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Lecture 1: Decoherence and the quantum origin of the classical
world

Lecture 2: Decoherence and quantum information processing,
models and examples

Colaborations with:  W. Zurek (LANL), M. Saraceno (CNEA), D. Mazzitelli
(UBA), D. Monteoliva, C. Miquel (UBA), P. Bianucci (UBA, UT), L. Davila

(UEA, UK), C. Lopez (UBA, MIT), A. Roncaglia (UBA, LANL), J. Anglin (MIT),
R. Laflamme (IQC), S. Fernandez-Vidal (UAB), F. Cucchietti (LANL),

• Decoherence, an overview

• Decoherence for classically chaotic systems. Why is it interesting,
why is it different.

• Decoherence from complex environments

• Using qubits to learn about environmental properties (power of
one qubit: use a single qubit to learn about properties of many)



THE QUESTION:
Are there physical situations where the decay is Gaussian with

a width which becomes “universal”? (i.e., independent of the
coupling strength, above a certain threshold)

THE ANSWER: Yes, and we can develop a simple model for them

Can we understand this? 

P. R. Levstein, G. Usaj and H.
M. Pastawski, J. Chem. Phys.
108, 2718 (1998)

G. Usaj, H. M. Pastawski P. R.
Levstein, Mol. Phys.95, 1229
(1998)

H. M. Pastawski, P. R.
Levstein, G. Usaj, J. Raya and
J. Hirschinger, Physica A 283,
166 (2000)

EXPERIMENTS
ALWAYS BRING
NEW SURPRISES:
Polarization echo in
NMR (solid state)
decays as a
Gaussian with a
width independent
of the coupling
strength with the
environment!

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (I)



ATTEMPTS TO EXPLAIN POLARIZATION
DECAY (“DECAY OF LOSCHMIDT ECHO”):

SYSTEM & ENVIRONMENT MAY BE “CHAOTIC”

POLARIZATION DECAY HAS VARIOUS REGIMES:

€ 

M(t) = a exp(−Γ t) +b exp(−λ t)

FERMI GOLDEN RULE
(FGR) REGIME:

PERTURBATION
DEPENDENT RATE

€ 

Γ∝Δ2

LYAPUNOV REGIME:
PERTURBATION

INDEPENDENT RATE
LYAPUNOV

EXPONENT

€ 

λ =

BUT: DECAY IS EXPONENTIAL
R. Jalabert and H. Pastawski, PRL 86, 2490 (2001), F. Cucchietti et al, PRE 65 045206 (2002), F. Cucchietti,

D. Dalvit, J.P.P., W. Zurek; PRL 91, 210403 (2003)
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Here: Describe and analyze a simple model where
decoherence is not only Gaussian but also

displays universality (independence of coupling
strength above a threshold). Model: critical spin

environment

€ 

H = σ i
zσ i+1

z

i=1

N

∑ + λ0 0 0 σ i
x

i=1

N

∑ + λ1 1 1 σ i
x

i=1

N

∑

  

€ 

ε0(t) ≈exp(−iH0t /h) ε(0)
ε1(t) ≈exp(−iH1t /h) ε(0)

DECOHERENCE: OVERLAP BETWEEN TWO STATES OF THE ENVIRONMENT
OBTAINED BY EVOLVING WITH TWO DIFFERENT HAMILTONIANS

  

€ 

M(t) = ε(0) exp iH1t /h( )exp −iH0t /h( ) ε(0)
2

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

         DECOHERENCE FROM COMPLEX ENVIRONMENTS (III)

Gaussian decoherence from spin environments 
F. Cucchietti, J.P.P. & W.H. Zurek; Phys Rev A 72, 052113 (2005) 



|M

Results 1: A critical environment is very efficient in producing decoherence
see also H.T. Quan et al, quant-ph/0509007

€ 

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

λ0,1 = λ ± δ; ε(0) = ground 0

|M

When the environment is critical
decoherence is very strong (other

wise it is moderate).

How does decoherence depends on the coupling strength?

