr(0) YO € B(Hp). (28)



Def. 9Positive map:
A linear, self-adjoint map is called positive if

Vo€ B(Hp), p>0 = ¢(p)>0. (29)

Positive maps have, therefore, the property of mappingigesiperators onto positive operators. It turns out thatdaysidering
maps that are a tensor product of a positive operator actirgubsystem A, and the identity acting on subsystem B, one can
learn about the properties of the composite system.

Def. 10Completely positive map:

A positive linear map is completely positive if for any tensor extension of thenfor

6’ = IA ® 6, (30)
where
¢ :B(Ha®@Hp) — B(Ha®Hc), (31)

¢’ is positive. HereZ 4 is the identity map o (7 4).
Example: Hamiltonian evolution of a quantum system.Let O € B(H ) andU an unitary matrix and let us defireby

€:B(Ha) — B(Ha)
e(0) = vout. (32)

As an example for this map, consider the time-evolution oéasity matrix. It can be written ag(t) = U(t)p(0)UT(¢), i.e.
in the form given above. Clearly this map is linear, selfeénlj, positive and trace-preserving. It is also complefsdgitive,
because fod < w € B(HA ® Ha),

(Za @ e)w= Iy @ U)w(ly @ U) = UwUT, (33)

wherel is unitary. But ther{y)|UwUT|+) > 0, if and only if (1|w|1) > 0 (since positivity is not changed by unitary evolution).
Example: Transposition. An example of a positive but not completely positive map estttanspositiori” defined as:

TB(HB) — B(HB)
T(p) = o' (34)

Of course this map is positive, but it is not completely pesjtbecause
(Za @ T)w = w’®, (35)

and we know that there exist states for whick 0, butp™ % 0.
Def. 11A positive map is called decomposable if and only if it can hittem as

€ =€+ eT (36)

whereeq, €2 are completely positive maps afitis the operation of transposition.

2. Positive maps and entangled states

Partial transposition can be regarded as a particular dasmap that is positive but not completely positive. We hdwesaly
seen that this particular positive but not completely pasitnap gives us a way to discriminate entangled states fegrarable
states. The theory of positive maps provides with stongeditions for separability, as shown in Refl [8].

Theorem 8
A statep € B(H4 ® Hp) is separable if and only if for all positive maps

€e:B(Hp) — B(Heo), (37)
we have

(Za®¢€)p > 0. (38)



Proof:
[=]As pis separable, we can write it as

P
p =" prler){exl ® | fx) (i, (39)
k=1
for someP > 0. On this state(Z4 ® €) acts as
P
(Za@e)p =Y prler)(ex| @ e (| fr)(fx]) = 0, (40)
k=1

where the last follows becauséf){fx| > 0, ande is positive.

[«<] The proofin this direction is not as easy as the only if dicectWe shall prove it at the end of this section.
Theorem 8 can also be recasted into the following form:

Theorem 8[g]

A statep € B(H4 ® Hp) is entangled if and only if there exists a positive neaf3(Hp) — B(H¢), such that

(Za®e)p 2 0. (41)

Note that Eq. [[4l1) can never hold for mapsthat are completely positive, and for non-positive mapmay hold even for
separable states. Hence, any positive but not completsiyiymap can be used to detect entanglement.

3. Jamiotkowski Isomorphism

In order to complete the proof of Theorem 8, we introduce thistJamiotkowski isomorphism_[26] between operators and
maps. Given an operatd? € B(Hp ® H¢ ), and an orthonormal product bagis!), we define a map by

e:B(Hg) — B(He)

cp) = Y setkblElkb)se |h)es(kilplk) e e, (42)
A

or in short form,
e(p) = trp(Ep""). (43)

This shows how to construct the mafrom a given operatoE. To construct an operator from a given map we use the state

L
W) = —= g iy pr1i) B (44)

(whereM = dim H ) to get
M (Ig @) (J[¢T)(¢T]) = E. (45)

This isomorphism between maps and operators results irotloe/fng properties:
Theorem 10[g, 123,124] 25, 26]

1. E > 0if and only ife is a completely positive map.
2. F is an entanglement witness if and only i a positive map.
3. F'is a decomposable entanglement witness if and onlisilecomposable.

