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To understand origins of macroscopic irreversibility from
reversible microscopic equations of motion...

...both classically and guantum mechanically.

...In relation to chaotic or solvable (integrable) natuiréhe
underlying equations of motion.

To understand, and therefore engineer roboust quantum
iInformation processing.
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. General theoretical framework

Quantum echo-dynamics: Non-integrable (chaotic)
case

Random matrix theory of echo-dynamics
Quantum echo-dynamics: Integrable case

. Classical echo-dynamics
. Time scales and transition from regular to chaotic
. Application to Quantum Information
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Consider two sligtly different systemb(z) andh(x) + ev(Z).
Classical fidelityor classical Loschmidt echo

f(t) = (p(t)pc(t)) = (exp(Lt)poexp(Lel)po)
= (poexp(—LL) exp(Lct)po)
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Classical Loschmidt echoes cont.

For short timesf (¢) decays with the lyapunov exponesip(—At)
for chaotic systems, and in a non-universal way for intelgrab
systems.
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For short timesf (¢) decays with the lyapunov exponesip(—At)
for chaotic systems, and in a non-universal way for intelgrab
systems.

For long times,f(t) decays as a correlation function at tiRre
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1 General theoretical framework

Hy+e-V

T exp(—i /0 | dt'H.(t') /)
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1 General theoretical framework
Hg(t) — H0—|—8°V

t
U.(t) = Texp(—i / At (1) /h)
0
We studyunperturbed andperturbed time-evolutions

Po(t)) = Up(D)|Y), and [95(1)) = Uc(D)|1),
and definghe fidelity

Ft) =@,  f) = @o®)|ve(t)) = @IM:(t)])

In terms of an expectation value thfe echo-operator

M.(t) = U} (6)U.(1
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(1) Echo operator

Echo operator is the propagator in interaction picture.
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(1) Echo operator

Echo operator is the propagator in interaction picture.
It satisfies

d S
SM(t) = — 1<V (DML

with effective HamiltoniargV' (¢),

~

V(t) = Uo(=t)V (t)Uo(t).
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Echo operator is the propagator in interaction picture.

It satisfies

d

S M(t) = =7V () M(t)

h

with effective HamiltoniargV' (¢),

~

V(t) = Uo(=t)V (t)Uo(t).

It IS a solution of

d 1~
G Me(t) = — eV () M)
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(1) Born expansion and linear response

The equation for the echo-operator can be (formally) soing¢drms
of a power series

M. (t) =1+ i (_f)m /t dt1dts - - - dt, TV (£ V (ts) - - V(tm).
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The equation for the echo-operator can be (formally) soing¢drms
of a power series

0 s m t o N
M(t) =1+ (h;ii! /O dt dty - - At TV (#)V () -+ V(t).

Truncating at second order = 2 and putting into expression
F(t) = [{M_.(t))|* we obtain

82

t t
R =1-5 [ af / A" C(# 1" + O(eh
0 0

~ ~ ~ ~

whereC'(t',t") = (V (V")) — (V (') (V (")),
IS Just 2-point time-correlations function of the perturba.

Quantum and Classical Loschmidt Echoes — p.8/68



(L) Hiustration.
Chaotic vs. Regular dynamics
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(1) Another formulation of linear response

Let us define amtegrated perturbation operato(t)

2 (t) = /Ot dt'V (t').

Then, the dobly integrated temporal correlation functennites in
terms of aruncertainty of operaton:(¢):

Fi(t) = 1= = {(Z(1) = (2(1))*} + O(e")
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Let us define amtegrated perturbation operato(t)

2 (t) = /Ot dt'V (t').

Then, the dobly integrated temporal correlation functennites in
terms of aruncertainty of operaton:(¢):

Fi(t) = 1= = {(Z(1) = (2(1))*} + O(e")

For quantum dynamics with fast decay of memory (correlagjahe
growth isdiffusive (X*) — (3)* o t, whereas for regular dynamics

one expectdallistic behaviour,(>?) — (3)? o 2
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(1) Effect of conservation laws

Adding a constant, or conservation law to a perturbatiorkea@orrelation integrals to increase
quadratically.

C;(t) :/0 dt’/o dt"Ct',t") = (2(t)) — (32(t))?
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Adding a constant, or conservation law to a perturbatiorkea@orrelation integrals to increase
quadratically.

C;(t) :/O dt’/o dt"Ct',t") = (2(t)) — (32(t))?

Let{Q»,n =1,2... M} be an orthonormalized set of conserved quantities w.ittalistate| ),
such that @, Q) = dnm . Then any time-independent perturbation can be decomposqgdely as

M
V="> cmQm+V’

m=1

with coefficientse,, = (V Q) andV’ being the remaining non-trivial part of the perturbatiop, b
construction orthogonal tall trivial conservation laws,

(Qm V'Y =0, forall m.

In such a case the correlation integral will always grow ggotically as a quadratic function

M
Ci(t) — <Z C?n> #2

m=1 Quantum and Classical Loschmidt Echoes —p.11/68



For very short times, below a certain time scgle
namely before the correlation function starts to decay,

]|t < tz, C(t',1") =~ C(0,0) = (V?), the fideily
always exhibits (universal) quadratic decay

F(t)=1- ;—ZW?}#

for

e <d20%?3f§);dt2>1/2 " (wg 2v>]2>>1/2
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(1) Temporally stochastic perturbations

Consider noisy perturbations with operator-valued vaman

VOV (') = vt —t")1
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Consider noisy perturbations with operator-valued vaman

VOV (') = vt —t")1

Then the Born series expansion of fidelity can be summed ulb to a
orders with the result

e?
F(t) = exp —ﬁvt .

