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Motivation

This lecture intends to describe the theory from the foundat[1] up to the cur-
rent research front (see e.g. reviews from [2—4], and rgeeblications from [5]
and [6]).

Its main emphasis is on mathematical describtion of thertheather than on
possible applications, see [7] for those. Although theritita is to prove all
theorems, some previuos mathematical knowledge (as fouedyi [8], [9], [10]

and [11]) is expected.

Quantum information theory is strongly relatedetatanglementtheory:

1. Quantum “paradoxes” (EPRCBRODINGERCcat, BELL inequalities).

2. Applications in Quantum Information Processing (QIB)gportation, cryp-
tography (i.e. for military communications), data comgies and quantum
computing).

3. Basic and fundamental aspects of quantum mechanicst(gqnasorrela-
tions).

4. Connections to important challenges of modern matheséte. theory of
positive maps on Calgebras).



1 Introduction

We consider two or sometimes three (quantum) systems whelabel A, B

and C. They will also be given names of persons: Alice, Bob@hdrlie. Each
system has a finite HBERT space and we arrange the systems such, that the entire
HILBERT space can be written as

H = TNR B dims#a =M < N = dim 7. (1.1)
We adopt the notation
M
{le)y e An  |Yn) :_Zlaa|a> (1.2)
1=
N
{If)y e |uB)= ) bjlfj). (1.3)
=1

The basis used is arbitrary but fixed. All basis changes wikxplicitly noted.
Thus any state can be written as

W) = cjle)®]f) = cijle fj) € HA® A (1.4)
] ]

where we will omit the direct product sign in future equations. The dimension
of the combined space is

dims#Z =dimJZa-dimsg =M - N. (1.5)

If Alice and Bob have a system with only two possible eigetestf)) and|1)
(each one is said to have a qubit) we can explicitly write dstates in the com-
bined HLBERT space in the following way:

) = -
V2 V2
Alternatively we can also write the state vectors as veatbesfour dimensional
space:

oa=(g) ma=(9) @)
|O>B:($)B |1>B=<2>B (1.8)

[10)[1) = [1)]0)] = —= (|01) - [10)) (1.6)

1 0
) = 00 = | =2 4 (L.9)
0 0



The translation is done as follows. Write down Alice vectat teserveN com-
ponents for each of thed components of Alice. Then write Bobs vector into each
component of this created vector multiplying Bobs compdserith the with the
corresponding component from Alice. So in the above caséyigr first write
down|0)g multiplied by 1, then beloy0)g multiplied by 0.

Instead of describing each state by its wave function it isillg more convenient
to use the density matrix (usually labelpdlinstead, since this concept is more
general and allows to describe mixed state also.

Each operato® can be written as

O= %O wle) @[ fj) (e @ (il (1.10)

where both Alice{|e) } and Bob{| fj) } have an orthonormal basis:
(ailej) = 4 (fulfi) = & (1.11)

This way the combined basis i#f” = JZA ® g is also orthogonal and normal. If
we denote each pair of indices as one inlgk € {1,...,NM} then we can write
the operatoO as

0= gotflwkxwk/l. (1.12)
K,

Def. 1.1 1. pis an operator on/’ = #a® g

2. pishermitian, i.ep = p'. < (¢| (p|w)) = ((¢|p) |@). Written component
wise this meanpyw = py,-
Using the spectral theorem we can write

PI%PKKW@(‘I—M ZZA||¢|><¢|\ (1.13)

whereA, are eigenvalues gb and|¢, ) its eigenvectors.

3. p>0<V|Y): (Y|p|Y) > 0. This is equivalent to the statement that all
eigenvalueg, > 0.

4. Tr(p)=S1A=1

The last two definitions allow to interpret the density maini terms of probabil-
ities.

Def. 1.2 The Kernel op is defined aK{p} = {|@) € 7 : p|y) = 0}.1

INote that this is a linear equation.



We havep = p' = K{p} is a subspace which is spanned by the eigenvectors with
zero eigenvalue.

Def. 1.3 Range op : R{p} = {|y) € 7 : 3|) : p|6) = |w)}.

Sincep = p' R{p} is a linear subspace o¥ spanned by the eigenvectorsmf
with A > 0, i.e. if p|@) = |1) andp|@) = |Yr) then

p(ale) +Ble) = alyw) + Blyy). (1.14)

Further sincep = p' we have

R{p} L K{p} (1.15)
Proof:
Take|yn) € R{p} and|yp) € K{p}. Thendy, p|p) = [¢1) and
(Yolyn) = (Welpl@) = (p"un|@) = (pun|@) = 0-|@) = 0. (1.16)

We call {p} :=dimR{p} the rank ofp. Similar we have kp} := dimK{p}.
Since egn. (1.15) we havdp}+k{p} = dimJs#. We can also proof this by
explicit construction:

If we call the eigenvectors ¢f |@) with | =1,....r{p} with eigenvalueg, >0
we can writep as

r{p}/\ . r{p} 117
p—é @) (@l an |w>—|;a4\<a>. (1.17)

where|y) is an arbitrary state in fp} where at least ong # 0. Now we can
explicitly construct the statgy) which will be projected ony):

r{p}a4
X)=2 54 = px) =) (1.18)
=1

Without proof we make the general remark thak i AT we have RA} | K{AT}
and R{AT} | K{A}. We will not need this property.
For this lecture we adapt the notation

dims#
O= ; Ok [K) (K| (1.19)
k, !
dims#
o = Z Ow|K)(kl  and thus (1.20)
k’ !
(O") ¢ = Owk- (1.21)



Def. 1.4 Partial transpose:
We again have @ which acts onyza ® 7. If we write

=3 phalida®)ekla®(lle  then (1.22)
i]
pTA= > pllka®|i)elila®(lle  and (1.23)
i]
(PTA)IJM = ijn- (1.24)

is the partial transposewith respect to Alice.

As an example we choos#a = C? and.#g = CN thenp is a N x 2N matrix
which can be written as

p = (|0)a(0]) A+ (|0)a(1]) B+ (|1)a(0)) BT +(|1)a(l)C  (1.25)

where theN x N matricesA = AT, B andC = C' act in Bobs space. Now if we
explicitly write downp we have

A B AT B
pz(BT C)zp* pTz(BT CT) (1.26)

. (A B 1. ( AT BT
(p™) e =p". (1.28)

Partial transposition is a physically strange operatioran$position can be un-
derstood as time inversion, so partial transposition méaatse.g. Alice inverses
time while Bob does not.

If both Alice and Bob make a local unitary transformationrhigs transformation
remains unitary even if one of them makes a partial transpose

U=Ua®Ug (1.29)
P = Up®UgpU] 0 U] (1.30)
(" ™A = Uz @Ugp AUL @ UL (1.31)

Furthermorep ™A > 0 iff (p”e‘“’)TA > 0. Also the trace of a partial transposed state
remains invariant under local changes of basis.

Notice again that the basis remains fixed albeit arbitrary.



As an example consider@® @ CN system:

Ao Ao1 Aoz Ay A A
p=| A Au A ple=| An AL AL (1.32)
2 AJlrz A2 Aéz Aiz Azz

where eachyj is anN x N matrix andAjj = AIT



2 Entanglement and Separability

2.1 Entanglement of Pure States

Def. 2.1 Entanglement of Pure States
A pure state, i.e. a projectdy) (| on a vectorny € 4 ® 4, is entangled iff it
is not separable, i.€y) cannot be written as a product vectap) = |e, f).

Theorem 2.1 SCHMIDT decomposition
Every|y) € A ® g can be represented in an appropriately chosen basis as

M
W) =75 aile, fi) (2.1)
i=1

where theg) (|fi)) form a part of an orthonormal basis iwa (7#g) and a > 0,
sMiaf =1

In order to proof this theorem we need the following

Theorem 2.2 Polar (or Singular Value) Decomposition
Every Mx N matrix A can be represented as

A=UAVT. (2.2)
where U and V are unitary matrices ang /& a diagonal, real positive matrix.

Proof:
B = AA' is a positive, hermitiaM x M matrix. If B is not singular we can invert
it to construct

1

U is an unitary matrix because

1 1 1 _1
Uuf= —AA' — = —B——1. 2.4
B VBT VB VB 4
We can do the same B is singular but in this case we only operate on the range.
SinceB is normal BB' = AATAAT = BB) there exists (by the spectral theorem)
a basis wher® has only entries in the diagonds:= VBV T with unitaryV and
therefore also

VB=V/ByV'. (2.5)



UsingA = v/BU we haveV /BgV U = A which leads to the desired result when
we renam&/ — U, VU — VT and\/By — Aq.

Using this we are now able to give a proof for thet811DT decomposition:
Every|y) € 74 ® g can be written as

MM
W)=Y Ayli.i)
i,]=1

MM MM

- k; | leuikakddvjﬂwln- (2.6)

where we used the polar decompositioraf the the second line. SinggUi|i) =
&) andy Vi j) = la) we get

M
W)= ade fi). (2.7)
&

|ex) and|fx) form an orthonormal basis ia, -#/g, respectively, becaudé and
V are unitary.

To give an example we take#a ® 73 C C?® C?. In this case the &HMIDT
decomposition can contain up to two terms, i.e. up to tweel®IDT coefficients
a1, a. Itis obvious thaty) is a product vector ifeg = 0 andaz = 1 or vice versa.
A state with £HMIDT coefficientsa; = a, = % is a maximally entangled state.

Denoting{|ex) } = {| fk)} = {|0), |1) } the possible maximally entangled states can
be written as the so calleddBL states
1
™) = 750D £[10) (2.8)

1

=) = —=(]00) £ |11)). 2.9
9™) fz(l ) +11)) (2.9)
Observe that the signs jig~) and|@~) can be absorbed in the definition |aD)
and|11) to achieves; > 0 as in the definition.

Def. 2.2 SCHMIDT rank

The SCHMIDT rank is the number of non-vanishingia the SCHMIDT decompo-

sition.

A state is a pure product state iff itsc8MIDT rank is one. Notice that the
SCHMIDT rank is unique since there cannot be twoHMIDT decompositions
with different numbers of non-vanishing coefficiehts

3Suppose there are two decompositions| {ioy,

|w>=_;a4|afi) and |w>:_;a|éﬁ>, (2.10)

10



Def. 2.3 Entanglement for pure states

E()(y]) =—Tr(pslnps) (2.11)

is a suitable measure for the entanglement of pure states.

