QIPC & Quantum Optics

(quantum information processing with cold atoms)

P. Zoller

Institute for Theoretical Physics, University of Innsbruck,

Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck, Austria

collaborators: I. Cirac, C. W. Gardiner, ...

AUSTRIAN ACADEMY OF SCIENCES

SFB Coherent Control of Quantum Systems

€ networks

Introduction / Motivation / Overview

• Quantum information

- quantum computing, quantum communication etc.
- Zoo of quantum optical systems
 - ions, neutral atoms, CQED, atomic ensembles
- Theoretical Tools of Quantum Optics
 - quantum optical systems as open quantum systems

1.1 Quantum information processing

quantum communication

transmission of a quantum state

Quantum computing

- read out
- [no decoherence]

Our goal ... implement quantum networks

• quantum network

- Nodes: local quantum computing
 - store quantum information
 - local quantum processing
 - measurement
- Channels: quantum communication
 - transmit quantum information
 - local / distant

Goals:

- map to physical (quantum optical) system
- map quantum information protocols to physical processes

Introduction / Motivation / Overview

- Quantum information
 - quantum computing, quantum communication etc.
- Zoo of quantum optical systems
 - ions, neutral atoms, CQED, atomic ensembles
- Theoretical Tools of Quantum Optics
 - quantum optical systems as open quantum systems

1.2 Zoo of quantum optical systems

trapped ions

CQED

collective modes

Few particle system with complete quantum control: spin-1/2s coupled to harmonic oscillator(s)

- quantum state engineering: quantum computing
- state preparation & measurement

optical lattice as a regular array of microtraps for atoms

from BEC to Hubbard models

- strongly correlated systems
- time dependent, e.g. quantum phase transitions
- exotic quantum phases (?)

quantum information processing

- new quantum computing scenarios, e.g. "one way quantum computer"
 - "quantum simulator"

... measurements beyond standard quantum limit

• cascaded quantum system: transmission in a quantum network

• atomic ensembles

atomic / spin squeezing; quantum memory for light; continuous variable quantum states

quantum repeater: establishing long distance EPR pairs for quantum cryptography and teleportation

... and what we are working on at the moment

polar molecules ...

- hybrid quantum optics solid state processors
 - coupling polar molecules to strip line cavities
- spin lattice models (of interest in topological quantum computing)
 - Kitaev xx-yy-zz on honeycomb lattices
 - loffe, Feigelman et al., xx-zz on square lattice

Quantum Optics with Atoms & Ions

cold atoms in optical lattices

• trapped ions / crystals of ...

- CQED cavity atom laser
- atomic ensembles

Polar Molecules

- single molecules / molecular ensembles
- coupling to optical & microwave fields
 - trapping / cooling
 - CQED (strong coupling)
 - spontaneous emission / engineered dissipation
- interfacing solid state / AMO & microwave / optical
 - strong coupling / dissipation
- collisional interactions
 - quantum deg gases / Wigner (?) crystals
 - dephasing

Hybrid Device: solid state processor & molecular memory + optical interface

R. Schoelkopf, S. Girvin et al. (Yale)

P. Rabl, R. Schoelkopf, D. DeMille, M. Lukin ...

R. Schoelkopf, M. Devoret, S. Girvin (Yale)

1. strong CQED with superconducting circuits

- Cavity QED $H = \omega_c a^{\dagger} a + \frac{1}{2} \omega_q(t) \sigma_z + g(a\sigma_+ + \text{h.c.})$ SC qubit Jaynes-Cummings parameters: good cavity cavity frequency $\omega_c \sim 2\pi \times 10 \text{ GHz}$ cavity damping $\kappa \sim 2\pi \times 1...$ (0.01) MHz SC qubit - cavity coupling $g \sim 2\pi \times 30$ MHz \leftarrow strong coupling! (mode volume V/ $\lambda^3 \approx 10^{-5}$) SC qubit damping $\Gamma \sim 2\pi \times 1 \text{ MHz}$ "not so great" qubits
- [... similar results expected for coupling to quantum dots (Delft)]
- [compare with CQED with atoms in optical and microwave regime]

