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Lecture 1: Decoherence and the quantum origin of the classical
world

Lecture 2: Decoherence and quantum information processing,
models and examples

Colaborations with:  W. Zurek (LANL), M. Saraceno (CNEA), D. Mazzitelli
(UBA), D. Monteoliva, C. Miquel (UBA), P. Bianucci (UBA, UT), L. Davila

(UEA, UK), C. Lopez (UBA, MIT), A. Roncaglia (UBA, LANL), J. Anglin (MIT),
R. Laflamme (IQC), S. Fernandez-Vidal (UAB), F. Cucchietti (LANL),

• Decoherence, an overview

• Decoherence for classically chaotic systems. Why is it interesting,
why is it different.

• Decoherence from complex environments

• Using qubits to learn about environmental properties (power of
one qubit: use a single qubit to learn about properties of many)



         DECOHERENCE: AN OVERVIEW (I)

• DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION:

HILBERT SPACE IS HUGE!!:
ALL STATES ARE ALLOWED

CLASSICAL STATES: A
(VERY!) SMALL SUBSET

• HOW TO EXPLAIN THE ORIGIN OF A CLASSICAL WORLD FROM A QUANTUM
SUBSTRATE?: WHY IS IT THAT SOME SYSTEMS ARE ALWAYS FOUND
IN “CLASSICAL STATES”?

• DECOHERENCE PARADIGM: CLASSICALITY IS AN EMERGENT PROPERTY

• DYNAMICAL SUPRESSION OF QUANTUM SUPERPOSITIONS,
EMERGENCE OF PREFERRED SET OF (POINTER) STATES

• INDUCED ON SUBSYSTEMS DUE TO THE INTERACTION WITH THE
ENVIRONMENT



         DECOHERENCE: AN OVERVIEW (II)

• THE BASIC PHYICAL IDEA BEHIND  DECOHERENCE IS VERY SIMPLE

• SYSTEM-ENVIRONMENT INTERACTION CREATES CORRELATIONS

• DECOHERENCE ARISES WHEN A RECORD OF THE STATE OF THE
STATE OF THE SYSTEM IS IMPRINTED IN THE ENVIRONMENT.

 SIMPLE EXAMPLE: DECOHERENCE IN A DOUBLE SLIT EXPERIMENT
(SYSTEM=CHARGE, ENVIRONMENT= E-M FIELD)

€ 

Ψ(0) = α ϕ1 +β ϕ2( )⊗ ε0

€ 

Ψ(t) = α ϕ1(t ⊗ ε1(t) +β ϕ2(t) ⊗ ε2(t)( )

€ 

Prob(x) =α
2
ϕ1(x)

2
+ β

2
ϕ2(x)

2
+ 2Re αβ*ϕ1(x)ϕ2

*(x) ε2(t) ε1(t)( )

INTERACTION WITH ENVIRONMENT
INDUCES DECAY OF FRINGE
VISIBILITY: DECOHERENCE



         DECOHERENCE: AN OVERVIEW (III)

€ 

ε2(t) ε1(t) ?HOW TO COMPUTE THE OVERLAP

A SIMPLE (EXACT) RESULT:

  

€ 

J1
µ = (e, e

r ˙ x 1(t))δ(r x −
r 
x 1(t))

  

€ 

J2
µ = (e, e

r ˙ x 2(t))δ(r x −
r 
x 2(t))

€ 

ΔJµ = J1
µ − J2

µ ⇒ ε2(t) ε1(t)
2
=1− P

€ 

ΔJµ
P= Probability that there is at least one photon emited from
the source              (which is a fictitious time varying dipole)

• ISN’T THIS TOO SIMPLE? (HOW MUCH CAN WE BUY WITH THIS SIMPLE IDEA?)

•THE IMPORTANT QUESTIONS: HOW IMPORTANT IS THIS PROCESS FOR
PHYSICALLY RELEVANT CASES (HOW MUCH DECOHERENCE? ON WHAT
TIMESCALE? WHAT ARE THE POINTER STATES, ETC).

€ 

ρ = TrE Ψ(t) Ψ(t)( )
=α

2
ϕ1(t) ϕ1(t) + β

2
ϕ2(t) ϕ2(t) +αβ* ε2(t) ε1(t) ϕ1(t) ϕ2(t) +α*β ε1(t) ε2(t) ϕ2(t) ϕ1(t)

INTERACTION WITH ENVIRONMENT INDUCES DECAY OF OFF
DIAGONAL ELEMENTS OF DENSITY MATRIX IN A SPECIFIC BASIS



         DECOHERENCE: AN OVERVIEW (IV)

• HOW IMPORTANT IS THIS EFFECT? NOT ALWAYS STRONG!