Remember thgbg = Tra(p) acts ins#g only. We can expangg (or pa) in the
SCHMIDT basis

P = Tra(|Y)(Y])

—Tra <Zak|ex>|fk> Za(al(ﬁl)

M

=Y & [fi)(fl (2.12)
k=1
M

Pa= D & lad (e (2.13)
k=1

to expres€(|Y) (Y|) in terms of theay:

E(l)uh=—S aIna >0 (2.14)

Especially
E(lg)(y|) =0 iff ax =0V k exceptoney, =1 (2.15)

and we observe th&(|)(@|) is maximal iff all |e) (x| (or | fk) (fk|) come with
the same weight:

E(|l¢)(¢]) = max =InM iff ak:\/—lMVk. (2.16)

So E(|y)(y|) is zero for product states and maximal for maximally entadg|
states.

with §> s. Becausg|e)a}, {|fi)s}, {|&)a} and{|fi)s} each form sets of orthonormal vectors
there is|x)a such thatix)a € Spar{|&)a} but |x) ¢ Spar{|e)a} and thus we get a contradiction
because (x|) = 0 from the first decomposition andx|y) # 0 from the second.

11



2.2 Entanglement and Separability of Mixed States

Def. 2.4 Entanglement of Mixed States
A mixed statg is entangled iff it is not separable. It is called separalftatican
be represented as

K
PIZl pi e, fi) (e, fi| (2.17)

where|g) € Ja, | fi) € s are arbitrary but normalized, p> 0 with ziKzl pi =1,
NT 5 K < (dims#)? with 27 = Ja® 4 [12].

We call the stat@ given above separable because it can be created by Alice pro-
ducing the stateég) with probability p; and Bob correspondingly creating)

with probability pi. So entangled states are those states that cannot be created
using only local operations and classical communication.

2.3 Entanglement Criteria

Theorem 2.3 PERES .
If p is separable thep™ > Oandp™ = (p™4) > 0.

Proof:
As p is separable it can be written as

K K
P:; pilen|fi) (e {fi :_; pile) (&l |fi)(fil >0 (2.18)

and we have
K
p™= 3 milla)a)™ o 6|
K
:_Zl pile’) (e @ |[fi) (fil
K
=_Z pile’, fi)(g', fi[ >0. (2.19)

Note that the second line is valid becaude= (A*)".
For arbitrary dimensions this theorem is only valid in theegi direction. The
only if direction is only valid in special cases:

12



Theorem 2.4 HORODEKCI
In C2® C? or C2® C2 p is separable ifp™ > 0.

The method used here to proof that theorem is the methsdlfacting vectors
[13]. We will give the proof in 7 steps.

Lemma 2.1 A statep can always be represented as

H

p=p +AlY)(Y| wherep’>0, [¢) cR{p} , A<—F—. (2.20)
(WILy)
Proof:
Taking arbitrary|@) we have
2 1 ?
N
1
< <<0|p\<0><w|5\w> (2.21)

wherep~1is defined oveR{p} only and where we used the8wARTZz inequal-
ity in the second step. Then we get

0< <<p|p\<p><w|§\w> )P (2.22)
(o) ?
0<(@lp|p) — (2.23)
(Wl5w)
0< (glp- <|fpﬂ\>_1<|qu|> 9) (2.24)
_,p_/
o’

(the last step is due tde|w)|* = (@|Y)(Y|@)). So we havep = p’ +A|Y)(y|
with p’ > 0 for allA < (w‘i‘w.

p
If we choose the maximal\, p’ no longer containg’ in its range and the rank of
p’ is diminished by 1:

[EEN

Hp'}=r{p} -1 iff A=

(2.25)

(Wil

Ol

Proof:

13



Lemma 2.2 If p has positive partial transpositionp(is a PPT state) and if there
exists a product vector in the rangef|e, f) € R{p}, such thate, f) ¢ R{pT»}
thenp can be written as

p=p'+Aef)ef| with p'>0, (p)*>0 (2.26)

where

A <min } , } . (2.27)
<e7 f‘ﬁ|e7 f) <e*7 f‘pTA‘e*v f>

The proof is clear using lemma 2.1.

Lemma 2.3 If pis a PPT state irC? @ CN andp|e, ) = 0 thenp can be written
as

p=p +N&f)ef| with /\:m (2.28)
where
p'>0, (p)"" >0, (&) =0 (2.29)
and
r{p} =r{p}—1, r{(p) "} =r{p™} -1 (2.30)

This means knowing a product vector in the kernelpomakes it possible to
diminish the rank op andp™ simultaneously.

Proof:

We partially transposée, f|p|e, ) = 0 to get(e*, f|pTA|e*, f) = 0. Sincep™ >0
this impliesp ™ |e*, f) = 0.4

Becausde) lives in C? we always have a unique orthogom@l: (€/é) = 0.
Partially transposingé*|p»|e*, f) = 0 and(&|p|e, f) = O we get

(elp|é, f) =0 and (e"|pTA|&", f) =0 (2.31)
and since inC? |&) is unique there exist somk), |h) such that

ple f)=|&h) and p™ &, f) =&, h). (2.32)

4Takep = |¢~)(Y~| and|e, f) = | to see that this is not always true fofA % 0.

14



Furthermore
h) = (&|p|&, f) = (&"|pT4le", ) = |h). (2.33)

(In the second step we made the partially transpositionrggpect to Alice which
of course does not chan@® ¢ .7g).

Now we found|é h) € R{p} and|&*,h) € R{pT™} and we can use these vectors
to rewritep according to lemma 2.2. But since

1 1 1 1
Np = = = — =N, (2.34)
A 1 é h|é f h| f &« hl—L |6 p'A
<e’h|5| ny  (&hi&T) (hif) (& hiorleh)
——
&1)

(using egs. (2.32)) one can chodsén lemma 2.2 maximal for bottp andp ™,
and diminish the rank gb, p"4 simultaneously.

Under which circumstances can we expect to find a vector irdhge ofp?
The following lemma shows that this is always possible {ipR is (at least) a
two-dimensional subspace @6f @ C2.

Lemma 2.4 Every 2-dimensional subspace®f © C? contains a product vector.

Given|x1), |x2) € C?® C? the question is whether the space spanned by these
two vectors does contain a product vector or not. This is beiaus if | x12) are

not product vectors.

Proof:

We are searching for a product vecterf) (|e) € C2, |f) € C?) in the given two
dimensional subspace.

Of course we can always finds ), |g») spanning the two dimensional subspace
orthogonal to the subspace that should contaif): (ynle, f) = 0= (Y»le f)
Using a basig|0), |1)} for Alice we can write

& f)=(0)+al1)[f) (2.35)

Note that the proof below does not depend on the normalizatising Schmidt
decomposition we can writé € {1,2}):

W) = 10)°) + )] @ah) (2.36)

where|@”') € €2 are fixed by the chosen basis ag).
(Yile f) = (¢ gq |+a @) |f) = 0 leads to the following matrix equation for
and|f) = (fy, fo)T:

() el )H%):(g) 237)




This equation has a nontrivial solutidr, |f)} (i.e. we have found a product
vector) iff we can findx fulfilling detM(a ) = 0 which of course is always possible
since this is a quadratic equationane C.

Note that this proof can easily be extended s CN.

Lemma 2.5 If p is a PPT state, i.ep™ > 0, acting inC?2® C? andr{p} =2
thenp is separable.

Proof:
r{p} =2 and by lemma 2.4 there exists a product staté) in the kernel ofp:
ple f)=0.

We use this product state with lemma 2.3 to wpatasp = p’ + /| h)(é h|. Since
r{p'} =r{p} —1=1, p’ has to be proportional to a projector. Sir(q:é)TA >0
this projector has to be a projector on a product Stateich means that we can
write p asp = |m,n)(m,n| +A|& h) (& h| andp is separable.

Lemma 2.6 Ifin C?® C?r{p} =r{p™} = 3andp is a PPT state and
3 |e f) e R{p} suchthat|e’, f) e R{p"} (2.40)
thenp is separable.

Proof:
We can use lemma 2.2 to reduce the ranloafr p™ by 1 (taking the maximal
N), thereby keeping the positivity of both of them:

p=p+Ae f)ef| (2.41)
r{p'} =r{p}—1 or r{(p))""} =r{p™} -1 (2.42)

Now by lemma 2.5 we can show that or (p’)™ are product states. Byt is a
product state if{ o’) " is a product state.

Lemma 2.7 If p > 0 acting inC?® C? hasp™ > 0andr{p} =3, r{p™} =3
then3|e, f) € R{p} such thate’, f) € R{pTA}.

5To see why this holds write’ = |) (] in the basis of the SHMIDT decomposition ofy)
as|y) = all1l) + B|22). Then

(p")™ = |a?10) (11] + aB*[21) (12| + Ba*|12) (21| + |B[2[22) (22| (2.38)
and we have thatp’)™ > 0 only if a = 0 or B = 0 since otherwise
[—a(12/+B(21] (p') ™ [~a*|12) + B*|21)] = —2|aB[?> < O. (2.39)

On the other hand if (e.gf} = 0 then(p’)™ = |B|2|11)(11| > 0.

16



This means that there exists a snzgaduch that

p_£|e7f><evf| >0 (243)
p'A—ele’, f)(e, f| > 0. (2.44)

Therefore we can choose an approprigto we can reduce the rank of the den-
sity matrices or its partial transpose by one. Having thisane finished (see
lemma 2.6).

The proof presented here is not the most simple one but itHeaadvantage of
being extensible to the 2 3 case. See [14] for a simpler proof and [12] for the
published version.

Proof:

We use the following notation for this proof:

A B
p= ( BT C ) (2-45)
with A = AT andC = CT.

A andC are invertible. If one of them is not invertible, e@is not invertible and
thus has rank 1 then there exists a ve¢forsuch thaC|f) = 0. Thus

o (a a)( Y )-0im()-0  @am
—_—

[ws)

thus (s |p|@s) = 0 and sincep > 0 alsop|Ys) = 0. This means|ys) is in the
kernel and thereforB| f) must be zero also. This means

wr) =) @|f) =1, f) e K{p} (2.47)

which is a product vector in the kernel and we can apply lemrBar2duce {p}
and {p A} by one and the proof is completed by lemma 2.5.
We separate the proof into several steps:

1. We can choose the basis in Alice at will;

1 1 1 —-a*
O)p= —— Da=—— 2.48
on=—s(a) W () e
Using this choice of basis we have
1 . -a*\ 1 =
Brew=a0PIUa = 1o (7 ) = pgnta)
(2.49)

17



Using this transformation we have a quadratic equatiam*itn each com-
ponent ofB. We choosex* such that de = 0. This is possible sincB is
quadratic ina* and therefore dé& contains a fourth oder polynomial mn*
which has roots irC.

Using this choicd has rank 1.
. Next we change the basis in Bobs space:

1 1
— IA® —pla® — 2.50
P A \/(—:P A® R (2.50)

This is not a unitary operation but since it is local and keegsnicity the
separability properties are not changed.

The resulting density matrix is now

p= ( gﬁr E) (2.51)

Here we introducedhew matrixesA and B in Bobs space which resulted
from the previous basis transformations.

. r(p) = 3 means that there exists a vector which fulfills

p(H%):O (2.52)

where|f), |f~) in C?. Using the explicit form o given in egn. (2.51) we
get the constraint

1fy=—Bf) or (2.53)

( _|B];Tf> ) e K{p} ie. (2.54)

() (V1)) e

This means thalff) is a vector in the kernel ok — BB'. SinceA— BB acts
in a two dimensional space the rank&f BB' is at most one and thus

A—BB'=AP  with (2.56)
P=|y)(y| [f)=|p") and (2.57)
(y*|y) =0. (2.58)
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The projectolP is unique up to a phase.