... with Yale/Harvard

2. ... coupling atoms or molecules

 hyperfine excitation of BEC / atomic ensemble

$$g \sim 2\pi \times 80 \text{ Hz} \sqrt{\# \text{atoms}}$$

 rotational excitation of polar molecule(s)

rotational excitations μ large! \sim 10 GHz N=0

 $g\sim 2\pi\times 10~{\rm KHz}~\sqrt{\#{\rm molecules}}$

 $\sim 2\pi \times 1 \dots 10 \mathrm{MHz}$ ensemble (

Zolle

A. Micheli, G. Brennen, PZ, preprint, Dec 2005

Kitaev

Polar Molecules in an Optical Lattice: Lattice Spin Models

polar molecules on optical lattices provide a complete toolbox to realize general lattice spin models in a natural way Examples:

Duocot, Feigelman, loffe et al.

 $H_{\rm spin}^{({\rm I})} = \sum_{i=1}^{\ell-1} \sum_{j=1}^{\ell-1} J(\sigma_{i,j}^z \sigma_{i,j+1}^z + \cos \zeta \sigma_{i,j}^x \sigma_{i+1,j}^x)$

protected quantum memory: degenerate ground states as qubits

x–links

(Wigner-) Crystals with Polar Molecules

H.P. Büchler V. Steixner G. Pupillo

M. Lukin

. . .

• "Wigner crystals" in 1D and 2D (1/ R^3 repulsion – for $R > R_0$)

2D triangular lattice (Abrikosov lattice)

$$\gamma = \frac{\text{potential energy}}{\text{kinetic energy}} = \frac{d^2/R^3}{\hbar^2/2MR^2} \sim \frac{1}{R} \sim n^{1/3}$$

dipole-dipole: crystal for high density

$$\gamma = \frac{e^{2/R}}{\hbar^{2}/2MR^{2}} \sim R$$

Coulomb: WC for *low* density (ions)

Introduction / Motivation / Overview

- Quantum information
 - quantum computing, quantum communication etc.
- Zoo of quantum optical systems
 - ions, neutral atoms, CQED, atomic ensembles
 - Theoretical Tools of Quantum Optics
 - quantum optical systems as open quantum systems

1.3 Quantum optical systems as open quantum systems

Our approach ...

Quantum Optics

Open quantum system

✓ master equation

- **Quantum Information**
 - Quantum operations

$$\rho \rightarrow \mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger}$$

Continuous observation

✓ Stochastic Schrödinger Equation

"Quantum Markov processes"

Summary: what the lectures are about ...

- Theoretical modelling of quantum optical systems
 - how to describe theoretically trapped atoms and ions in various traps, CQED, atomic ensembles etc.
- Quantum state engineering / QPIC with qo systems
 - how to perform gate operations
- Preparation & Measurement in qo systems
 - state preparation and read out
 - decoherence
 - from quantum operations to stochastic Schrödinger equations, continuous measurement and all that

Quantum Computing with Trapped Ions

- basics: quantum optics of single ions & many ions
 - develop toolbox for quantum state engineering
- 2-qubit gates
 - from first 1995 gate proposals and realizations
 - ... geometric and "best" coherent control gates
- spin models

