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Introduction / Motivation / Overview

• Quantum information
– quantum computing, quantum communication etc.

• Zoo of quantum optical systems
– ions, neutral atoms, CQED, atomic ensembles

• Theoretical Tools of Quantum Optics
– quantum optical systems as open quantum systems
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1.1 Quantum information processing

• quantum computing

|in

|out  Û|in

|out

quantum
processor

input

• quantum communication

ouput

transmission of a quantum state

|
| |

|

|
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Quantum computing

• quantum memory

• quantum gates

• read out
• [no decoherence]

N spin-1/2 systems |0

|1

quantum register qubit

Û1 rotation of a single qubit

U1

single qubit gate: two-qubit gate:

U1

control                    target
Û  |01〈0|⊗1̂1  |11〈1|⊗Û1
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Our goal ... implement quantum networks

• Nodes: local quantum computing
- store quantum information
- local quantum processing
- measurement

• Channels: quantum communication
- transmit quantum information
- local / distantnode

channel

Goals: 
• map to physical (quantum optical) system
• map quantum information protocols to physical processes

• quantum network
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Introduction / Motivation / Overview

• Quantum information
– quantum computing, quantum communication etc.

• Zoo of quantum optical systems
– ions, neutral atoms, CQED, atomic ensembles

• Theoretical Tools of Quantum Optics
– quantum optical systems as open quantum systems
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1.2 Zoo of quantum optical systems

• trapped ions

Few particle system with complete 
quantum control: 
spin-1/2s coupled to harmonic oscillator(s)

• quantum state engineering:
quantum computing

• state preparation & measurement

collective modes

laser

spontaneous 
emission

cavity decay

• CQED
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• from BEC to Hubbard models
– strongly correlated systems
– time dependent, e.g. quantum phase 

transitions
– …
– exotic quantum phases (?)

• quantum information processing
– new quantum computing 

scenarios, e.g. "one way quantum 
computer"

"quantum simulator"

|   | 

entangling qubits via "Ising"
(cluster state)

qubits on a lattice

optical lattice as a regular 
array of microtraps for atoms

laser
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2/π

2/π

|0 |1
• N independent atoms

ΔSQL  1
T nrep

1
N

standard quantum noise limit

• N entangled atoms

|0000  |1111

Δent  1
T nrep

1
fN ≥

1
T n rep

1
N

Heisenberg limit:
maximally entangled state

BEC

product 
state

collisions

product 
state

laser

• Entanglement via collisions: spin squeezing

|0⊗N
[ 1

2
(|0  |1⊗N ∑ cn |0n |1N−n

• … measurements beyond standard quantum limit
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• cascaded quantum system: transmission in a quantum network

Node 1 Node 2in out

source driven system

unidirectional coupling

node

channel
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• atomic ensembles

atomic / spin squeezing; quantum memory for light; 
continuous variable quantum states

atoms 1 atoms 2

coherent 
light

measure

EPR 

BS

D1 D2

I1 I2

L R

entangled entangled

a
BS

D1 D2

I1 I2

L R

entangled entangled

a
BS

D1 D2

I1 I2

L R

entangled entangled

a

a

r r̃

b

quantum repeater: establishing long distance EPR pairs 
for quantum cryptography and teleportation
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… and what we are working on at the moment

polar molecules …
• hybrid quantum optics – solid state processors

– coupling polar molecules to strip line cavities
• spin lattice models (of interest in topological quantum computing)

– Kitaev xx-yy-zz on honeycomb lattices
– Ioffe, Feigelman et al., xx-zz on square lattice
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Quantum Optics 
with Atoms & Ions

• trapped ions / crystals of …

• CQED

atom
cavity

laser

• cold atoms in optical lattices

laser

• atomic ensembles

Polar Molecules

• single molecules / molecular ensembles
• coupling to optical & microwave fields

– trapping / cooling
– CQED (strong coupling)
– spontaneous emission / engineered 

dissipation
• interfacing solid state / AMO & 

microwave / optical
– strong coupling / dissipation

• collisional interactions
– quantum deg gases / Wigner (?) crystals
– dephasing

dipole moment

rotation



HPI Zoller

Cooper Pair Box 
(qubit) 

superconducting (1D) 
microwave transmission line 

cavity
(photon bus) strong coupling 

circuit CQED

Hybrid Device: 
solid state processor
& molecular memory
+ optical interface

R. Schoelkopf, S. Girvin et al. (Yale)
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Cooper Pair Box 
(qubit) 

as nonlinearity

superconducting (1D) 
microwave transmission line 

cavity
(photon bus)

molecular
ensembleoptical

cavity

laser

optical
(flying) qubit

Hybrid Device: 
solid state processor
& molecular memory
+ optical interface

polar molecular ensemble 1:
quantum memory

(qubit or continuous variable)
[Rem.: cooling / trapping]

polar molecular ensemble 2:
quantum memory

(qubit or continuous variable)

strong coupling CQED

P. Rabl, R. Schoelkopf, D. DeMille, M. Lukin …
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1. strong CQED with superconducting circuits

• Cavity QED

• [... similar results expected for coupling to quantum dots (Delft)]
• [compare with CQED with atoms in optical and microwave regime]

R. Schoelkopf, M. Devoret, 
S. Girvin (Yale)

SC qubit

strong coupling!
(mode volume V/ λ3 ≈ 10-5 )

good cavity

“not so great” qubits

Jaynes-Cummings
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• rotational excitation of polar 
molecule(s)

• superconducting transmission 
line cavities

• hyperfine excitation of BEC / 
atomic ensembleatoms /

molecules

SC qubit

hyperfine structure
∼ 10 GHz

rotational excitations
∼ 10 GHz

N=1

N=0

… with Yale/Harvard

ensemble ☺

2. ... coupling atoms or molecules
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Polar Molecules in an Optical Lattice: Lattice Spin Models

• polar molecules on optical lattices provide a complete toolbox to  realize 
general lattice spin models in a natural way