4. F is a non-decomposable entanglement witness if and oalg fion-decomposable and positive.
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To indicate further how this equivalence between maps ardogs works, we develop here a proof for the “only if” diriect
of the second statement. L&t € B(Hp ® Hc) be an entanglement witness, then f|Ele, f) > 0. By the Jamiotkowski
isomorphism, the corresponding map is defined(as = trz(Ep’#) wherep € B(H ). We have to show that

c{dle(p)ld)c = clolr(Ep™)|o)c 20 VIg)c € He. (46)
Sincep acts on Bob’s space, using the spectral decompositipnot= >, A;|1;) (v, leads to
PP = N7, (47)

where all\; > 0. Then

c(dle(p)|d)c c<¢|ZtrB<EAi|w;‘>BB<w:|>|¢>c

= Y Nio(¥f, B[], d) e > 0. (48)

O

We can now proof the= direction of Theorem 8 or, equivalently, tee direction of Theorem 9. We thus have to show that
if pap is entangled, there exists a positive map B(H4) — B(H¢), such thate ® Zp) p is not positive definite. If is
entangled, then there exists an entanglement witfiégs such that

tr(Wappag) <0, and
tl’(WABO'AB) >0, (49)

for all separabler 4. W4 is an entanglement witness (which deteets;) if and only if W1, (note the complete transposi-
tion!) is also an entanglement witness (which detgéts). We define a map by

e:B(Ha) — B(Hc), (50)
elp) = ra(Wicpls), (51)

wheredim He = dimHp = M. Then
(e®Ip)(pap) =tra(Wicphh) = tra(Wilpas) = pcs, (52)

where we have used Lemma 1, and that 74 o T. To complete the proof, one has to show thai # 0, which can be done
by showing that-z (v " |pclv™)cp < 0, wherelyT)ep = ﬁ > lit)e s, with {]7)} being an orthonormal basisl

VI. BELL INEQUALITIES

The first criterion used to detect entanglement was Bellua&ties, which we briefly discuss in this section. As we kbeg,

Bell inequalities are essentially a special type of entamgint witness. An additional property of Bell inequalitieshat any
entangled state detected by them is nonclassical in a platiway: It violates “local realism”.

The assumptions of “locality” and “realism” were alreadggent in the famous argument of Einstein, Podolsky, andrRose
[24], that questions the completeness of quantum mechaBiek [28] made these assumptions more precise, and more im-
portantly, showed that the assumptions are actuafijablein experiments. He derived an inequality that must be satidfiy
any physical theory of nature, that is “local” as well as figti&”, the precise meanings of which will be describeddvel The
inequality is actually a constraint on a linear functionesults of certain experiments. He then went on to show tlesétaxist
states in quantum theory that violate this inequality inexkpents. Modulo some so-called loopholes (see e.g. [#%se
inequalities have been shown to be actually violated in expnts (see e.gl [30] and references therein). In thisseave
will first derive a Bell inequality[71] and then show how tligequality is violated by the singlet state.

Consider a two spin-1/2 particle state where the two pagiare far apart. Let the particles be calledndB. Let projection
valued measurements in the directiansndb be done omd and B respectively. The outcomes of the measurements performed
on the particlesA and B in the directions: andb, are respectivelyl, and B,. The measurement result, (B;), whose values
can be+1, may depend on the directian(b) and some other uncontrolled parametexvhich may depend on anything, that
is, may depend upon system or measuring device or both. fiinerwe assume that,, (By) has a definite pre-measurement
value A,(\) (By(\)). Measurement merely uncovers this value. This isamumption of reality) is usually called a hidden
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variable and this assumption is also termed as the hiddeablarassumption. Moreover, the measurement result at A (B)
does not depend on what measurements are performed at Bi{&)is[ for exampled, (A) does not depend updn This is

the assumption of localityalso called the Einstein’s locality assumption. The patem\ is assumed to have a probability
distribution, say()). Thereforep(\) satisfies the following:

[oar=1. s =0 (53)

The correlation function of the two spin-1/2 particle statea measurementin a fixed directiofior particle A andb for particle
B, is then given by (provided the hidden variables exist)

B(@h) = [ ABsN)p(N)ax (54)
Here

A,(AN) ==£1, and By(\) = £1, (55)

because the measurement values were assumedtid.be
Let us now suppose that the observers at the two partitl@sd B can choose their measurements from two observables
a andb, b’ respectively, and the corresponding outcomes&yred , andBy, B, respectively. Then
E(a,b) + E(a,b) + E(a’,b) — E(a ,b)

= / A BN + By (V) + Ay (N(By(3) — By (A)]p(A)d. (56)
Now By () + B, (A) andBy(A) — By (A) can only bet2 and0, or 0 and+2 respectively. Consequently,
—2< E(a,b)+ E(a,b)+ E(d,b) — E(d,b) < 2. (57)

This is the well-known CHSH inequality. Note here that inaibing the above inequality, we have never used quantum me-
chanics. We have only assumed Einstein’s locality primcgoid an underlying hidden variable model. Consequentllba B
inequality is a constraint that any physical theory thatdthblocal and realistic, has to satisfy. Below, we will shthat this
inequality can be violated by a quantum state. Hence quantechanics is incompatible with an underlying local realist
model.

A. Detection of entanglement by Bell inequality

Let us now show how the singlet state can be detected by arlgejuility. This additionally will indicate that quantunetiry
is incompatible with local realism. For the singlet states guantum mechanical prediction of the correlation fuarcH(a, b)
is given by

E(a,b) = (¢~ |oq - op|t™) = — cos(ba), (58)

whereo, = ¢ - @ and similarly foro,. & = (04, 0y, 0.), Whereo,, o, ando, are the Pauli spin matrices. A, is the angle
between the two measurement directiarendb.
So for the singlet state, one has

Bensny = Ela,b)+ E(a,b) + E(a ,b) — E(a’,b)
= — o84 —cosf, —cosb , +cosl,, . (59)

The maximum value of this function is attained for the dii@usa, b, o', b on a plane, as given in Fifil 3, and in that case
|Bousn| =2V2. (60)

This clearly violates the inequality in E{57). But EQ.J(®¥as a constraint for any physical theory which has an ugiteyl
local hidden variable model. As the singlet state, a stadgvatl by the quantum mechanical description of nature atésl the
constraint[[5l7), guantum mechanics cannot have an undgiliycal hidden variable model. In other words, quantum rarids
is not local realistic. This is the statement of the celedt&ell theorem.
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FIG. 3: Schematic diagram showing the directiorupb, a' b for obtaining maximal violation of Bell inequality by thengjlet state.

Moreover, it is easy to convince oneself that any separahte goes have a local realistic description, so that suthta s
cannot violate a Bell inequality. Consequently, the violaof Bell inequality by the singlet state indicates that Hinglet state
is an entangled state. Further, the operator (cf. Eq$. (x8]Z9))

Bonsa =040y + 040y + 0, -0y — 0y - Oy (61)

can, by suitable scaling and change of origin, be considaseah entanglement witness for the singlet stateafdt ', b’
chosen as in figuild 3 (c1._[33]).

VII. CLASSIFICATION OF BIPARTITE STATES WITH RESPECT TO QUA NTUM DENSE CODING

Up to now, we have been interested in splitting the set of iglhutite quantum states into separable and entangledsstate
However, one of the main motivations behind the study of mgitd states is that some of them can be used to performrtertai
tasks, which are not possible if one uses states withouhglament. It is, therefore, important to find out which egied
states are useful for a given task. We discuss here the plartexample of quantum dense coding [2].