€ 

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

λ0 = 0, λ1 = λ ε(0) = ground 0
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Results 2: A critical environment produces “universal” decoherence
F. Cucchietti, S. Fernandez-Vidal and J.P.P. (2006) to be posted

To a high degree of accuracy the following formula applies:

€ 

r(t) 2 = exp −Nt 2 /2( )cos2N λt( )
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Why? F. Cucchietti, S. Fernandez-Vidal and J.P.P. (2006)

  

€ 

r(t) 2 = ε(0) exp iH1t /h( )exp −iH0t /h( ) ε(0)
2

= ε(0) exp iH1t /h( ) ε(0)
2

€ 

H1 = ε(A )k Ak
+Ak −1/2( )

k
∑ H0 = ε(B )k Bk

+Bk −1/2( )
k
∑

Jordan-Wigner + Bogolubov: Diagonalize both Hamiltonians 

€ 

Ak = cos ϕk( )Bk − isin ϕk( )B−k
+ 0 0 = icos ϕk( ) + sin ϕk( )Ak

+A−k
+( ) 0 1

k
∏

Creation and anihillation operators can be related (vacuum states too)

Creation and anihillation operators can be related (vacuum states too)

€ 

r(t) = cos2 ϕk( ) eiε k
(A ) t + sin2 ϕk( )e−iε k

(A ) t( )
k
∏

€ 

εk
(A ) = 1+ λ2 − 2λcos2πk /N , 2ϕk = θk (λ) −θk (0), tgθk (λ) =

sin2πk /N
cos2πk /N − λ

Angles are uniformly distributed, energies are spread in the interval         

€ 

λ −1, λ =1( )

€ 

r(t) 2 = exp −Nt 2 /2( )cos2N λt( )

€ 

Δεk
(A )

€ 

ε k
(A )
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Results 3: Oscillations dissapear in an spin-echo experiment

To a high degree of accuracy the following formula applies:

€ 

r(t) 2 = exp −Nt 2 /2( ) 1+O(1/N)sinλt /λ( )

t=0 t=T/2 t=T

€ 

Hl = σ i
zσ i+1

z + λl σ i
x

i=1

N

∑
i=1

N

∑

€ 

Hl = σ i
zσ i+1

z − λl σ i
x

i=1

N

∑
i=1

N

∑
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  THE POWER OF A SINGLE QUBIT

 SIMPLE SCHEME TO USE ONE QUBIT TO LEARN ABOUT PROPERTIES OF A MORE COMPLEX
SYSTEM (CAN BE USED BOTH FOR TOMOGRAPHY AND SPECTROSCOPY)

A new ‘spectroscopic’ application for this scheme: Measure universal features
(i.e. Gaussian decay with ‘constant’ width) in the decay of quantum

coherence in one qubit: an indicator of a quantum phase transition in the
environment

E. Knill & R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)

C. Miquel, J.P.P., M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne, Nature 418, 59 (2002)

€ 

0

€ 

ρB

€ 

U
€ 

H

€ 

X = Re TrB ρBU( )( )
Y = −Im TrB ρBU( )( )

Know : Use circuit to learn about (“spectrometer”)

Know : Use circuit to learn about (“tomographer”)

€ 

ρ

€ 

U

€ 

U

€ 

ρ



TOMOGRAPHY OF PHASE SPACE DISTRIBUTIONS QUANTUM CIRCUITS AND QUANTUM ALGORITHMS

Spectroscopic algorithm: Determine properties of U (NxN matrix) by measuring traces. Choose

Resources(DQC1): One qubit in a pure state, log(N) qubits in a maximally mixed state

€ 

1/N

Tr(U
N
) ≈

1/ N

Chaotic

Regular

The quantum algorithm requires
O(N) repetitions while classical
methods seem to require O(N^2)

Quadratic speedup!  But
exponential speedup is possible

to estimate average fidelity under
perturbations

David Poulin, Raymond Laflamme, G.J. Milburn, J.P.P, 
Physical Review A, (2003), v68, 022302

Tomographic algorithm: Choose a basis A(q,p) to expand the state

€ 

0

€ 

ρ

€ 

A(q, p)
€ 

H

€ 

Tr ρA(q, p)( ) = w(q, p)

ρ =
1
N

w(q, p) A(q, p)
q,p=1

N

∑



         SUMMARY

• DECOHERENCE IS A CRUCIAL INGREDIENT TO UNDERSTAND THE EMERGENCE OF
CLASSICALITY

• DECOHERENCE IS THE ENEMY TO DEFEAT TO ACHIEVE QUANTUM INFORMATION
PROCESSING.

• TO IMPLEMENT QUANTUM ERROR CORRECTION TOOLS WE MUST HAVE A VERY
GOOD CHARACTERIZATION OF ERRORS AND DECOHERENCE IN THE DEVICES.

