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Motivation:
Why to study Loschmidt echoes?

To understand origins of macroscopic irreversibility from

reversible microscopic equations of motion...

...both classically and quantum mechanically.

...in relation to chaotic or solvable (integrable) nature of the

underlying equations of motion.

To understand, and therefore engineer roboust quantum

information processing. Quantum and Classical Loschmidt Echoes – p.2/68



Outline of the Course

1. General theoretical framework

2. Quantum echo-dynamics: Non-integrable (chaotic)
case

3. Random matrix theory of echo-dynamics

4. Quantum echo-dynamics: Integrable case

5. Classical echo-dynamics

6. Time scales and transition from regular to chaotic

7. Application to Quantum Information
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Prologue:
Classical Loschmidt echoes

Consider two sligtly different systems,h(~x) andh(~x) + �v(~x).
Classical fidelityor classical Loschmidt echo:f(t) = h�(t)��(t)i = hexp(Lt)�0 exp(L�t)�0i= h�0 exp(�Lt) exp(L�t)�0i
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Classical Loschmidt echoes cont.

For short times,f(t) decays with the lyapunov exponentexp(��t)
for chaotic systems, and in a non-universal way for integrable

systems.

f(t) 2t
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Classical Loschmidt echoes cont.

For short times,f(t) decays with the lyapunov exponentexp(��t)
for chaotic systems, and in a non-universal way for integrable

systems.

For long times,f(t) decays as a correlation function at time2t.
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Classical Loschmidt echoes cont.

For short times,f(t) decays with the lyapunov exponentexp(��t)
for chaotic systems, and in a non-universal way for integrable

systems.

For long times,f(t) decays as a correlation function at time2t.
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1 General theoretical framework

H"(t) = H0 + " � V

U"(t) = ^T exp(�iZ t0 dt0H"(t0)=~)

j 0(t)i = U0(t)j i; and j Æ(t)i = U"(t)j i;

F (t) = jf(t)j2; f(t) = h 0(t)j "(t)i = h jM"(t)j i

M"(t) = U y0(t)U"(t)
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1 General theoretical framework

H"(t) = H0 + " � V

U"(t) = ^T exp(�iZ t0 dt0H"(t0)=~)
We studyunperturbed andperturbed time-evolutionsj 0(t)i = U0(t)j i; and j Æ(t)i = U"(t)j i;

and definethe fidelity

F (t) = jf(t)j2; f(t) = h 0(t)j "(t)i = h jM"(t)j i

in terms of an expectation value ofthe echo-operator
M"(t) = U y0(t)U"(t)
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(1) Echo operator

Echo operator is the propagator in interaction picture.

ddtM"(t) = � i~" ~V (t)M"(t)

" ~V (t)~V (t) = U0(�t)V (t)U0(t):

ddtM"(t) = � i~" ~V (t)M"(t)
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(1) Echo operator

Echo operator is the propagator in interaction picture.
It satisfies ddtM"(t) = � i~" ~V (t)M"(t)
with effective Hamiltonian" ~V (t),~V (t) = U0(�t)V (t)U0(t):

ddtM"(t) = � i~" ~V (t)M"(t)
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(1) Echo operator

Echo operator is the propagator in interaction picture.
It satisfies ddtM"(t) = � i~" ~V (t)M"(t)
with effective Hamiltonian" ~V (t),~V (t) = U0(�t)V (t)U0(t):

It is a solution ofddtM"(t) = � i~" ~V (t)M"(t)
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(1) Born expansion and linear response

The equation for the echo-operator can be (formally) solvedin terms

of a power series

M"(t) = 1+ 1Xm=1 (�i")m~mm! Z t0 dt1dt2 � � � dtm ^T ~V (t1) ~V (t2) � � � ~V (tm):

m = 2F (t) = jhM"(t)ij2
F"(t) = 1� "2~2 Z t0 dt0 Z t0 dt00C(t0; t00) + O("4)

C(t0; t00) = h ~V (t0) ~V (t00)i � h ~V (t0)ih ~V (t00)i;
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(1) Born expansion and linear response

The equation for the echo-operator can be (formally) solvedin terms

of a power series

M"(t) = 1+ 1Xm=1 (�i")m~mm! Z t0 dt1dt2 � � � dtm ^T ~V (t1) ~V (t2) � � � ~V (tm):

Truncating at second orderm = 2 and putting into expressionF (t) = jhM"(t)ij2 we obtain

F"(t) = 1� "2~2 Z t0 dt0 Z t0 dt00C(t0; t00) + O("4)

whereC(t0; t00) = h ~V (t0) ~V (t00)i � h ~V (t0)ih ~V (t00)i;

is just 2-point time-correlations function of the perturbation.
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(1) Illustration:
Chaotic vs. Regular dynamics
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Chaotic dynamics,C(t0; t00)! C(t00 � t0)

after� log ~ time,C(t!1)! 0: )F (t) = 1� 
onst� Æ2t.
Regular dynamics, typically�C = h �V 2i � h �V i2 6= 0: )F (t) = 1� 
onst� Æ2t2.

Example: Jaynes-Cummings model
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(1) Another formulation of linear response

Let us define anintegrated perturbation operator�(t)

�(t) = Z t0 dt0 ~V (t0):
Then, the dobly integrated temporal correlation function rewrites in

terms of anuncertainty of operator�(t):

F"(t) = 1� "2~2 �h�2(t)i � h�(t)i2	+O("4)

h�2i � h�i2 / th�2i � h�i2 / t2
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(1) Another formulation of linear response

Let us define anintegrated perturbation operator�(t)

�(t) = Z t0 dt0 ~V (t0):
Then, the dobly integrated temporal correlation function rewrites in

terms of anuncertainty of operator�(t):

F"(t) = 1� "2~2 �h�2(t)i � h�(t)i2	+O("4)

For quantum dynamics with fast decay of memory (correlartions) the

growth isdiffusive h�2i � h�i2 / t, whereas for regular dynamics

one expectsballistic behaviour,h�2i � h�i2 / t2
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(1) Effect of conservation laws

Adding a constant, or conservation law to a perturbation, makes correlation integrals to increase

quadratically. Ci(t) = Z t0 dt0 Z t0 dt00C(t0; t00) = h�2(t)i � h�(t)i2

fQn; n = 1; 2 : : :Mg j	ihQnQmi = Ænm V = MXm=1 
mQm + V 0


m = hV Qmi V 0
hQmV 0i = 0; for all m:

Ci(t)!  MXm=1 
2m! t2
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(1) Effect of conservation laws

Adding a constant, or conservation law to a perturbation, makes correlation integrals to increase

quadratically. Ci(t) = Z t0 dt0 Z t0 dt00C(t0; t00) = h�2(t)i � h�(t)i2
Let fQn; n = 1; 2 : : :Mg be an orthonormalized set of conserved quantities w.r.t. initial statej	i,
such thathQnQmi = Ænm. Then any time-independent perturbation can be decomposeduniquely as

V = MXm=1 
mQm + V 0
with coefficients
m = hV Qmi andV 0 being the remaining non-trivial part of the perturbation, by

construction orthogonal toall trivial conservation laws,hQmV 0i = 0; for all m:

In such a case the correlation integral will always grow asimptotically as a quadratic function
Ci(t)!  MXm=1 
2m! t2
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(1) Quantum Zeno regime

For very short times, below a certain time scaletZ,
namely before the correlation function starts to decay,jt0j; jt00j < tZ, C(t0; t00) � C(0; 0) = hV 2i, the fideily
always exhibits (universal) quadratic decay

F (t) = 1� "2~2 hV 2it2
for

jtj < tZ = � C(0; 0)d2C(0; t)=dt2
�1=2 = ~� hV 2ih[H0; V ℄2i
�1=2
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(1) Temporally stochastic perturbations

Consider noisy perturbations with operator-valued varianceV (t0)V (t00) = v2Æ(t0 � t00)1

F (t) = exp�� "2~2v2t� :
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(1) Temporally stochastic perturbations

Consider noisy perturbations with operator-valued varianceV (t0)V (t00) = v2Æ(t0 � t00)1
Then the Born series expansion of fidelity can be summed up to all

orders with the result

F (t) = exp�� "2~2v2t� :
Excercise for students: prove (derive) the above formula!
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(1) Temporally stochastic perturbations

Consider noisy perturbations with operator-valued varianceV (t0)V (t00) = v2Æ(t0 � t00)1
Then the Born series expansion of fidelity can be summed up to all

orders with the result

F (t) = exp�� "2~2v2t� :
Excercise for students: prove (derive) the above formula!