We can apply the same argumentgpte. The only difference is tha® is
exchanged witlB'. The resultis

A=BB'+AP  P=|y)(y| (2.59)

A=BB+AP  P=|{)({|. (2.60)
If we compute the difference between those equations we have

BB'—B'B=AP—-AP=A(P-P). (2.61)

The last equality can be seen if the trace is taken on botks sidee trace of
a commutator is zero, the trace of a projector is one. SOl </\ —A) or

~

A=A

4. We choose the basis in Bobs space where

B§—§B:<3_&):A@—m. (2.62)

This choice is possible sin@B' — B'B is hermitian and T(BB" — B'B) =
0. Thenewoperators? andP remain projectors since hermicity and rank
are not changed by unitary base transformations.

We now consider the most general states (but disregardiogenall phase
as it is irrelevant since we are only interested in projejtor

\w=(¢ﬁ%@) |@=($%f) (2.63)

Using these vectors, we can evaluate egn. (2.62) componsat w
A=A((1-p)—p) (2.64)
“A=A(F-(1-p) (2.65)
0= (Vi-pV/pe™ — /py1-pe ™) (2.66)
0= (V1-5V/pe? - y/py/1-pé?) (2.67)

This system is solvable if = @ andp = f or p=1— f. In the latter case
|@) = | @) causingB = BT and thuso = p'» which is not the most general
case. Therefore we choope= p andA > 0 we havé

N=A(1-2p) = p< % (2.68)

6A = 0 again meanB = B' which is not the most general case.
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Now we have

_(BB'+AP B 1. ( B'B+AP B

5. ¥Bwith r(B) = 1 3 always a unitarK such
KBK' =BT. (2.70)

Proof:
SinceB has rank one it can be written as

B=n|f)(g| and (2.71)
B" = nlg")(f*. (2.72)

This means that
KIf)=1g") = (gK"=(f. (2.73)

Such a transformation exists becaus i unitary, i.e. KK = 1 then
(9f) = (f*lg") = (F*IK|f) = (gIKK]f) (2.74)

WherNeK is an yet unkown linear operator. Comparing both sides we see
thatK = K~ = KT,

Notice that in the following part of the proof it is not sufeit to only claim
that for anyB 3 always a unitarK such that

KBK* =B'. (2.75)

For later use we note that (starting with eqn. (2.70))

B=K*B'KT = K*KBK'KT (2.76)
< K'K™B=BK'KT. (2.77)

If we defineU = KTKT we can write this atlB = BU.

6. K can be explicitly written as

iog (0 1
K=¢? (1 0). (2.78)
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Proof:
If we define the real matrix (see eqn. (2.68))= BB' —B'B= A (P—P)
then we can write using 'K = 1

KMKT = KBB'K' — KB'BK' = KBKTKBTKT — KBTK TKBK
=B"B* - B*B" = —(B*(B")* — (B")*B*) = —M*

:_M:A(ﬁ_m:(‘o’\ j'\) (2.79)

Writing down both sides explicitly we have

- (i@t kit = (3 )
—N(B@ - W), (280

Now we assume again the most general parameterizatiorbpessi

kw=d(Vid ) wm=dn( o) ey

with g€ R and¢1, ¢2,© € [0...2m]. Using egn. (2.80) we can now expli-
citly compare the parameters and see tfatp has to be fulfilled (samA).
To discovelK we make the most general ansatz:

Kly)y = ( 2 b /P a,/p+by/I—pe?
V1—pe? c/p+dyI—pe?
L dtn ( v\/ﬁ;g ) (2.82)
Herea,b,c,d € C. Immediately we see that=d = 0 and

b— g(¢1—-9) c— g91+0) (2.83)

Calculating the conditions usintg| () results in the same requirements but
with @41 replaced byp,, thus we see thafi; = ¢, = ¢ has to hold.

The matrix U defined above is now diagonal. We know that

up=( P O by b\ _ [ c'bby cbb,
o 0 b'c bs by / \ b*ch; b*chy
_( Cbby b'chky \
_(c*bbg b*cb4)_BU' (2.84)
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We seé that eithetb = c or b, = b3 = 0. The latter case means that B is di-
agonal and thuBB" — BB = 0. As has been shown already this conditions
is not fulfilled for an arbitrary case.

Therefore we now require = c and get® = —¢. Thus we can write

K = < exp(i(o exi(9 —¢)) ) _dtg,  (2.85)

$—9)) 0
and furthermore we see that
<) = (Vo R ) =) 2.86)
K|p) = €21yr). (2.87)

Since a phase fdf is irrelevant we choose for simpliciggp = ¢ — ¢ = 0.

7. Rememberirfy(2.54) and (2.57) we know that

( —E|3L£|L43L> ) € Kipi ( _|EL;I|’;,>L> ) cK{p™}. (2.88)

If we denotele, f) as the desired product vector and [y as|e) = ( i )

with z e C we have

Dol 45 Jerter  lersin=( M} ) eriem™.

The scalar product between a vector from the range and anfecto the
kernel has to vanish:

(2.90)

0
0 (2.91)

Since the subspace is two dimensional we know the statesguial to
|@+). Since we have still available we can require

(1-2B)|f) = |y) (1-ZB)|f)~ ) (2.92)

’Strictly speaking we see only gty = arg(c) but since is unitaryb andc have to be phases.
8All vectors are in the base corresponding to Bobs (and Alast)choice of bases.
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which means

1 1
|f>:m|4’>:’7m|lp> (2.93)
with an still unknowmn € C.
From eqn. (2.86) we know
ol @) =€?|y) (2.94)

SO usingai2 = 1 and eqn. (2.75) we can rewrite eqn. (2.93):

T W) = noxo— 0@ |y)
= né"’axl_ii*Ble*)
= néd? o, (1_1ZBT|4;>)* (2.95)
So if we write
L) - ( " ) (2.96)
then we have the following requirement:
(3)-0en(5)-me (1) e
Since
_yd?d
X—; = gj z; _ XZ({?HS) (2.98)

we can now solve both equations fprand check for consistency:

&% — ne(#—9-9) N n =e%-9+29) (2.99)
d(9+0) — pe(#-9) N n =¢0-9+29) (2.100)

Obviouslyd can be chosen arbitrarily. Choosing an appropriate value we
can write

1 1
W) ~ < o ) (2.101)
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We have thus far only computed the relative anglbut have not actually
fixed zitself. So we can now choogesuch

3 1
<e'5,—1> —=lw)=o. (2.102)

SinceB' has rank 1 (cf. step 4B")? = aB' with a € C. This means
—— =1+ f(2)B" (2.103)

& f(2)=— (2.104)

and thus we have to solve for evady

i5 Z of _
(é ,—1) <]1+me ) Y)=0  (2.105)
= (1-az2) (éS,—l) W) +(z—a?) (eiS,—l) Bly)=0  (2.106)

N " N vy
TV
C1 C2

e a+z(ca—ac)—2(acy)=0.  (2.107)

This equation has a solution fany d and thus there exists always a product
vector in the range gb.

Now we are done. The following table lists all possible casebthe lemmas used
to reduce the rank or to show separability respectively:

r{p} r{p™} lemma(s)

4 Use lemma 2.1 to reduce eithéps} or r{pTA}

Use lemma 2.1 to reduce eithéps} or r{pTA}

Use lemma 2.1 to reduce eithéps} or r{pTA}
Because of lemma 2.7 and lemma 2.8 separable
Because of lemma 2/5is separable

Because of lemma 2/5is separable

X NWWAH
NX wbhwpH

This proof can be extended to thex3 case as well.
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3 PPT Entangled States

3.1 Definition

Def. 3.1 PPT entangled state
A statep is called a PPT (partial positive transposed) entangledesaometimes
abbreviated as PPTES) iff

1. itis entangled and
2.p™A>0 (~p™®>0).
Remarks:
e In C?® C?andC?® C° a state is a PPT state iff it is separable.

¢ In systems with more than two particles also more completcataiations
are possible, e.gp™ > 0 butp™ <0, p'c > 0.

e PPT entangled states are also called bound or hidden eathsgtes be-
cause this type of entanglement is not distillable. Seefd&details.

3.2 A Criterion of Separability

Theorem 3.1 P. HORODECKI
If p is separable then

3 |e f) e R{p} suchthat|e’, f) e R{p'a}. (3.1)

Proof:
Writing p as

K
p=" A& fi) (e, fil- (3.2)
K=1
we see thaley, f) has to be in the range pf and because
- K
pA= > Ade fio (e, ful- (3.3)
K=1

e, fi) is in the range opTA.
Remark: We can also extract a stronger formulation for tle@rtdm out of this

9This holds becausg () € K{p}: 0= (Y|p|y) = S M| (Wlex, )2 < @) L Ve, fi).
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proof:
p is separable iff

e fid bk R{P}:[ﬂ%fk)}kzl,...x] (3.4)

and : Rp™} = [{l& i by ] (35)

This means that the set (&, fi), |€f, f) span Rp} and RpTA} respectively.

3.2.1 Example inC2g C*

b0oOO| 0 bo O

ObOO| O Ob O

00boO| 0O 00 b

000b| 0 00 O o beo 6
b 12 =0b> :

0000 L oo ¥&F

boooO| 0 bo O

Ob0OO| 0O Ob O
1-b? 1+b

00bo| YL oo Lt

For this state to be a PPT sta@tdas to be positively defined. We can verify this by
showing that the various submatrices are positively defived find three types
of submatrices:

E @
(b) >0 (3.8)

b 0 b b 0 b 0O O 0

0 b VLI _1o0o0o0|+|0 K2 YLPIs0 (39

b b 0 b/ o =

By the same method one shog® > 0.
One can show that all the vectors in the kernegbdfave to have the form

1-b
A B,C, 0 kC,—A —B,—-C) wherek =4/——. 3.10
( ) ) ) ) ) ) ) ) 1+b ( )
A, B andC are free parameters, i.e. there are three orthogonal gertahe
kernel. Observe that this construction is not valid in theecafb = 0 where

dimK{p} =6.
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By looking for vectors orthogonal to all these vectors in kieenel we can also
identify the vectors in the range pf These are product states:

11 1
|euf>_|17 a>®|1vau azu a3 >
1 1 1 11
—( o g2’ a3+K a,l, ot ?+Ka) € R{p}. (3.11)
In the same way we fing, f) € R{p™A}:
1 11
ef)=11 K, =5, = 1 3.12

In order to check ifp is separable we have to find out whether there |is &) <
R{p} such thate*, f) € R{pT4}, i.e. if there arex, B such that
1 1 1 1 11
1a®1 — +K) =11, —+K, =, =,
From Alice’s part we observe thgt' = a which means that we get the following
conditions:

1) (3.13)

1
K=1 = — — = — 1=—+K. 3.14
* ’ (a*)? a’ a*  a?’ a3t (3.14)

(a*)®
Using the second (or the third) equation we hafe= a* and we see that has
to be a pure phase; = €9, and furthermorex® = 1. By the first equation this
meansk = 0 which givesb = 0 where our construction is not valid. Thus there
exists nole, f) € R{p} such thate*, f) € R{p™} and (by theorem 3.1) is not
separable for & b < 1 (which means that it is PPT entangled becaue> 0).
Other examples use the so called unextendible product ifd&#) [16]. These
are incomplete orthogonal product bases whose complementaspace does not
contain any product vectdf.
Let |;) be such an UPB with members then it one can observe that

o (i )

1010 €3 ® Citis easy to see that such a basis is indeed possible. Takidgonal product
vectorgle, fj), i =1...5. The question is if one can find more product vectors orthafio these
such that all the vectors span the whole space, especiallyeifcan find a product vector in the
orthogonal space?