Excercise for students: prove (derive) the above formula!
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Consider noisy perturbations with operator-valued vaman

VOV (') = vt —t")1

Then the Born series expansion of fidelity can be summed ulb to a
orders with the result

e
F(t) = exp (—ﬁv t) .
Excercise for students: prove (derive) the above formula!
For stochastic uncorrelated perturbations fidelity thusagie expo-

nentially with the rate whiclonly depends on the magnitude of per-

turbation only andhot on dynamics of the unperturbed system.
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansior?e? = exp(A + B + (1/2)[A,B] +...):

t 2 t t
M.(t) = exp{—iff dt’V(t’)-|—€—/ dt’/ dt”[V(t’),V(t”)]—l—...}
h 0 2h2 0 t/

= exp {—% (E(t)e + %I‘(t)e2 + .. )}

where

I'(t) = %/0 d¢’ /t, de"' [V (t"), V(t")].
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansior?e? = exp(A + B + (1/2)[A,B] +...):

€

t 2 t t
M:(t) = exp{—i—/ dt’V(t’)—I—e—/ dt’/ dt”[V(t’),V(t”)]—I—...}
h 0 2h2 0 t/

= exp {—% (E(t)a + %I‘(t)52 + .. )}

where
: t t _ _
T(t) = i/ dt’/ at" [V (), V("))
h 0 t/

e I'(¢) term allways grows only a®(t).

Quantum and Classical Loschmidt Echoes — p.14/68



(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansior?e? = exp(A + B + (1/2)[A,B] +...):
P ~ £2 t t ~ ~
M:(t) = exp {—i—/ dt’'V(t') + —/ dt’/ dt" [V ("), V("] + .. }
h 0 2h2 0 t/

= exp {—% (E(t)s + %I‘(t)s2 + .. )}

where
: t t _ _
T(t) = i/ dt’/ at" [V (), V("))
h O t/

e I'(¢) term allways grows only a®(t).
e Third andfourth order of BCH expansion can be estimatedcbyiste®¢ andconste*t2,
respectively.
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(1) Baker-Campbell-Hausdorff expansion

Applying BCH expansior?e? = exp(A + B + (1/2)[A,B] +...):
P ~ £2 t t ~ ~
M:(t) = exp {—i—/ dt’'V(t') + —/ dt’/ dt" [V ("), V("] + .. }
h 0 2h2 0 t/

= exp {—% (E(t)e + %I‘(t)52 + .. )}

where
: t t _ _
T(t) = i/ dt’/ at" [V (), V("))
h O t/

e I'(¢) term allways grows only a®(t).
e Third andfourth order of BCH expansion can be estimatedcbyiste®¢ andconste*t2,
respectively.

2nd order BCH expansion provides good approximation of te@perator up to time® (¢ ~1).
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(1) Perturbations with zero time average

Def: time averag®f the perturbation operator

. (¢ 1 [t -
V = lim 2() = lim —/ dt’'vV(t').
0

t—oo ¢ t—oo

Arbitrary perturbatiorl” can be decomposed into its time averagédiagonal in eigenbasis df)
and the residual pait;.s (offdiagonal in eigenbasis dilp)

VZV‘F ‘/res-
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(1) Perturbations with zero time average

Def: time averag®f the perturbation operator

_ (¢ 1 [t
V = lim 2() = lim —/ dt’'vV(t').
0

t—oo ¢ t—oo

Arbitrary perturbatiorl” can be decomposed into its time averagédiagonal in eigenbasis df)
and the residual pait;.s (offdiagonal in eigenbasis dilp)

V:V+ ‘/res-

Assume now that for some reasbh—= 0.
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(1) Perturbations with zero time average

Def: time averag®f the perturbation operator

_ (¢ 1 [t
V = lim 2() = lim —/ dt’'vV(t').
0

t—oo ¢ t—oo

Arbitrary perturbatiorl” can be decomposed into its time averagédiagonal in eigenbasis df)
and the residual pait;.s (offdiagonal in eigenbasis dilp)

V:V+ ‘/res-

Assume now that for some reason= 0.
Then the quadrati©(¢2) in fidelity decay is completely suppressed!
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(1) Perturbations with zero time average

Def: time averag®f the perturbation operator

. (¢ 1 [t -
V = lim 2() = lim —/ dt’'vV(t').
0

t—oo ¢ t—oo

Arbitrary perturbatiorl” can be decomposed into its time averagédiagonal in eigenbasis df)
and the residual pait;.s (offdiagonal in eigenbasis dilp)

V = V + ‘/res-
Assume now that for some reason= 0.
Then the quadrati©(¢2) in fidelity decay is completely suppressed!

For example, this happens when perturbation can be wrigéma-derivative
V = (d/dt)W = (i/h)[Ho, W].
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(1) Perturbations with zero time average

Def: time averag®f the perturbation operator

_ (¢ 1 [t
V = lim 2() = lim —/ dt’'vV(t').
0

t—oo ¢ t—oo

Arbitrary perturbatiorl” can be decomposed into its time averagédiagonal in eigenbasis df)
and the residual pait;.s (offdiagonal in eigenbasis dilp)

VZV‘F ‘/res-

Assume now that for some reasbn= 0.

Then the quadrati©(¢2) in fidelity decay is completely suppressed!

For example, this happens when perturbation can be wrigéma-derivative

V = (d/dt)W = (i/h)[Ho, W].

ThenX(t) = Up(—t)WUy(t) — W = W(t) — W(0), and within linear reponse, fidelity fsozen

62 2

F(t)=1- S (E2(0) = (S0)2) 2 1-453r%, = sup [(W(0)?) — (W(»)?].
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When the perturbatiol” can be wrtitten asme-derivative

When the unperturbed system is invariant under a certain
unitary symmetry operatio®’, say parity,PH, = H,P,
whereas the symmetry changes sign of the perturbation
PV =-VP.

When the unperturbed system is invariant under a certain
anti-unitarysymmetry operatiofi’, say time-reversal,

TH, = HyT, whereas the symmetry changes sign of the
perturbation’'V= —V'T.

If diagonal elements of the perturbation are takenbhyutand
and put to the unperturbed part (“mean-field”).
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(1) Time averaged fidelity

t

1
F=lim- [ dt'F(t)

t—oo 1 0

Let £, and cRE; denote the energy spectra, alid = (| E7)
transition matrix between perturbed and unperturbed Byste
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t

1
F=lim- [ dt'F(t)

t—oo 1 0

Let £, and cRE; denote the energy spectra, alid = (| E7)
transition matrix between perturbed and unperturbed Byste

If pis a general (mixed) initial state, then fidelity amplitudande
written out

F(6) = 3 (P P exp (—(EF — E,n)t/h).