• SOME SYSTEMS EXHIBITS SOME UNIVERSAL FEATURES WHEN THEY DECOHERE ,
I.E. LYAPUNOV REGIME (INDEPENDENCE OF SYSTEM-ENVIRONMENT COUPLING)

• CRITICAL ENVIRONMENTS ARE HIGHLY EFFICIENT IN INDUCING DECOHERENCE
CRITICAL ENVIRONMENT MAY INDUCE UNIVERSAL DECOHERENCE

• USE A SINGLE QUBIT AS AN INDICATOR OF A QUANTUM PHASE TRANSITION?
(MAYBE)



Lecture 2

• Evolution of quantum open systems: An approach based on
quantum circuits. Models for decoherence (simple)

• Decoherence in a simple quantum algorithm (quantum walk)

Lecture 1: Decoherence and the quantum origin of the classical
world (Pointer states, timescales, chaos).

Lecture 2: Decoherence and quantum information processing,
models and examples



EVOLUTION OF QUANTUM OPEN SYSTEMS

QUANTUM CIRCUITS: A USEFUL TOOL TO REPRESENT EVOLUTION OF
QUANTUM SYSTEMS

•A QUANTUM CIRCUIT REPRESENTS A UNITARY OPERATOR

•INPUT: INITIAL STATE OF THE SYSTEM

•OUTPUT: FINAL STATE OF THE SYSTEM

(TIMES FLOWS FROM LEFT TO RIGHT)

€ 

Ψ(0)

€ 

t = 0

€ 

Ψ(T)

€ 

t = T

€ 

U

€ 

=U Ψ(0)

•WHEN A QUANTUM SYSTEM IS SPLIT IN TWO INTERACTING SUBSYSTEMS

€ 

Ψ1(0)

€ 

Ψ(T) =U12 Ψ1(0) ⊗ Ψ2(0)
≠ φ1(0) ⊗ φ2(0)

€ 

U12

€ 

Ψ2(0)



SIMPLE MODELS OF INTERACTIONS

•C-NOT INTERACTION BETWEEN TWO QUBITS

MORE GENERAL: SECOND SUBSYSTEM MADE OUT OF MANY QUBITS (D-
DIMENSIONAL HILBERT SPACE), CONTROL-U INTERACTION

€ 

α 0 + β 1

€ 

Ψ2
€ 

α 0 ⊗ Ψ2 + β 1 ⊗ X Ψ2

€ 

α 0 + β 1

€ 

Ψ2

€ 

α 0 ⊗ Ψ2 + β 1 ⊗U Ψ2

€ 

U

€ 

X =
0 1
1 0
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i 0
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1 0
0 −1
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1
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1 1
1 −1
 

 
 

 

 
 NOTATION:

EVOLUTION OF QUANTUM OPEN SYSTEMS



€ 

α 0 + β 1

€ 

ρB

€ 

U

€ 

ρAB = α
2 0 0 ⊗ ρB + β

2 1 1 ⊗UρBU
+ +αβ* 0 1 ⊗ ρBU

+ +βα* 1 0 ⊗UρB
€ 

ρAB = α
2 0 0 + β

2 1 1 +αβ* 0 1 + βα* 1 0( )⊗ ρB

€ 

ρA = α
2 0 0 + β

2 1 1 +αβ* 0 1 TrB ρBU
+( )+βα* 1 0 TrB ρBU( )

EVOLUTION OF QUANTUM OPEN SYSTEMS

MORE GENERAL: SECOND SUBSYSTEM IN AN ARBITRARY (MIXED) STATE:
DESCRIBE THE COMBINED SYSTEM WITH DENSITY MATRIX



MORE GENERAL: THE INTERACTION IS DIAGONAL IN THE {0,1} BASIS OF THE
SYSTEM A

€ 

ρAB (T) = α
2 0 0 ⊗U0ρBU0

+ + β
2 1 1 ⊗U1ρBU1

+ +αβ* 0 1 ⊗U0ρBU1
+ +α*β 1 0 ⊗U1ρBU0

+

€ 

ρA (T) = α
2 0 0 + β

2 1 1 +αβ*Tr U0ρBU1
+( ) 0 1 +α*βTr U1ρBU0

+( ) 1 0

€ 

α 0 + β 1

€ 

ρB

€ 

U1
€ 

ρAB (T)

€ 

U0

EXERCISE: SHOW THAT THIS IS A DESCRIPTION OF A (SPIN BATH) MODEL WITH HAMILTONIAN

€ 

U0 = exp −i t gkZk
k
∑

 

 
 

 

 
 =U1

+

€ 

H = ZA ⊗ gkZk
k
∑

€ 

r(t) = TrB U0ρBU1
+( ) = TrB U0

2ρB( ) = ρk00e
2igk t + ρk11e

−2igk t( )
k
∏

OFF-DIAGONAL TERMS ARE SUPRESSED BY THIS FACTOR. POINTER STATES EMERGE

EVOLUTION OF QUANTUM OPEN SYSTEMS



 IS THIS A GOOD MODEL OF DECOHERENCE?