R

T

€ 

⇒ ε1(t) ε2(t) ≅exp −αβ 2O(1)( ) ⇒ SMALL...

α ≅1/137 β = R /Tc ε(0) = vacuum

Charges and dipoles: decoherence due to interaction with e.m. field in vacuum and relation
with Casimir effect, see “Decoherence and recoherence near a conducting plate”, F.D.
Mazzitelli, J.P. Paz and A. Villanueva, quant-ph/0307004, Phys. Rev. A 68, 062106 (2003).

• INTERESTING: THE EFFECT IS SENSITIVE TO THE BOUNDARY CONDITIONS (THAT
AFFECT THE SPACE OF STATES OF THE E.M. FIELD)

•QUIZ: CAN YOU GUESS WHAT HAPPENS WITH

€ 

ε1(t) ε2(t) ?

DOUBLE SLIT NEAR A
PERFECT CONDUCTOR

(DO WE GET MORE
DECOHERENCE?)



         A MODEL: QUANTUM BROWNIAN MOTION (I)

Quantum Brownian Motion (QBM): Paradigmatic model for a quantum open system

(realistic in many, but not all, cases: Caldeira-Leggett, etc)

System: Particle (harmonic oscillator)

Environment: Collection of harmonic oscillators

Interaction: bilinear

€ 

H = HS + HE + H int , HS =
p2

2m
+V0(x), HE =

pn
2

2mn

+
mnωn

2

2
qn

2
 

 
 

 

 
 

n
∑ , H int = λnqn x

n
∑ ,

PROBLEM IS EXACTLY SOLVABLE!. USEFUL TOOL:
EXACT MASTER EQUATION (EVOLUTION EQUATION
FOR THE REDUCED DENSITY MATRIX); B.L. Hu, J.P.

Paz and Y. Zhang, Phys. Rev. D42, 3243 (1992)

€ 

J ω( ) =
λn

2

2mnωn

δ ω −ωn( )
n
∑

TWO “PARAMETERS”: 1) INITIAL STATE OF
ENVIRONMENT (TEMPERATURE T), 2)

SPECTRAL DENSITY OF ENVIRONMENT

Our aim: Study evolution of the state of the system

‘State of the system’: Reduced density matrix

€ 

ρS = TrE ρSE( )

€ 

t = 0 ρSE (0) = ρS (0)⊗ ρE (0)Asumption (standard): Uncorrelated initial state



Time dependent coefficients are determined by spectral density and initial temperature

€ 

˙ ρ =− i HR +
m
2
δω 2(t)x 2,ρ

 

  
 

  
− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

Dressing (renormalization) Damping (relaxation) Diffusion (Decoherence) Anomalous Diffusion

         A MODEL: QUANTUM BROWNIAN MOTION (II)

GENERAL FORM OF THE MASTER EQUATION (VALID FOR ALL VALUES OF INITIAL
TEMPERATURE OF ENVIRONMENT AND FOR ALL SPECTRAL DENSITIES)

€ 

˙ ρ =− i HR +
m
2
δω 2(t)x 2,ρ

 

  
 

  
− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

• Frequency renormalization and damping coefficients: only depende on spectral density

€ 

δω 2(t) ≈ −2 dt 'cos(Ωt')η(t')
0

t

∫ γ(t) ≈ 1
Ω

dt'sin(Ωt')η(t')
0

t

∫ η(t) = dω sin(ωt)J(ω)
0

∞

∫

• Diffusion coefficients (D(t) and f(t)) depend on spectral density and temperature

€ 

D(t) ≈ dt 'cos(Ωt ')ν (t ')
0

t

∫ f (t) ≈ − 1
Ω

dt 'sin(Ωt')ν(t')
0

t

∫ ν (t) = dω cos(ωt)coth( ω
kT
)J(ω)

0

∞

∫



• Frequency renormalization and damping coefficients rapidly approach asymptotic values
(in a timescale fixed by the high frequency cutoff)

         A MODEL: QUANTUM BROWNIAN MOTION (III)