Ilm
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t

1
F=lim- [ dt'F(t)

t—oo 1 0

Let £, and cRE; denote the energy spectra, alid = (| E7)
transition matrix between perturbed and unperturbed Byste

If pis a general (mixed) initial state, then fidelity amplitudande
written out

F(6) = 3 (P P exp (—(EF — E,n)t/h).

Ilm

Assuming spectra to be non-degenerate:

F =" (pP)otl?| Pt
ml
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(1) Time averaged fidelity cont.

In case ofweak perturbatios

L ey, P — 1 for

Fweak — Z pl2l
l

In case ofstrong perturbatioe > e, andstrongly non-integrable dynamiose may assumé to be

random orthogona$ = 1 (un

itary 8 = 2) matrix and

l;ém
Favong = =P 2
strong — — - pll + ~T |plm|
N
l
1
> 0.1 ¢
©
LL
7] S=100
S=200
oolrr T S=400;
S=800
1le-05 0.0001 0.001 0.01 0.1 1 10

€
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Let us for example consider averaging over an ensemble dbran
initial states|V) = > ¢, |Ek):

(UIANDY) = ((A)) = (3 eh A ) = 1 tr A

ml

Then, assuming that in the limN — oo coeeficients;, are
gaussian uncorrelated and random, we obtain

(F (1)) = > _(em[Mc®mi crcp [IM()]}, 1)) = [{({FON] + %
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity imigi0f uncertainty of perturbation
(Karkuszewski et al 2002):
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity imigi0f uncertainty of perturbation
(Karkuszewski et al 2002):

%F(t) — _%@O(t)l[Ps, V][To(t)).

whereP; = |W.(t)){¥.(t)| is the projector.
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(1) Estimating fidelity

For short times it may be useful to estimate the fidelity imigi0f uncertainty of perturbation
(Karkuszewski et al 2002):
d

EF(t) — _%QIJO(t)I[Ps, V][To(t)).

whereP; = |W.(t)){¥.(t)| is the projector.
Using the Heisenberg uncertainty relation for the opesatrandV’,

OV (1)oP:(t) < = (Wo(t)|[Pe, V][Wo(2))]

DN | =

we can estimate the time-derivative of fidelity

—%F(t) < %F(t)| < 2_;5V(t)5P€(t) = 2%‘gcﬂ/(t)l*“(t)(l — F(t))
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For short times it may be useful to estimate the fidelity imigi0f uncertainty of perturbation
(Karkuszewski et al 2002):
d

EF(t) — —i%6<\P0(t)|[Psa V][To(t)).

whereP; = |W.(t)){¥.(t)| is the projector.
Using the Heisenberg uncertainty relation for the opesatrandV’,

OV (1)oP:(t) < = (Wo(t)|[Pe, V][Wo(2))]

DN | =

we can estimate the time-derivative of fidelity

2¢e

d d F(t)| < S OV()SP:(t) = %5V(t)F(t)(1 —F(t))

——F(t) < |—
dt () < dt

Separating the variables and integrating by parts we getequality:

F() > co(9(0), (1) = / at'sv (t')
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(1) Polarization echo

Prepare intial statgl,) as eigenstate of certain obserbable, say
polarization of a local spig;:

88‘\110> :mo‘\Ifo>, (! ::|:1/2
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Prepare intial statgl,) as eigenstate of certain obserbable, say
polarization of a local spisg:

S(Z)‘\Ij()> :mo‘\lfo>, (! ::|:1/2
Then, perform an echo-experiment and measure the local spin

me(t) = (MI(t)s5 M (1))
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Prepare intial statgl,) as eigenstate of certain obserbable, say
polarization of a local spisg:

S(Z)‘\Ijo> :mo‘\lf0>, (! ::|:1/2
Then, perform an echo-experiment and measure the local spin
me(t) = (MI(t)sgMe(t))

Polarization echd.(t) is defined as the probability that the local
polarization of the spin iIs restored after the echo dynamics

Pu(t) = o + 2mome(t) = 5 + 2{s5 M1 (1) 55 M.(0)

Polarization echo may have different behaviour than figlelit
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(2) Observable echo

For a general observablg for which the initial state¥,) has to be
an eigenstate, we define @nr-echo as

(AMI(t)AML(1))
A2

PA(t) =

€
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(2) Observable echo

For a general observablg for which the initial state¥,) has to be
an eigenstate, we define @nr-echo as

(AMI(t)AML(1))
A2

PA(t) =

€

Using 2nd-order echo-operator

2

M.(t) =1 — i%Z(t) — ;—hzTZQ(t) + O(e%)

we find

e? (A?XA(t)) — (AX(t)AX(t))

Pt =1- - %

+ O(e)
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(1) Composite systems

We consider two-partite systemsezntral systenplusenvironment

H="H:.® He
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(1) Composite systems

We consider two-partite systemsezntral systenplusenvironment
H=H.R He

We are mainly interested in the reduced density matrix otewdral
system

pe(t) = tre[p(t)],  pc(t) = tre[p™ (1)),
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We consider two-partite systemsezntral systenplusenvironment
H="H.® He

We are mainly interested in the reduced density matrix otewdral
system

pe(t) = tre[p(t)],  pc(t) = tre[p™ (1)),

wherep (t) = M.(t)p(0) MI(t).
We assume that initial state is a product state

9(0)) = [4:(0)) @ [¥0e(0)) =: [1c(0); ¥e(0)).

Quantum and Classical Loschmidt Echoes — p.23/68



(1) Composite systems cont.

Fidelity of the total unitary evolution (system-+environmeis

F(t) = tr[p(0)p™(t)]
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(1) Composite systems cont.