For stochastic uncorrelated perturbations fidelity thus decays expo-

nentially with the rate whichonly depends on the magnitude of per-

turbation only andnoton dynamics of the unperturbed system.
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansioneAeB = exp(A+B + (1=2)[A;B℄ + : : :):M"(t) = exp��i "~ Z t0 dt0 ~V (t0) + "22~2 Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄ + : : :�= exp�� i~ ��(t)"+ 12�(t)"2 + : : :��
where �(t) = i~ Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄:

� �(t) O(t)� 
onst"3t 
onst"4t2
O("�1)
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansioneAeB = exp(A+B + (1=2)[A;B℄ + : : :):M"(t) = exp��i "~ Z t0 dt0 ~V (t0) + "22~2 Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄ + : : :�= exp�� i~ ��(t)"+ 12�(t)"2 + : : :��
where �(t) = i~ Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄:� �(t) term allways grows only asO(t).

� 
onst"3t 
onst"4t2
O("�1)
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansioneAeB = exp(A+B + (1=2)[A;B℄ + : : :):M"(t) = exp��i "~ Z t0 dt0 ~V (t0) + "22~2 Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄ + : : :�= exp�� i~ ��(t)"+ 12�(t)"2 + : : :��
where �(t) = i~ Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄:� �(t) term allways grows only asO(t).� Third andfourthorder of BCH expansion can be estimated by
onst"3t and
onst"4t2,

respectively.

O("�1)
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansioneAeB = exp(A+B + (1=2)[A;B℄ + : : :):M"(t) = exp��i "~ Z t0 dt0 ~V (t0) + "22~2 Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄ + : : :�= exp�� i~ ��(t)"+ 12�(t)"2 + : : :��
where �(t) = i~ Z t0 dt0 Z tt0 dt00[ ~V (t0); ~V (t00)℄:� �(t) term allways grows only asO(t).� Third andfourthorder of BCH expansion can be estimated by
onst"3t and
onst"4t2,

respectively.

2nd order BCH expansion provides good approximation of the echo operator up to timesO("�1).
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(1) Perturbations with zero time average

Def: time averageof the perturbation operator�V = limt!1 �(t)t = limt!1 1t Z t0 dt0 ~V (t0):
Arbitrary perturbationV can be decomposed into its time averageV (diagonal in eigenbasis ofH0)

and the residual partVres (offdiagonal in eigenbasis ofH0)V = V + Vres:

V = 0O(t2)V = (d=dt)W = (i=~)[H0;W ℄�(t) = U0(�t)WU0(t)�W = W (t)�W (0);F (t) = 1� "2~2 (h�2(t)i � h�(t)i2) � 1� 4 "2~2 r2; r2 = supt �hW (t)2i � hW (t)i2� :
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(1) Perturbations with zero time average

Def: time averageof the perturbation operator�V = limt!1 �(t)t = limt!1 1t Z t0 dt0 ~V (t0):
Arbitrary perturbationV can be decomposed into its time averageV (diagonal in eigenbasis ofH0)

and the residual partVres (offdiagonal in eigenbasis ofH0)V = V + Vres:
Assume now that for some reasonV = 0.

O(t2)V = (d=dt)W = (i=~)[H0;W ℄�(t) = U0(�t)WU0(t)�W = W (t)�W (0);F (t) = 1� "2~2 (h�2(t)i � h�(t)i2) � 1� 4 "2~2 r2; r2 = supt �hW (t)2i � hW (t)i2� :
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(1) Perturbations with zero time average

Def: time averageof the perturbation operator�V = limt!1 �(t)t = limt!1 1t Z t0 dt0 ~V (t0):
Arbitrary perturbationV can be decomposed into its time averageV (diagonal in eigenbasis ofH0)

and the residual partVres (offdiagonal in eigenbasis ofH0)V = V + Vres:
Assume now that for some reasonV = 0.

Then the quadraticO(t2) in fidelity decay is completely suppressed!

V = (d=dt)W = (i=~)[H0;W ℄�(t) = U0(�t)WU0(t)�W = W (t)�W (0);F (t) = 1� "2~2 (h�2(t)i � h�(t)i2) � 1� 4 "2~2 r2; r2 = supt �hW (t)2i � hW (t)i2� :
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(1) Perturbations with zero time average

Def: time averageof the perturbation operator�V = limt!1 �(t)t = limt!1 1t Z t0 dt0 ~V (t0):
Arbitrary perturbationV can be decomposed into its time averageV (diagonal in eigenbasis ofH0)

and the residual partVres (offdiagonal in eigenbasis ofH0)V = V + Vres:
Assume now that for some reasonV = 0.

Then the quadraticO(t2) in fidelity decay is completely suppressed!

For example, this happens when perturbation can be written as time-derivative,V = (d=dt)W = (i=~)[H0;W ℄.

�(t) = U0(�t)WU0(t)�W = W (t)�W (0);F (t) = 1� "2~2 (h�2(t)i � h�(t)i2) � 1� 4 "2~2 r2; r2 = supt �hW (t)2i � hW (t)i2� :
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(1) Perturbations with zero time average

Def: time averageof the perturbation operator�V = limt!1 �(t)t = limt!1 1t Z t0 dt0 ~V (t0):
Arbitrary perturbationV can be decomposed into its time averageV (diagonal in eigenbasis ofH0)

and the residual partVres (offdiagonal in eigenbasis ofH0)V = V + Vres:
Assume now that for some reasonV = 0.

Then the quadraticO(t2) in fidelity decay is completely suppressed!

For example, this happens when perturbation can be written as time-derivative,V = (d=dt)W = (i=~)[H0;W ℄.
Then�(t) = U0(�t)WU0(t)�W = W (t)�W (0); and within linear reponse, fidelity isfrozenF (t) = 1� "2~2 (h�2(t)i � h�(t)i2) � 1� 4 "2~2 r2; r2 = supt �hW (t)2i � hW (t)i2� :
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(1) Situations of fidelity freeze

When the perturbationV can be wrtitten astime-derivative.

When the unperturbed system is invariant under a certain

unitarysymmetry operationP , say parity,PH0 = H0P ,

whereas the symmetry changes sign of the perturbationPV = �V P .

When the unperturbed system is invariant under a certain

anti-unitarysymmetry operationT , say time-reversal,TH0 = H0T , whereas the symmetry changes sign of the

perturbationTV = �V T .

If diagonal elements of the perturbation are taken outby hand

and put to the unperturbed part (“mean-field”).
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(1) Time averaged fidelity

�F = limt!1 1t Z t0 dt0F (t0)
LetEk and cRE"k denote the energy spectra, andPkl = hEkjE"l i

transition matrix between perturbed and unperturbed systems.

�
f(t) =Xlm (P y�)lmPml exp (�i(E"l �Em)t=~):

�F =Xml j(�P )mlj2jPmlj2:
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(1) Time averaged fidelity

�F = limt!1 1t Z t0 dt0F (t0)
LetEk and cRE"k denote the energy spectra, andPkl = hEkjE"l i

transition matrix between perturbed and unperturbed systems.