Ohmic environment

€ 

J ω( ) = 2mγω ω ≤ Λ( )

• Diffusion coefficients (D(t)
and f(t)) have initial transient
and approach temperature-

dependent asymptotic values



€ 

˙ ρ =− i HR +
m
2
δω 2(t)x 2,ρ

 

  
 

  
− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

Dressing (renormalization) Damping (relaxation) Diffusion (Decoherence) Anomalous Diffusion

Ohmic environment in a high temperature initial state

  

€ 

J ω( ) = 2mγω ω ≤ Γ( ),
kBT >> hΩ

€ 

γ(t)→γ, D t( )→ 2mγkBT, f (t)→ 0

Approximate master equation (ohmic, high temperature)

€ 

˙ ρ =− i HR ,ρ[ ]− iγ x, p,ρ{ }[ ]−D x, x,ρ[ ][ ]

Use this to investigate:

1) What is the decoherence timescale?,

2) What are the pointer states?

         A MODEL: QUANTUM BROWNIAN MOTION (IV)



DECOHERENCE IN QUANTUM BROWNIAN MOTION: MAIN RESULTS ARE BETTER
SEEN REPRESENTING THE STATE IN PHASE SPACE VIA WIGNER FUNCTIONS

  

€ 

W (x, p) =
dy
2πh

eipy / h∫ x − y /2 ρ x + y /2

• PROPERTIES:

W(x,p) is real

Integral along lines give all marginal distributions:

  

€ 

dx dpW1(x, p)W2(x, p) =
1
2πh

Tr(ρ1∫ ρ2)Use it to compute inner products as:

€ 

dx dpW (x, p) = Probability(aX + bP = c)∫

€ 

ax + bp = c

         DECOHERENCE IN QUANTUM BROWNIAN MOTION (V)



HOW DOES THE WIGNER FUNCTION OF A QUANTUM STATE LOOK LIKE?:
SUPERPOSITION OF TWO GAUSSIAN STATES

  

€ 

˙ W = H0,W{ }MB + D∂ 2
pp W +L

OSCILLATIONS IN WIGNER
FUNCTION: THE SIGNAL OF

QUANTUM INTERFERENCE. HOW
DOES DECOHERENCE AFFECTS THIS

STATE?

  

€ 

Distance L

Wavelength λp =
h

L

         DECOHERENCE IN QUANTUM BROWNIAN MOTION (VI)



  

€ 

˙ W = H0,W{ }MB + D∂ 2
pp W +L

  

€ 

Distance L

Wavelength λp =
h

L

  

€ 

˙ W = H0,W{ }MB
+ D∂ 2

pp W +L

Wosc ≈ A(t)cos(kp p)⇒A(t) ≈ exp(−Γt)

Γ = Dkp
2

DECOHERENCE RATE:
MUCH LARGER THAN

RELAXATION RATE  

€ 

Γ =DL2 /h2, D = 2mγ kBT, λDB =h / 2m kBT

⇒Γ =γ L /λDB( )2 ≈1040 γ, m =1gr, T = 300K, L =1cm

         DECOHERENCE IN QUANTUM BROWNIAN MOTION (VII)

MASTER EQUATION CAN BE REWRITTEN FOR THE WIGNER FUNCTION: IT HAS THE
FORM OF A FOKER-PLANCK EQUATION

  

€ 

˙ W = H0,W{ }MB + D∂ 2
pp W +L



EVOLUTION OF WIGNER FUNCTION: NOT ALL
STATES ARE AFFECTED IN THE SAME WAY!

         POINTER STATES, DECOHERENCE TIMESCALE (I)

€ 

ν

NOTICE: NOT ALL STATES ARE AFFECTED BY THE
ENVIRONMENT IN THE SAME WAY (SOME

SUPERPOSITIONS LAST LONGER THAN OTHERS)



WARNING: DECOHERENCE TIMESCALE OBTAINED IN THE HIGH
TEMPERATURE LIMIT IS ONLY AN APPROXIMATION!