Fidelity of the total unitary evolution (system-+environmeis

F(t) = tr[p(0)p™(t)]

We definereduced fidelityas fidelity of reduced density matrix

Fr(t) := trefpe(0)pc" (1))
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Fidelity of the total unitary evolution (system+environmgs

We definereduced fidelityas fidelity of reduced density matrix
Fr(t) = tr[pe(0)py (1)),

As a measure of entanglement between the central systerhand t
environment under-echo dynamics we define echo purity

Fp(t) := tr[{p (t)}7]

In case when unperturbed evolution is decougled= U. ® U, the

echo purity is identical to purity of the forward evolution!
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One can prove the following inequality for an arbitrary patate
14y and an arbitrary pure product staie; ¢.)

|<§bc§§be|¢>|4 < |<¢C|p0|§b0>|2 < trc{ﬁ?]v

wherep. 1= tr[[¢)(¢]].
Proof is a simple two-step excercise consisiting of use diidinn’s

theorem and Cauchy-Schwartz inequality.
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One can prove the following inequality for an arbitrary patate
14y and an arbitrary pure product staie; ¢.)

|<¢c;¢e\¢>|4 < |<¢C‘p0‘§b0>|2 < trc{ﬂ?]v

wherep. 1= tr[[¢)(¢]].
Proof is a simple two-step excercise consisiting of use diidinn’s

theorem and Cauchy-Schwartz inequality.
Specializing to the case of echo-dynamics we find a very lisefu
estimate

F2(t) < Fr(t)(t) < Fp(2)*(2)
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Expanding the echo operator to second order we can
straintforwardly derive the linear response expressionfie
measures of echodynamics of composite systems

1-F() = (3) (S0A 1~ pep)S(0)
L= Fa() = () (5001 - p) @ 12(0)
L= Fo(t) = 2(3) (50 - pe) @ (1 - p)2(0).

writing the expectation value in the initial product state wsual,

(@) = tr(pc ® pe)e].
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Z Quantum echo-aynamics: Non-integrabnle
(chaotic) case

We consider here echo-dynamics of strongly non-integrdjpt@mical systems for which we can
assumesrgodicityandmixing, at least in the limita — 0, or thermodynamic limit for systems of many
particles.
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Z Quantum echo-aynamics: Non-integrabnle
(chaotic) case

We consider here echo-dynamics of strongly non-integrdjpt@mical systems for which we can

assumesrgodicityandmixing, at least in the limita — 0, or thermodynamic limit for systems of many
particles.

In other words, there existralaxation time scalég s.t. for typical physical observablé

(Wo ()| A[Wo(8) ~ ((A)), for [t > tg.
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Z Quantum echo-dynamics: Non-integranie
(chaotic) case

We consider here echo-dynamics of strongly non-integrdjpt@mical systems for which we can

assumesrgodicityandmixing, at least in the limita — 0, or thermodynamic limit for systems of many
particles.

In other words, there existralaxation time scalég s.t. for typical physical observablé

(Wo ()| A[Wo(8) ~ ((A)), for [t > tg.

Fort > tg we haveC(t',t"") = C(t' — t) and linear response formula for fidelity rewrites as

2

F(t)y=1-— ;—2 {tC(O) + 2/0t dt’ (t — t’)C’(t’)} + O(e*).
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Z Quantum echo-dynamics: Non-integranie
(chaotic) case

We consider here echo-dynamics of strongly non-integrdjpt@mical systems for which we can

assumesrgodicityandmixing, at least in the limita — 0, or thermodynamic limit for systems of many
particles.

In other words, there existralaxation time scalég s.t. for typical physical observablé

(Wo ()| A[Wo(8) ~ ((A)), for [t > tg.

Fort > tg we haveC(t',t"") = C(t' — t) and linear response formula for fidelity rewrites as

2

F(t)y=1-— ;—2 {tC(O) + 2/0t dt’ (t — t’)C’(t’)} + O(e*).

If C(t) decays faster thatm ! then a characteristimixing time exist s.t. ift > iy

F(t) = 1—2(e/h)’ot, o= /oo atC(t) = Lim W) — B0
0

t— oo 2t
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(2) Beyond linear response
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(2) Beyond linear response

B 52 B 1 oo
Fem(t) =1— h—QO't, o = 5/ dtC(t)

— o0

Further assume:—point mixing, i.e.
(V(t)V(t2) ... V(tan—1)V(t2n)) — (Vi Vio) - (Vig, 1 Viay)
if tojr1 —t2j > tmix, g =1,2...n—1. Then ift > ntyix:

A

7 /dt1 o dtan (V(E)V (E2) - - V(tan)) —
(2n)!

1 (to)™

— T /dt1---dt2n<V(t1)V(t2))---(V(t2n_1)V(t2n))—>

Similar argumentss- terms withodd number ofV/(¢) vanish in leading order!
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(2) Beyond linear response

Fem(t) =1 & t ! /OO dtC(t)
em =1 - =01, O = —

h 2/
Further assume:—point mixing, i.e.
(V(t)V(t2) ... V(ten—1)V(t2n)) — (Via Vio) - (Vioy_1 Vioy)
if tojr1 —t2j > tmix, g =1,2...n—1. Then ift > ntyix:

A

7 /dt1 o dtan (V(E)V (E2) - - V(tan)) —
(2n)!

1 (to)™

— T /dt1---dt2n<V(t1)V(t2))---(V(t2n_1)V(t2n))—>

Similar argumentss- terms withodd number ofV/(¢) vanish in leading order!
We can nowsum-up the fidelity to all orders

Fem(t) = exp(—t/Tem), Tem = 355

Alternatively, this regime of fidelity decay is usually dexd in terms of Fermi-Golden-Rule.
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(2) Numerical example: Kicked top

We consider quantized kicked top (Haake et al 1987):

H(t)
U

Classical limit:h =1/J — 0.

PerturbationyV = 1

1 oo
Eah2JZ2 -+ Z o(t — m)vyhly,

m=—0oo

exp(—ivJy) exp(—iaJ?/2J).

0.03

0.025 r

0.02
0.015
0.01

Ccl(t)
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-0.015

2
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M +

TE P2 3 HXHR X KR %

SC(t,)/(20)
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(2) Numerical example: cont.

Fory = n/2:

Fory = n/6:
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(2) Beyond Helsenberg time

Previously, we assumed th@(t) asymptotically decays d@s— oc.
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Previously, we assumed th@(t) asymptotically decays d@s— oc.
This is in generalvrongfor finite quantum systems dmnite
effective value ofh.

Namely, fort > tg wherety = %N x h~?is the Heisenberg time,
guantum evolution start to feel discreteness of the spectru
Ci(t) = Ct? with

~ 4001
C = .
N
So within linear response
2
4o,
Ft)=1— = 27dp
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Previously, we assumed th@(t) asymptotically decays d@s— oc.
This is in generalvrongfor finite quantum systems dmnite
effective value ofh.