If � is a general (mixed) initial state, then fidelity amplitude can be

written outf(t) =Xlm (P y�)lmPml exp (�i(E"l �Em)t=~):

�F =Xml j(�P )mlj2jPmlj2:
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(1) Time averaged fidelity

�F = limt!1 1t Z t0 dt0F (t0)
LetEk and cRE"k denote the energy spectra, andPkl = hEkjE"l i

transition matrix between perturbed and unperturbed systems.

If � is a general (mixed) initial state, then fidelity amplitude can be

written outf(t) =Xlm (P y�)lmPml exp (�i(E"l �Em)t=~):

Assuming spectra to be non-degenerate:�F =Xml j(�P )mlj2jPmlj2:
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(1) Time averaged fidelity cont.

In case ofweak perturbation"� "�, P ! 1 for�Fweak =Xl �2ll
In case ofstrong perturbation" > "� andstrongly non-integrable dynamics, we may assumeP to be

random orthogonal� = 1 (unitary� = 2) matrix and�Fstrong = 4� �N Xl �2ll + 1N l6=mXl;n j�lmj2:
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(1) State averaged fidelity

Let us for example consider averaging over an ensemble of random

initial statesj	i =Pn 
njEki:hh	jAj	ii =: hhAii = hhXml 
�mAml 
lii = 1N trA:

Then, assuming that in the limitN !1 coeeficients
n are

gaussian uncorrelated and random, we obtain

hhF (t)ii = Xmlprhh
�m[M"(t)℄ml 
l 
p [M"(t)℄�pr 
�rii = jhhf(t)iij2 + 1N :
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity in terms of uncertainty of perturbation

(Karkuszewski et al 2002):

ddtF (t) = � i"~ h	0(t)j[P"; V ℄j	0(t)i:P" = j	"(t)ih	"(t)j P" VÆV (t)ÆP"(t) � 12 jh	0(t)j[P"; V ℄j	0(t)ij

� ddtF (t) � ���� ddtF (t)���� � 2"~ ÆV (t)ÆP"(t) = 2"~ ÆV (t)F (t)(1� F (t))

F (t) � 
os2(�(t)); �(t) = "~ Z t0 dt0ÆV (t0)
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity in terms of uncertainty of perturbation

(Karkuszewski et al 2002): ddtF (t) = � i"~ h	0(t)j[P"; V ℄j	0(t)i:
whereP" = j	"(t)ih	"(t)j is the projector.

P" VÆV (t)ÆP"(t) � 12 jh	0(t)j[P"; V ℄j	0(t)ij

� ddtF (t) � ���� ddtF (t)���� � 2"~ ÆV (t)ÆP"(t) = 2"~ ÆV (t)F (t)(1� F (t))

F (t) � 
os2(�(t)); �(t) = "~ Z t0 dt0ÆV (t0)
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity in terms of uncertainty of perturbation

(Karkuszewski et al 2002): ddtF (t) = � i"~ h	0(t)j[P"; V ℄j	0(t)i:
whereP" = j	"(t)ih	"(t)j is the projector.

Using the Heisenberg uncertainty relation for the operatorsP" andV ,ÆV (t)ÆP"(t) � 12 jh	0(t)j[P"; V ℄j	0(t)ij
we can estimate the time-derivative of fidelity� ddtF (t) � ���� ddtF (t)���� � 2"~ ÆV (t)ÆP"(t) = 2"~ ÆV (t)F (t)(1� F (t))

F (t) � 
os2(�(t)); �(t) = "~ Z t0 dt0ÆV (t0)
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity in terms of uncertainty of perturbation

(Karkuszewski et al 2002): ddtF (t) = � i"~ h	0(t)j[P"; V ℄j	0(t)i:
whereP" = j	"(t)ih	"(t)j is the projector.

Using the Heisenberg uncertainty relation for the operatorsP" andV ,ÆV (t)ÆP"(t) � 12 jh	0(t)j[P"; V ℄j	0(t)ij
we can estimate the time-derivative of fidelity� ddtF (t) � ���� ddtF (t)���� � 2"~ ÆV (t)ÆP"(t) = 2"~ ÆV (t)F (t)(1� F (t))

Separating the variables and integrating by parts we get an inequality:F (t) � 
os2(�(t)); �(t) = "~ Z t0 dt0ÆV (t0)
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(1) Polarization echo

Prepare intial statej	0i as eigenstate of certain obserbable, say

polarization of a local spinsz0:sz0j	0i = m0j	0i; m0 = �1=2:

m"(t) = hM y" (t)sz0M"(t)iP"(t)

P"(t) = 12 + 2m0m"(t) = 12 + 2hsz0M y" (t)sz0M"(t)i
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(1) Polarization echo

Prepare intial statej	0i as eigenstate of certain obserbable, say

polarization of a local spinsz0:sz0j	0i = m0j	0i; m0 = �1=2:
Then, perform an echo-experiment and measure the local spin:m"(t) = hM y" (t)sz0M"(t)i

P"(t)

P"(t) = 12 + 2m0m"(t) = 12 + 2hsz0M y" (t)sz0M"(t)i
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(1) Polarization echo

Prepare intial statej	0i as eigenstate of certain obserbable, say

polarization of a local spinsz0:sz0j	0i = m0j	0i; m0 = �1=2:
Then, perform an echo-experiment and measure the local spin:m"(t) = hM y" (t)sz0M"(t)i
Polarization echoP"(t) is defined as the probability that the local

polarization of the spin is restored after the echo dynamics

P"(t) = 12 + 2m0m"(t) = 12 + 2hsz0M y" (t)sz0M"(t)i

Polarization echo may have different behaviour than fidelity!
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(2) Observable echo

For a general observableA, for which the initial statej	0i has to be

an eigenstate, we define anA�echo as

PA" (t) = hAM y" (t)AM"(t)iA2

M"(t) = 1� i "~�(t)� "22~2 ^T�2(t) +O("3)

PA" (t) = 1� "2~2 hA2�2(t)i � hA�(t)A�(t)ihA2i + O("4)
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(2) Observable echo

For a general observableA, for which the initial statej	0i has to be

an eigenstate, we define anA�echo as

PA" (t) = hAM y" (t)AM"(t)iA2
Using 2nd-order echo-operator

M"(t) = 1� i "~�(t)� "22~2 ^T�2(t) +O("3)

we find

PA" (t) = 1� "2~2 hA2�2(t)i � hA�(t)A�(t)ihA2i + O("4)
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(1) Composite systems

We consider two-partite systems:central systemplusenvironmentH = H
 
He

�
(t) := tr e[�(t)℄; �M
 (t) := tr e[�M(t)℄;�M(t) =M"(t)�(0)M y" (t):

j (0)i = j 
(0)i 
 j e(0)i =: j 
(0); e(0)i:
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(1) Composite systems

We consider two-partite systems:central systemplusenvironmentH = H
 
He
We are mainly interested in the reduced density matrix of thecentral

system �
(t) := tr e[�(t)℄; �M
 (t) := tr e[�M(t)℄;

where�M(t) =M"(t)�(0)M y" (t):

j (0)i = j 
(0)i 
 j e(0)i =: j 
(0); e(0)i:

Quantum and Classical Loschmidt Echoes – p.23/68



(1) Composite systems

We consider two-partite systems:central systemplusenvironmentH = H
 
He
We are mainly interested in the reduced density matrix of thecentral

system �
(t) := tr e[�(t)℄; �M
 (t) := tr e[�M(t)℄;

where�M(t) =M"(t)�(0)M y" (t):
We assume that initial state is a product statej (0)i = j 
(0)i 
 j e(0)i =: j 
(0); e(0)i:
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(1) Composite systems cont.