This |e, f) has to fulfill (e, f|e, fi) = (e|g){f|fi) = 0 Vi but if (e]e;) = 0= (e]ez) and (in the
best case}f|f3) = 0= (f|fs) then neithere|es) = 0 nor(f|fs) = 0 is possible since Alice’s and
Bob’s space are 3 dimensional only. For explicit exampleq$8].

Also notice that inC? ® CN there exists no unextendible product bases (with less than 2
members).
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is a PPT entangled stafe(.# is a normalization factor).

3.3 Edge States

Def. 3.2 A PPT entangled stai@ is called anedge staté for any € > 0 and any
e f)

O =0—¢lef)(ef] (3.16)
is not a PPT state (i.e. eithe¥ ¥ 0or (&)™ % 0).

This means that it is not possible to subtract a projectioa product state from
an edge state without loosing the propertydolbeing positive definite and PPT.
By lemma 2.2 (which was valid in arbitrary dimensions) thasde put in the

following form:

Lemma 3.1 A PPT entangled state is an edge state iff there existe |e, f) €
R{p} such thafe*, f) € R{pTA}.

Proof: lemma 2.2 states thatgfis PPT and there existg, f) € R{p} such that
le*, f) € R{p'A} thenp can be decomposed ps= p’ +Ale, f)(e, f| keepingp’
positive definite and PPT. Since by definition the latter istnoe for edge states
no suchle, f) can exist.

The importance of the edge states in the discussion of elersgates comes
from the possibility to decompose PPT entangled statesais&parable state and
an edge state as stated in the following lemma which we willpnoof here. A
proof can be found in [13], [17].

Theorem 3.2 LEWENSTEIN, SANPERA
Every PPT entangled state can be written as

P=Aps+(1-2)d (3.17)

whereps is separable and is an edge state andl < 1.
There exists an optimal decomposition of this form for wiiigh maximal.

Notice thatA being maximal means that we put all the information about the
entanglement in the edge state. The advantage of the edgé staopposed tp

is that is has generically lower rank.

Figure 1 illustrates the space of all states, separablesstBPT states and PPT
entangled states. All these sets except the set of PPT dadiastgtes are convex
and compact (i.e. bound and closed). Because of their defirthhe edge states
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All States

N

PPTES D

PPT States

=+

Separable State:

L]

Figure 1: Schematic representation of the space of segasthies, entangled
states and the PPT entangled states.

Figure 2: lllustration of lemma 3.2 (left) and lemma 3.3 fxtig
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can be found on the boundary between the PPT entangled stadethe PPT
states.

The sump = aps+ bd is found by connectinggs and d by a straight line and
dividing the line in the rati@/b such thap is closer toos if a > b and closer t&

if b> a. The left part of figure 2 illustrates the decomposition givelemma 3.2.
That such a decomposition always exists is already obviaus the fact that all
the sets are convex.

If we don’t care about the PPT entangled states and just losk@arable and
entangled states it is clear that a similar decompositi@tdaxist (c.f. also the
right part of figure 2). The resulting edge state then lieshenlioundary of the
entangled states such that subtracting a product projaciald result in a not
positive definite state. Thus we have the following theorem.

Theorem 3.3 LEWENSTEIN, SANPERA
Every statep can be written in a unique way as

p=Aps+(1—1)d (3.18)

whereps is separabled > 0 is entangled and has no product vectors in its range,
A <1 maximal [12]. Again there exists an optimal decomposition.

Because % mapsl to 1 and the UPB to another UPB we hau& > 0 and furthermorg is
entangled because by the definition of the UPB there is noyatogkctor in the range.
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4 Entanglement Witnesses and Positive Maps

4.1 Entanglement Witnesses

4.1.1 Technical Preface

For several proofs we will need the following
Lemma 4.1 Tr(p™A0) = Tr(po ™)

Proof:
Using the usual notation

o= o' lij) (K (4.1)
p= Zpljk|“j><k” (4.2)
ot =Y o'y lki)il| (4.3)
we have
Tr(p™0) :Tr( S plglkiyi \o""’k,l,|i'1’><wl’\)
iKY
~5 ol ol
i% k™ Kj
:Tr< S p”'k||ij><kl|o""’k,|,|wj’><i'l'|)
iKY
=Tr(pa™). (4.4)
Observation:

The space of linear operators acting 241 (denoted by#(7¢)) is a HLBERT
space itself with the (ECLEDIAN) scalar product:

(AIB) = Tr (ATB> ABc B(H) (4.5)

This scalar product is equivalent to writidgandB row wise as vectors and scalar
multiplying them:

dim.#2

Tr(ATB>:ZAi*J-Bij: kzl aiby (4.6)
] =
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4.1.2 Entanglement Witness

Central to this and the following sections is the#hN-BANACH theorem which
we will present here limited to our situation and withoutgir(see e.g. [18] for a
proof of the more general theorem):

Theorem 4.1 Let S be a convex compact set in a finite dimensi@yaAcH
space. Lep be a point in the space with ¢ S. Then there exists a hyperplafe
that separatep from S.

Figure 3: Schematic picture of theAHN-BANACH theorem. The (unique) unit
vector orthonormal to the hyperplane can be used to defjheandleftin respect
to the hyperplane by using the signum of the scalar product.

Figure 3 motivates the introduction of a new coordinateesydbcated within the

hyperplane (supplemented by an orthogonal vastevhich is chosen such that it
points away fron§). Using this coordinate system every statean be character-
ized by its distance from the plane by projectipgnto the chosen orthonormal
vector and using the trace as scalar product, i.€WJr). This measure is either
positive, zero or negative. According to our choice of basfggure 3 every sep-

arable state has a positive distance while there are soraaglatl states with a
negative distance. More formally this can be phrased as:

Def. 4.1 A hermitian operator (an observable) W is called an entanmgat wit-
ness (EW) iff

Jp Tr(Wp) <0 4.7)
VoeS Tr(Wo) > 0. (4.8)

Later on we will choos&V such that the set g detected byV is maximized by
choosingWV tangent tcS.

127 linear subspace with dimension one less than the dimemsitive space itself.
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Figure 4: Schematic view of theIEBERT-space with two states; andp, and

two witnessedV1 andW2. W1 is a decomposable EW and it does only detect
NPPT states likg;. W2 is a nd witness and it detects also some PPT states like
p2. Note that neither witness deteetl$ entangled states.

Def. 4.2 An EW is decomposabile iff there exists operators P, Q with
W=P+Q™ P,Q>0. (4.9)
Lemma 4.2 Decomposable EW cannot detect PPT entangled states.

Proof:
Let & be a PPT entangled state and EWbe decomposable then

Tr(Wo) = Tr(PS) + Tr (Q'48) = Tr(Pd) + Tr (Q5™4) > 0. (4.10)
Here we used lemma 4.1.

Def. 4.3 A EW is called non-decomposable entanglement witness \(d+&E
there exists at least one PPT entangled state which the satdetects.

Using these definitions we can restate the consequences &fathN-BANACH
theorem in several ways:

Theorem 4.2 1. pis entangled iff a withess W such thdtr (pW) < 0.
2. pis a PPT entangled state #fa nd-witness W such that (pW) < 0.
3. o is separable ifff EWTr(Wo) > 0.

From a theoretical point of view this theorem is quite powkrHowever, it is not
useful for constructing witnesses that detect a given gtate
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4.1.3 Examples

1. A decomposable witness

W =P+Q (4.11)
detects all separable statesi.e.
voeS  Tr(Wo)>0. (4.12)

Proof:

If o is separable then it can be written as a convex sum of prochotors
(see eqn. (2.17)). So if any product vecterf) is detected any separable
state will be detected also.

Tr(Wle f)(e f[) = (e f\W|e f) (4.13)
= (e, f|Ple, f)+ (e, f|Q™|e,f)  because  (4.14)
>0 >0

(e, f|Q™|e, f) =Tr(Q™le f)(e f|) = Tr(Qle", f)(e", f|) > 0 (4.15)
Here we used lemma 4.1 akRdQ > 0.
This argumentation shows that = QT4 is a suitable witness also.
If we take the simplest case {22) we can use
1

¢") = (100 + 1)) (4.16)

to create the density matrix
00

QA = (4.17)

Q=

NI O ONIR-
© oo
© oo
NP o oMk
O ONI-
oNkF O O
o ONRF O
N O O O

0

One can quickly verify that indeed/ = QT fulfills the witness require-
ments. Using

W) =5 (0~ 110) (4.18)
we can rewrite the witness:
W= Q™ =2 (1 -2y )(y ) (4.19)
This witness now detectg)~):
T (W) e l) = (4.20)
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Def. 4.4 The (decomposable) EW W is tangent to S (to PdfE S (exists
ap € P)withTr(Wo) =0 (Tr(Wp) =0).

The witness chosen in eqn. (4.19) is tangentSdmecause for any state
le,et) (i.e. |01)) we have a local unitary transformation

U®U|01) =|ee")  and (4.21)
UaUly ) =€?y) (4.22)

becausgy ™) is a singlet state which must be transformed into a singlet
state (with a possible phase) under any unitary transfeomat

Now we can calculate
(ee" |y )y lee") =(0uTaUT |y )y luaUloL)

e oy ) wlon =7  (4.23)

Tr (W|e,e4><e,e4|) - % (1—2%) —0. (4.24)

. Letp be a PPT entangled state with dimenshdrx N (andMN > 6) then
we can writep according to theorem 3.2 as

p=NAps+(1—-N)d (4.25)
whereps is a separable state ands an edge state amd< 1.

Lemma 4.3 If and-EW W detectg then it also detectd, i.e. Tr(Wd) < 0.

Proof:

0> Tr(pW) =Tr(ApsW)+(1—A)Tr(dW) > (1 —-A)Tr(dW) (4.26)
>0

Therefore we can concentrate on edge states.
. We are now looking for nd-EW for edge states.
Def. 4.5
W = Pcs) + (Pesmay) ™ (4.27)

is called a pre-witness. Herecps, is a projector on the kernel of the edge
stated.
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Lemma 4.4 Ve f) (e f|W|e f)>e>0.