Namely, fort > tg wherety = %N x h~?is the Heisenberg time,
guantum evolution start to feel discreteness of the spectru
Ci(t) = Ct? with

~ 4001
C = .
N
So within linear response
2
4o,
Ft)=1— = 27dp
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(£) beyond linear response,
beyond Heisenberg time...

For very small perturbations < const /¢, s.t. second term of BCH expansion can be neglected:

f(t) =) exp (—=iViret/h)/N

k
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(£) beyond linear response,
beyond Heisenberg time...

For very small perturbations < const /¢, s.t. second term of BCH expansion can be neglected:

f(t) =D exp (=iViget/h)/N

k

This sum can be computed statisticallyif;, are replaced by gaussian random variables with variance
20 /N

N
401

F(t) = exp (=(t/1p)?), 7=

100

V=116

100 r

10 ¢

P(Viw)
P(Viw)

10

1 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1

0.16 0.162 0.164 0.166 0.168 0.17 0172 0.174 0.145 0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19
V, V, . .
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(2) ...Is Gaussian (perturbative) fidelity decay

Gaussian decay starts right at the beginnfrtge fidelity decay time
scaler.,, becomes longer tham. This givess > ¢, where
h

E =
Y \/(TCLPJ

IS theperturbative border

1

0.1

0.01 ¢

F(t)

0.001 ¢

0.0001 ¢

1000
S(e t)?
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(£) vVanisning time averagedad perturpation
and fidelity freeze

Assume thal” = (d/dt)W is a time-derivative, or time-difference for kicked sysgeem

Quantum and Classical Loschmidt Echoes — p.34/68



(£) Vanisning tume averagedad perturbaton
and fidelity freeze

Assume thal” = (d/dt)W is a time-derivative, or time-difference for kicked sysgeem
Then, up to time, ~ 1/¢ the fidelity freezes to a plateau which is given by the firgnter BCH

expansion:
(exp <—%w)>c1<exp (%W)

wherew is a classical limit of time-integrtad perturbatidvi.

2
F(t) ~ Fplat =
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(£) Vanisning tume averagedad perturbaton
and fidelity freeze

Assume thal” = (d/dt)W is a time-derivative, or time-difference for kicked sysgeem
Then, up to time, ~ 1/¢ the fidelity freezes to a plateau which is given by the firgnter BCH

expansion:
(exp <—%’w)>c1<exp (%VV))

wherew is a classical limit of time-integrtad perturbatidvi.

For longer timeg > to we find either exponential or gaussian decay, with rescatemifbation
2
E —> €

2
F(t) ~ Fplat =

4
€
F(t) ~ Fplat exp <_ﬁO—Rt>, t <ty

gt t2
F'(t) & Fplat exp <— 572 OR tH)’ t > ty.

and diffusion constant r computed with respect to observalstét) = (i/h)[W, (d/dt)W].
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(£) Numerical example:
fidelity freeze In kicked top
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V=50 W= S g S5t

25 2 2527 253
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t

Quantum and Classical Loschmidt Echoes — p.35/68



(2) Composite systems

For chaotic dynamics the upper bound of inequalities ishredclIn
the FGR regime, and in the limit of large dimensions of both
subsystems, we have

Fp(t) = Fi(t) = F?(t) = exp (—2t/Tem)

0

10

10-2 L

10-4 L

F2FR2

10-6 L

10-8 L

-10 I 1 1 1 1 1 1 N 1 T
10
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t
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(2) Semiclassical orbit evaluation of fidelity

Due to Feynman, guantum propagator can be written as

7(t)=¢q
(@S (D)) = /

(0)=q

Quantum and Classical Loschmidt Echoes
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Due to Feynman, quantum propagator can be written as

() =g i ¢ |
@usoit) = [ Diwexs (~587(0))  slro)] = [ sl

7(0)=¢
Applying method of stationary phase, we (/)btain (Van-Vleck)
— 82Sj 4z 1 LT
<J‘U5(t)‘Q> — Z det €Xp (ﬁsﬂ — 1§V->

C
0qm0q!
cl.paths j Im 4,
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Due to Feynman, quantum propagator can be written as

F(t) =7 i ! |
@usoit) = [ Diwexs (~587(0))  slro)] = [ sl

7(0)=q

Applying method of stationary phase, we obtain (Van-Vleck)

— 82Sj —d/2 1 LT
<§‘U5(t)‘Q> — Z det €Xp (ﬁsj — 1§V->
Plugging this into expression

c
cl.paths j aqmaqé
F(t) = | [ dqaqaq"ss(@/@Un(~01)(@\Us(0]2") (")
we obtain various semiclassical expressions of fidelity
(Jalabert,Pastawski,Cerruti, Tomsovic,Vanicek,Hegller

2
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Due to Feynman, quantum propagator can be written as

F(t) =7 i ! |
@usoit) = [ Diwexs (~587(0))  slro)] = [ sl

7(0)=q

Applying method of stationary phase, we obtain (Van-Vleck)

, 528, |7 i T
(@Us(®)|7) = > |det : exp (ﬁsj - 1§Vj>
Plugging this into expression

c
cl.paths j aqmaqé
F(t) = | [ dqaqaq"ss(@/@Un(~01)(@\Us(0]2") (")
we obtain various semiclassical expressions of fidelity
(Jalabert,Pastawski,Cerruti, Tomsovic,Vanicek,Hegller

2

Chaotic dynamics antl < tg: due QC corresp£'(t) o< exp(—\t).
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Within diagonal approximation of fidelity amplitude, justd by

classicakhadowing theorepand for general initial state,
descriped by the Wigner functidi,(¢, p), Vanicek derived very
elegant semiclassical expression of fidelity amplitude

1

0= [aqagw,(a.p) e (—ye [atuae). o)

wherev(q, p, t) is a classical limit of the perturbation.
Vanicek formula semiclassically repreduces all the regiofdidelity

decay below the Heisenberg time!
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O RAllUOITl TTialthiA tuicoly
of echo-dynamics

To what extend we can understand “universal’ regimes of
echo-dynamics by the principle of maximal ignorance?
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O RAllUOITl TTialthiA tuicoly
of echo-dynamics

To what extend we can understand “universal’ regimes of
echo-dynamics by the principle of maximal ignorance?