Fidelity of the total unitary evolution (system+environment) isF (t) = tr [�(0)�M(t)℄

FR(t) := tr 
[�
(0)�M
 (t)℄:

FP(t) := tr 
[f�M
 (t)g2℄: U0 = U
 
 Ue
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(1) Composite systems cont.

Fidelity of the total unitary evolution (system+environment) isF (t) = tr [�(0)�M(t)℄
We definereduced fidelityas fidelity of reduced density matrixFR(t) := tr 
[�
(0)�M
 (t)℄:

FP(t) := tr 
[f�M
 (t)g2℄: U0 = U
 
 Ue
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(1) Composite systems cont.

Fidelity of the total unitary evolution (system+environment) isF (t) = tr [�(0)�M(t)℄
We definereduced fidelityas fidelity of reduced density matrixFR(t) := tr 
[�
(0)�M
 (t)℄:

As a measure of entanglement between the central system and the

environment under-echo dynamics we define echo purityFP(t) := tr 
[f�M
 (t)g2℄:

In case when unperturbed evolution is decoupledU0 = U
 
 Ue the

echo purity is identical to purity of the forward evolution!
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(1) Inequality between fidelity, reduced fi-
delity and echo purity

One can prove the following inequality for an arbitrary purestatej i and an arbitrary pure product statej�
;�eijh�
;�ej ij4 � jh�
j�
j�
ij2 � tr 
[�2
 ℄;
where�
 := tr e[j ih j℄.
Proof is a simple two-step excercise consisiting of use of Uhlmann’s

theorem and Cauchy-Schwartz inequality.

F 2(t) � FR(t)2(t) � FP(t)2(t)
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(1) Inequality between fidelity, reduced fi-
delity and echo purity

One can prove the following inequality for an arbitrary purestatej i and an arbitrary pure product statej�
;�eijh�
;�ej ij4 � jh�
j�
j�
ij2 � tr 
[�2
 ℄;
where�
 := tr e[j ih j℄.
Proof is a simple two-step excercise consisiting of use of Uhlmann’s

theorem and Cauchy-Schwartz inequality.

Specializing to the case of echo-dynamics we find a very useful

estimate F 2(t) � FR(t)2(t) � FP(t)2(t)
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(1) Composite systems: linear response

Expanding the echo operator to second order we can

straintforwardly derive the linear response expressions for the

measures of echodynamics of composite systems

1� F (t) = � "~�2 h�(t)(1
 1� �
 
 �e)�(t)i1� FR(t) = � "~�2 h�(t)(1� �
)
 1�(t)i1� FP(t) = 2� "~�2 h�(t)(1� �
)
 (1� �e)�(t)i:

writing the expectation value in the initial product state as usual,h�i = tr [(�
 
 �e)�℄.
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2 Quantum echo-dynamics: Non-integrable
(chaotic) case

We consider here echo-dynamics of strongly non-integrabledynamical systems for which we can

assumeergodicityandmixing, at least in the limit~! 0, or thermodynamic limit for systems of many

particles.

tE Ah	0(t)jAj	0(t)i � hhAii; for jtj � tE:

t� tE C(t0; t00) = C(t0 � t00)F (t) = 1� "2~2 �tC(0) + 2 Z t0 dt0(t� t0)C(t0)�+O("4):

C(t) t�1 t� tmixF (t) = 1� 2("=~)2�t; � = Z 10 dtC(t) = limt!1 h�2(t)i � h�(t)i22t :
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2 Quantum echo-dynamics: Non-integrable
(chaotic) case

We consider here echo-dynamics of strongly non-integrabledynamical systems for which we can

assumeergodicityandmixing, at least in the limit~! 0, or thermodynamic limit for systems of many

particles.

In other words, there exist arelaxation time scaletE s.t. for typical physical observableAh	0(t)jAj	0(t)i � hhAii; for jtj � tE:
For t� tE we haveC(t0; t00) = C(t0 � t00) and linear response formula for fidelity rewrites asF (t) = 1� "2~2 �tC(0) + 2 Z t0 dt0(t� t0)C(t0)�+O("4):

If C(t) decays faster thant�1 then a characteristicmixing timeexist s.t. ift� tmixF (t) = 1� 2("=~)2�t; � = Z 10 dtC(t) = limt!1 h�2(t)i � h�(t)i22t :
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(2) Beyond linear response

Fem(t) = 1� Æ2~2 �t; � = 12 Z 1�1 dtC(t)

n�hV (t1)V (t2) : : : V (t2n�1)V (t2n)i �! hVt1Vt2i � � � hVt2n�1Vt2nit2j+1 � t2j � tmix j = 1; 2 : : : n� 1 t� ntmix^T Z dt1 � � �dt2nhV (t1)V (t2) � � �V (t2n)i !! ^T Z dt1 � � �dt2nhV (t1)V (t2)i � � � hV (t2n�1)V (t2n)i ! (2n)!n! (t�)n) V (t)Fem(t) = exp(�t=�em); �em = ~2Æ2� :

Quantum and Classical Loschmidt Echoes – p.28/68



(2) Beyond linear response

Fem(t) = 1� Æ2~2 �t; � = 12 Z 1�1 dtC(t)
Further assume:n�point mixing, i.e.hV (t1)V (t2) : : : V (t2n�1)V (t2n)i �! hVt1Vt2i � � � hVt2n�1Vt2ni
if t2j+1 � t2j � tmix, j = 1; 2 : : : n� 1. Then if t� ntmix:^T Z dt1 � � �dt2nhV (t1)V (t2) � � �V (t2n)i !! ^T Z dt1 � � �dt2nhV (t1)V (t2)i � � � hV (t2n�1)V (t2n)i ! (2n)!n! (t�)n

Similar arguments) terms withodd number ofV (t) vanish in leading order!

Fem(t) = exp(�t=�em); �em = ~2Æ2� :
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(2) Beyond linear response

Fem(t) = 1� Æ2~2 �t; � = 12 Z 1�1 dtC(t)
Further assume:n�point mixing, i.e.hV (t1)V (t2) : : : V (t2n�1)V (t2n)i �! hVt1Vt2i � � � hVt2n�1Vt2ni
if t2j+1 � t2j � tmix, j = 1; 2 : : : n� 1. Then if t� ntmix:^T Z dt1 � � �dt2nhV (t1)V (t2) � � �V (t2n)i !! ^T Z dt1 � � �dt2nhV (t1)V (t2)i � � � hV (t2n�1)V (t2n)i ! (2n)!n! (t�)n

Similar arguments) terms withodd number ofV (t) vanish in leading order!

We can nowsum-up the fidelity to all orders:Fem(t) = exp(�t=�em); �em = ~2Æ2� :

Alternatively, this regime of fidelity decay is usually derived in terms of Fermi-Golden-Rule.
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(2) Numerical example: Kicked top

We consider quantized kicked top (Haake et al 1987):H(t) = 12�~2J2z + 1Xm=�1 Æ(t�m)
~Jy;U = exp(�i
Jy) exp(�i�J2z =2J):
Classical limit:~ = 1=J ! 0.

Perturbation:V = 12 � JzJ �2.
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(2) Numerical example: cont.

For
 = �=2:
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(2) Beyond Heisenberg time

Previously, we assumed thatC(t) asymptotically decays ast!1.

~t > tH tH = 12N / ~�d

Ci(t) = �Ct2 �C = 4�
lN :

F (t) = 1� "2~2 4�
lN t2:
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(2) Beyond Heisenberg time

Previously, we assumed thatC(t) asymptotically decays ast!1.