         POINTER STATES, DECOHERENCE TIMESCALE (II)

  

€ 

˙ W = H0,W{ }MB
+ D∂ 2

pp W +L

Wosc ≈ A(t)cos(kp p)⇒A(t) ≈ exp(−Γt)

Γ = Dkp
2

EVOLUTION OF FRINGE VISIBILITY FACTOR IN AN ENVIRONMENT AT ZERO
TEMPERATURE FOR QUANTUM BROWNIAN MOTION (NON-EXPONENTIAL DECAY: CAN

BE UNDERSTOOD FROM TIME-DEPENDENCE OF COEFFICIENTS OF MASTER
EQUATION)



         POINTER STATES, DECOHERENCE TIMESCALE (III)

NOT ALL STATES ARE AFFECTED BY DECOHERENCE IN THE SAME WAY

QUESTION: WHAT ARE THE STATES WHICH ARE MOST ROBUST UNDER
DECOHERENCE? (STATES WHICH ARE LESS SUSCEPTIBLE TO BECOME

ENTANGLED WITH THE ENVIRONMENT)

POINTER STATES: STATES WHICH ARE MINIMALLY AFFECTED BY THE INTERACTION
WITH THE ENVIRONMENT (MOST ROBUST STATES OF THE SYSTEM)

Information initially ‘stored’ in the system flows into correlations with the environment

€ 

SVN (t) = −Tr ρ(t)ln ρ(t)( )( ), ζ (t) = Tr ρ2(t)( )

Measure information loss by entropy growth (or purity decay)

AN OPERATIONAL DEFINITION OF POINTER STATES:

“PREDICTABILITY SIEVE”

€ 

Ψ(0) Ψ(0)

€ 

ρ(t)

Initial state of the system (pure) State of system at time t (mixed)

t



         POINTER STATES, DECOHERENCE TIMESCALE (IV)

Measure degradation of system’s state with entropy (von Neuman) or purity decay

€ 

SVN (t) = −Tr ρ(t)ln ρ(t)( )( ), ζ (t) = Tr ρ2(t)( )
€ 

Ψ(0) Ψ(0)

€ 

ρ(t)

These quantities depend on time AND on the initial state

PREDICTABILITY SIEVE: FIND THE INITIAL STATES SUCH THAT THESE QUANTITIES
ARE MINIMIZED (FOR A DYNAMICAL RANGE OF TIMES)

PREDICTABILITY SIEVE IN A PHYSICALLY INTERESTING CASE?

ANALIZE QUANTUM BROWNIAN MOTION

USE MASTER EQUATION TO ESTIMATE PURITY DECAY OR ENTROPY GROWTH

€ 

˙ ρ =− i HR +
m
2
δω 2(t)x 2,ρ

 

  
 

  
− iγ(t) x, p,ρ{ }[ ]−D(t) x, x,ρ[ ][ ]− f (t) x, p,ρ[ ][ ]

€ 

˙ ζ = 2Tr ˙ ρ ρ( ) = 2γζ + 2DTr x,ρ[ ]2( ) + 2 fTr x,ρ[ ] p,ρ[ ]( )



Minimize over initial state: Pointer states for QBM are minimally uncertainty coherent states!
W.Zurek, J.P.P & S. Habib, PRL 70, 1187 (1993)

A SIMPLE SOLUTION FROM THE PREDICTABILITY SIEVE CRITERION

€ 

˙ ζ = 2Tr ˙ ρ ρ( ) = 2γζ + 2DTr x,ρ[ ]2( ) + 2 fTr x,ρ[ ] p,ρ[ ]( )

Approximations I: Neglect friction, use asymptotic form of coefficients, assume
initial state is pure and apply perturbation theory:

€ 

ζ (T) −ζ (0) = 2D dt
0

T

∫ Tr x(t),ρ[ ]2( )

         POINTER STATES, DECOHERENCE TIMESCALE (V)

€ 

ζ (T) = ζ (0) − 2D Δx 2 +
1

m2ω 2 Δp
2 

 
 

 

 
 

Approximations II: State remains approximately pure, average over oscillation period



Minimize over initial state: Pointer states for QBM are minimally uncertainty coherent states!
W.Zurek, J.P.P & S. Habib, PRL 70, 1187 (1993)

A SIMPLE SOLUTION FROM THE PREDICTABILITY SIEVE CRITERION

€ 

˙ ζ = 2Tr ˙ ρ ρ( ) = 2γζ + 2DTr x,ρ[ ]2( ) + 2 fTr x,ρ[ ] p,ρ[ ]( )

Approximations I: Neglect friction, use asymptotic form of coefficients, assume
initial state is pure and apply perturbation theory:

€ 

ζ (T) −ζ (0) = 2D dt
0

T

∫ Tr x(t),ρ[ ]2( )