Proof:
Let’'s suppose there exists a state which fulfills

0= (e f|\Wle f)  then (4.28)
0= <e7 f|PK{5}|67 f> + <e*7 f|PK{6TA}|e*7 f> (429)

Since any projector fulfill® > 0 we must have

= le f) e R{d} (4.30)
= le*, ) € R{&TA}. (4.31)

Peisyle f) =

Peiorayl€’ f) =

This contradicts the properties of edge states as showmim&e3.1.
So if we denote

0< & =min(e, f|W|e, f) (4.32)

le.f)
we can construct a whole family of entanglement witnesses:
W=W-¢e1 0<e<g (4.33)
W is non-negative on separable states
(e, f|Wl|e f) = (e f[W—¢l|e f) >g—£>0 (4.34)
and negative on the edge state
Tr(Wdo) =Tr(Wo) —e = —¢ (4.35)

because if we denote a basis of& (K{587}) with |k) e CN@ CM (k) €
CNoCM), k=1,...,dimK{38} (k=1,...,dimK{3TA}) then

Tr (Pegsy8) = Tr (zm(ma) = Y (K|5]k) =0 (4.36)
kK

kK

Tr (P;?éTA}é) —Tr (PK { 5TA}5TA) —Tr (g 1K) <R’|5TA>

= z(m(sTA\R) =0. (4.37)

kk/
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4.2 Positive Maps
4.2.1 Introduction

So far we only considered states inLHERT spaces and operators acting on these
states. Now we go one step further and look at the so-callgxs maich can be
seen asuperoperatorsanipulating the operators inEBERT space. Throughout
this section we will denote the variousIBERT spaces by#g, .7 and so on and
the set of linear operators acting ofg as % (7). We start by defining linear
maps:

Def. 4.6 A linear, self-adjoint mag is a transformation

£ B(M)— B(H) (4.38)
which
e is linear
E(a01+B02) = ae(01)+Pe(0y) V01,02 #(sB) o,B e( C |
4.39

e and maps hermitian operators to hermitian operators:
g0 =(e(0)" VOecB(4). (4.40)
For brevity we will only write linear map instead of lineadfsadjoint map.
The following definitions help to further characterize lnenaps.
Def. 4.7 A linear mape is called trace preserving if
Tr(e(0)) =Tr(O) VOe %A (). (4.41)

Def. 4.8 Positive map
A linear, self adjoint majg is called positive if

VpeRB(H) with p>0 = ¢€(p)>0. (4.42)

This means that positive maps have the property of mappisgiy® operators
onto positive operators. It will turn out to be important wnsider maps on the
tensor product of a positive operator acting on one subsystand the identity
acting an another subsystem B. In this case we define

Def. 4.9 Completely positive map
A positive linear mayE is completely positive if for any tensor extension of the
form

g B(AARM) — B(Ha M)

¢ = I\®¢ (4.43)

¢’ is positive.
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4.2.2 Examples

Hamiltonian evolution of a quantum system LetO € #(.#g) andU an uni-
tary matrix and define by

€. B(Ap) — B(Hh)

g(0) = uout (4.44)

As an example for this map consider the time-evolution ofresitg matrix. It can
be written ago(t) = U (t)p(0)UT(t), i.e. in the form given above.

Clearly this map is linear, self-adjoint, positive and &gweserving. It is also
completely positive because forOw € % (#a @ #B)

(Ia®e)w= (1a@U)W(1a@UT) =0wd’ (4.45)

whereU is unitary. But then(|UwU T|y) > 0 iff (w|w|y) > 0 (since positivity
is not changed by unitary evolution).

Hamiltonian evolution of a system and its environment Letp € # () (the
systemando € Z () (theenvironmentbe positive operators and define

e #(HM) — B(Aa)

e(p) = Tra(UompuT) (4.46)

whereU € #A (A ® #3) is unitary. This map describes the time-evolution of a
system together with the environment. It is obviously Imsalf-adjoint and it is
also trace preserving because

Tr(e(p)) = Trg (TrA (U o ® pU T))
:Tr(Uo@puT):Tr<o®puuT>:Tr(o@p). (4.47)
KRAUS' representation of completely positive maps Consider a set of matri-
ces{A : s — ¢} and the map

e B(H) — B(A)
ep) = YK, APA

This map is obviously linear and self-adjoint. It is traceg®grving if and only if

(4.48)

K
'ZLAITAi = 1c. (4.49)
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It is positive
(Wle()lw) = (WIAPATY) = 5 (AlylplATy) =0, (4.50)

completely positive because

(Ia@ew=" (1a® A)W(1a2A) (4.51)

and

(W(Iazewy) = S {(1Tac A1 ANY) >0, (452)

Transposition An example for a positive but not completely positive mahes t
transposition T defined as:

T: #(M) — B(Ap)

4.53
T(p) = p' (4:59)

Of course this map is positive but it is not completely positbecause
(Ta@ T)w=w'® (4.54)

and we know that there are states wath» O butpTB <0.

4.2.3 Decomposable Maps

Def. 4.10 A positive map is called decomposable if and only if it can bé&emn
as

E=¢&+&T (4.55)

wheregy, & are completely positive maps aifids the operation of transposition
introduced in section 4.2.2.

Theorem 4.3 HORODECKI
A statep € A (#a® ) is separable iff for all positive maps

£ B(A) — B(HE) (4.56)
we have

(Ia®e)p > 0. (4.57)
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Proof:
[=] p is separable so we can write it as

P P
p="> plafi)(add= > plead (el @] fi)(f (4.58)
=] =

for someP > 0. On this statéls ® €) acts as

P
(Ia@e)p = pled (el @e(|fi(fil) >0 (4.59)
k=1

where the last follows becauseéf;)( fi| > 0 ande is positive.

[«] This direction is not as easy as the only if direction. Welpiove it in
section 4.2.4.

Note that theorem 4.3 can also be cast into the following form

Theorem 4.4 HORODECKI
A statep € # (#a® Hp) is entangled if and only if there exists a positive map
£ B () — P () such that

(In@€)p #0. (4.60)

4.2.4 Jamiotkowski Isomorphism

In order to complete the proof of theorem 4.3 we introduce fire AMIOLKO -
WSKI isomorphism [19] between operators and maps.

Given an operatoE € % (7 ® #¢) and an orthonormal product bagks!) we
define a map by

€. B (M) — B(H) (4.61)
g(p) = % c(kil1|E|kal2)Be [11)ca(ki|plka)Bc(]2|
Ki,l1,K2,12

or in short form

e(p) =Trg (Ep'®). (4.62)

This shows how to construct the magrom a given operatoE. To construct an
operator from a given map we use the state

=3 (4.63)
TP
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(whereM :=dim g) to get
M (g @e) (|) (@) =E. (4.64)
One can see this in the following way:
Ty @e) (J9) (W)

M
= 1599) (57 3 ol (ila o2l 11s)

e (i@
1

® ( Z c(kul1|E|kal2)Belkil1)Be Be(Kel2| [i)BB(I"])
ki,l1,K2,12

2=

™Mz

e (i’ ® Z sc(il1|E|i'l2)c|l1)c el

<]

Sz

1

lil1) (il 1])E Z|I|2 )Wi'lo|) = (4.65)

(.Z

Now we can construct the map from the operator and vice vétsa.relationship
has the following properties:

§|H 2|~

=

Lemma4.5 1. E> 0iff € is a completely positive map.
2. E is an entanglement witnessadffs a positive map.
3. E is a decomposable entanglement witnessigfdecomposable.

4. E is a non-decomposable entanglement witnesgsigfnon-decomposable
and positive.

As an example we will give a proof of the "only if" direction tife second state-
ment. LetE € # (8 ® #¢) be an entanglement witness. Thenf|Ele, f) > 0.
By the AMIOLKOWSKI isomorphism the corresponding map is defined(@g =
Trg (EpT®) wherep € % ().

We have to show that

c(ole(p)l@)c =c(o|Tre (Ep™®) [@)c >0  V|¢p)c € . (4.66)

Sincep acts in Bobs space we get (using the spectral decomposition o

p=> Al (el ~ p'e = > Ailu) (| (4.67)
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where allA; > 0. Then
c{ele(p)l@)c = c(ol Y Tra(EA[Y )sa(dr])|@)c

= > Aisc(Ur, QIE[Ur, @)c = 0. (4.68)

We are now able to proof the- direction of theorem 4.3 or, equivalently, the
direction of theorem 4.4. We thus have to show that talgggto be entangled
there exists a positive map: % (#a) — A (#¢) such that(e @ Ig) p is not
positive definite.

If pis entangled then there exists an entanglement witMggsuch that

Tr(Wappag) <0 (4.69)
Tr (WABUAB> > 0 (470)

for all separableag. Wag is an entanglement witness (which deteagig) iff W,IB
(note the complete transposition!) is also an entangleminéss (which detects
pAz)te. We define a map by

£ B — B(AR)
£(p) = Tra (W/IcPAT\’é)

where dims¢ = dimJ#g = M. Then

(4.73)

(e®1Ig)(paB) = Tra <W;Cp,1:’é> =Tra (WAT(% PAB) = pcs (4.74)

where we used that Lemma 4.1 ane=TTpo Tc.
To complete the proof we will show th@tg # 0. With the maximally entangled

13This holds because
(efl\Wiglef) = (e f*[Wagle"f*) > 0 (4.71)
(soW,IB is positive on product states whé¥g is) and
Tr (WagPAs) = Tr (Waspas) < O (4.72)

(it detectsplp).
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state|y " )cg = \/_1M i lii)ce Where{|i) } denotes a real, orthongonal basis we find
ce(Y | Tra <WA§PAB> [ M B(ii| Tra <WA§PAB> Z lii)e
1

MZ rA( ‘WA((::“)CB( ‘pAB|J>>
1]

Tra(c(J[Wacli)cs(ilpagli)s)

|
§|H 2l §|H

Tra(Tre (Wacli)ec(il) Tre (pasli)es(il))

[

TABC(WACPABX| cB \z“ BC J\)

J\ /

-~

Ics ]lBC

1
= MTrAB(WABpAB> < 0. (4.75)

This concludes the proof that there exists a raayith £(p) # 0.

4.2.5 Comparison of Witnesses and Maps

In this section we developed a strong relation between gtearent witnesses
and maps. Notice that an entanglement witness only givesamgition (namely
Tr(Wp) < 0) while for a mape ® Ig)p has to be positively definite, i.e. there are
many conditions that have to be fulfilled. Thus a map is mugingger.