This is in generalwrongfor finite quantum systems orfinite

effective value of~.

Namely, fort > tH wheretH = 12N / ~�d is the Heisenberg time,

quantum evolution start to feel discreteness of the spectrum,Ci(t) = �Ct2 with �C = 4�
lN :
So within linear response

F (t) = 1� "2~2 4�
lN t2:
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(2) Beyond Heisenberg time

Previously, we assumed thatC(t) asymptotically decays ast!1.

This is in generalwrongfor finite quantum systems orfinite

effective value of~.

Namely, fort > tH wheretH = 12N / ~�d is the Heisenberg time,

quantum evolution start to feel discreteness of the spectrum,Ci(t) = �Ct2 with �C = 4�
lN :
So within linear response

F (t) = 1� "2~2 4�
lN t2:
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(2) Beyond linear response,
beyond Heisenberg time...

For very small perturbations"� 
onst=t, s.t. second term of BCH expansion can be neglected:f(t) =Xk exp (�iVkk"t=~)=N

Vkk2�=N F (t) = exp ��(t=�p)2�; �p =s N4�
l
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(2) Beyond linear response,
beyond Heisenberg time...

For very small perturbations"� 
onst=t, s.t. second term of BCH expansion can be neglected:f(t) =Xk exp (�iVkk"t=~)=N
This sum can be computed statistically ifVkk are replaced by gaussian random variables with variance2�=N F (t) = exp ��(t=�p)2�; �p =s N4�
l
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(2) ...is Gaussian (perturbative) fidelity decay

Gaussian decay starts right at the beginningif the fidelity decay time

scale�em becomes longer thantH. This gives" > "p where

"p = ~p�
lN
is theperturbative border.
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(2) Vanishing time averaged perturbation
and fidelity freeze

Assume thatV = (d=dt)W is a time-derivative, or time-difference for kicked systems.

t2 � 1="F (t) � Fplat = ����hexp�� i"~ w�i
lhexp� i"~W�i����2w Wt > t2"! "2 F (t) � Fplat exp�� "42~2 �Rt�; t < tHF (t) � Fplat exp�� "42~2 �R t2tH�; t > tH:�R R(t) = (i=~)[W; (d=dt)W ℄
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(2) Vanishing time averaged perturbation
and fidelity freeze

Assume thatV = (d=dt)W is a time-derivative, or time-difference for kicked systems.

Then, up to timet2 � 1=" the fidelity freezes to a plateau which is given by the first term in BCH

expansion: F (t) � Fplat = ����hexp�� i"~ w�i
lhexp� i"~W�i����2
wherew is a classical limit of time-integrtad perturbationW .

t > t2"! "2 F (t) � Fplat exp�� "42~2 �Rt�; t < tHF (t) � Fplat exp�� "42~2 �R t2tH�; t > tH:�R R(t) = (i=~)[W; (d=dt)W ℄
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(2) Vanishing time averaged perturbation
and fidelity freeze

Assume thatV = (d=dt)W is a time-derivative, or time-difference for kicked systems.

Then, up to timet2 � 1=" the fidelity freezes to a plateau which is given by the first term in BCH

expansion: F (t) � Fplat = ����hexp�� i"~ w�i
lhexp� i"~W�i����2
wherew is a classical limit of time-integrtad perturbationW .

For longer timest > t2 we find either exponential or gaussian decay, with rescaled perturbation"! "2 F (t) � Fplat exp�� "42~2 �Rt�; t < tHF (t) � Fplat exp�� "42~2 �R t2tH�; t > tH:

and diffusion constant�R computed with respect to observableR(t) = (i=~)[W; (d=dt)W ℄.
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(2) Numerical example:
fidelity freeze in kicked top

V = S2x�S2z2S2 ;W = S2z2S2 ; R = �SxSySz+SzSySx2S3 :
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(2) Composite systems

For chaotic dynamics the upper bound of inequalities is reached. In

the FGR regime, and in the limit of large dimensions of both

subsystems, we haveFP(t) � F 2R(t) � F 2(t) = exp (�2t=�em)
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(2) Semiclassical orbit evaluation of fidelity

Due to Feynman, quantum propagator can be written ash~qjUÆ(t)j~q0i = Z ~r(t)=~q~r(0)=~q0 D~r(t) exp�� i~S[~r(t)℄� ; S[~r(t)℄ := Z t0 dtLÆ(~r; _~r)

h~qjUÆ(t)j~q0i = X
l:paths j
����det �2Sj�qm�q0n �����d=2 exp� i~Sj � i�2�j�

F (t) = ����Z d~qd~q0d~q00 �0(~q)h~qjU0(�t)j~q0ih~q0jUÆ(t)j~q00i 0(~q00)����2

t < tE F (t) / exp(��t)
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(2) Semiclassical orbit evaluation of fidelity

Due to Feynman, quantum propagator can be written ash~qjUÆ(t)j~q0i = Z ~r(t)=~q~r(0)=~q0 D~r(t) exp�� i~S[~r(t)℄� ; S[~r(t)℄ := Z t0 dtLÆ(~r; _~r)

Applying method of stationary phase, we obtain (Van-Vleck)h~qjUÆ(t)j~q0i = X
l:paths j
����det �2Sj�qm�q0n �����d=2 exp� i~Sj � i�2�j�
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(2) Semiclassical orbit evaluation of fidelity

Due to Feynman, quantum propagator can be written ash~qjUÆ(t)j~q0i = Z ~r(t)=~q~r(0)=~q0 D~r(t) exp�� i~S[~r(t)℄� ; S[~r(t)℄ := Z t0 dtLÆ(~r; _~r)

Applying method of stationary phase, we obtain (Van-Vleck)h~qjUÆ(t)j~q0i = X
l:paths j
����det �2Sj�qm�q0n �����d=2 exp� i~Sj � i�2�j�

Plugging this into expressionF (t) = ����Z d~qd~q0d~q00 �0(~q)h~qjU0(�t)j~q0ih~q0jUÆ(t)j~q00i 0(~q00)����2

we obtain various semiclassical expressions of fidelity

(Jalabert,Pastawski,Cerruti,Tomsovic,Vanicek,Heller).

t < tE F (t) / exp(��t)
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(2) Semiclassical orbit evaluation of fidelity

Due to Feynman, quantum propagator can be written ash~qjUÆ(t)j~q0i = Z ~r(t)=~q~r(0)=~q0 D~r(t) exp�� i~S[~r(t)℄� ; S[~r(t)℄ := Z t0 dtLÆ(~r; _~r)

Applying method of stationary phase, we obtain (Van-Vleck)h~qjUÆ(t)j~q0i = X
l:paths j
����det �2Sj�qm�q0n �����d=2 exp� i~Sj � i�2�j�

Plugging this into expressionF (t) = ����Z d~qd~q0d~q00 �0(~q)h~qjU0(�t)j~q0ih~q0jUÆ(t)j~q00i 0(~q00)����2

we obtain various semiclassical expressions of fidelity

(Jalabert,Pastawski,Cerruti,Tomsovic,Vanicek,Heller).

Chaotic dynamics andt < tE: due QC corresp.,F (t) / exp(��t).
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(2) Uniform semiclassical formula of
Vanicek

Within diagonal approximation of fidelity amplitude, justified by

classicalshadowing theorem, and for general initial state�,
descriped by the Wigner functionW�(~q; ~p), Vanicek derived very

elegant semiclassical expression of fidelity amplitude

f(t) = Z d~qd~pW�(~q; ~p) exp�� i~"Z t0 dt0v(~q(t0); ~p(t0); t0)�;

wherev(~q; ~p; t) is a classical limit of the perturbation.