         POINTER STATES, DECOHERENCE TIMESCALE (V)

€ 

ζ (T) = ζ (0) − 2D Δx 2 +
1

m2ω 2 Δp
2 

 
 

 

 
 

Approximations II: State remains approximately pure, average over oscillation period

€ 

ζ (t)

“momentum eigenstate”

“position eigenstate”



1) Dynamical regime (QBM): Pointer basis results from interplay between system
and environment

3) “Quantum” regime: The evolution of the environment is very “slow” (adiabatic
environment): Pointer states are eigenstates of the Hamiltonian of the system! The

environment only “learns” about properties of system which are non-vanishing when
averaged in time. J.P. Paz & W.Zurek, PRL 82, 5181 (1999)

€ 

ζ (t)

2) Static regime (Quantum Measurement): System’s evolution is negligible, Pointer
basis is determined by the interaction Hamiltonian (position in QBM)

         POINTER STATES, DECOHERENCE TIMESCALE (VI)

WARNING: DIFFERENT POINTER STATES IN DIFFERENT REGIMES!

TAILOR MADE POINTER STATES? J.P. Paz, Nature 412, 869 (2001)



         DECOHERENCE: AN OVERVIEW

SUMMARY: SOME BASIC POINTS ON DECOHERENCE

•POINTER STATES: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W. Zurek, PRL 82, 5181 (1999)

•TIMESCALES: J.P. Paz, S. Habib & W. Zurek, PRD 47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041
(1997)

•CONTROLLED DECOHERENCE EXPERIMENTS: Zeillinger et al (Vienna) PRL 90 160401 (2003), Haroche et al
(ENS) PRL 77, 4887 (1997), Wineland et al (NIST), Nature 403, 269 (2000).

• DECOHERENCE AND THE QUANTUM-CLASSICAL TRANSITION:
YES: HILBERT SPACE IS
HUGE, BUT MOST STATES
ARE UNSTABLE!! (DECAY
VERY FAST INTO MIXTURES)

CLASSICAL STATES: A
(VERY!) SMALL SUBSET.
THEY ARE THE
POINTER STATES OF
THE SYSTEM
DYNAMICALLY CHOSEN
BY THE ENVIRONMENT



         DECOHERENCE: AN OVERVIEW (VIII)

LAST DECADE: MANY  QUESTIONS ON DECOHERENCE WERE ADDRESSED AND
ANSWERED

• NATURE OF POINTER STATES: QUANTUM SUPERPOSITIONS DECAY INTO MIXTURES
WHEN QUANTUM INTERFERENCE IS SUPRESSED. WHAT ARE THE STATES SELECTED BY THE
INTERACTION? POINTER STATES: THE MOST STABLE STATES OF THE SYSTEM, DYNAMICALLY

SELECTED BY THE ENVIRONMENT: W.Zurek, S. Habib & J.P. Paz, PRL 70, 1187 (1993), J.P. Paz & W.
Zurek, PRL 82, 5181 (1999)

• TIMESCALES: HOW FAST DOES DECOHERENCE OCCURS? J.P. Paz, S. Habib & W. Zurek, PRD
47, 488 (1993), J. Anglin, J.P. Paz & W. Zurek, PRA 55, 4041 (1997)

• DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS: W. Zurek & J.P. Paz, PRL 72,
2508 (1994), D. Monteoliva & J.P. Paz, PRL 85, 3373 (2000).

• CONTROLLED DECOHERENCE EXPERIMENTS: S. Haroche et al (ENS) PRL 77, 4887
(1997), D. Wineland et al (NIST), Nature 403, 269 (2000), A. Zeillinger et al (Vienna) PRL 90 160401 (2003),

• ENVIRONMENT ENGENEERING: J.P. Paz, Nature 412, 869 (2001)



 DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (I)

SYSTEMS WITH CLASSICALLY CHAOTIC HAMILTONIANS ARE VERY EFFICIENT IN
GENERATING “SCHRODINGER CAT” STATES

€ 

eλt

€ 

e−λt

STRETCHING FOLDING

OSCILLATIONS APPEAR BECAUSE THE EVOLUTION EQUATION FOR WIGNER
FUNCTION DIFFERS FROM THAT OF A CLASSICAL DISTRIBUTION

  