Take for exampldd, = Hy + ¢V, whereH, andV arerandom,
complex hermiteaw,, = 2 (or real symmetrigg,, = 1, or
guaternionic symmetrig,, = 4) matrices.

We fix units and perturbations strength such tharan level spacing
of Hy is 1(in the center of the band), meanitig= 27, and
variance of (off-diagonal) matrix elementsfis 1, (ka> = 1.

Quantum and Classical Loschmidt Echoes — p.39/68



To what extend we can understand “universal”’ regimes of
echo-dynamics by the principle of maximal ignorance?

Take for exampldd, = Hy + ¢V, whereH, andV arerandom,
complex hermiteaw,, = 2 (or real symmetrigg,, = 1, or
guaternionic symmetri@,, = 4) matrices.

We fix units and perturbations strength such thaan level spacing
of Hy is 1(in the center of the band), meanitig= 27, and
variance of (off-diagonal) matrix elementsWfis 1, (V;?k) — 1.

Our program now is to derive simple expressions for fideltg ather
measures of echo-dynamics by averaging @&eandV and compare

to experimental and numerical data.
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\O) LITICal IESPUINSC.
Fidelity and spectral form factor

Let us recall the expression for the echo-operator to seooer

Ms(t)zl—i271'8/ dt’ V(¢ (27e) /dt/ dt" V(¢ t'") + O(ed) .
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\O) LITICdAdl IEoPNUINSC.
Fidelity and spectral form factor

Let us recall the expression for the echo-operator to seoahaf
Me(t)zl—i27r€/ dt’ V(¢ (27e) / dt/ dt" V(" V(") + O(ed) .
0

Let us frist make average over an ensembl& ef Linear term clearly averages out. For the quadratic
term wee need 2-point correlator

<[‘7(’7’) V(T,)]V,y’> — Z<VV’FL Vu,yl> <e27Ti[(E1/_E,u,)T+(E’u—EL)T’])
m
2
= 0, — 4+ 6(r—=71) =ba(r =7
o o+ 8 =) = balr =11

wherebs (1) is the 2-point spectral form factor df,.
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(3) Linear response cont.

Plugging the correlation function expression into the folamwe obtain ensemble averaged fidelity
amplitude

+ O(eh) .

(fe(t)) =1— (27rs3)2 [tQ/BV —|—t/2—/0t dr’ /OT dr ba (1)

Conjecture: fonot-large perturbations and fidelities down-fo~ 0.1:

(fe(t)) = exp [—(27‘(‘6)2 <t2/ﬁv +t/2 —/0 dr’ /OT d7 ba(T) >]

10°%

GOE iheory ‘ ‘ ‘ ‘ ‘ | GUE theory

-InF(t)/e
-InF(t)/e

10° 100 10> 10®° 10* 10°  10° 10° 10> 102 10®° 10* 10° 10° 107
t t
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Schaffer et al (2004) measured scattering fidelity in mieawosv
billiards.
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(3) RMT and experiments: acoustics

Lobkis and Weaver (2003) measuring “distortian(¢) of an
acoustic response of solid aluminium blocks upon variadion
temperature (dilation = perturbation).

D(t) can be re-interpreted as fidelity. RMT gives good fit of datidwi

a single fitting parameter
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Exact expressions of fidelity amplitude in terms of supensytuic
Gaussian intergals have been obtained by Stockmann an@iScaf
(2004), and solved exactly in the limN — oo.

The result for the GUE (simpler) case reads:

in(t,1)
1 min(t, ,
—(2 1+t—2u)t/2
(fe()) = - du (1 +t — 2u) e~ (27 (1+1=2u)t/
t 0
1.0000 R 10— T T
ozl €=100 ]
0.1000 - i
1074 N\ _
* 0.0100 RSN |
3 I N s ]
10-8|- -
0.0010 I \
10-10}- . |
0.0001 o2l oo N T
0.0 0.5 1.0 1.5
T T
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4 Quantum ecno-aynamics.
Integrable case

Here, time-averaged correlation is non-vanishing= lim; ., o t% fot d¢’de”’ C(t',t"") # 0.
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4 Quantum ecno-aynamics.
Integrable case

Here, time-averaged correlation is non-vanishing= lim; ., o t% fot d¢’de”’ C(t',t"") # 0.
Assume:3 scalet.. on whichC' converges.
Fort > tave andsmalle we have:

t2 h
fre@)P=1— —,  The=—1+.
© Tge ° 5\/0
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4 Quantum ecno-aynamics.
Integrable case

Here, time-averaged correlation is non-vanishing= lim; ., o t% fot d¢’de”’ C(t',t"") # 0.
Assume:3 scalet.. on whichC' converges.
Fort > tave andsmalle we have:

t2 h

foe@®)? =1— —,  7he = —=.
) Tge ) g C

Assume:3 time-average perturbation operator
_ 1 [t _ _ _
V = lim —/ dtV(t'), sothat C = (V?)— (V)2
0

t—oo ¢
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4 Quantum ecno-aynamics.
Integrable case

Here, time-averaged correlation is non-vanishing= lim; ., o tig fot d¢’de”’ C(t',t"") # 0.
Assume:3 scalet.. on whichC' converges.
Fort > tave andsmalle we have:

t2 h
fre@)P=1— —,  The=—1+.
© Tge ° g C

Assume:3 time-average perturbation operator

1 t _ _ _
V = lim —/ dtV(t'), sothat C = <V2> — <V>2'
0

t—oo ¢
Then: ordem term in fidelity expansion fot >> mtave
%/dtl oo dtm (V(E1)V (E2) - V(tm)) = (V™).