XX YY

ZZ

xx
zz

Duocot, Feigelman, Ioffe et al. Kitaev

Hspin
I  ∑i1

ℓ−1∑j1
ℓ−1 Ji,j

z i,j1
z  cosi,j

x i1,j
x  Hspin

II  J ∑
x−links

j
xk

x  J ∑
y−links

j
yk

y

 Jz ∑
z−links

j
zk

z
protected quantum memory:

degenerate ground states as qubits

A. Micheli, G. Brennen, PZ, preprint, Dec 2005

Examples:
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(Wigner-) Crystals with Polar Molecules

• “Wigner crystals“ in 1D and 2D (1/R3 repulsion – for R > R0)

Coulomb: WC for low density (ions)

dipole-dipole: crystal for high density

2D triangular lattice
(Abrikosov lattice)

mean 
distance

WC
Tonks gas / BEC 

(liquid / gas)

~ 100 nm

  e2/R
2/2MR2 ~R

1st order phase 
transition

quantum 
statistics

H.P. Büchler
V. Steixner
G. Pupillo
M. Lukin
…

g(R)

R

solid

liquid

  potential energy

kinetic energy
 d2/R3

2/2MR2 ~ 1
R  n1/3
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Introduction / Motivation / Overview

• Quantum information
– quantum computing, quantum communication etc.

• Zoo of quantum optical systems
– ions, neutral atoms, CQED, atomic ensembles

• Theoretical Tools of Quantum Optics
– quantum optical systems as open quantum systems
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⊗

|e

atom harmonic 
trap

empty 
radiation 
modes

phonon 
dissipation

Γ

Δ

laser

spontaneous 
emission

motion

1.3 Quantum optical systems as open quantum systems

• example: trapped ion

|n  0
|n  1

|n  2
…

|g
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• Open quantum system

• Continuous observation

• Quantum operations

Quantum Optics Quantum Information

system environ-
ment

harmonic oscillators

in

out
system

counts

time

|e0
U

 E
environ-

ment

Stochastic Schrödinger Equation

system

|e0
U


“k”

k

Our approach ...

  E  ∑k EkEk
†

master equation

“Quantum Markov processes“
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Summary: what the lectures are about …

• Theoretical modelling of quantum optical systems
– how to describe theoretically trapped atoms and ions in 

various traps, CQED, atomic ensembles etc.

• Quantum state engineering / QPIC with qo systems
– how to perform gate operations

• Preparation & Measurement in qo systems
– state preparation and read out
– decoherence
– from quantum operations to stochastic Schrödinger 

equations, continuous measurement and all that
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Quantum Computing with Trapped Ions

• basics: quantum optics of single ions & many ions
– develop toolbox for quantum state engineering

• 2-qubit gates
– from first 1995 gate proposals and realizations 
– ... geometric and „best“ coherent control gates

• spin models
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1. A single trapped ion

• a single laser driven trapped ion

• system: two-level atom + harmonic oscillator

trap
spontaneous 
emission

ion

laser

two-level system

(= qubit)

|g

|e
Γ ⊗

|0
|1

…

phonons
  10 MHz

H  H0T  H0A  H1

H0T  P̂2

2M  1
2 M2X̂2 ≡ a†a  1

2 

H0A  −Δ|e〈e|

H1  − 1
2 eikLX̂ |e〈g|h.c.

atom

laser

trap

system: atom + motion in trap:
goal: quantum engineering

[open quantum system]

H  p̂2

2M  1
2 M2x̂2   eg|e〈e|− 1

2 eikx̂−it|e〈g|h.c. 
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• laser absorption & recoil

• Lamb-Dicke limit

|g

|e


photon recoil kick

H1  − 1
2 eikLX̂ |e〈g|h.c.interaction

laser photon recoil:  
couples internal dynamics and center-of-mass

trap size

a0  
2M

L

laser wave length

e ikLX̂  eiaa†

 1  ia  a† …

Lamb-Dicke expansion

  2 a0
L
≡ R

 ~ 0.1

|g|motion  |eeikLX̂|motion
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• spectroscopy: atom + trap

• processes: "Hamiltonian toolbox for phonon-state engineering"

|g, 0i
|g, 1i

|g, 2i
ν

|e, 0
|e, 1

|e, 2

red sideband
a

blue sideband

a †

…

|g

|e

laser

ν



|g

|e

|g

|e
phonon

νphonon

blue sideband

laser assisted phonon absorption and emission

red sideband



laser interaction



1
2 eikLX̂ |e〈g| 1

2 |e〈g|

 i 1
2 a |e〈g|

 i 1
2 a† |e〈g|

…
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• example: "laser tuned to red sideband"

 3
 2

|g, 0i
|g, 1i

|g, 2i

. . .

. . .

ν

|e, 0
|e, 1

|e, 2

HJC  a†a − Δ|e〈e|− 1
2 i|e〈g|a  h.c.

vacuum Rabi frequency 
~ laser (switchable)



Jaynes-Cummings model

• Remark: CQED

vacuum Rabi frequency optical 

trap 



HPI Zoller

|e, 0

• sideband cooling... as optical pumping to the ground state

• measurement of internal states: quantum jumps …

[Dissipation: spontaneous emission]

|g, 0i
|g, 1i

|g, 2i

...

Γ

ν

preparation of pure states|e, 1
|e, 2

atom ⊗ motion  |g〈g|⊗|0〈0|

qubit read out
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Excercises in quantum state engineering

• Example 1: single qubit rotation

• Example 2: swapping the qubit to the phonon mode
...

...

|g, 0i

|g, 1i

|e, 0
|e, 1

|g  |e ⊗ |0  |g ⊗ |0  |1

(2) Using a laser pulse we can swap 
qubits stored in ions to the phonon 
modes (and vice versa)

...