1. A single trapped ion

a single laser driven trapped ion

system: atom + motion in trap: goal: quantum engineering

[open quantum system]

system: two-level atom + harmonic oscillator

 $\Omega \underbrace{\underset{|g\rangle}{\underset{|g\rangle}{\underset{|g\rangle}{\xrightarrow{}}}} \Gamma \otimes \underbrace{|1\rangle}_{|0\rangle}$ two-level system phonons (= qubit) $v \sim 10 \text{ MHz}$

$$H = H_{0T} + H_{0A} + H_1$$

trap
$$H_{0T} = \frac{\hat{P}^2}{2M} + \frac{1}{2}Mv^2\hat{X}^2 \equiv \hbar v(a^{\dagger}a + \frac{1}{2})$$

atom
$$H_{0A} = -\hbar\Delta |e\rangle\langle e|$$

laser
$$H_1 = -\frac{1}{2}\hbar\Omega e^{ik_L\hat{X}}|e\rangle\langle g| + \text{h.c.}$$

$$H = \frac{\hat{p}^2}{2M} + \frac{1}{2}Mv^2\hat{x}^2 + \hbar\omega_{eg}|e\rangle\langle e|-\hbar(\frac{1}{2}\Omega e^{ik\hat{x}-i\omega t}|e\rangle\langle g|+\text{h.c.})$$

laser absorption & recoil

interaction $H_1 = -\frac{1}{2}\hbar\Omega e^{ik_L\hat{X}}|e\rangle\langle g|+\text{h.c.}$

 $|g\rangle|$ motion $\rangle \rightarrow |e\rangle e^{ik_L \hat{X}}|$ motion \rangle

laser photon recoil: couples internal dynamics and center-of-mass

photon recoil kick

Lamb-Dicke limit

Lamb-Dicke expansion

$$e^{ik_{L}\hat{X}} = e^{i\eta(a+a^{\dagger})}$$

= 1 + i\eta(a + a^{\dagger}) +...
$$\uparrow_{\eta} = 2\pi \frac{a_{0}}{\lambda_{L}} \equiv \sqrt{\frac{\epsilon_{R}}{\hbar_{V}}} \sim 0.1$$

spectroscopy: atom + trap

laser interaction $\frac{1}{2}\Omega e^{ik_L \hat{X}} |e\rangle \langle g| = \frac{1}{2}\Omega |e\rangle \langle g|$ $+ i\frac{1}{2}\Omega \eta a |e\rangle \langle g|$ $+ i\frac{1}{2}\Omega \eta a^{\dagger} |e\rangle \langle g|$ $+ \dots$

processes: "Hamiltonian toolbox for phonon-state engineering"

laser assisted phonon absorption and emission

Remark: CQED

[Dissipation: spontaneous emission]

• sideband cooling... as optical pumping to the ground state

preparation of pure states

$$\rho_{\rm atom} \otimes \rho_{\rm motion} \rightarrow |g\rangle \langle g| \otimes |0\rangle \langle 0|$$

measurement of internal states: quantum jumps ...

qubit read out

Excercises in quantum state engineering

• **Example 1:** single qubit rotation

$$(\alpha |g\rangle + \beta |e\rangle) \otimes |0\rangle \stackrel{U_1}{\rightarrow} (\alpha' |g\rangle + \beta' |e\rangle) \otimes |0\rangle$$

(1) we can rotate the qubit without touching the phonon state

Example 2: swapping the qubit to the phonon mode

 $\begin{array}{ll} (\alpha|g\rangle + \beta|e\rangle) \ \otimes |0\rangle \rightarrow |g\rangle \otimes (\alpha|0\rangle + \beta|1\rangle) \\ & \text{ion qubit} & \text{phonon qubit} \end{array}$

(2) Using a laser pulse we can swap qubits stored in ions to the phonon modes (and vice versa) Example 3: engineering arbitrary phonon superposition states

• Idea: we will look for the inverse U which transforms $|\Psi\rangle$ to $|g\rangle \otimes \sum_{n=0}^{n_{\text{max}}} c_n |n\rangle$

Law & Eberly, Gardiner et al., Wineland et al. HPI Zoller

2. Many lons

• 2 ions & collective phonon modes

example: classical ion motion

(3) We can swap a qubit to a *collective* mode via laser pulse
• **Example:** 2 ions in a 1D trap kicked by laser light