This can also be seen from the fact that if the map defggisi.e. if

Tra (WACp,Ig> — B <0 (4.76)
then it detects also
MePaBMg, = PAg (4.77)

whereMg is invertible (detMg) # 0). This operation in general changes the trace
So it corresponds to a partial measurement. NoticeMlgainly acts in Bobs space
and thus

Tra (WAC (Phg) TA) = Bhc = MgPecM_. (4.78)
Then if there is ay) € J#g such that
(W]peclY) <O (4.79)
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it follows that

A / : / \ 71
(WPecly) <0 with |¢) = (M) (W) (4.80)
because
~1
(¥IMg Mg ecME (ML) 14 <0, (4.81)
1 —

1

l.e. the map also detecMBpABM,‘;. A map that detects one entangled state thus
detects a complete family of states. This means that giveitreess that detects
pas We are able to construct a corresponding map that deteatsmtygbag (and all

the other states detected by the witness) but M@pABMg which does not have

to be detected by the witness since it is in general not plestlsay whether

Tra (WABMBPABM;EE,) <0 or >0 (4.82)
While the witnesses are much weaker in detecting entangieme will show

in chapter 6 that this concept is able to provide a more daetailassification of
entangled states.
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5 Classification of Separable States, Entanglement
Witnesses and Positive Maps

To classify separable states, entanglement witnessesdBil\fositive maps (PM)
we want to remind the reader especially of theorem 3.3 anditefi 4.4. We

denote the space of separable states @ittnd the space of PPT states with
whereSC P. The following classification is based on [17].

Lemma 5.1 Let & be an edge state andj¥- P+ Q'8 with R{P} = K{&} and
R{Q} = K{d'®} then

W=Ws—¢l (5.2)
is an non-decomposable EW for

O<e<g= ‘inff><e, flWsle, f). (5.2)
e?

As shown in egn. (4.33) is a witness which detects the PPT entangled edge state
0 and is thus non-decomposable (by definition 4.3).

Lemma 5.2 The stateo is separable iff for all EW’s tangent to B (Wo) > 0.

The direction=- is fulfilled simply by definition of the witness. So we only leav
to show the other direction.

Proof:

Supposer ¢ S. Then3aW with Tr(Wo) < 0. Now we can calculate

&= ‘inff><e, flW|e f) > 0. (5.3)
e>

If o = 0thenW is tangent tdS. But we required TfWo) > 0 for anytangentV
which contradicts the assumption(Wo) < 0.

If € # 0 thenW =W — &1 is tangent td. But we required T(Wo) > 0 for any
tangentV which contradicts the assumption (\ﬁ’/d) <Tr(Wo) <O0.

This leads to the following

Lemma 5.3 If a decomposable witness W is tangent to ppahen for any de-
composition as in lemma 3.2 W must also be tangent todPaaid simultaneously
to S atps.

Proof:

Tr(Wp) =0=Tr(W(Aps+(1-A)3J))
= ATr(Wps) + (1—A) Tr(W5) >0 (5.4)
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The first addend is not negative becawsds separable and the second addend
IS not negative becaus¥ is a decomposable witness adds a PPT state (c.f.
eqn. (4.10)). Thus TWps) = Tr(WJ) = 0. Note that the figures 1, 2 and 4 are
therefore misleading.

Prop. 5.1 If an EW W which does not detect any PPTES is tangent to P at some
edge staté then it has the form:

W=P+Q'e (5.5)
with R{P} C K{&} andR{Q} C K{o&"8}.

Proof:
If W does not detect PPTES then it has to be decomposabile, i.e.

W=P+Qe. (5.6)
Since T(WJd) = 0 andP, Q > 0 we must have TiPd) = 0 and
Tr(Q™®5) =Tr(Qd'®) =0 (5.7)

which meansR{P} is orthogonal to the range @ (i.e. it is in the kernel) and
R{Q} is orthogonal to the range df'e.

Prop. 5.2 Any nd-EW W has the form
W=P+Q™—¢l  with (5.8)
O<e< ‘inff><e,f|P+QTB|e,f) (5.9)
e?
and there exists an edge staidor which P, Q fulfill
R{P} CK{&} R{Q} CK{a™}. (5.10)

Proof:
Consider an EW

W(A) =W +A1 (5.11)

which is by lemma 5.1 decomposable for- Ag (calledgg there) and non-decomposable
forall A < Ag. So for anyA < Ag it detects at least one PPTIp%. Since the set of
PPTES is compact the seriesmf converges to the PPT entangled siate By
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constructionN(Ag) is decomposable and thus does not detect any PPT entangled
states (lemma 4.2) which means that

Tr (W(Ao)py,) =0 (5.12)

SoW(Ap) is tangent tdP at p,,. Thus by lemma 5.3 there exists an edge state
with

Tr(W(Ao)d) =0. (5.13)
By proposition 5.1 we know

W(Ag) =P+Q'® (5.14)
and thus

W=P+Q™®—¢l (5.15)

with € = Ag. HenceW is non decomposable for all e < Ag with R{P} C K{d}
and RIQ} C K{&®}. Using lemma 5.1 we know

Ao = |inff><e, fIWsle, f). (5.16)
e?
Prop. 5.3 As an extension to proposition 5.2 we consider a nd-EW W dbthe
W=P+Q™8—¢1  with (5.17)
0<e< |inff>(e,f|P+QTB|e,f) (5.18)
e7

and someHILBERT spacesi/; and .77, which fulfill
R{P} L .7 R{Q} L 4. (5.19)
1. There exists no vectee, f) € 77 such thate, f*) € 4.

2. If Py, (Py) is a projector ontas7; (4) then
R{Tre(P,s)} =R{Trs (P%)} (5.20)
R{Tra(Ps)} =R{Tra(Py)}. (5.21)
3. Forxe {a,b} we have
dim.z > max(r{Tra(Px) },r{Tre (Px4)}]. (5.22)
4. Conjecture: There exists no product vederf ) with

(e fIPyle f)=0 (5.23)

where xe {a,b}.
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5.1 Separability in2 x N Composite Quantum Systems

We will now focus on quantum systems ¥ ® CN dimensions. An example of
such a system is a two level atom coupled to an harmonic aswillTo learn about
separability of these states we will again make use of thdaaedf subtracting
vectors (see Section 2.3). The results presented here caoubé in [20]. In
what follows we will always denote an orthogonal basi€fas{|0),|1)} and an
orthogonal basis icN as{|1),...,|N)}.

Since we want to subtract product vectors front is important to know in which
cases such product vectors can be found in the kernel ortige Ep. Therefore
we start with

Lemma 5.4 Any subspace? C C?® CN with dim(#) =M > N contains an
infinite number of product vectors. If M N it contains at least one product
vector.

Proof: Let

be a basis in the orthogonal complementst We can write it, using the orthog-
onal basis specified above, as

N

W) = > [Ail0,Kk) + Bi[1,K)] (5.25)

k=1

with AandB being(2N —M) x N matrices. We can always write a product vector
lef) e C?@CN as

N
e f)=(al0a+|Da)® > flke, acCu{x}, fxeC. (5.26)
=]

There exists a product vector i iff there exists a solution ofyi|e, f) =0, i.e.
if all |¢%) are orthogonal toe, f). This conditions yields

(aA*+B*)f=0. (5.27)

In the caseM > N the number of variables is bigger than the number of equa-
tions and thus there exists a solution for every gigen.e. we can find an in-
finite number of solutions. FAvl = N we can find nontrivial solutions only if
det(aA* +B*) = 0 but since this is a polynomial im a solution witha € C can
always be found.

Takinga € R, i.e.a = a* in the caseM > N we immediately get
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Lemma 5.5 Any subspace? C C?® CN with dim(#) = M > N contains an
infinite number of product vectors of the form

e, f)  where &) =|e). (5.28)

In the following we will work with two subspace#4, .7 € C?® CN. Especially
we will choose 44 = R{p} and.#% = R{p'~}. Furthermore leM; = dim .7,
M, = dim J#3. We define the orthogonal subspaces

Kip= {|¢i11f>, i12=1,...,2N— MLZ} (5.29)
where
1,2 N 12 12
W) = 3 (A0 +BRIL K| (5.30)
k=1

with (2N — My 2) x N-matricesA andB.

Lemma 5.6 1. If M{+ My > 3N then there exists an infinite number of product
stategle, f) € 7 such thate*, f) € 7.

2. If M+ Mz < 3N then there exists a product staee f) € J7 such that
le*, f) € 7% if we can find aro such that there are at most-N1 linearly
independent vectors among the following vectors:

{a (Wt0) + (1), o™ (YP|0) + (wP|1) } (5.31)

Proof: Because the subspaces orthogona#tand.” are spanned by!) and
|@?), respectivelyje, f) has to fulfill

<'1Ui1|eu f> =0 and <L0Ui2|e*7 f> =0. (532)

Writing |e, f) as in equation (5.26) we have

—h

[C{(Al)* + (BZI_)*]
[a*(AZ)* + (BZ>*]

=0 (5.33)
=0, (5.34)

—h

which can be read as\4— M; — M, equations forf. In the caseM; +M, > 3N
there are more parameters then equations and there exdtgiarss for eachx,
i.e. for eache).

ForM1+ M, < 3N consider th¢4N —M; —Ma) x N dimensional matri (a, a*)
composed ofa (Al)* + (B1)* and a*(A?)* + (B?)*. There exists a solution of
(5.33, 5.34) only if the rank of this matrix is smaller thidn This is the condition
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imposed in the lemma. It is interesting to further invedtgthe conditions that
have to be fulfilled to obtain a solution. In the casé&/hf+ M, = 3N this condition
is defM(a,a*)] = 0 for somea. The determinant is a polynomial of degree
2N — Mz inin a and of degreel® — My inin a*.

There is no way to know in advance how many roots such a poljaidmas,
nor if it has roots at all. E.goa* 41 = 0 has no solutions whiler — (a*)? =

0 has infinitely many (all real numbers). B = P it is possible to reduce the
equationP(a,a*) = 0 to an equatiorQ(a) = 0 containing onlya by solving
P*(a,a*) = 0 for a* and substituting int@(a,a*). In the end however it has
to be checked whether the solutions@(fa) = 0 fulfill the original equation. As
an example considé¥a,a*) = (a*)?—a = 0. ThenP*(a,a*) =a?—a* =0
and thuso* = a?. Substitution leads ta* — a = 0 which has the four solutions
(0,1,e7127/3 27/3) These are indeed also solutiongtd')2 — a = 0.

If M1+ M2 < 3N then all theN x N-subdeterminants d¥l (a, a*) have to vanish
(i.e. the determinant of the matrix build from the fildtrows, the determinant
of the matrix build from the firsN — 1 rows together with théN + 1) row and
so on). This implies that several polynomialsaranda™ have to have common
roots.

The main theorem of this chapter makes a statement on theabdjg of PPT
states supportéfion C2@ CN. For this we first note

Lemma 5.7 If p is PPT and supported of? ® CN thenr{p} > N.

Proof: Let us assumegp} < N. Then dimK{p} > N and from lemma 5.4 we
know that there exist a product vecterf) € K{p}. Now we can use lemma 2.3
to see that for somg) we can write

p=py+AET)E T (5.35)

such that {p5} = r{p} — 1 andp) is still PPT.p} is supported or"? @ CN-1,
Repeating this we can subtract more projectors on prodwtorgeuntil finallyp

is written as a sum of{p} such projectors. But since we assumég}y < N,
there surely is a vector in Bob’s space orthogonad wehich is a contradiction to
the assumption that is supported o2 @ CN.