...

|g, 0i

|g, 1i

|e, 0
|e, 1

|g  |e⊗ |0 U 1→  ′|g   ′ |e⊗ |0

(1) we can rotate the qubit without 
touching the phonon state

qubit

ion qubit phonon qubit
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• Example 3: engineering arbitrary phonon superposition states

• Idea: we will look for the inverse U which transforms        to 

given coefficients cn

ν

|g, 0
|g, 1

|g, 2

|e, 0
|e, 1

|e, 2

…

…

| |g⊗∑n0
nmax cn |n

Fock states
squeezed & coherent states
Schrödinger cat states 
...

Law & Eberly, Gardiner et al., Wineland et al.

|g⊗ |0 U
 |  |g⊗∑n0

N cn|n
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ν

|g, 0
|g, 1

|g, 2

|e, 0
|e, 1

|e, 2

…
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ν

|g, 0
|g, 1

|g, 2

|e, 0
|e, 1

|e, 2

…
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ν

|g, 0
|g, 1

|g, 2

|e, 0
|e, 1

|e, 2

…
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• 2 ions & collective phonon modes

• example: classical ion motion

c  

r  3 c

center-of-mass

stretch mode

(3) We can swap a qubit to a collective mode via laser pulse

2. Many Ions
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laser

• Example: 2 ions in a 1D trap kicked by laser light

H  caa  rbb

 1
2 t1

e icaa 1
2 rbb  1

2 t2
e icaa− 1

2 rbb  h.c

qubit
|g

|e

c  

r  3 c

kick center-of-mass

kick stretch mode
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Ion Trap Quantum Computer '95

• Cold ions in a linear trap

Qubits: internal atomic states

1-qubit gates: addressing ions 
with a laser

2-qubit gates: entanglement via 
exchange of phonons of
quantized collective mode

• State vector

quantum register databus

• QC as a time sequence of laser pulses
• Read out by quantum jumps

|Ψi =
X

cx|xN−1, . . . , x0iat om |0iphonon
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Level scheme

0r

g

state measurement via 
quantum jumps

qubit

1r

auxiliary level

addressing with different 
light polarizations
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Two-qubit phase gate

• step 1: swap first qubit to phonon

laser

m n

1,0r

0g,
1g,

 pulse

|gim|0i
|rim|0i

Ûπ,0
m

−→
−→

|gim|0i
−i|gim|1i

0,0r

...

first atom: m

...
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• step 2: conditional sign change

laser

0,0r

0g,
1g,

m n

1,0r

Û 2π,1n

|gim|gin|0i −→ |gim|gin|0i
|gim|rin|0i −→ |gim|rin|0i

−i|gim|gin|1i −→ i|gim|gin|1i
−i|gim|rin|1i −→ −i|gim|rin|1i

second atom: n

1,1r
0,1r

-

2 pulse

flip sign

...

...
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• step 3: swap phonon back to first qubit

laser

atom m

|gim ⊗

Ûπ,0
m

|gin|0i −→ |gim|gin
|rin|0i −→ |gim|rin
i|gin|1i −→ |rim|gin
−i|rin|1i −→ −|rim|rin

⊗ |0i
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• summary: we have a phase gate between atom m and n

|²1i|²2i→ (−1)²1²2 |²1i|²2i (²1,2 = 0, 1)

phonon mode returned to 
initial state

|gi|gi |0i −→ |gi|gi |0i,
|gi|r0i |0i −→ |gi|r0i |0i,
|r0i|gi |0i −→ |r0i|gi |0i,
|r0i|r0i|0i −→ − |r0i|r0i |0i.

Rem.: this idea translates immediately to CQED
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input

output

truth table CNOT
Innsbruck

• (addressable) 2 ion controlled-NOT + tomography

• teleportation Innsbruck / Boulder

• decoherence: quantum memory DFS 20 sec

|

EPR pair
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F = 85%

Four-ion W-state
R. Blatt et al. 
Nature 2005
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Eight ion W-state
R. Blatt et al. 
Nature 2005
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• key idea: moving ions … without destroying the qubit

Scalability

storagesingle qubit 
operations

two qubit gate between 
a pair of ions

movelaser laser
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Two-qubit gate … the “wish list”

• fast: max # operations / decoherence [what are the limits?]

vs.

addressing: 
large distance

vs.

strong coupling:
small distance

motional state factors out
qubits

|〈|⊗motion  entangle qubits via motion  |〈|⊗motion

motional 
state: 

e.g. thermal

• NO indivdual addressing

'

• NO temperature requirement: “hot” gate, i.e. NO ground state cooling
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Speed limits

• In all present proposals the speed limit for the gate is given by the trap 
frequency

trap frequency
Lamb Dicke parameter

ν ∼ 10 MHz, i.e. Tgate∼ μ s

limits given by trap design
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The rest of the lecture …

• Push gate

• Geometric phase gates 

• Optimal Control Gates
– what is the best gate for given resources?

• [Examples]
– fast gate with short laser pulses
– fast gate with continuous laser pulses
– engineering spin Hamiltonians …

D. Leibfried et al. 
NIST

J. Garcia-Ripoll
J.I. Cirac,

PZ

J.I. Cirac & PZ
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Push gate

• converting "spin to charge" • spin dependent optical potential

x̄2(t)

d

x̄1(t)

qubit dependent 
displacement of the ion

fine
structure

different AC Stark shifts

d
time

1 10 0
accumulate different energy shifts 
along different trajectories: 2-qubit 
gate 

• robust: temperature insensitive ☺

pushing
laser

1 2

V(R)

state dependent interaction

Another example for a 2-qubit gate …
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Push gate

• converting "spin to charge" • spin dependent optical potential

x̄2(t)

d

x̄1(t)

qubit dependent 
displacement of the ion

fine
structure

different AC Stark shifts

pushing
laser

• Hamiltonian
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Geometric Phase [Gate]: One Ion