Suppose that Alice wants to send two bits of classical infdirom to Bob. Then a general result known as the Holevo bound
(to be discussed below), shows that Alice must send two gjb&. 2 two-dimensional quantum systems) to Bob, if only a
noiseless quantum channel is available. However, if anithily Alice and Bob have previously shared entanglembat Alice
may have to send less than two qubits to Bob. It was shown bp@&eand Wiesne([2], that by using a previously shared sing|
(between Alice and Bob), Alice will be able to send two bit8ib, by sending just a single qubit.

The protocol of dense coding [2] works as follows. Assume &lige and Bob share a singlet state

L
V2

The crucial observation is that this entangled two-qulsitestan be transformed into four orthogonal states of thecmmt
Hilbert space by performing unitary operations on just glgimubit. For instance, Alice can apply a rotation (the Pajpéra-
tions) or do nothing to her part of the singlet, while Bob doething, to obtain the three triplets (or the singlet):

[$7) = == (|01) — [10)). (62)

o, @I[p™)=~l¢7), oy ®@I[Y7) =i|pT),
o @IY7) =),  IIl™)=[7), (63)
where
1
£y
=) = \/5(|01>i|10>>,
+y _ L
lo=™) = \/5(|00>i|11>>, (64)

and [ is the qubit identity operator. Suppose that the classidfalrination that Alice wants to send to Bobiiswherei =
0,1,2,3. Alice and Bob previously agree on the following correspamtk between the operations applied at Alice’s end and
the informationi that she wants to send:

oxy = 1=0, oy =>1=1,
o, =>1=2, I=i=3. (65)

Depending on the classical information she wishes to selitk Applies the appropriate rotation on her part of theesthainglet,
according to the above correspondence. Afterwards, Aoels her part of the shared state to Bob, via the noiselesdguqna
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channel. Bob now has in his possession, the entire two-gtdi, which is in any of the four Bell statég)*), |¢*)}. Since
these states are mutually orthogonal, he will be able téndigish between them and hence find out the classical infioma
sent by Alice.

To consider a more realistic scenario, usually two aventesaken. One approach is to considerasyquantum channel,
while the additional resource is an arbitrary amount of etidripartitepure state entanglement (see e.g.1[34, 35], see also
[3€,137]). The other approach is to considena@iselesgquantum channel, while the assistance is by a given bipaniited
entangled state (see e.q.![36, 37,138, 30| 40, 41]).

Here, we consider the second approach, and derive the tapadense coding in this scenario, for a given state, wheee t
the capacity is defined as the number of classical bits thrabeaaccessed by the receivers, per usage of the noiselesswetha
This will lead to a classification of bipartite states acdogdto their degree of ability to assist in dense coding. l& thse
where a noisy channel and an arbitrary amount of shared puaa@ement is considered, the capacity refers to the dtann
(see e.g.l[34, 35]). However, in our case when a noiselesmehand a given shared (possibly mixed) state is considéred
capacity refers to the state. Note that the mixed shared statur case can be thought of as an output of a noisy channel. A
crucial element in finding the capacity of dense coding isHb&evo boundi[42], which is a universal upper bound on ctassi
information that can be decoded from a quantum ensemblewBek discuss the bound, and subsequently derive the cgpacit
of dense coding.

A. The Holevo bound

The Holevo bound is an upper bound on the amount of classiftaihnation that can be accessed from a quantum ensemble in
which the information is encoded. Suppose therefore thigeAH) obtains the classical messagat occurs with probability
pi, and she wants to send it to BaB); Alice encodes this informatiohin a quantum statg;, and sends it to Bob. Bob receives
the ensemblép;, p; }, and wants to obtain as much information as possible abdat do so, he performs a measurement, that
gives the resulin, with probability ¢,,. Let the corresponding post-measurement ensemb{@#g, p;|» }. The information
gathered can be quantified by the mutual information betwleemessage indexand the measurement outcorne [43]:

I(Z : m) {pl Z qmH {pz\m} (66)

Note that the mutual information can be seen as the differétween the initial disorder and the (average) final desord
Bob will be interested to obtain the maximal information,igrhis maximum off (i : m) for all measurement strategies. This
guantity is called the accessible information:

Tice = max I(i:m), (67)

where the maximization is over all measurement strategies.
The maximization involved in the definition of accessibl®mmation is usually hard to compute, and hence the impogan
of boundsl[42, 44]. In particular, in Ret._[42], a universpper bound, the Holevo bound, @.. is given:

Lace({pi, pi}) < x({pi, pi}) = sz pi)- (68)

See alsol[45, 46, 47]. Hefe= ), p;p; is the average ensemble state, &tid) = —tr(¢ log, <) is the von Neumann entropy of
Q.