Vanicek formula semiclassically repreduces all the regimes of fidelity

decay below the Heisenberg time!
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3 Random matrix theory
of echo-dynamics

To what extend we can understand “universal” regimes of

echo-dynamics by the principle of maximal ignorance?

H" = H0 + "V H0 V�V = 2 �V = 1�V = 4

H0 tH = 2�V 1 hV 2jki = 1

H0 V
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3 Random matrix theory
of echo-dynamics

To what extend we can understand “universal” regimes of

echo-dynamics by the principle of maximal ignorance?

Take for exampleH" = H0 + "V , whereH0 andV arerandom,

complex hermitean�V = 2 (or real symmetric�V = 1, or

quaternionic symmetric�V = 4) matrices.

We fix units and perturbations strength such thanmean level spacing

of H0 is 1 (in the center of the band), meaningtH = 2�, and

variance of (off-diagonal) matrix elements ofV is 1, hV 2jki = 1.

H0 V
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3 Random matrix theory
of echo-dynamics

To what extend we can understand “universal” regimes of

echo-dynamics by the principle of maximal ignorance?

Take for exampleH" = H0 + "V , whereH0 andV arerandom,

complex hermitean�V = 2 (or real symmetric�V = 1, or

quaternionic symmetric�V = 4) matrices.

We fix units and perturbations strength such thanmean level spacing

of H0 is 1 (in the center of the band), meaningtH = 2�, and

variance of (off-diagonal) matrix elements ofV is 1, hV 2jki = 1.

Our program now is to derive simple expressions for fidelity and other

measures of echo-dynamics by averaging overH0 andV and compare

to experimental and numerical data.
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(3) Linear response:
Fidelity and spectral form factor

Let us recall the expression for the echo-operator to secondorderM"(t) = 1� i 2�"Z t0 dt0 ~V (t0)� (2�")2 Z t0 dt0 Z t00 dt00 ~V (t0) ~V (t00) +O("30) :

V

h[ ~V (�) ~V (� 0)℄�;�0 i = X� hV�;� V�;�0 i he2�i[(E��E�)�+(E��E0� )� 0℄i= Æ�;�0 � 2�V + Æ(� � � 0)� b2(� � � 0)�

b2(�) H0
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(3) Linear response:
Fidelity and spectral form factor

Let us recall the expression for the echo-operator to secondorderM"(t) = 1� i 2�"Z t0 dt0 ~V (t0)� (2�")2 Z t0 dt0 Z t00 dt00 ~V (t0) ~V (t00) +O("30) :
Let us frist make average over an ensemble ofV s. Linear term clearly averages out. For the quadratic

term wee need 2-point correlatorh[ ~V (�) ~V (� 0)℄�;�0 i = X� hV�;� V�;�0 i he2�i[(E��E�)�+(E��E0� )� 0℄i= Æ�;�0 � 2�V + Æ(� � � 0)� b2(� � � 0)�

whereb2(�) is the 2-point spectral form factor ofH0.
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(3) Linear response cont.

Plugging the correlation function expression into the formula we obtain ensemble averaged fidelity

amplitude hf"(t)i = 1� (2�")2 "t2=�V + t=2� Z t0 d� 0 Z � 00 d� b2(�)#+O("4) :
Conjecture: fornot-large perturbations and fidelities down-tof � 0:1:hf"(t)i = exp"�(2�")2 t2=�V + t=2� Z t0 d� 0 Z � 00 d� b2(�) !#
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(3) RMT and experiments:
microwave billiards

Schäffer et al (2004) measured scattering fidelity in microwave

billiards.
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(3) RMT and experiments: acoustics

Lobkis and Weaver (2003) measuring “distortion”D(t) of an

acoustic response of solid aluminium blocks upon variationof

temperature (dilation = perturbation).

D(t) can be re-interpreted as fidelity. RMT gives good fit of data with

a single fitting parameter
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(3) SUSY non-perturbative results

Exact expressions of fidelity amplitude in terms of supersymmetric

Gaussian intergals have been obtained by Stöckmann and Scäffer

(2004), and solved exactly in the limitN !1.

The result for the GUE (simpler) case reads:

hf"(t)i = 1t Z min(t;1)0 du (1 + t� 2u) e�(2�")2 (1+t�2u) t=2
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4 Quantum echo-dynamics:
Integrable case

Here, time-averaged correlation is non-vanishing�C = limt!1 1t2 R t0 dt0dt00C(t0; t00) 6= 0:

9 tave �Ct� tave " jfne(t)j2 = 1� t2�2ne ; �ne = ~"p �C :9 �V = limt!1 1t Z t0 dtV (t0); so that �C = h �V 2i � h �V i2:m t� mtave^T Z dt1 � � �dtmhV (t1)V (t2) � � �V (tm)i = tmh �Vmi:

fne(t) = 1Xm=0 1m! � it"~ �m h �Vmi = hexp(�i" �V t=~)i:
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4 Quantum echo-dynamics:
Integrable case

Here, time-averaged correlation is non-vanishing�C = limt!1 1t2 R t0 dt0dt00C(t0; t00) 6= 0:
Assume:9 scaletave on which �C converges.

For t� tave andsmall" we have:jfne(t)j2 = 1� t2�2ne ; �ne = ~"p �C :

9 �V = limt!1 1t Z t0 dtV (t0); so that �C = h �V 2i � h �V i2:m t� mtave^T Z dt1 � � �dtmhV (t1)V (t2) � � �V (tm)i = tmh �Vmi:

fne(t) = 1Xm=0 1m! � it"~ �m h �Vmi = hexp(�i" �V t=~)i:
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4 Quantum echo-dynamics:
Integrable case

Here, time-averaged correlation is non-vanishing�C = limt!1 1t2 R t0 dt0dt00C(t0; t00) 6= 0:
Assume:9 scaletave on which �C converges.

For t� tave andsmall" we have:jfne(t)j2 = 1� t2�2ne ; �ne = ~"p �C :
Assume:9 time-average perturbation operator�V = limt!1 1t Z t0 dtV (t0); so that �C = h �V 2i � h �V i2:

m t� mtave^T Z dt1 � � �dtmhV (t1)V (t2) � � �V (tm)i = tmh �Vmi:

fne(t) = 1Xm=0 1m! � it"~ �m h �Vmi = hexp(�i" �V t=~)i:
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4 Quantum echo-dynamics:
Integrable case

Here, time-averaged correlation is non-vanishing�C = limt!1 1t2 R t0 dt0dt00C(t0; t00) 6= 0:
Assume:9 scaletave on which �C converges.

For t� tave andsmall" we have:jfne(t)j2 = 1� t2�2ne ; �ne = ~"p �C :
Assume:9 time-average perturbation operator�V = limt!1 1t Z t0 dtV (t0); so that �C = h �V 2i � h �V i2:

Then: orderm term in fidelity expansion fort� mtave^T Z dt1 � � �dtmhV (t1)V (t2) � � �V (tm)i = tmh �Vmi:

So the fidelity can again besummed-up:fne(t) = 1Xm=0 1m! � it"~ �m h �Vmi = hexp(�i" �V t=~)i:
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(4) Regular case: LDOS and semiclassics

Let vn be thespectrumandjvni theeigenstatesof �V .

Then, the fidelity is aFourier transformof LDOSFne(t) = hexp(i" �V t=~)i = Z dv eivt"=~d�(v);d�(v) =Xn Æ(v � vn)hvnj�jvni:

) 9 ~I j~ni~I~n = ~(~n+ ~�=4)j~ni: ~ �Vv~n = �v(~I~n);�v(~I) V P~n ! ~�d R dd~I

Fne(t) � ~�d Z dd~I exp fit�v(~I)"=~gD�(~I)

D�(~I~n) := h~nj�j~ni ~I
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(4) Regular case: LDOS and semiclassics

Let vn be thespectrumandjvni theeigenstatesof �V .