• Goal: geometric phase by driving a harmonic oscillator
• Hamiltonian

• Time evolution

• Solution

d
dt z  −iz  i 1

2
ft

d
dt  

1
2 2

ftz∗  z

z t  e−it z0  i
2


0

t
d eif

coherent state

phase

coherent state
|0  |z0 ≡ x0  ip0 | t  ei t |zt ≡ xt  ipt

x0,p0
xt,pt

X

P
phase space

classical evolution

phase
displacement

H  1
2 p̂

2  x̂2 − ftx̂
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• Condition: 

After a given time T the coherent wavepacket is 
restored to the freely evolved state

x0,p0

phase space

xT, pT


0

T
d eif  0! X

P
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x̃0, p̃0

• Rotating frame

• Phase

z̃ t ≡ x̃t  ip̃ t  eitz t

dz̃
dt

 ieit 1
2

ft

d
dt

 dp̃
dt

x̃ − dx̃
dt

p̃  2 dA
dt

X̃

P̃
rotating frame

The phase does not depend on 
the initial state, (x0,p0)

T  Im i
2 0

T
d eif z̃∗

 Im i
2 0

T
d eif1 z̃0

∗  1
2 Im 

0

T
d1 

0

1
d2 ei1−2f1f2

=0
return condition
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• Example

• The phase does not depend on the initial state, (x0,p0)    ☺
(temperature independent)

phase space rotating frame

a b
area A

b

X

P

X̃

P̃

a

unperturbed

forced
Ft  sin2t



HPI Zoller

• Hamiltonian

• Time evolution operator

© NIST D. Leibfried et al.

single ion phase gate

motion factors out

Geometric Phase Gate: Single Ion

|0

|1

|0  |1 ⊗ |z0

H  1
2 p̂

2  x̂2 − |1〈1|ftx̂

UT  ei|1〈1|

UT
 |0  ei |1 ⊗ |zT
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NIST Gate: Leibfried et al Nature 2003

• 2 ions in a running standing wave tuned to ωr

• If F(t) is periodic with a period multiple of ωr, after some time the 
motional state is restored, but now the total phase is

• To address one mode, the gate must be slow 

UT  expi1
z2

z
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NIST Gate: Leibfried et al. Nature 2003



HPI Zoller

Best gate?

• What is the best possible gate?

requirements: ...

constraints: …

• … an optimal control problem
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N Ions

• We will consider N trapped ions (linear traps, microtraps…), subject to state-
dependent forces:

• normal modes

• unitary evolution operator • constraints on forces

general Ising interaction

integrable

x0,p0 xT, pT

P
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Quantum Control Problem

• Target: the Ising interaction, is a function of the forces

The kernel G depends only on the trapping potential.

• Constraints: displacements, zk, depend both on the forces and on the 
internal states. To cancel them, we must impose

• Additional constraints: the total time, T; smoothness & intensity of the 
forces, no local addressing of ions …

fastest gate?

given determine



HPI Zoller

More results

• Theorem: For N ions and a given Ising interaction J_{ij} , it is always 
possible to find a set of forces that realize the gate

although now the solution has to be found numerically.

• Applications: Generation of cluster states, of GHZ states, 
stroboscopic simulation of Hamiltonians, adiabatic quantum 
computing,…

The time, T, is arbitrary!

|c  expi 
0

t 1
4 gtdt∑a,b z

a ⊗ z
bdt ⊗a∈C |a

|  1
2
|0z  |1zcluster state

GHZ state

simulate spin models
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Engineering cluster and GHZ states

Cluster state N=10 GHZ state N=20

These examples use a common force: Fi(t) = xi g(t)

Juanjo Garcia-Ripoll has calculated this up to N=30 ions

fidelity

control field

fidelity

control field
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So far … Quantum computing with trapped ions

• trapped ions

QC model:
qubits: longlived atomic states
single qubit gates: laser
two qubit gates: via phonon bus
read out: quantum jumps

requirements:
state preparation: phonon cooling
[small decoherence]
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Trapped ion: the system

• system = internal + external degrees of freedom

g

r
e

internal:
electronic levels

external: 
motion

⊗dipole-allowed
transition

dipole-forbidden
transition

• strong dissipation

laser cooling / state preparation

qubit / state measurement

• small dissipation

Hamiltonian: quantum state 
engineering
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System + Reservoir

ion: internal
= electronic

ion: external
= motion

spontaneous
emission

phonon
heating

laser
= control

Development of the theory:
• system: Hamiltonian (control)
• reservoir: master equation + continuous measurement theory

system

reservoir
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• Open quantum system

• Continuous observation

• Quantum operations

Quantum Optics Quantum Information

system environ-
ment

harmonic oscillators

in

out
system

counts

time

|e0
U

 E
environ-

ment

Stochastic Schrödinger Equation

system

|e0
U


“k”

k

Our approach ...

  E  ∑k EkEk
†

master equation

“Quantum Markov processes“
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Outline
• Quantum Operations

– language of quantum information
• System + environment models in quantum optics

– Quantum Stochastic Schrödinger Equation (QSSE)
• Solution of the QSSE

– explicit solution: entangled state representation of system + 
environment

– complete photon statistics (continuous measurement)
– master equation

• Examples / application
– ions: spontaneous emission, laser cooling & quantum reservoir 

engineering, qubit readout
• Cascaded quantum systems (advanced topic)

– from QSSE to master equations etc.
– application: qubit transmission in a quantum network

• [Extra topics]
– homodyne, quantum feedback
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1. Quantum Operations

Ref.: Nielsen & Chuang, Quantum Information and Quantum Computation
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Quantum operations

|e0
U

system

environment


  E  trenvU ⊗ BU† 

E

Operator sum representation:
  E  trenvU ⊗ |e0〈e0|U† 

 ∑
k

〈ek |U ⊗ |e0〈e 0|U† |ek 

 ∑
k

EkEk
† with Ek  〈ek |U|e0

Evolution of a quantum system coupled to an environment:
open quantum system

Properties: ∑k Ek
†Ek  1

operation elements

quantum operation
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  E  ∑ pkk