€ 

ρA (T) = α
2 0 0 + β

2 1 1 +αβ*Tr U0ρBU1
+( ) 0 1 +α*βTr U1ρBU0

+( ) 1 0

MORE GENERAL: INCLUDE ‘SELF-EVOLUTION’ OF SYSTEM AND ENVIRONMENT

€ 

α 0 + β 1

€ 

ρB

€ 

U1
€ 

ρAB (T)

€ 

U0

•SUPRESSION OF OFF-DIAGONAL TERMS BY A FACTOR

•PREFERRED STATES ARE EIGENSTATES OF INTERACTION

€ 

r(t) = TrB U1
+U0ρB( )

€ 

α 0 + β 1

€ 

ρB

€ 

U1
€ 

ρAB (T)

€ 

U0

€ 

U 'B
€ 

U 'A

€ 

UA

€ 

UB

EVOLUTION OF QUANTUM OPEN SYSTEMS



MOST GENERAL EVOLUTION OF TWO INTERACTING SUBSYSTEMS

€ 

ρB

€ 

UAB

€ 

ρAB (T)

€ 

ρA

REDUCED DENSITY MATRIX OF SUB-SYSTEM A

€ 

ρA (T) = Tr UABρA (0)⊗ ρB (0)UAB
+( )

€ 

ρA (T) = Ab ρA (0) Ab
+

b
∑ , Ab

+Ab
b
∑ = I, Ab = φb UAB ΨB (0)

KRAUSS REPRESENTATION OF EVOLUTION OF REDUCED DENSITY MATRIX

(general)

Valid if initial state of
B is pure

EVOLUTION OF QUANTUM OPEN SYSTEMS



KRAUS REPRESENTATION (PHASE DAMPING CHANNEL)

€ 

ρA (T) =
1+ r(T)
2

ρA (0) +
1− r(T)
2

ZρA (0)Z

€ 

ρ(0)

€ 

Prob(I) =
1+ r(T)
2

Prob(Z) =
1− r(T)
2

EXAMPLE: CONSIDER A DECOHERENCE MECHANISM THAT SUPRESSES OFF
DIAGONAL TERMS IN {0,1} BASIS:

€ 

ρA (T) = α
2 0 0 + β

2 1 1 +αβ*r(T) 0 1 +α*β r(T) 1 0
r(T) ≤1, r(T)∈ ℜ

EVOLUTION OF QUANTUM OPEN SYSTEMS



EVOLUTION OF QUANTUM OPEN SYSTEMS

MORE GENERAL NOISY CHANNEL

€ 

ρ(0)

€ 

Prob(I) = pI , Prob(X) = pX
Prob(Y ) = pY , Prob(Z) = pZ

€ 

ρA (T) = pIρA (0) + pX XρA (0)X + pYYρA (0)Y + pZZρA (0)Z
STUDY HOW THE QUANTUM STATE IS DEGRADED BY A NOISY CHANNEL

FIDELITY DECAY:

PURITY DECAY:

€ 

F = Tr ρA (T)ρA (0)( ) =1− 4 pαβ 2 (pI =1− p, pX = 0, pY = 0, pZ = p)

ζ = Tr ρ2A (T)( ) =1− 8p(1− p)αβ 4

• DECAY DEPENDS ON THE STATE

• DECAY IS LINEAR IN p



HOW TO FIGHT AGAINST DECOHERENCE

ERROR CORRECTION CAN BE USED TO PROTECT QUANTUM INFORMATION

€ 

α 0 + β 1

€ 

0

€ 

0

€ 

UE

€ 

UD

€ 

Prob(I) =1− p
Prob(Z) = p

€ 

R

€ 

0

€ 

0

Encoding Decoding Repair Refresh

€ 

H

€ 

H

€ 

H

€ 

H

€ 

Prob(I) =1− p
Prob(Z) = p

€ 

H

€ 

H

€ 

H

€ 

H€ 

α 0 + β 1

€ 

0

€ 

0 € 

ρout

€ 

ρout = ρin +O(p2), F = Tr(ρinρin ) =1−O(p2)

FIDELITY GOES FROM LINEAR TO QUADRATIC IN p!