Then, the fidelity is aFourier transformof LDOSFne(t) = hexp(i" �V t=~)i = Z dv eivt"=~d�(v);d�(v) =Xn Æ(v � vn)hvnj�jvni:
If integrability) 9 quantized classical actions~I, with eigenstatesj~ni and eigenvalues~I~n = ~(~n+ ~�=4)j~ni:

~ �Vv~n = �v(~I~n);�v(~I) V P~n ! ~�d R dd~I

Fne(t) � ~�d Z dd~I exp fit�v(~I)"=~gD�(~I)

D�(~I~n) := h~nj�j~ni ~I
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(4) Regular case: LDOS and semiclassics

Let vn be thespectrumandjvni theeigenstatesof �V .

Then, the fidelity is aFourier transformof LDOSFne(t) = hexp(i" �V t=~)i = Z dv eivt"=~d�(v);d�(v) =Xn Æ(v � vn)hvnj�jvni:
If integrability) 9 quantized classical actions~I, with eigenstatesj~ni and eigenvalues~I~n = ~(~n+ ~�=4)j~ni: In the leading order in~, eigenvalues of�Vv~n = �v(~I~n);
where�v(~I) is a time-average of classical limit ofV .

P~n ! ~�d R dd~I

Fne(t) � ~�d Z dd~I exp fit�v(~I)"=~gD�(~I)

D�(~I~n) := h~nj�j~ni ~I
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(4) Regular case: LDOS and semiclassics

Let vn be thespectrumandjvni theeigenstatesof �V .

Then, the fidelity is aFourier transformof LDOSFne(t) = hexp(i" �V t=~)i = Z dv eivt"=~d�(v);d�(v) =Xn Æ(v � vn)hvnj�jvni:
If integrability) 9 quantized classical actions~I, with eigenstatesj~ni and eigenvalues~I~n = ~(~n+ ~�=4)j~ni: In the leading order in~, eigenvalues of�Vv~n = �v(~I~n);
where�v(~I) is a time-average of classical limit ofV . Replacing

P~n ! ~�d R dd~I we find

Fne(t) � ~�d Z dd~I exp fit�v(~I)"=~gD�(~I)

assumingD�(~I~n) := h~nj�j~ni is a smooth function of~I. Quantum and Classical Loschmidt Echoes – p.46/68



(4) Regular case: random initial state

Averaging over (random) initial states) � = 1=N : D�(~I) = 1N = (2�~)dV :

~I� � = 1; 2; : : : p ��v(~Ip)�~I = 0 �V� = ��2�v(~I�)�Ij�Ik �dj;k=1fne(t) = (2�)3d=2V ���� ~t" ����d=2 pX�=1 expfit�v(~I�)"=~+ i��gjdet �V�j1=2�� = �(m+ �m�)=4 m� = �V�
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(4) Regular case: random initial state

Averaging over (random) initial states) � = 1=N : D�(~I) = 1N = (2�~)dV :
Let ~I� , � = 1; 2; : : : p be points of stationary phase

��v(~Ip)�~I = 0 and �V� = ��2�v(~I�)�Ij�Ik �dj;k=1:

fne(t) = (2�)3d=2V ���� ~t" ����d=2 pX�=1 expfit�v(~I�)"=~+ i��gjdet �V�j1=2
where�� = �(m+ �m�)=4 andm� = numbers of positive/negative eigenvalues of�V� .
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(4) Regular case: random initial state

Averaging over (random) initial states) � = 1=N : D�(~I) = 1N = (2�~)dV :
Let ~I� , � = 1; 2; : : : p be points of stationary phase

��v(~Ip)�~I = 0 and �V� = ��2�v(~I�)�Ij�Ik �dj;k=1:

fne(t) = (2�)3d=2V ���� ~t" ����d=2 pX�=1 expfit�v(~I�)"=~+ i��gjdet �V�j1=2
where�� = �(m+ �m�)=4 andm� = numbers of positive/negative eigenvalues of�V� .

Numerical example: Kicked top in quasi-regular regime
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(4) Regular case: coherent initial state

Considerd-dimensional general coherent initial state centered at(~I�; ~��):h~nj~I�; ~��i = � ~��d=4jdet �j1=4 exp�� 12~ (~I~n � ~I�) � �(~I~n � ~I�)� i~n � ~���

9~Is = ~I� � it"2 ��1~v0 +O("2); where ~v0 := ��v(~I�)�~I

fne(t) = exp(� (~v0 � ��1~v0)"24~ t2 + i�v(~I�)"~ t) :

jFne(t)j2 = exp�� t2�2ne� ; �ne � ~1=2"�1:
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(4) Regular case: coherent initial state

Considerd-dimensional general coherent initial state centered at(~I�; ~��):h~nj~I�; ~��i = � ~��d=4jdet �j1=4 exp�� 12~ (~I~n � ~I�) � �(~I~n � ~I�)� i~n � ~���
Method of stationary phase:9 unique stationary point~Is = ~I� � it"2 ��1~v0 +O("2); where ~v0 := ��v(~I�)�~I
giving fne(t) = exp(� (~v0 � ��1~v0)"24~ t2 + i�v(~I�)"~ t) :

Note aGaussian decayof fidelityjFne(t)j2 = exp�� t2�2ne� ; �ne � ~1=2"�1:
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Numerical example: double-kicked top

Two coupled kicked tops~J1 and ~J2 with Floquet map:U(�) = exp (�i �2 J1y) exp (�i �2 J2y) exp (�i�J1zJ2z=J):
Perturbation:V = J1zJ2z=J2:

We takeJ = 200, " = 8 � 10�4.

1 � quasi-regular case� = 1 (dotted curve)

2 � chaotic case� = 20 (solid curve, dashed=random state)
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5 Classical fidelity

Q-C Correspondence:

Write quantum fidelity in terms of the Wigner functions:

F (t) = (2�~)d Z d~xW�(~x; t)W "� (~x; t):

�(~x)

F
l(t) = Z d~x�(~x; t)�"(~x; t):
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5 Classical fidelity

Q-C Correspondence:

Write quantum fidelity in terms of the Wigner functions:

F (t) = (2�~)d Z d~xW�(~x; t)W "� (~x; t):
Replace Wigner function by the Liuoville density�(~x) and we have

the classical fidelity

F
l(t) = Z d~x�(~x; t)�"(~x; t):
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(5) Q-C correspondence: chaotic

W (ϕ, cosϑ) ρ(ϕ, cos ϑ) W · (W − Wδ) ρ · (ρ − ρδ)
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(5) Q-C correspondence: zoom-in
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(5) Q-C correspondence: regular

W (ϕ, cosϑ) ρ(ϕ, cos ϑ) W · (W − Wδ) ρ · (ρ − ρδ)
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamics inINTERACTION PICTURE:�E(~x; t) = UE(t)�0(~x; 0); F
l(t) = Z
 d~x�E(~x; t)�0(~x; 0):

^UE(t) = ^Uy0 (t) ^U"(t)ddt ^U"(t) = ^LH"(~x;t) ^U"(t); ^LA(~x;t) := �~rA(~x; t)� � J ~r;

ddt ^UE(t) = ^LHE(~x;t) ^UE(t); HE(~x; t) = "V �~�t(~x); t� :

_~x = J ~rHE(~x; t):
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamics inINTERACTION PICTURE:�E(~x; t) = UE(t)�0(~x; 0); F
l(t) = Z
 d~x�E(~x; t)�0(~x; 0):
The classical echo-operator^UE(t) = ^Uy0 (t) ^U"(t) with Liouvilean propagatorsddt ^U"(t) = ^LH"(~x;t) ^U"(t); ^LA(~x;t) := �~rA(~x; t)� � J ~r;

again satisfies Liouville equation with echo Hamiltonianddt ^UE(t) = ^LHE(~x;t) ^UE(t); HE(~x; t) = "V �~�t(~x); t� :