Ion Trap Quantum Computer '95

• Cold ions in a linear trap

Qubits: internal atomic states

1-qubit gates: addressing ions with a laser

2-qubit gates: entanglement via exchange of phonons of quantized collective mode

State vector

$$|\Psi
angle = \sum c_x |x_{N-1}, \dots, x_0
angle_{at\,om} |0
angle_{phonon}$$
quantum register databus

- QC as a time sequence of laser pulses
- Read out by quantum jumps

Level scheme

Two-qubit phase gate

step 2: conditional sign change

second atom: n

• step 3: swap phonon back to first qubit

$$\begin{array}{cccc} & \hat{U}_{m}^{\pi,0} \\ & |g\rangle_{n}|0\rangle & \longrightarrow & |g\rangle_{m}|g\rangle_{n} \\ |g\rangle_{m} \otimes & |r\rangle_{n}|0\rangle & \longrightarrow & |g\rangle_{m}|r\rangle_{n} & \otimes |0\rangle \\ & i|g\rangle_{n}|1\rangle & \longrightarrow & |r\rangle_{m}|g\rangle_{n} \\ & -i|r\rangle_{n}|1\rangle & \longrightarrow & -|r\rangle_{m}|r\rangle_{n} \end{array}$$

• summary: we have a phase gate between atom m and n

$$|\epsilon_1\rangle|\epsilon_2\rangle \to (-1)^{\epsilon_1\epsilon_2}|\epsilon_1\rangle|\epsilon_2\rangle \quad (\epsilon_{1,2}=0,1)$$

Rem.: this idea translates immediately to CQED

• (addressable) 2 ion controlled-NOT + tomography

Realization of the Cirac–Zoller controlled-NOT quantum gate

Ferdinand Schmidt-Kaler, Hartmut Häffner, Mark Riebe, Stephan Gulde, Gavin P. T. Lancaster, Thomas Deuschle, Christoph Becher, Christian F. Roos, Jürgen Eschner & Rainer Blatt

Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria

Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate

D. Leibfried*; B. DeMarco*, V. Meyer*, D. Lucas*; M. Barrett*, J. Britton*, W. M. Itano*, B. Jelenković*§, C. Langer*, T. Rosenband* & D. J. Wineland*

teleportation Innsbruck / Boulder

decoherence: quantum memory DFS 20 sec

Four-ion W-state

R. Blatt et al. Nature 2005

Eight ion W-state

R. Blatt et al. Nature 2005

Scalability

• key idea: moving ions ... without destroying the qubit

Two-qubit gate ... the "wish list"

- fast: max # operations / decoherence [what are the limits?]
- NO temperature requirement: "hot" gate, i.e. NO ground state cooling

NO indivdual addressing

addressing: large distance

VS.

strong coupling: small distance

Speed limits

 In all present proposals the speed limit for the gate is given by the trap frequency

limits given by trap design

The rest of the lecture ...

- Push gate
- Geometric phase gates
- Optimal Control Gates
 - what is the *best* gate for given resources?
- [Examples]
 - fast gate with short laser pulses
 - fast gate with continuous laser pulses
 - engineering spin Hamiltonians ...

J.I. Cirac & PZ

D. Leibfried et al. NIST

J. Garcia-Ripoll J.I. Cirac, PZ Another example for a 2-qubit gate ...

Push gate

• converting "spin to charge"

spin dependent optical potential

Push gate

converting "spin to charge"

spin dependent optical potential

۲

 (x_t, p_t)

'Х

 (x_0, p_0)