In the case §p} = N it is furthermore possible to make a statement about the
separability ofp as given in the following theorem:

Theorem 5.1 Let p be PPT and supported ofi? @ CN. If r{p} = N thenp is
separable.

14A statep acting inC?® CN is supported o2 @ CM if the minimal subspace? C CN such
that R{p} C €?® # has dimensioiv.
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Proof. The proof is given by induction: The calle= 1 is clear. Now assume
that the theorem holds fod — 1. Then if {p} = N then dimk{p} = N and from
lemma 5.4 there exists a product ved®if ) in the kernel ofp. Then, using again
lemma 2.3, we can write

p=ps+AlE f)(e f]. (5.36)

p, has rankN — 1 and is supported a2 @ CN~1 and thus we know it is separable.
There are two easy consequences of this theorem and thertasid:

Lemma 5.8 If p is separable or? @ CN then it can be written as a convex sum
of projectors on N product vectors.

Lemma 5.9 If p is PPT, supported oft?® CN andr{p} = N thenr{p™} = N.

Finally we can make a statement about separability in theigpease thap is
not only PPT but alsp = pTA:

Theorem 5.2 If p is supported orC? ® CN andp = p'4 thenp is separablé®.

Proof: The case dil =1 is clear. Now supposing that the cdde- 1 is true we
will proof it for N. If r{p} = N thenp is separable by theorem 5.1. Otherwise
as long as{p} > N then by lemma 5.5 there exigesg) = |€*,9) € R{p}. Thus
there is/\ > 0 such that

p=p +Aegied, p™"=(p)""+Ale,g)e.g (5.37)

andp’ = (p’)TA and {p’} =r{p} — 1. This subtraction of product projectors can
be repeated untip’} = N.

5Notice thatp ™ does not work!
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6 Schmidt Number Withesses

6.1 Introduction

Let’'s consider the following problem:

Given a mixed state described pyhow can the entanglement be described (es-
pecially: is the state entangled at all) ?

So far we have used witnes3afsfor this detection where

Tr(Wo) >0 Tr(Wp) <0 (6.1)

for all o € S and for some entangled. We further found that decomposable
witnesses

W=aP+(1-a)Q™ (6.2)

cannot detect PPT entangled states.
For bipartite pure states we have

Def. 6.1 |¢) € 73 ® 4 with dimsZa =M < dims#, = N hasSCHMIDT rank r
if its SCHMIDT decomposition reads

r<m

W) = ;aila)@fi) (6.3)

i=
with a; > 0andy| a? = 1.

The unique 8HMIDT rank!® describes the number of entangled degrees of free-
dom.

The problem arises when mixed states are considered bett@usaloes not exist

a unique $HMIDT decomposition for them. Instead we define:

Def. 6.2 SCHMIDT number k of the state is defined as
K = min{rmax} (6.4)

where kaxis the maximun®SCcHMIDT rank within a decomposition and the mini-
mum is taken over all decompositions

For every mixed statp there exists an infinite number of developments, i.e.

p= ZHIW{‘)(LIIH, (6.5)

16¢ f. definition 2.2 for a discussion.
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Figure 5: Schematic plot of the set of states with differeati®@IDT number
embedded in the space of all states. The subscript denetasmhber of entangled
degrees of freedomwit§ C S C S--- C & C -+ C Su.

where|y") is a pure state of SHMIDT rankrj, is not unique. In every possible
decomposition the maximumcBiMIDT rankrmnax Of the pure stategp'') has to
be determined. The@HMIDT number is the minimum over all,ax (i.€. over all
possible decompositions).

This definition was introduced byERHAL and HORODECKI.

It is thus possible to catagorize every stathy its SCHMIDT number. We denote
the whole space gf by Sy (remember: dindZ = MN) and the subspace of states
with SCHMIDT number< k asS..

& is a compact convex subsetSy.

How is it possible to determine thecBMIDT number of an arbitary stapeacting
on 74 ® 4 ? The solution is based on the previous discussions regpeditan-
glement, i.e. we have to find some kind aft8IDT number witnessgNW. In

a first step we generalize the concept of the edge states:

Def. 6.3 J is an k-edge state iff| ") € R{d} with r <k, i.e. there exists no state
with SCHMIDT number smaller than k in the range of

Lemma 6.1 Anypx € S can be written as

ok=(1-p)p-1+pd 1>p>0 (6.6)
whered is an k-edge staté andpy_1 € Sc_1.
Lemma 6.2 The k-edge staté of eqn. (6.6) has generically lower rank thap

Lemma 6.3 The k-edge staté of eqn. (6.6) containall information concerning
the SCHMIDT number k ofpy.

Y7A proof of this and the following lemmas can be found in [13,24].
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Def. 6.4 A hermitian operator W is called cHMIDT number witness (SNW) of
class k iff

VoeS . 1:Tr(Wo) >0 (6.7)
dJpe&:Tr(Wp) <0 (6.8)

Therefore every witness which detects entanglement issalBtHMIDT number
witness of class 2.

Lemma 6.4 Every SNW that detectsdetects als@.

Proof:

0>Tr(Wpx) = (1—p) Tr(Wpk-1) + pTr(W9) (6.9)
e Trws) < Pt wpe ) <0 (6.10)
P >0

with 0 < p < 1 and definition 6.4.
Thus the knowledge of all SNW of dtledge states fully characterizes alE ..

Lemma 6.5 Given a k-edge staté, a projector P on the kernel oy and ¢ =
inf < (W<¥|P|y=¥) > 0, then the operator

W=P—-¢l (6.11)
is aScHMIDT number witness fod, i.e.

Tr(Wd)=0—-e<0 (6.12)
Tr(Wpo) > 0 (6.13)

wherep_ = |@<K) (p<¥| is an arbitary state witlBcHMIDT number smaller than
K.

Proof: Since R} does not contain anyp<K) by definition they must be all in
the kernel. Furthermored} = R{P}. So no|¢<K) can be in the kernel &® and
thuse > 0. Also we have

Tr(Wp<k) = Tr(Pp<k) — Tr(¢1p<k) > € — € =0. (6.14)

Lemma 6.6 Every kSCHMIDT witness can be written in the canonical form
W=W-—¢l (6.15)

with R{W} = K{&} with some k-edge stateand0 < & < inf ycs , (WIW|y).
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Figure 6: Schematic description of tangent SNW.

Proof:

SinceW is an arbitary witness it has to have at least one negatiweesjue. For
simplicity consideM to be in its eigenbasis. Constrift=W + €1 wheres is
equal to the absolut value of the largest negative eigeavay. By construction
the rank oW is reduced by (at least) one and thuS/K} =# 0. SinceW is a SNW
we know that{ <K\W|@<¥) > & > 0 and thus now<X) is in the kernel ofV.

Def. 6.5 A k-SCHMIDT witness W is tangent to.S; at p if 9 a statep € §_1
such thaffr (Wp) =

Def. 6.6 An SNW W is optimal if there exists no other SNYWWMch detects more
states than W.

Looking at figure 6 motivates again that optimalr811DT witnesses are tangent

to S..
6.2 Example for a Schmidt Number Witness
Lemma 6.7 The operator W. 77, — 7,

m .

3

i) (6.17)

1
P=|¢m)(Ym| and  [yn)= 7

is a SCHMIDT number witness of class k.
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Proof:
The maximum 8HMIDT number is of coursen. First we show thatV detects a
state withm > SN > k:

Tr (Wg ) (W) = "Zk 1ZHIJJ (KK
r

=1- (k—l)%l_l_m

This is negative for alt > k— 1 and positive otherwise. St detects e.g|y ).
Furthermore any statg/<¥) can be written as

(6.18)

k-1 k-1 o
=S =S P qle) 6.19
Pk—1 i;pp i;p j;qm/—’ Y| (6.19)

with ipi=1,Y;0j=1and 0< p; <1,0<gj <1, i.e. as as sum of density
matrices of rank smaller thdawhich in turn can be written as a convex sum of
pure states.

We intend to find a lower bound for TWpy_;), i.e. an upper bound for TPpy_1).

In eqn. (6.19) we replacg; with the maximal entangled statg,” ;) as an up-
per estimate and perform the sum. But for this state we haeady} shown that
Tr (W ) (W 4)) > 0.

This witness is furthermore optimal (not shown here).

Note also that this withess is decomposable:

1 2PJA
sz+QTA:(1—le)n+k_‘""l (6.20)

Here P4 is the partial transposed projector onto the antisymmetrizspace of

CMeC™.
As an example consider22 where we can only hake= 2 and we have

wt(1-) n+§(|<p—><<p-|)“:2|w-><w-|
—2(15- I W) =1- 5w - (6.21)

where we used the®B.L states (c.f. egn (2.8)) and their relation as discussed in
section 4.1.3.
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PPT States (S1,S2 and S

Separable States (<

Figure 7: In 3x 3 all PPTES have &MIDT rank 2.

6.3 The3x 3Case

By lemma 6.7 we know already a SNW of class 2 and 3:
W=1-3P class 2 (6.22)
W=1-— gP class 3 (6.23)

This motivates the following

Conjecture 6.1 In s3® 73 all SCHMIDT number witnesses of class 3 are de-
composable which is equivalent to all PPTES h&eeiMIDT number 2.

Now we can describe the witnesses more in detail:

Lemma 6.8 Any SNW of class 2 has the form
W=Q-¢l (6.24)
whereK{Q} does not contain any product vector, ir¢Q} > 5.

Proof:

According to lemma 6.8V can be written this way wher® — according to
lemma 6.5 — is a projector on the kernel of an 2-edge state

K{Q} = R{d} so by definition of the&k-edge-state 6.3 {Q} cannot contain any
state with £HMIDT rank 1, i.e. any product vector. As shown in footnote 10 on
page 27 the maximum subspace created by product vectorbdnastension 5
and thus the dimension of{lQ} must not be larger then 4, i.e{@} > 5.
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Lemma 6.9 Any SNW of class 3 has the form
W=Q-¢l (6.25)
wherer{Q} > 8, i.e. W has at least 8 positive and at most one negative eadjgzv

Proof:

Again by lemma 6.8V can always be written in this form. Simmilarly{iQ} =
R{d} which means by definition 6.3 that{lQ} cannot contain any state with
SCHMIDT rank 2.

Suppos& had a two dimensional kernel. In this case choosig and|y») lin-
early independent and from the kernel we havéWy?)(¢?|) < 0 with |2) ~
|Yn) + [Yr) — which is a contradiction becau¥¥ should only detect states of
SCcHMIDT number 3. Thus KQ} <1 or R{Q} > 8.

Theorem 6.1 In 3 ® 773 all PPTES with rank 4 have SN=2.