         SUMMARY

• QUANTUM CIRCUITS ARE USEFUL TOOLS TO DESCRIBE QUANTUM EVOLUTION

• SIMPLE QUANTUM CIRCUITS DESCRIBE SIMPLE MODELS OF DECOHERENCE

• MOST GENERAL EVOLUTION OF A QUANTUM OPEN SYSTEM CAN BE WRITTEN IN
KRAUSS FORM (Exercise: Think about this!)

€ 

ρA (T) = Ab ρA (0) Ab
+

b
∑ , Ab

+Ab
b
∑ = I



1. Classical random walk

-1 0 1 2

¿ ó ?

-1 0 1 2

0
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-10 -8 -6 -4 -2 0 2 4 6 8 10

Typical probability distribution
Probability 1/2

Probability 1/2

-1 0 1 2

-1 0 1 2

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



2. Quantum walk algorithm: A quantum coin (spin 1/2) and a quantum
walker (moving in a ring with N sites): It could be a useful “subroutine”

-1 0 1 2

€ 

↑ ⇒

↓ ⇒

move to the right

move to the left

€ 

Ψ =(α ↑ +β ↓ )⊗ ϕ

Quantum walk “algorithm”:

• Initial state:

• Evolution operator:

€ 

UZ H

€ 

U n = n +1 , mod(N)

H↑ = (↑ + ↓ ) / 2

H↓ = (↑ − ↓ ) / 2
-
1

0 1 2 -
1

0 1 2

€ 

Ψ =α

€ 

β+
The coin (spin) and the walker become entangled.

The state of the walker after t-iterations is:

  

€ 

ρw (t) = TrC U
ZHLUZHUZH ρw (0)⊗ ρc (0)HU

−ZHU−Z LHU−Z( )

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



Initial state: “Impartial spin”, localized walker

€ 

Ψ = (↑ + i↓ )⊗ n = 200
Classical and quantum walks have rather different properties:

Probability distribution: Classical vs Quantum

€ 

t / 2

€ 

1/ 2t

Quantum walker spreads faster than classical!

Reason?: Quantum interference

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



Key to the potential advantadge of quantum walks?: Use the
quantum nature of the walk, that allows for faster spreading over the
graph (this enables, for example, exponentially faster hiting times)

NOTE

Quantum walks on graphs have been proposed as potentially useful
quantum subroutines

Review: J. Kempe, Contemp Phys 44, 307 (2003)

Proposed in: D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani, Proc 33.
ACM STOC-2001, 50-59

There are very few algorithms that use quantum walks as a central piece:
* N. Shenvi, J. Kempe & B. Whaley, PRA 67 052307 (2003) (DISCRETE);

* A.  M. Childs et al, Proc 35 ACM STOC-2003, 59-68 (CONTINUOUS)

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



What happens if the coin (or walker) interacts with an environment?

-1 0 1 2 -1 0 1 2

€ 

Ψ =α

€ 

β+
Simple model to simulate coupling to a spin environment (NMR)

(G.Teklemarian, et al PRA67, 062316 (2003))

(2002, 2003: V. Kendon, B. Tregenna, H. Carteret, T. Brun, A. Ambainis, etc)

€ 

= e−iε k ˆ σ y , εk random var iables

1 2 3 4 k

t=0 t=T
k

  

€ 

ρw (t) = d
r 
ε ∫ P(r ε ) TrC U

ZHe− iε t−1Y Le− iε1YUZH ρw (0)⊗ ρc (0)HU
−Zeiε1Y Leiε t−1YHU−z( )

Feature: model can be exactly solved (analytic solutions available @ C.Lopez & J.P.
Paz, PRA 68, 052305 (2003)

  

€ 

d
r 
ε ∫ P(r ε ) =

1
2α

dε1
−α

α

∫ L
1
2α

dεt
−α

α

∫ , α = coupling strength

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



RESULTS: Decoherence and quantum-classical transition for quantum walks

Fixe time, vary system-environment coupling strength

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



QUANTUM WALKS IN PHASE SPACE

  

€ 

ρw (t) =
1
2t

TrC U
α t ZHLUα1ZH ρw (0)⊗ ρc (0)HU

−α t Z LHU−α t Z( )
α1 ,LαT =−1,1
∑

Simple interpretation

Exact formula valid in the case of full decoherence

€ 

(α = π )

Quantum walk with decoherence in
the coin looks like random walk.