Geometric Phase [Gate]: One Ion

Goal: geometric phase by driving a harmonic oscillator
 Hamiltonian

$$H = \frac{1}{2}\hbar\omega(\hat{p}^2 + \hat{x}^2) - f(t)\hat{x}$$

• Time evolution

Solution

$$\frac{d}{dt}z = -i\omega z + i\frac{1}{\sqrt{2}}f(t) \implies z_t = e^{-i\omega t} \left[z_0 + \frac{i}{\sqrt{2}} \int_0^t d\tau \, e^{i\omega \tau} f(\tau) \right]$$

$$\frac{d}{dt}\phi = \frac{1}{2\sqrt{2}}f(t)(z^* + z) \qquad \text{classical evolution} \qquad \uparrow \qquad \text{displacement}$$

After a given time *T* the coherent wavepacket is restored to the freely evolved state

$$\int_0^T d\tau \, e^{i\omega\tau} f(\tau) \stackrel{!}{=} 0$$

Phase

$$\phi(T) = \operatorname{Im}_{\frac{i}{\sqrt{2}}} \int_{0}^{T} d\tau \, e^{i\omega\tau} f(\tau) \, \tilde{z}_{\tau}^{*}$$

$$= \operatorname{Im}_{\frac{i}{\sqrt{2}}} \left[\int_{0}^{T} d\tau \, e^{i\omega\tau} f(\tau_{1}) \right] \tilde{z}_{0}^{*} + \frac{1}{2} \operatorname{Im}_{0} \int_{0}^{T} d\tau_{1} \int_{0}^{\tau_{1}} d\tau_{2} \, e^{i\omega(\tau_{1}-\tau_{2})} f(\tau_{1}) f(\tau_{2}) \right]$$

$$= 0$$
The phase does *not* depend on the initial state, $(\mathbf{x}_{0}, \mathbf{p}_{0})$

• Example

unperturbed - - - -

forced — $F(t) \propto \sin(2\omega t)$

 The phase does not depend on the initial state, (x₀,p₀) (temperature independent)

Geometric Phase Gate: Single Ion

• Hamiltonian

$$H = \frac{1}{2}\hbar\omega(\hat{p}^2 + \hat{x}^2) - |\mathbf{1}\rangle\langle\mathbf{1}|f(t)\hat{x}$$

Time evolution operator

 $U(T) = e^{i\phi|1\rangle\langle 1|}$

 $(\alpha|0
angle+\beta|1
angle)\otimes|z_0
angle$

 $\stackrel{U(T)}{\rightarrow} (\alpha |0\rangle + \beta e^{i\phi} |1\rangle) \otimes |z_T\rangle$ single ion phase gate

motion factors out

© **NIST** D. Leibfried et al.

NIST Gate: Leibfried et al Nature 2003

2 ions in a running standing wave tuned to ω_r

• If F(t) is periodic with a period multiple of ω_r , after some time the motional state is restored, but now the total phase is

$$\phi = A\sigma_z^1\sigma_z^2$$
 $U(T) = \exp(i\phi\sigma_1^z\sigma_2^z)$

To address one mode, the gate must be slow S

$$T \gg 2\pi/\omega_r$$

NIST Gate: Leibfried et al. Nature 2003

Best gate?

• What is the best possible gate?

requirements: ...

constraints: ...

• ... an optimal control problem

N lons

 We will consider N trapped ions (linear traps, microtraps...), subject to statedependent forces:

$$H = \sum_{i=1}^{N} \left[\frac{1}{2m} p_i^2 + V_{e,i}(x_i) - F_i(t) \sigma_z^i x_i \right] + \sum_{i < j} \frac{e^2}{4\pi\varepsilon_0} \frac{1}{|x_i - x_j|}$$

• normal modes

$$H = \sum_{i} \left[\frac{1}{2m} P_i^2 + \frac{1}{2} m \nu_k^2 Q_k^2 \right] - \sum_{k} F_i(t) \sigma_z^i M_{ik} Q_k \qquad \text{integrable}$$

unitary evolution operator

$U(T) = \exp\left(i\sum_{ij}J_{ij}\sigma_z^i\sigma_z^j\right)$

general Ising interaction

constraints on forces

$$\int_0^T d\tau \, e^{i\omega_k\tau} F_i(\tau) = 0,$$

Quantum Control Problem

• Target: the Ising interaction, is a function of the forces

$$J_{ij} = \frac{1}{2m\hbar} \int_0^T \int_0^T d\tau_1 d\tau_2 F_i(\tau_1) F_j(\tau_2) \mathcal{G}_{ij}(\tau_1 - \tau_2).$$
 given determine

The kernel G depends only on the trapping potential.