€ 

˙ W = H0,W{ }MB = H0,W{ }PB +
(−1)n h2n

22n (2n +1)!n≥1
∑ ∂x

2n +1V∂p
2n +1W



         DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (II)

A CASE STUDY: HARMONICALLY DRIVEN QUARTIC DOUBLE WELL

€ 

V (x) = −a x 2 + b x 4 + cxcos(ω t)



         DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (II)

CLASSICAL QUANTUM

WIGNER FUNCTION DEVELOPS OSCILLATORY STRUCTURE AT SUB-PLANCK SCALES

W.H. Zurek, Nature 412, 712 (2001);  D. Monteoliva & J.P. Paz, PRE 64, 056238 (2002)
  

€ 

λX ≈h /P, λP ≈h /L⇒ A ≈λXλP ≈h
h

LP
<< h

A CASE STUDY: HARMONICALLY DRIVEN QUARTIC DOUBLE WELL

€ 

V (x) = −a x 2 + b x 4 + cxcos(ω t)



         DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (III)

DECOHERENCE DESTROYS THE FRINGES THAT ARE DYNAMICALLY PRODUCED

CLASSICAL + NOISE QUANTUM + DECOHERENCE

DECOHERENCE IMPLIES INFORMATION TRANSFER INTO CORRELATIONS BETWEEN
SYSTEM AND ENVIRONMENT. WHAT IS THE RATE?:

Lyapunov regime: Above a certain threshold, rate of entropy production fixed by the Lyapunov
exponent of the system (W. Zurek & J.P.P., 1994)



INTUITIVE EXPLANATION: WHY IS THERE A REGIME OF ENTROPY GROWTH FIXED BY
THE LYAPUNOV EXPONENT?

  

€ 

SVN = −Tr ρ log ρ( )( ), SLIN = −log Tr ρ2( )( ), Tr ρ2( ) = 2πh dx dpW 2(x, p)∫

STRETCHING 

  + FOLDING

€ 

t ≈ 1
λ

DECOHERENCE

€ 

t ≈ tDECO ≈
1
Γ

<<
1
λ

€ 

S = 0 (pure)

€ 

S = 0 (pure)

€ 

S ≈1 (mixed)

         DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (IV)

€ 

eλt

€ 

e−λt
€ 

eλt

€ 

σ c = 2D /λ

€ 

Area ≈σ c e
λt

S ≈ log(Area) ≈ λ t

STRETCHING DECOHERENCE



NUMERICAL EVIDENCE IS RATHER STRONG

(DRIVEN DOUBLE WELL, D. Monteoliva and J.P.P., Phys. Rev. E (2005))

         DECOHERENCE FOR CLASSICALLY CHAOTIC SYSTEMS (V)

LYAPUNOV REGIME EXISTS: DECOHERENCE RATE BECOMES INDEPENDENT OF THE
COUPLING STRENGTH ABOVE SOME THRESHOLD



THE QUESTION:
Are there physical situations where the decay is Gaussian with

a width which becomes “universal”? (i.e., independent of the
coupling strength, above a certain threshold)

THE ANSWER: Yes, and we can develop a simple model for them

Can we understand this? 

P. R. Levstein, G. Usaj and H.
M. Pastawski, J. Chem. Phys.
108, 2718 (1998)

G. Usaj, H. M. Pastawski P. R.
Levstein, Mol. Phys.95, 1229
(1998)

H. M. Pastawski, P. R.
Levstein, G. Usaj, J. Raya and
J. Hirschinger, Physica A 283,
166 (2000)

EXPERIMENTS
ALWAYS BRING
NEW SURPRISES:
Polarization echo in
NMR (solid state)
decays as a
Gaussian with a
width independent
of the coupling
strength with the
environment!

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (I)



ATTEMPTS TO EXPLAIN POLARIZATION
DECAY (“DECAY OF LOSCHMIDT ECHO”):

SYSTEM & ENVIRONMENT MAY BE “CHAOTIC”

POLARIZATION DECAY HAS VARIOUS REGIMES:

€ 

M(t) = a exp(−Γ t) +b exp(−λ t)

FERMI GOLDEN RULE
(FGR) REGIME:

PERTURBATION
DEPENDENT RATE

€ 

Γ∝Δ2

LYAPUNOV REGIME:
PERTURBATION

INDEPENDENT RATE
LYAPUNOV

EXPONENT

€ 

λ =

BUT: DECAY IS EXPONENTIAL
R. Jalabert and H. Pastawski, PRL 86, 2490 (2001), F. Cucchietti et al, PRE 65 045206 (2002), F. Cucchietti,