The Holevo bound is asymptotically achievable in the selnaeit the sender Alice is able to wait long enough and send lon
strings of the input quantum statgs then there exists a particular encoding and a decodingreltgat asymptotically attains
the bound. Moreover, the encoding consists in collectimtpgelong and “typical” strings of the input states, anddiag them
all at oncel|[48, 49].

B. Capacity of quantum dense coding

Suppose that Alice and Bob share a quantum gtate Alice performs the unitary operatidi; with probability p;, on her
part of the state 4 5. The classical information that she wants to send to Bab$ibsequent to her unitary rotation, she sends
her part of the state*Z to Bob. Bob then has the ensembje, p; }, where

pi =U; ®IPABU1-T ® 1.
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The information that Bob is able to gatherlis..({pi, p;}). This quantity is bounded above ky{p;, p;}), and is asymp-
totically achievable. The “one-capacitg’(!) of dense coding for the stage, 5 is the Holevo bound for the best encoding by
Alice:

cM(p) = max x({pi, pi}) = max (S(ﬁ) — ZpiS(pi)) : (69)

The superscripfl) reflects the fact that Alice is using the shared state onceitea during the asymptotic process. She is not
using entangled unitaries on more than one copy of her patteecshared states,s. As we will see below, encoding with
entangled unitaries does not help her to send more infoomé&ti Bob.

In performing the maximization in Eq_{b9), first note that 8econd term in the right hand side (rhs}iS(p), for all choices
of the unitaries and probabilities. Secondly, we have

S(p) < 5(pa) + S(Pp) <logyda + 5(pp),

whered 4 is the dimension of Alice’s part of the Hilbert spacewfs, andp, = trpp, pg = trap. Moreover,S(pg) = S(pn),
as nothing was done at Bob’s end during the encoding proee@arany case, unitary operations does not change therspect
and hence the entropy, of a state.) Therefore, we have

max S(p) < logy da + S(pp)-
pi,Ui

But the bound is reached by any complete set of orthogontnyroperatorg W, }, to be chosen with equal probabilities, which
satisfy thetrace ruledi2 > WJTEW]- = tr[=]1, for any operatoE. Therefore, we have
A

CW(p) =logyda + S(ps) — S(p).

The optimization procedure above sketched essentialigvisithat in Ref.[[41]. Several other lines of argument argsjide
for the maximization. One is given in Ref._[39] (see alsa }50hnother way to proceed is to guess where the maximum is
reached (maybe from examples or by taking the most symnmagition), and then perturb the guessed result. If the firstord
perturbations vanish, the guessed result is correct, agth®leumann entropy is a concave function and the maxinoizési
carried out over a continuous parameter space.

Without using the additional resource of entangled statkse will be able to reach a capacity of jusig, d 4 bits. Therefore,
entanglement in a staje'? is useful for dense coding §(p?) — S(p) > 0. Such states will be called dense-codeable (DC)
states. Such states exist, an example being the singlet stat

Note here that if Alice is able to use entangled unitariesmandopies of the shared staigethe capacity is not enhanced (see
Ref. |[51]). Therefore, the one-capacity is really the astgtipcapacity, in this case. Note however that this adidjtie known
only in the case of encoding by unitary operations. A moreegarencoding may still have additivity problems (see €3@])]
Here, we have considered unitary encoding only. This cabetls mathematically more accessible, and experimentadisem
viable.