So the fidelity can again beummed-up

ety = >0 55 (H2)" (7 = fexp(-ieve/my,
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(4) Regular case: LDOS and semiclassics

Letv,, be thespectrumand|v,, ) theeigenstatesf V.
Then, the fidelity is d&ourier transfornof LDOS

Fue(t) = (exp(icVt/h)) = /dv ewts/hdp(v),

dp(v) = 3 6(v — vn) (vnplvn).
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(4) Regular case: LDOS and semiclassics

Letv,, be thespectrumand|v,, ) theeigenstatesf V.
Then, the fidelity is d&ourier transfornof LDOS

Fue(t) = (exp(icVt/h)) = /dv ewts/hdp(v),

dp(v) = 37 8(v = va) (wnlplvn).

If integrability=- 3 quantized classical actiods with eigenstategi) and eigenvalues
Iz = h(it + a/4)|i).
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(4) Regular case: LDOS and semiclassics

Letv,, be thespectrumand|v,, ) theeigenstatesf V.
Then, the fidelity is &ourier transfornof LDOS

Fue(t) = (exp(icVt/h)) = /dv ei”ts/hdp(v),

dp(v) = 3 6(v — vn) (vnplvn).

If integrability=- 3 quantized classical actiods with eigenstategi) and eigenvalues
I = h(ii + &/4)|7). Inthe leading order it, eigenvalues of’

vr = 9(I3),

wherew () is a time-average of classical limit &f.
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(4) Regular case: LDOS and semiclassics

Letv,, be thespectrumand|v,, ) theeigenstatesf V.
Then, the fidelity is &ourier transfornof LDOS

Fue(t) = (exp(icVt/h)) = /dv ewts/hdp(v),

dp(v) = 3 6(v — vn) (vnplvn).

If integrability=- 3 quantized classical actiods with eigenstategi) and eigenvalues
I = h(ii + &/4)|7). Inthe leading order it, eigenvalues of’

vr = 9(I3),

where ( _') is a time-average of classical limit &. Replacingd". — A=< [ d<T we find

Fre(t) ~ ™4 / AT exp {ito(I)e/h} D, (I)

assumingDP( fi) ‘= <'ﬁ'|p|ﬁ> iS a SmOOth fUﬂCtiOﬂ Of' Quantum and Classical Loschmidt Echoes — p.46/68



(4) Regular case: random initial state

- d
Averaging over (random) initial states p = 1/N: D,(I) = % = (27;}71) :
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(4) Regular case: random initial state

- d
Averaging over (random) initial states p = 1/N: D,(I) = % = (%Vh) :
= o(1, — 25(1,
LetI,,n =1,2,...p be points of stationary phas‘?e% = 0andV, = {885-—(8?13} ik 1:
JsR=
fot) = (2m)34/2 | 1 |92 & exp{itﬁ(fn_)e/h +ivp}
e V te —~ | det V| 1/2

wherev,, = m(my — m_)/4 andm1 = numbers of positive/negative eigenvalued\of.
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(4) Regular case: random initial state

d
Averaging over (random) initial states p = 1/N: D, (I ) ﬁ _ (27rvh)
— - 21_) .
LetI,, n =1,2,...p be points of stationary phase% = 0andV, = {_%Ij(afInk) } 3 1:
Js
- (2m)24/2 | 1 |2 $n explito(ly)e/h + ivy)
h V.o |te — | det V,|1/2

wherev,, = m(my — m_)/4 andm1 = numbers of positive/negative eigenvalued\of.
Numerical example: Kicked top in quasi-regular regime

1
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S
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|

1%180 1
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it
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(4) Regular case: coherent initial state

Considerd-dimensional general coherent initial state centered at6*):

(R|I*,0%) = <—) det AV exp{—%(fﬁ—f*)-/\([ﬁ—I*)—iﬁ-H*}
0y
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(4) Regular case: coherent initial state

Considerd-dimensional general coherent initial state centered at6*):

(| I*,0%) = (—) |det A| exp{—%(lﬁ—I*)-A(Iﬁ—I*)—iﬁ-Q*}
0y

Method of stationary phasél unique stationary point

it ov(I*
PEALE 4 O(e?), where o := Ua(vf )

2

I =T -

giving

4h h

=) A —120\ 2 T
fne(t):exp{—(v A= )e t2+zv([ )8t}.

Note aGaussian decagf fidelity

t2

2
The

|Fne(t)|2 — exp (— ) : Tne ~ Ri/2e—1,
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Numerical example: double-kicked top

Two coupled kicked topd; and.Js with Floquet map:

X K .
U(e) = exp (—zEle) exp (—Z§J2y) exp (—teJ1zJ2,/J).

PerturbationV = Jy,Ja,/J>.

We takeJ = 200,¢ = 8- 1074,

1 e quasi-regular case= 1 (dotted curve)

2 e chaotic case = 20 (solid curve, dashed=random state)
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t
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5 Classical fidelity

Q-C Correspondence:
Write quantum fidelity in terms of the Wigner functions:

F(t) = (2rh) / AW, (Z, O)W*(7,1).
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Q-C Correspondence:
Write quantum fidelity in terms of the Wigner functions:

F(t) = (2rh) / AW, (Z, O)W*(7,1).

Replace Wigner function by the Liuoville densjyr) and we have
the classical fidelity

Fa(t) = [ dpl@.0p.(7.0)
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(5) Q-C correspondence: chaotic

t=0

t=1
1

t=2

0.1
t=3 -

7 0.01 }
t:5 7 Y**)(—*ﬂ(—*\*4<\x%*,>ea(\*»<
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t
t=107
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(5) Q-C correspondence: zoom-in

W (e, cosz? p(p, cos?) » (p— p,;

--
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(5) Q-C correspondence: regular
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamicsliiTERACTION PICTURE

p5(#,) = Us(t)po(,0), Fult) = /Q d#pg (7, t)po (7, 0).
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamicsliiTERACTION PICTURE
pE(E.t) = Us()po(@,0),  Fu(t) = [ ddpu(@, 0p0(@.0)
The classical echo-operatbi; (t) = U] (¢) U. (¢) with Liouvilean propagators
d A A A A — - —
aUe(t) =Ly _z6U(t),  Las = (VA(wat)) - JV,

again satisfies Liouville equation with echo Hamiltonian

d . ; : ) .
ZUn(®) = Lig(zp Upt),  He(@,t) =<V (6:(@),1).
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(5) Theory of classical fidelity