∑
k

EkEk
†

k  trenv|ek〈ek |U ⊗ |e0〈e0|U†

 EkEk
†

Quantum operations

|e0
U

system

environment



Measurement of the environment: Pk ≡ |ek〈ek |

“k”
k

Remark: if we do not read out the measurement

probability

state

(normalized)k  EkEk
† / trsysEkEk

† 

pk  trsysenv|ek〈ek|U ⊗ |e0〈e0|U† 

 trsysEkEk
† 
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2. System + environment models in Quantum Optics

• formulation
– operator / c-number stochastic Schrödinger equation
– [(operator) Langevin equation]
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System + environment model

system environment

“bath”
Htot  Hsys  HB  Hint

harmonic
oscillators

system operator

unspecified

Assumptions:
• rotating wave approximation

Hamiltonian:

HB  
0−

0 dbb with b,b′   −  ′

Hsys

H int  i 
0−

0 dcb − cb
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|gi

|ei

Γlaser

Example: spontaneous emission

• driven two-level system undergoing spontaneous emission

• ... including the recoil from spontaneous emission

photon 
detector

c  −  |g〈e|
Hsys  eg |e〈e| − 1

2 e−iLt  h.c.

Hint  −eg  E 0  h.c.

 i 
eg−

eg
db  h.c.

trap
spontaneous 
emission

ion

laser

Hint  −eg  E x  h.c.

∑


 d3k…bkeikx  h.c.

recoil

Simplest possible ...



HPI Zoller

System + environment model

system environment

“bath”
Htot  Hsys  HB  Hint

system operator

ω0

ω0 − ϑ ω0 + ϑ

system frequency

reservoir bandwidth B

κ(ω)

ω

unspecified

flat over bandwidth

Assumptions:
• rotating wave approximation
• flat spectrum:  → /2

Hamiltonian:

HB  
0−

0 dbb with b,b′   −  ′

Hsys

H int  i 
0−

0 dcb − cb

harmonic
oscillators
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d
dt |̃ t  −iH̃sys  0−

0 d beı− 0t c − h.c. |̃ t

Schrödinger Equation

• Schrödinger equation

• convenient to transform …

d
dt | t  −i Hsys  HB  Hint |t 

interaction picture
with respect to bath

b  be−it t  e−iHBt |t

Hsys  H̃sys
"rotating frame“

(transform optical 
frequencies away)

c  ce−i0t

system environ-
ment

 → /2

“noise operators”

bt : 1
2

0−

0 d b e−ı−0t

flat over bandwidth

| ⊗ |vac
initial condition
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sys  1/  opt

• Schrödinger Equation

White noise limit ϑ→∞

d
dt | t  −iHsys   btc −  cbt |t

bt : 1
2

0−

0 d b e−ı−0t

bt,bs  t − s

〈btbs  t − s

“noise operators”

white noise 
limit ϑ→∞

transformed away 
after RWA

system environ-
ment

Remarks:
• [We can give precise meaning as a “Quantum Stochastic Schrödinger 

Equation“ within a stochastic Stratonovich calculus]
• We can integrate this equation exactly

– counting statistics
– master equation

quantum 
operations

vacuum
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3. Integrating the “Quantum Stochastic Schrödinger Equation“

U(t)
|vac

|
|t 

|0  |t  e−iHtott |0

Schrödinger equation: 
system + environment
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What we want to calculate ...

• We do not observe the environment: reduced density operator

t  trB| t〈t | master equation:

decoherence

preparation of the system (e.g. 
laser cooling to ground state)

U(t)
|vac

|

U(t)
|

• We measure the environment: continuous measurement

|ct conditional wave function:

counting statistics

effect of observation on system 
evolution (e.g. preparation of the 
(single quantum) system)

counts

time
|vac
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Integration in small timesteps

• We integrate the Schrödinger equation in small time steps

• Remark: choice of time step

Δt

time t0

|t  tf  UΔtf…UΔt1UΔt0|0

 sys  Δt ≳ 1/  opt

white noise 
limit ϑ→∞

allows us to use 
perturbation theory 

in Δt

transformed away 
after RWA

Remark: simple man‘s 
version of conversion 
from Stratonovich to Ito
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• First time step: first order in Δt

Δt

time t0

1st time step

UΔt|0  1̂ − iHsysΔt   c 
0

Δt btdt −  c 
0

Δt btdt

… |0

| ⊗ |vac
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• First time step: first order in Δt

Δt

time t0

| ⊗ |vac

1st time step


0

t
dt2 

0

t2
dt1 bt2 bt1|vac  

0

t
dt2 

0

t2
dt1 bt2 ,bt1|vac

 
0

t
dt2 

0

t2
dt1 t2 − t1|vac

 1
2 Δt|vac

UΔt|0  1̂ − iHsysΔt   c 
0

Δt btdt −  c 
0

Δt btdt

−i2cc 
0

Δt dt 
0

t2 dt′ btbt ′ … |0

first order in Δt
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|Δt  ÛΔt|0

 1̂ − iHeff Δt   cΔB0 |0

• First time step: to first order in Δt

Δt

time t0

We define:

 effective (non-hermitian) system Hamiltonian

Heff : Hsys −
i
2 c †c

 annihilation / creation operator for a photon in the
time slot Δt :

ΔBt : 
t

tΔt
bsds

1st time step
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• First time step: to first order in Δt

Δt

time t0

time

time

one photon

no photon

1st time step

|Δt  ÛΔt|0

 1̂ − iHeff Δt   cΔB0 |0 interpretation: superposition of 
vacuum and one-photon state
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annihilation / creation operator for a photon in the time slot Δt :

ΔBt : 
t

tΔt
bsds

Remarks and properties:
 commutation relations:

ΔBt,ΔB†t ′ 
Δt t  t ′ overlapping intervals
0 t ≠ t ′ nonoverlapping intervals

 one-photon wave packet in time slot Δt
ΔB†t
Δt

|vac ≡ |1t (normalized)

 number operator of photon in time slot t:

Nt  ΔB†t
Δt

ΔBt
Δt

 Nt as set up commuting operators, Nt,Nt ′  0,
which can be measured "simultaneously"

time

Δt

1st time stepDiscussion:
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• Summary of first time step: to first order in Δt

Δt

time t0

|Δt  1 − iHeff Δt   cΔB†0 |0

 |vac ⊗ 1 − iHeff Δt |0  |1 t ⊗  Δt c|0

where we read off the operation elements
E0  1 − iHeffΔt (no photon)

E1  Δt c (1 photon)

time

time

||e0  |  U||e0

∑
k

|ek〈ek |U|e0| ≡ ∑|ek Ek ||e0
U

|
|

≡ |vac ⊗ E0 |0  |1t ⊗ E1|0 operation elements

1st time step:

quantum 
operations
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Δt  trB|Δt〈Δt|
 E00E0

†  E10E 1
†

 1 − iHeffΔt 0 1 − iHeffΔt †  c0c Δt

• We do not read the detector: reduced density operator

U(Δt)
|vac

|

no photon

Discussion 1:

one photon

|e0
U

|
|

  E  trenvU ⊗ |e0〈e0|U† 

 ∑k EkEk
†

1st time step

master equation:

Δt − 0  −i Heff0 − 0Heff
† Δt  c0c Δt

≡ −i Hsys,0 Δt  1
2 2c0c − c c0 − 0ccΔt
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 Click: resulting state

E1 |0 ≡ |clickΔt  Δt c|0 (quantum jump)

with probability
pclick  trsysE10E1   Δt ‖c0‖2

Rem.: density matrix 10  E10E1/tr… 

• We read the detector:

U(Δt)
|vac

|

Discussion 2:

|ct

“click”

quantum jump 
operator

|e0
U

|

“k” pk  ‖Ek‖2

|k   Ek ||ek/||… ||

1st time step
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 No click: resulting state

E0 |0 ≡ |no clickΔt  1 − iHeffΔt |0 ≈ e−iHeffΔt |0

with probability

pno click  trsysE00E0   e−iHeffΔt0 2

• We read the detector:

U(Δt)
|vac

|

Discussion 2:

|ct

|e0
U

|

“k” pk  ‖Ek‖2

decaying norm

|k   Ek ||ek/||… ||

1st time step

“no click”



HPI Zoller

• Second and more time steps:

Δt

time t0 …

|nΔt  1 − iHeffΔt   cΔB†n − 1Δt |n − 1Δt stroboscopic 
integration

≡ 1 − iHeffΔt   cΔB†n − 1Δt 

… 1 − iHeffΔt   cΔB†0 |0

2nd time step etc.

ΔBt,ΔB †t ′ 
Δt t  t ′ overlapping intervals
0 t ≠ t′ nonoverlapping intervals

Note: remember … commute in different time slots
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1. system time evolution |t|t1 t2… t n for a
specfic count sequence

2. photon count statistics: probability densities
p0,tt1, t2,… , tn  ‖t|t1t2… tn‖2

 Δtn/2 ∑
tn…t1

|1 t11t2…1 tn ⊗ e−iHefft−t nc…ce−iHefft1 |0

…

Final result for solution of SSE
• Wave function of the system + environment: entangled state

|t  |vac ⊗ e−iHefft |0

 Δt1/2∑
t1

|1t1  ⊗ e−iHefft−t1ce−iHefft1 |0

…
t1

t1 t2 tn t…

|0 → |t  e−iHefft |0no click:

click: |t  →  c| tΔt
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• Tracing over the environment we obtain the master equation

U(Δt)
|vac

|

master equation

Lindblad form

coarse grained time derivative

d
dt t  −i Hsys,t  1

2 2ctc − c ct − tcc



HPI Zoller

Ito-Quantum Stochastic Schrödinger Equation

• taking the limit …

• Quantum Stochastic Schrödinger Equation

• Properties of Ito increments:
– point to the future:

– Ito rules:

For theorists …

Ito operator noise 
increments

d|t  − i


Hsys dt   cdB†t −  c †dBt |t

dBt|t  0

dBt2  dBt2  0,
dBtdBt  dt,
dBtdBt  0.

Δt  dt
ΔBt  dBt
ΔB†t  dBt†
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4. Examples:

• Two-level atom undergoing spontaneous emission
• Driven two-level atom: Optical Bloch Equations

• laser cooling and reservoir engineering of single trapped ion
– ground state cooling
– squeezed state generation by reservoir engineering

Δ

|gi

|ei

Γlaser
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atom

photodetector

time

Δt

|g

|e

Γ

t1

|c0  cg|g  ce|e

|ct  e−iHeff t/|c0
‖…‖

 cg|gcee−Γt/2|e
‖…‖

initial state

while no photon is 
detected

our knowledge increases 
that the atom is not in the 
excited state

|ct  Δt  Γ− |̃ct
‖…‖

 |ga photon is detected

probability that a photon is detected in (t,t+Δt] P1
t,tΔt  Γ|ce|2e−ΓtΔt

Example 1: two-level atom undergoing spontaneous decay
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Fig.: typical quantum trajectory: upper state population

quantum jump:
electron returns to the 

ground state

(prepares the system)

Rabi oscillations

Δ

|gi

|ei

Γlaser

Example 2: driven two-level atom 
+ spontaneous emission
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 Master equation (1D):

d
dt   −i Hsys,  1

2 Γ 2 
−1

1
du Nu e ikX̂u−  e ikX̂u − − − −

⊗

|e

Γ

Δ

laser

spontaneous 
emission

motion

Example 3: laser cooling of a trapped ion

|n  0
|n  1

|n  2
…

|g

kL

ks

momentum 
transfer

~ksu
x

quantum jump operator:
recoil from spontaneous emission

Hsys 
P̂2

2m  1
2 m2X̂2 − Δ|e〈e|− 1

2 eikX̂−  h.c.
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• Lamb-Dicke limit: adiabatic elimination of internal dynamics

• processes contributing at low intensity

ν ng,
1, +ng

1, −ne
ne,

1, +ne

1, −ng
ν ng,

1, +ng

1, −ne
ne,

1, +ne

1, −ng

ν

ng,
1, +ng

1, −ne
ne,

1, +ne

1, −ng

cooling heatingdiffusion

ΩΩη
Ωη

Γ

Γ

Γ2η
Γ2η

D2ReS(−ν) 2 ReS(+ν)

cooling term

A± = 2Re[S(∓ν) +D]

̇  A aa† − 1
2 a †a −  1

2 a†a

 A− a†a − 1
2 aa † −  1

2 aa† heating term
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sideband cooling

• ... as optical pumping to the ground state

• master equation

• final state

|g, 0i
|g, 1i

|g, 2i

...