A bipartite statep? is useful for dense coding if and only #(p”) — S(p) > 0. It can be shown that this relation cannot
hold for PPT entangled states|[36] (see also [50]). TheeedddC state is always NPT. However, the converse is not traereT
exist states which are NPT, but they are not useful for deoding. Examples of such states can be obtained by the coimgjde
the Werner statg, = p|y~) (¥~ | + 521 ® I [d].

The discussions above leads to the following classificadfdripartite quantum states:

1. Separable states: These states are of course not uselehfge coding. They can be prepared by LOCC.

2. PPT entangled states: These states, despite being katacannot be used for dense coding. Moreover, their efgang
ment cannot be detected by the partial transposition @iter

3. NPT non-DC states: These states are entangled, and thiaingtement can be detected by the partial transposition
criterion. However, they are not useful for dense coding.

4. DC states: These entangled states can be used for denisg.cod

The above classification is illustrated in figliie 4. A genisadion of this classification has been considered in REff|31].



15

FIG. 4: Classification of bipartite quantum states accardintheir usefulness in dense coding. The convex innernegsbm, marked as S,
consists of separable states. The shell surrounding ikedaas PPT, is the set of PPT entangled states. The nextrelagked as n-DC, is the
set of all states that are NPT, but not useful for dense codihg outermost shell is that of dense-codeable states.

VIIl. FURTHER READING: MULTIPARTITE STATES

The discussion about detection of bipartite entanglemesgegmted above is of course quite far from complete. Fohéart
reading, we have presented a small sample of referencesidetbe the text above. We prefer to conclude this chaptér avit
few remarks on multipartite states.

The case of detection of entanglement of pure states is agajle. One quickly realizes that a multipartite pure state
entangled if and only if it is entangled in at least one bipadplitting. So, for example, the std@HZ) = \/ig(|000> +|111))
[52] is entangled, because it is entangled in the A:BC bijgesplitting (as also in all others).

The case of mixed states is however quite formidable. Iniqudatr, the results obtained in the bipartite mixed statgeca
cannot be applied to the multiparty scenario. One way totigas to notice the existence of states which are sepanalaieyi
bipartite splitting, while the entire state is entanglech @&ample of such a state is given in Ref.|[53]. For furtheultssabout
entanglement criteria, detection, and classification dfipartite states, see e.d. [21] %4} b5, 56,157 )58| 59, 6065,163) 64],
and references therein.

IX. PROBLEMS

Problem 1 Show that the singlet state has nonpositive partial tragispn.

Problem 2 Consider the Werner stapéy~) ()~ | + (1 — p)I/4in 2 ® 2, where0 < p < 1 [4]. Find the values of the mixing
parametep, for which entanglement in the Werner state can be detegt#uetpartial transposition criterion.

Problem 3 Show that inC?> ® C?, the partial transposition of a density matrix can have atroae negative eigenvalue.
Problem 4 Given two random variableX¥ andY’, show that the Shannon entropy of the joint distributionnzdie smaller than
that of either.

Problem 5 Prove Theorem 5.

Problem 6 Prove Lemma 1.

Problem 7 Prove Theorem 10.

Problem 8 Show that each of the shells depicted in figllre 4 are nonerapty,of nonzero measure. Show also that all the
boundaries are convex.
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onHa (Hg)-

[67] The von Neumann entropy of a statés S(p) = —trplog, p.

[68] The Shannon entropy of a random variable taking up valuesX;, with probabilitiesp;, is given by H(X) = H({p:}) =
— >, pilog, pi.

[69] A matrix D = (D;;) is said to be doubly stochastic,i¥;; > 0, and)_; Di; = >, Di; = 1.

[70] A hyperplane is a linear subspace with dimension onetlesn the dimension of the space itself.

[71] We do not derive here the original Bell inequality, whiBell derived in 19641[28]. Instead, we derive the strongemf of the Bell
inequality which Clauser, Horne, Shimony, and Holt (CHSH)ived in 1969I[31]. A similar derivation was also given byllBemself
in 1971 [32].
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