Proof:

0 is a PPTES with{d} = 4 and thus dimKd} = 5. Therefore by footnote 10
(see also proof of lemma 6.8) there is at least one produtbvgs, f) € K{d}.
Sinced is a PPT staté™ > 0 and thuge;, f) € K{5TA}.

If we denote an orthogonal bages) with i = 1,2, 3 in J#a we have

(e1d]a, f) =
(€107 4leg, )

i=23 because (6.26)

0
0 (6.27)

and thereforéd|ey, f) must be orthogonal t®;), i.e.

dlex, f) = [e2,0) +[es,h) =: [Y?) (6.28)

which has obviously 8HMIDT rank 2.
Applying lemma 2.1 (c.f. egn. (2.25)) we can write

1
5 =0 + AW (y? with  A=— -~ 6.29
and {d'} = 3.
Now
d'ler, f) = dlex, f) — AlY?) (¢Pler, f) =0 (6.30)
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becauseey, ) is in the kernel o® and orthogonal téy?) and
5/|e27 f> = 5|e27 f> —/\|4’2><4’2|927 f>
1
= %) = —— ¥ (Yl f) = 0 (6.31)
(w2 514
——
|€2,f)
but
&'les. 1) = (8~ AlY?) (7)) les, T)
= |®?) = |e2,G) + |es,P) (6.32)
Again using lemma 2.1 we have
3 =8"+ADH (P’ F'>0 (6.33)
and (8"} = 2,A = ((#?3|®?)) L.

It is shown the same way as before thdte, f) = 0 fori = 1,2,3. Sinced” acts
in 3x 2 and it is orthogonal tof ) € 77, 8" has at most SN 2. Now in the sum

& = 8" + A&7 (2| + A[Y2) (¢ (6.34)

every term has at most SN 2 so the sum can have at most SN 2. riget\se
started with an entangled state in the first placaust have SN 2.
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A Generalization of the Schmidt Decomposition for
the Three Qubit System

A.1 Motivation

So far three approaches regarding this problem have beee: mad
1. The Barcelona approach [23] and also [24].
2. The approach from®BERY et al. [25].
3. The Innsbruck approach [26].

While the first two approaches are very similar, the Innshaproach is differ-
ent.

First we note that entanglement is directly linked to quamtwon-locality. If two
states|() and|yr) can be transformed into each other with probability one by
use of only local operations and classical communicati@m thoth states have
the same entanglement which is equivalent to the posgilbditransform one
state into the other by unitary transformations:

Yn) ~ |Yp) & (A1)
Y1) =U10Up® - @Un|yk) (A.2)

if |g) € CH®-..®C%. This motivates to look at bipartite systems with
), [g) e CH®C%  and di <dp. (A.3)

If we expand both states into an orthonormal system

dy

o) =S aili (A4)
i=1
dy

)= ajlii) (A5)
=1

then|yn) ~ |Yr) < a; = [ Vi. If we have e.g. 3 BHMIDT coefficients and we
remember that states have to have the norm one, we can write

1=a?+a%+a2 witha; >0 (A.6)

and interpret this as a point in entanglement space.
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Before continuing, we remember how local transformatioctsoam a two qubit
state. If

W)=Y tili)j) e C2 C?
1]

= 100/00) +101/01) +110/10) +112[11)  with (A.7)
T = < oo t‘”) and (A.8)
tio ti1
0
v =07 (]) (n9)
B

then transformations regarding the first indéxdre multiplications of unitary
operatorsl{;) from left while transformations regarding the second (i are
multiplications from right (withJ,). Thus we can write

T =U;TU, T= uf( Aol )\02 ) U, (A.10)

|) = A1]00) 4+ A2|11) in the new basis. (A.11)
Now we want to generalize the decomposition to states
) € C20C?@C2 (A.12)
Using the same notation as before we can write an arbitratyg at

W) = Ztijk|ijk>~ (A.13)
]

To obtain the maximal physical content of that state (in @sitto mathematical
degrees of freedom) we want to obtain a basis in which the maxhumber of
t”ijk =0, i.e. we want to remove all the superfluous information dweltad choice
of the local bases. This is equivalent to diagonalizing ademith three indices.
The key question is how many coefficients can be always twamsfd to zero.

A.2 The Barcelona Approach

Since it is difficult to explicitly write down matrices witthtee indices we split
the matrixT into two matrices:

tooo tooi t100 ti01
S T = A.14
0 ( toio to11 ) ! < t110 t111 ) ( )
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Using this notation local transformations on the secondd}hsubsystem are
again simply multiplications of the respective matricesirleft (right). Trans-
formations on the first subsystem with

_( a B
u-( 5 L) (A15)
UUT =1, detU = 1 and thuga|?>+ |B|?> = 1 mix the two matrices:
To=0aTo+BT (A.16)
T =—BTo+a"T (A.17)

Since we still have a free parameter in the transformationegaire
det(Ty) = 0=det(aTo+Ty) & def(To+XTy) =0 (A.18)

wherex = g an unbound variable. The determinant is a quadratic equé&tio
complex values and is thus always solvable. We denote thi@as withxg and
X0-

Now we choose transformations in system two and three sath th

A O
/ R /A 0
U T{Us = T4 = ( 0 0o ) . (A.19)
This is possible since dgi,TjUz) = detU,U3) - def(Ty) = 0 and thus at least one
eigenvalue vanishes. With this choice of transformatia@sbcond matrix now
reads

el Az ) (A.20)

UoT1U3z = < As A

with Aj € R*, 0< Aj < 1 andy;A2 = 1. All phases excepp are absorbed by
redefining the local bases by a phase factor, which is alwagsiple.
Thru this smart choice of local transformatidigs now reads

@) = Ao|000) + A1€?(100) + A5|100) + A3|110) 4 Ag|111), (A.21)

I.e. we have now 6 real parameters. In general we cannot base¢han six. This
can be shown as follows:

The entire space (regarding its product natur&)dsc C2 x C2. It has the complex
dimension 22-2 = 8 or accordingly 16 real parameters. There are severallgessi
counting mechanisms for the minimum number of parameters:
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1. In everyC? subspace we can describe the most general basis for states by

\o>:é@(\/£é¢) \1):(-:4'@(%). (A.22)

with p € {0...1} and ¢,0 € {0,2rr}. Since the overall phas® corre-
sponds to a rotation of the coordinate system in this sules(atocal ro-
tation) it bears no physical relevance and we can consideratir choice
of tjjx. Therefore we need two real parameters for every subspacthas
six parameters for a general statelifn® C? ® C2. Thus we can choose an
new basis by an appropriate rotation which transforms theaneing five
complex parameters to zero.

2. We must be capable to parameterize the most generaldraretion on the
states. Such transformation belong to

U (1) x SU(2) x SU(2) x SU(2). (A.23)

Each local transformation is described by a special unitansformation (3
parameters instead of 4 becausd.let 1) and we can globally add a phase
(or collect all local phase to one global phase). So we hav@ ¥ 3 =10
parameters for the transformation and thus 6 paramete@memthe state
independently of the basis chosen.

In egn. (A.18) we could have have chosen the solutgimstead ofxp; in this
case we would have gotten

W) = Ao|000) + A1€/#|100) + A 101) + A3|110) + A4/111). (A.24)
It can be shown that if we require
O<g¢p<m (A.25)

(or alternativelyrt < ¢ < 2m) the parameters are uniquely defined. Therefore we
can compare the entanglement of two states by decomposih@bd comparing
the 6 parameters.

It should be noted here that separable states of course hivereeA; # 0. Be-
sides this criteria, there is is no measure of entanglementit is impossible to
tell if one state is "more entangled” then another one.

A.3 The Sudbery Approach

Again we describe an arbitrary state by

W) = Ztijk“jk) (A.26)
]
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and we want to obtain as many zero parameters as possiblechigva this we
choose a new basis which obeys

max|(a, B, y|@)|? =ty (A.27)
G,B,y

This fixes the basis in each subsystem:

LA = |a) fixes|0)a (A.28)
|1L)g:=|B) fixes|0) (A.29)
Lc:=1y) fixes|0)c (A.30)

We again obtain the same form for the wave function:
W) = A0|000) + A1€?(100) + A5|102) + A3|110) + A4/111) (A.31)
i.e.tj10="to11="1t101=0. If €.9.tp11 # O then|y) would contain the two terms
to12/010) +ty14/113) = (al0) +b|1)) [11) = |a’By). (A32)

It can be shown that if e.dg1; € R™ then

11— tho
> 2. <1 (A.33)
11177 ‘011
and therefore
3b such that(a’By|w)|* > [(aBylw)|? (A.34)

which violates the maximum requirement in egn. (A.27).

The SUDBERY-criteria cannot determine whether the decomposition iguenor
not. Its main advantage lies in the fact that it can be easilgreled to system
with more qubits.

A.4 The Innsbruck approach

If we look at pure stategy € C? ® C? we know that we can always write them as
Y = ap|00) + 01|11 (A.35)

where the local basis does not need to be orthogonal.
For generic pure stateg € C?® C? ® C? we still need only two product states:

|¢) = a|000 + Blabo (A.36)
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Here also(0|a) # 0, (0|b) # 0 and(0|c) # O are possible.

Proof:

From eqns. (A.20) and (A.24) we know the two decompositiassible. In these
cases we see that

A{0lY)asc = |0)8|0)c (A.37)
A(0|Y)asc = 0)8[0)c (A.38)

are product states. This means we have to show
A(|Y) ~ [bojec AlaL|y) ~|00)sc (A.39)

with <a|aL) =0.
When we created the states we used the requirement

defT))=0 < P +qgx+r=0 (A.40)
in eqn. (A.18) which yields two solutiong andxg. But if
P—4pr=0 wehave Xxy=Xg (A.41)

which cause$0) = |0).
It can be shown that in this case

) = Ao|000) + A1€?|100) + A2|101) + A3/110) (A.42)

i.e. A4 = 0. In this case the Innsbruck decomposition is not possible.
If A4 # 0 we rewrite eqn. (A.20) as

W) = 40]000) + AV [100) +A{2[100) + A2|101) + A3|110) + A4 111)
- |d)|00>+|1>< { \OO)+)\2|01>+)\3|1O>+)\4\11)> (A.43)
whereA(Y + 112 = 1169 and|d) = A0|0) + A Y|1).

Now the second term is only a two qubit system where we can hsedlar
decomposition (2.2) to diagonalize it:

2
(21100) + A2/01) + A3|10) + A4l11) = ZAJM ZlBi|i,i> (A.44)
i=

with the diagonal matriB = UAVT.
To realize the second term in the Innsbruck decompositi@qof (A.35) we have
to require that eitheB; =0 orB, =0, i.e.

detB) = 0= de{UAV") = detU) deA) detVT) = det(A) (A.45)
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sinceU andV are unitary matrices. This can be rephrased as

0=2APA4—A2hs s AP= % (A.46)
4

which we can fulfill for anyA; (as long as\4 # 0 as mentioned above) as we can

always adjust With\l(l).
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