D. Dalvit, J.P.P., W. Zurek; PRL 91, 210403 (2003)

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (II)



Here: Describe and analyze a simple model where
decoherence is not only Gaussian but also

displays universality (independence of coupling
strength above a threshold). Model: critical spin

environment

€ 

H = σ i
zσ i+1

z

i=1

N

∑ + λ0 0 0 σ i
x

i=1

N

∑ + λ1 1 1 σ i
x

i=1

N

∑

  

€ 

ε0(t) ≈exp(−iH0t /h) ε(0)
ε1(t) ≈exp(−iH1t /h) ε(0)

DECOHERENCE: OVERLAP BETWEEN TWO STATES OF THE ENVIRONMENT
OBTAINED BY EVOLVING WITH TWO DIFFERENT HAMILTONIANS

  

€ 

M(t) = ε(0) exp iH1t /h( )exp −iH0t /h( ) ε(0)
2

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (III)

Gaussian decoherence from spin environments 
F. Cucchietti, J.P.P. & W.H. Zurek; Phys Rev A 72, 052113 (2005) 



|M

Results 1: A critical environment is very efficient in producing decoherence
see also H.T. Quan et al, quant-ph/0509007

€ 

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

λ0,1 = λ ± δ; ε(0) = ground 0

|M

When the environment is critical
decoherence is very strong (other

wise it is moderate).

How does decoherence depends on the coupling strength?

€ 

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

λ0 = 0, λ1 = λ ε(0) = ground 0

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (IV)



Results 2: A critical environment produces “universal” decoherence
F. Cucchietti, S. Fernandez-Vidal and J.P.P. (2006) to be posted

To a high degree of accuracy the following formula applies:

€ 

r(t) 2 = exp −Nt 2 /2( )cos2N λt( )
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Why? F. Cucchietti, S. Fernandez-Vidal and J.P.P. (2006)
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Jordan-Wigner + Bogolubov: Diagonalize both Hamiltonians 
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Creation and anihillation operators can be related (vacuum states too)

Creation and anihillation operators can be related (vacuum states too)
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Angles are uniformly distributed, energies are spread in the interval         
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Results 3: Oscillations dissapear in an spin-echo experiment

To a high degree of accuracy the following formula applies:
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  THE POWER OF A SINGLE QUBIT

 SIMPLE SCHEME TO USE ONE QUBIT TO LEARN ABOUT PROPERTIES OF A MORE COMPLEX
SYSTEM (CAN BE USED BOTH FOR TOMOGRAPHY AND SPECTROSCOPY)

A new ‘spectroscopic’ application for this scheme: Measure universal features
(i.e. Gaussian decay with ‘constant’ width) in the decay of quantum

coherence in one qubit: an indicator of a quantum phase transition in the
environment

E. Knill & R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)

C. Miquel, J.P.P., M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne, Nature 418, 59 (2002)
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X = Re TrB ρBU( )( )
Y = −Im TrB ρBU( )( )

Know : Use circuit to learn about (“spectrometer”)

Know : Use circuit to learn about (“tomographer”)
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         SUMMARY

• DECOHERENCE IS A CRUCIAL INGREDIENT TO UNDERSTAND THE EMERGENCE OF
CLASSICALITY

• DECOHERENCE IS THE ENEMY TO DEFEAT TO ACHIEVE QUANTUM INFORMATION
PROCESSING.

• TO IMPLEMENT QUANTUM ERROR CORRECTION TOOLS WE MUST HAVE A VERY
GOOD CHARACTERIZATION OF ERRORS AND DECOHERENCE IN THE DEVICES.

• SOME SYSTEMS EXHIBITS SOME UNIVERSAL FEATURES WHEN THEY DECOHERE ,
I.E. LYAPUNOV REGIME (INDEPENDENCE OF SYSTEM-ENVIRONMENT COUPLING)

• CRITICAL ENVIRONMENTS ARE HIGHLY EFFICIENT IN INDUCING DECOHERENCE
CRITICAL ENVIRONMENT MAY INDUCE UNIVERSAL DECOHERENCE

• USE A SINGLE QUBIT AS AN INDICATOR OF A QUANTUM PHASE TRANSITION?
(MAYBE)