Γ
ν

̇  A aa† − 1
2 a†a −  1

2 a†a A  A−

osc  |0〈0| (Γ  , sideband cooling)

"dark state" of the jump 
operator a:

a|0  0
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Example 4: State measurement & quantum jumps in 3-
level systems

• three level atom

• single atom photon counting

g

r
e

dipole-forbidden
transition

atom

photon counting on 
strong transition

photon counting on the 
strong line:

single trajectory

dipole-allowed
transition
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atomic density matrix conditional to 
observing an emission window

state measurement with 100% efficiency

ρc(t) −→ |rihr| preparation in 
metastable state

ψ = α|gi + β|ri |α|2 . . . probability NO window
|β|2 . . . probability window

photon counting on strong transition

R. Blatt

P.Z et al. '88

g

r
e

strong
line

here: with a weak 
driving field g - r
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 System: two atoms with ground states |0, |1 and
excited state |r

Example 5: Preparation of 2 atoms in a Bell state via measurement

atom A atom B
atom A

atom B |0i |0i
|1i |1i

|ri|ri

low efficiency 
photodetectors

laser

laser

- Weak (short) laser pulse, so that the excitation probability is small.

- If no detection, pump back and start again.

- If detection, an entangled state is created.

∼ |0, 1i+ |1, 0i

simple way of creating entanglement

for a first exp step: 
Monroe et al, Nature 2004
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 Observation of a click prepares Bell state
|11|02  |01 |12

 We observe the fluorescence through a beam splitter

ΔB1,2
  1

2
ΔB1

  ΔB2
 

 spontaneous emission

|t  0  |01|02  e−t/2|r1|02  |01 |r2  ⊗ |vac

∑
t1

ΔB1
t1|vac ⊗   e−t1/2 |11|02

 ΔB2
t1|vac ⊗   e−t1/2|01 |12  O2

 excitation by a weak short laser pulse
|t  0  |vac |02  |r2 |02  |r2

 |vac |01|02  |r1|02  |01 |r2   O2

 preparation (by optical pumping)

|t  0  |vac|01|02

Process:
atom A atom B

|0i |0i
|1i |1i

|ri|ri

laser

laser

atom A

atom B
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5. Cascaded Quantum Systems

• formal theory
• example

– optical interconnects
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Motivation: Theory of Optical Interconnects

• A cavity QED implementation

Optical cavities connected by a quantum channel

Node A Node B

Laser
fiber

Laser

• memory:
atoms

• databus:
photons

• memory:
atoms

J.I. Cirac, P.Z. H.J. Kimble and H. Mabuchi PRL '97

• We call this protocol photonic channel
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Cascaded Quantum Systems

• cascaded quantum system = first quantum system drives a second 
quantum system: unidirectional coupling

unidirectional 
coupling

system 1:
"source"

system 2:
"driven 
system"

out 1         ≡ in 2 out 2in 1



HPI Zoller

Cascaded Quantum Systems

• example of a cascaded quantum system

system 1:
"source"

system 2:
"driven system"

in 1

out 1         ≡ in 2

out 2 time

counts

photon counting

unidirectional 
coupling
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Hamiltonian

H  Hsys1  Hsys2  HB  Hint

HB  
0−

0
dbb

with b the annihilation operator
b, b† ′   − ′

interaction part

H int
t  i d1be−i/cx1 c1 − c1

bei/cx1 

i d2be−i/cx2c2 − c2
bei/cx2  x2  x1

unidirectional 
coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ≡ in 2 out 2

position of 
first system

position of 
second system
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unidirectional 
coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ≡ in 2 out 2

interaction picture
H intt  ı 1 btc1 − btc1

   ı 2 b†t−c2 − bt−c2
 

with t−  t −  where  → 0

bt ≡ bint : 1
2

−


dbe−ı−0t

time delay
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unidirectional 
coupling

system 1:
"source"

system 2:
"driven 
system"

in 1 out 1         ≡ in 2 out 2

Stratonovich SSE
d
dt t  − i


Hsys1  Hsys2 

 1 btc1 − btc1
   2 b†t−c2 − bt−c2

  t

Initial condition:
|  | ⊗ |vac

Notation:
1 c1 → c1, 2 c2 → c2,   1

time delay
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First time step

Δt

time t0

UΔt|0  1̂ − iH1  H2Δt   c2  c1  
0

Δt
dt b†t

−i2 
0

Δt
dt1 

0

t2
dt2−bt1c1

 − bt1
−c2

 bt2c1  b†t2
−c2  … |0

creation destruction 

 
0

Δt
dt1 

0

t2
dt2−t1 − t2c1

†c1  t1 − t2  c1
†c2

− t1 −  − t2c2
†c1 − t1 − t2c2

†c2|vac

 − 1
2 c1

†c1  0 − c2
†c1 − 1

2 c2
†c2 |vacΔt

reabsorption 

time delay!
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 we identify  c2  c1  with the "jump operator"

Heff  H1  H2 − i 1
2 c1

 c1 − i 1
2 c2

c2 − ic2
c1

 H1  H2  i 1
2 c1

† c2 − c2
† c1  − i 1

2 c†c with c  c2  c1

First time step

Δt

time t0

UΔt|0  1̂ − iHeffΔt   c2  c1 ΔB†0 |0

• effective Hamiltonian

reabsorption 

in 1 out 2

time

time

one photon

no photon

hermitian decay 
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Summary of results:

• Ito-type stochastic Schrödinger equation:

• master equation for source + system:

d|t  |t  dt − |t

 1̂ − iHeffdt   c1  c2 dB†t |0

Heff  Hsys  i 1
2 c1

c2 − c2
c1 − i 1

2 c†c

d
dt   −iHeff − Heff

†   1
2 2cc† − c†c − c†c

d
dt   −iHsys,

 1
2 2c1c1

 − c1
c1 − c1

c1  1
2 2c2c2

 − c2
c2 − c2

c2

− c2
 ,c1  c1

 ,c2.