Idea: Write the classical Liouvile dynamicsliiTERACTION PICTURE
pE(E.t) = Us()po(@,0),  Fu(t) = [ ddpu(@, 0p0(@.0)

The classical echo-operatbi; (t) = U] (¢) U. (¢) with Liouvilean propagators

d A A A A — - —
aUs(t) =Ly _z6U(t),  Las = (VA(w,t)) - JV,

again satisfies Liouville equation with echo Hamiltonian

d . X B} o
ZUn(®) = Lig(zp Upt),  He(@,t) =<V (6:(@),1).
Trajectories of thecho-flowsatisfy time-dependent Hamilton’s equations:

Z=J 6HE(5, t).
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Hamilton’s equations for the echo-flow can be solved pedtinvbly
for smalle with the solutions

Fh(t) =1 = 2C[p]? exp(2Amaxt) + O(e®), > 1/Anax
for chaotic dynamicsvith maximal Lyapunov exponemt,, .., and
F8(t) = 1 — 2C'[p]*t* + O(e?)

cl

for regular dynamigswhereC|p|, C'|p] are some constants which

depend on initial density only.
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(o) ClaSsical 1iaelity.
chaotic few body systems

Elaborating on classical fidelity in interaction pictureearan derive
a cascade of Lyapunov decays for ergodic and strongly ahbet
body systems:

Fa(t) =[] exp =Nt =1)], 1= (1/X)log(v;/ (7))

J; t;<t

10° Fe— o T

Quantum and Classical Loschmidt Echoes — p.56/68



For chaotic many-body systems, one can use similar thirtiking
derive doubly-exponential decay

f(t) = exp (—cuNéB exp(ﬁ)\maxt)) ,

where = 1 or 2, depending on whether intitial density is (Lipshitz)
continuous or not.

10° ¢ . . . — aiad
10t } ]
102 |

oo <

05 L % 107

04 '
107

< 0.3

02 | 10

01}
10-6 | | 1 1 1 1

-20 -15 -10 -5 0 5 10 15

0

0 0.2 0.4 0.6 0.8 1
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For systems which have no exponential instability,{, = 0) but
arelinearly unstableand ergodic and mixing, we find universal
scaling of classical fidelity

Fa(t) = o(le[*°t)

For smallt, F., = 1 — Cle|t?/?,
for longt, F,; = exp(—C'|e|?/5t]).

The prominent example of such systembasd-point gas of unequal
particles in one-dimensigr any polygonal billiard with at least two

irrational angles.
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Fidelity decay time against perturbation parameter:
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Fidelity decay time against chaoticity parameter:
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/ Application: Quantum information
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/ Application: Quantum information

Propagator
Ut,t)=U)Ut—-1)---Ut' +2)Ut' + 1),
Ut',t) =U(t, ).
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7/ Application: Quantum information

Propagator
Ut,t)=UUt—-1)---Ut' +2)U(t' + 1),
Ut',t) =U(t, ).

PerturbationV/ (t), Us(t) = U(t) exp(—20V (1)).
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7/ Application: Quantum information

Propagator
Ut,t)=U)U(t—-1)---Ut' +2) Ut + 1),
Ut',t) =U(t, ).

PerturbationV/ (t), Us(t) = U(t) exp(—20V (1)).
Fidelity (linear reposnse):

_1—522(]”

whereC'(¢,1') = (W|U(0, )V ()U(L, )V (UL, 0)[4)
IS temporal correlator of the generator of perturbation.
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Optmization of quantum algorithms

Lesson:Satic perturbations are more dangerous than
NoISy ones.
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Lesson:Satic perturbations are more dangerous than
NoISy ones.

The problem of optimizationRepresentation of unitary
transformations in terms of a sequence of quantum gates
U(t) is not unique. We seek for the “most chaotic”
guantum algorithm, which would minimize the
correlation sum.
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Lesson:Satic perturbations are more dangerous than
NoISy ones.

The problem of optimizationRepresentation of unitary
transformations in terms of a sequence of quantum gates
U(t) is not unique. We seek for the “most chaotic”
guantum algorithm, which would minimize the
correlation sum.

Let us assume:
Random initial statéy)

Random static perturbatiofV,; Vi,,) = 27"0,,0k:

Ct, ) = 27" tr Ut )|
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Quantum Fourier transformation

Write the matrix

1
Ui, = —exp(2migk/N),

N = 2", interms ofl" = n(n + 1)/2 1-qubit and 2-qubit
gates

I /1 1 . i /2l k=il
Aj = NG (1 _1>j, Bj, = diag{1,1,1,e™>" "}
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Quantum Fourier transformation

Write the matrix

1
Ui, = —exp(2migk/N),

N = 2", interms ofl" = n(n + 1)/2 1-qubit and 2-qubit
gates

I /1 1 . i /2/k=1]
Aj = NG (1 _1>j, Bj, = diag{1,1,1,e™" "}

E.g., forn = 4:
U =TyT12A0Bg1Bo2Bo3A1B12B13A2BosAs.
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The correlator

Blocks of B-gates result in long-talls of the correlator,
and consequently, fast decay of fidelity,

>y C(t, 1) ocn?.
Example forn = 10:

60 | 10
50 ] I )
40 -4 A
30 "
-8 6
20 | —1o§
10 19
0L -14
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Replace almost diagon&l-gates in terms of a pair of

new gaites
Bjk = Rjijk.

Then, redistribute the gates which commute.

We now havel’ ~ n? elementary gates, e.g. far= 4:

U = T03T12A0R01 ROZ RO3G01 GO2 GO3A1 R12 R13G12G13A2R23 G23A3
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The correlator

Improved QFT exhibits much faster decay of
correlations , ., C(t,t') o< n?.
Example forn = 10:
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Improvement of quantum fidelity

Dependence on the number of qubits (o 0.04)
and on the strength of perturbation (foke= 8):

1

0.1

IF(T)I

0.01

0 005 01 015 02 025 03
n o)
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Thanks!

Special thanks also to colaborators on some results

reported in this course, in particulavtarko Znidart,
Thomas Seligman, Thomas Gorin, Gregor Veble, Giulio
Casatl, Jingua Lel, Baowen LI, Hans-Jurgen Stockmann,
Carlos Pineda, Rudi Schaffer, Heiner Kohler
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