Effect: Diffusion along the position
direction in phase space. 

Lesson I from decoherence studies:
a) Environment couples to spin.

b) Spin couples with walker via U
(displacement operator). 
d) U is diagonal in momentum. 

Then: momentum states are
pointer states!

         EXAMPLE: DECOHERENCE IN A QUANTUM WALK



Use a quantum coin with a D dimensional Hilbert space

-1 0 1 2

€ 

⇒

⇒

move to the right

move to the left

-
1

0 1 2 -
1

0 1 2

€ 

Ψ =α

€ 

β+

€ 

Ψ = c j j
j=1

D

∑ ⊗ n

Generalized quantum walk “algorithm”:

• Initial state:

• Evolution operator:

€ 

UZ B

€ 

U n = n +1 , mod(N)

€ 

Z j = j 1≤ j ≤ D /2
Z j = − j D /2 +1≤ j < D

         EFFECT OF A CHAOTIC ENVIRONMENT: AN EXAMPLE



Generalized quantum walk is represented by a simple quantum circuit:

Analogous to a quantum walk with an ordinary coin (spin 1/2)
coupled to an environment: Operator B defines the interaction

between quantum coin and environment

€ 

Ψ = c j j
j=1

D

∑ ⊗ n

Generalized quantum walk “algorithm”:

• Initial state:

• Evolution operator:

€ 

UZ B

€ 

U n = n +1 , mod(N)

€ 

Z j = j 1≤ j ≤ D /2
Z j = − j D /2 +1≤ j < D

We studied differences in behavior between “regular” and “chaotic”
B’s. Paradigmatic example: B=Quantum Baker Map

(L. Erman, J.P.P. & M. Saraceno: SEE POSTER, ASK LEO!)

€ 

≤

€ 

D = 2K

         EFFECT OF A CHAOTIC ENVIRONMENT: AN EXAMPLE



Known: Chaotic environments are more efficient in inducing decoherence
L. Erman, J.P.P. & M. Saraceno: Phys Rev A (2005) to appear)

Entropy production from regular and chaotic environments

Entropy
computed from

the reduced
density matrix of

the system

Regular case: small subset of Hilbert space is explored
(log(D)-dimensional)

Chaotic case: entire (D-dimensional) Hilbert space is explored.

         EFFECT OF A CHAOTIC ENVIRONMENT: AN EXAMPLE



Quantum to classical transition: Coupling to environment induces
classical behavior (in the dispersion of walker, for example)

Probability distribution: Classical vs Quantum

€ 

t / 2

€ 

1/ 2t

Finite dimensional environment cannot induce classical behavior for all
times. D-dependence is very different for chaotic and regular environments

         EFFECT OF A CHAOTIC ENVIRONMENT: AN EXAMPLE



Chaotic evolution creates more entanglement in the internal space than
regular one (exponentially more). Each “quasimomentum” state of the

particle is entangled with an orthogonal state of the environment

€ 

≤

€ 

D = 2K

Is there a simple way to understand why is the chaotic environment more
efficient than the regular one?

YES

         EFFECT OF A CHAOTIC ENVIRONMENT: AN EXAMPLE



         DECOHERENCE

• DECOHERENCE IS AN ESENTIAL INGREDIENT TO UNDERSTAND THE QUANTUM
CLASSICAL TRANSITION

• IT IS “THE” ENEMY FOR QUANTUM INFORMATION PROCESSING

• FIGHT AGAINST IT BY USING A COMBINATION OF TECHNIQUES:

* PROTECT YOUR QUANTUM INFORMATION BY ENCODING IT IN
DECOHERENCE FREE (POINTER) SUBSPACES,

* USE ERROR CORRECTION CODES

• THIS REQUIRES DETAILED KNOWLEDGE OF THE REAL (PHYSICAL) ERRORS BUT IS
POSSIBLE IN PRINCIPLE

Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin
L. Ermann, J. P. Paz, and M. Saraceno; Phys. Rev. A 73, 012302 (2006)

Phase-space approach to the study of decoherence in quantum walks
C. C. López and J. P. Paz; Phys. Rev. A 68, 052305 (2003)