Version 1:

Version 2:

unidirectional coupling of source to system 

Lindblad form
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Example: Optical Interconnects

• A cavity QED implementation

Optical cavities connected by a quantum channel

Node A Node B

Laser
fiber

Laser

• memory:
atoms

• databus:
photons

• memory:
atoms

J.I. Cirac, P.Z. H.J. Kimble and H. Mabuchi PRL '97

• We call this protocol photonic channel
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System

• System

• Hamiltonian: eliminate the excited state adiabatically

δ = ωL − ωc
—

gi(t) =
gΩi(t)
2∆

H = H1 +H2

Node 1 Node 2

Ĥi = −δâ†i âi − igi(t) [|1iih0|a − h.c.] (i = 1, 2)

Hamiltonian

node i

Raman detuning

Rabi frequency
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Ideal transmission

• sending the qubit in state 0

• sending the qubit in state 1

• superpositions |1i|0i → |0i |1i

|0i|0i → |0i |0i

[α |0i+ β|1i] |0i → |0i [α |0i + β |1i]

Node 1 Node 2

Node 1 Node 2
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Physical picture as guideline for solution

• Ideal transmission = no reflection from the second cavity
• Physical picture as guideline for solution: "time reversing cavity decay"

– consider one cavity alone

– run the movie backwards

decay

restore

inverse laser pulse
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– two cavities

– design laser pulses to make the outgoing wavepacket symmetric

– we try a solution where the laser pulses are the time reverse of
each other
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• cascaded quantum system

• a theory of cascaded quantum systems H. Carmichael and C. 
Gardiner, PRL '94

Node 1 Node 2in out

Description ... as a cascaded quantum systems

source driven system

unidirectional coupling
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... quantum trajectories

• Quantum trajectory picture: evolution conditional to detector clicks

• We want no reflection: this is equivalent to requiring that the detector 
never clicks (= dark state of the cascaded quantum system)

time

Node 1 Node 2in out

detector
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• system wave function

• between the quantum jumps the wave function 
evolves with

• quantum jump

• probability for a jump

• condition that no jump occurs

Ĥeff(t) = Ĥ1(t) + Ĥ2(t) − iκ
³
â†1â1 + â†2â2 + 2 â

†
2 â1

´

|Ψc(t)i

|ψc(t+ dt)i ∝ ĉ|ψc(t)i (with ĉ = â1 + â2)

time

∝ hψc(t)|ĉ†ĉ|ψc(t)i

hψc(t)|ĉ†ĉ|ψc(t)i
!
= 0 =⇒ ĉ|ψc(t)i = 0 ∀t no reflection

Node 1 Node 2in out

detector
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Equations

• Wave function for quantum trajectories: ansatz

• we derive equations of motion ... and impose the dark state conditions
• we find exact analytical solutions for pulse shapes leading to "no 

reflection" ...

|Ψc(t)i = |00i|00i

+
h
α1(t)|10i|00i+ α2(t)|01i|00i

+β1(t)|00i|10i+ β2(t)|00i|01i
i
.

atoms   cavity modes

ONE excitation in system
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Results

ideal transmission

pulse shape

wave packet
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6. Homodyne Detection

• homodyne detection

• conditional system wave function

out

local 
oscillator β time

current

d|Xt  −iH − 1
2 ccdt   cdXt |Xt

with dXt   〈xtcdt  dWt and dWt a Wiener increment

homodyne 
current

shot noise
c+c+

similar theory developed for …
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A few slides on …

“How to write effective Hamiltonians for atom-light 
interactions“

Appendix
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Elementary atomic QO Hamiltonians   (without dissipation)

• atom interacting with classical laser light

• laser: electric field

• two-level system + rotating wave approximation

H  H0A −   Eclx  0, t

E clx  0, t  E te−it  c. c.

−  E cl  −egE te−it |e〈g|−geE∗ teit |g〈e|

|g

|e ≈  eg

laser

Δ

|n

two-level system

non-resonant 
states

π
σ- σ+

F=0

F=1

dipole interaction

laser

step 1: resonant couplings
(nonperturbative)

step 2: rest in perturbation theory

atom

mini-tutorial

selection rules / light polarization
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• “Two-level atom + rotating wave approximation“ as effective 
Hamiltonian

• Dynamics: Rabi oscillations vs. adiabatic sweep

H   eg|e〈e|−egE te−it |e〈g|−geE∗ teit |g〈e|

HTLSRWA  − 1
2 Δz  1

2 ei−  1
2 e−i

Remarks:
- optical frequencies transformed away
- validity |ng,eE t| |detunings off-resonant states|

|g

|e

t
Δ=2Ω

1 2 3 4 5

0.2

0.4

0.6

0.8

1 Δ=0

Rabi oscillations

Δ

E



|

|−
|e

|g |g

|e

sweep Δ
|g |e

|g

|e

Δ



mini-tutorial

detuning Rabi frequency



HPI Zoller

• perturbation theory for the non-resonant states:
example: AC Starkshift
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• decoherence: spontaneous emission
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• including the center-of-mass motion

• example 1: trapped ion
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• example 2: atom in optical trap / lattice
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• Cavity QED: Jaynes-Cummings model

• dressed states
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