_~x = J ~rHE(~x; t):
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamics inINTERACTION PICTURE:�E(~x; t) = UE(t)�0(~x; 0); F
l(t) = Z
 d~x�E(~x; t)�0(~x; 0):
The classical echo-operator^UE(t) = ^Uy0 (t) ^U"(t) with Liouvilean propagatorsddt ^U"(t) = ^LH"(~x;t) ^U"(t); ^LA(~x;t) := �~rA(~x; t)� � J ~r;

again satisfies Liouville equation with echo Hamiltonianddt ^UE(t) = ^LHE(~x;t) ^UE(t); HE(~x; t) = "V �~�t(~x); t� :

Trajectories of theecho-flowsatisfy time-dependent Hamilton’s equations:_~x = J ~rHE(~x; t):
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(5) Classical fidelity:
linear response

Hamilton’s equations for the echo-flow can be solved perturbatively

for small" with the solutionsF 
h
l (t) = 1� "2C[�℄2 exp(2�maxt) +O("4); t� 1=�max

for chaotic dynamicswith maximal Lyapunov exponent�max, andF reg
l (t) = 1� "2C 0[�℄2t2 +O("4)

for regular dynamics, whereC[�℄; C 0[�℄ are some constants which

depend on initial density� only.
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(5) Classical fidelity:
chaotic few body systems

Elaborating on classical fidelity in interaction picture one can derive

a cascade of Lyapunov decays for ergodic and strongly chaotic few

body systems:F
l(t) � Yj; tj<t exp [��j(t� tj)℄ ; tj = (1=�j) log(�j=("
j))
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(5) Classical fidelity:
chaotic many-body systems

For chaotic many-body systems, one can use similar thinkingto

derive doubly-exponential decayf(t) = exp ���NÆ� exp(��maxt)� ;
where� = 1 or 2, depending on whether intitial density is (Lipshitz)

continuous or not.
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(5) Classical fidelity:
linearly unstable systems

For systems which have no exponential instability (�max = 0) but

arelinearly unstable, and ergodic and mixing, we find universal

scaling of classical fidelity

F
l(t) = �(j"j2=5t)
For smallt, F
l = 1� Cj"jt5=2,
for long t, F
l = exp(�C 0j"j2=5jtj).
The prominent example of such systems ishard-point gas of unequal

particles in one-dimension, or any polygonal billiard with at least two

irrational angles.

Quantum and Classical Loschmidt Echoes – p.58/68



6 Scaling of fidelity decay time scales

Fidelity decay time against perturbation parameter:
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6 Scaling of fidelity decay time scales

Fidelity decay time against chaoticity parameter:
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7 Application: Quantum information

U = U(T ) � � �U(2)U(1):

U(t; t0) = U(t)U(t� 1) � � �U(t0 + 2)U(t0 + 1)U(t0; t) = U(t; t0)yV (t) UÆ(t) = U(t) exp(�iÆV (t)):

F = 1� Æ2 TX
t;t0=1C(t; t0)C(t; t0) = h jU(0; t)V (t)U(t; t0)V (t0)U(t0; 0)j i
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7 Application: Quantum information

U = U(T ) � � �U(2)U(1):
PropagatorU(t; t0) = U(t)U(t� 1) � � �U(t0 + 2)U(t0 + 1),U(t0; t) = U(t; t0)y.
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7 Application: Quantum information

U = U(T ) � � �U(2)U(1):
PropagatorU(t; t0) = U(t)U(t� 1) � � �U(t0 + 2)U(t0 + 1),U(t0; t) = U(t; t0)y.
PerturbationV (t), UÆ(t) = U(t) exp(�iÆV (t)):

F = 1� Æ2 TX
t;t0=1C(t; t0)C(t; t0) = h jU(0; t)V (t)U(t; t0)V (t0)U(t0; 0)j i

Quantum and Classical Loschmidt Echoes – p.61/68



7 Application: Quantum information

U = U(T ) � � �U(2)U(1):
PropagatorU(t; t0) = U(t)U(t� 1) � � �U(t0 + 2)U(t0 + 1),U(t0; t) = U(t; t0)y.
PerturbationV (t), UÆ(t) = U(t) exp(�iÆV (t)):

Fidelity (linear reposnse):

F = 1� Æ2 TX
t;t0=1C(t; t0)

whereC(t; t0) = h jU(0; t)V (t)U(t; t0)V (t0)U(t0; 0)j i

is temporal correlator of the generator of perturbation.
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Optmization of quantum algorithms

Lesson:Static perturbations are more dangerous than
noisy ones.

U(t)

j i hVjkVlmi = 2�nÆjmÆkl

C(t; t0) = ��2�n trU(t; t0)��2 :
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Optmization of quantum algorithms

Lesson:Static perturbations are more dangerous than
noisy ones.

The problem of optimization:Representation of unitary
transformations in terms of a sequence of quantum gatesU(t) is not unique. We seek for the “most chaotic”
quantum algorithm, which would minimize the
correlation sum.

j i hVjkVlmi = 2�nÆjmÆkl

C(t; t0) = ��2�n trU(t; t0)��2 :
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Optmization of quantum algorithms

Lesson:Static perturbations are more dangerous than
noisy ones.

The problem of optimization:Representation of unitary
transformations in terms of a sequence of quantum gatesU(t) is not unique. We seek for the “most chaotic”
quantum algorithm, which would minimize the
correlation sum.

Let us assume:

Random initial statej i
Random static perturbationhVjkVlmi = 2�nÆjmÆkl:

C(t; t0) = ��2�n trU(t; t0)��2 :
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Quantum Fourier transformation

Write the matrix

Ujk = 1pN exp(2�ijk=N);

N = 2n, in terms ofT = n(n+ 1)=2 1-qubit and 2-qubit
gates

Aj = 1p2
�1 11 �1
�

j ; Bjk = diagf1; 1; 1; ei�=2jk�jjgjk:

n = 4U = T03T12A0B01B02B03A1B12B13A2B23A3:
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Quantum Fourier transformation

Write the matrix

Ujk = 1pN exp(2�ijk=N);

N = 2n, in terms ofT = n(n+ 1)=2 1-qubit and 2-qubit
gates

Aj = 1p2
�1 11 �1
�

j ; Bjk = diagf1; 1; 1; ei�=2jk�jjgjk:

E.g., forn = 4:U = T03T12A0B01B02B03A1B12B13A2B23A3:
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The correlator

Blocks ofB-gates result in long-tails of the correlator,
and consequently, fast decay of fidelity,Pt;t0 C(t; t0) / n3:

Example forn = 10:
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Improved QFT

Replace almost diagonalB-gates in terms of a pair of
new gaites Bjk = RjkGjk:
Then, redistribute the gates which commute.

We now haveT � n2 elementary gates, e.g. forn = 4:U = T03T12A0R01R02R03G01G02G03A1R12R13G12G13A2R23G23A3
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The correlator

Improved QFT exhibits much faster decay of
correlations,

Pt;t0 C(t; t0) / n2:

Example forn = 10:
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Improvement of quantum fidelity

Dependence on the number of qubits (forÆ = 0:04)
and on the strength of perturbation (forn = 8):
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Thanks!

Special thanks also to colaborators on some results
reported in this course, in particular:Marko Žnidarǐc,
Thomas Seligman, Thomas Gorin, Gregor Veble, Giulio
Casati, Jingua Lei, Baowen Li, Hans-Jurgen Stöckmann,
Carlos Pineda, Rudi Schäffer, Heiner Kohler
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