 Constraints: displacements, z_k, depend both on the forces and on the internal states. To cancel them, we must impose

$$\int_0^T d\tau \, e^{i\omega_k \tau} F_i(\tau) = 0, \quad \forall i, k$$

Additional constraints: the total time, T; smoothness & intensity of the forces, no local addressing of ions ...

fastest gate?

• • • • • • • •

 $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle_z + |1\rangle_z)$

More results

• **Theorem:** For N ions and a given Ising interaction J_{ij}, it is always possible to find a set of forces that realize the gate

although now the solution has to be found numerically.

• **Applications:** Generation of cluster states, of GHZ states, stroboscopic simulation of Hamiltonians, adiabatic quantum computing,...

The time, T, is arbitrary!

cluster state

$$|\phi\rangle_c = \exp(i\int_0^t \frac{1}{4}\hbar g(t)dt \sum_{\langle a,b\rangle} \sigma_z^{(a)} \otimes \sigma_z^{(b)}dt) \quad (\bigotimes_{a\in C} |+\rangle_a)$$

GHZ state

$$|\phi\rangle_{\rm GHZ} \sim e^{-iJ_z^2 t}|+\rangle \equiv e^{-i(\sum_i \frac{1}{2}\sigma_z^i)^2 t} \sim |00\ldots\rangle + |11\ldots\rangle$$

Engineering cluster and GHZ states

Cluster state N=10

GHZ state N=20

These examples use a common force: $F_i(t) = x_i g(t)$ Juanjo Garcia-Ripoll has calculated this up to N=30 ions

HPI Zoller

So far ... Quantum computing with trapped ions

trapped ions

Trapped ion: the system

system = internal + external degrees of freedom

✓ qubit / state measurement

✓ Hamiltonian: quantum state engineering

System + Reservoir

Development of the theory:

- system: Hamiltonian (control)
- reservoir: master equation + continuous measurement theory

Our approach ...

Quantum Optics

Open quantum system

✓ master equation

- **Quantum Information**
 - Quantum operations

$$\rho \to \mathcal{E}(\rho) = \sum_{k} E_{k} \rho E_{k}^{\dagger}$$

Continuous observation

✓ Stochastic Schrödinger Equation

"Quantum Markov processes"

Outline

- Quantum Operations
 - language of quantum information
- System + environment models in quantum optics
 - Quantum Stochastic Schrödinger Equation (QSSE)
- Solution of the QSSE
 - explicit solution: entangled state representation of system + environment
 - complete photon statistics (continuous measurement)
 - master equation
- Examples / application
 - ions: spontaneous emission, laser cooling & quantum reservoir engineering, qubit readout
- Cascaded quantum systems (advanced topic)
 - from QSSE to master equations etc.
 - application: qubit transmission in a quantum network
- [Extra topics]
 - homodyne, quantum feedback

1. Quantum Operations

Ref.: Nielsen & Chuang, Quantum Information and Quantum Computation

Quantum operations

Evolution of a quantum system coupled to an environment: open quantum system

system
$$\rho$$
 _____ $\mathcal{E}(\rho)$ $\rho \to \mathcal{E}(\rho) = \operatorname{tr}_{env}[U(\rho \otimes \rho_B)U^{\dagger}]$
environment $|e_0\rangle$ _____ quantum operation

Operator sum representation:

$$\rho \to \mathcal{E}(\rho) = \operatorname{tr}_{\mathsf{env}}[U(\rho \otimes |e_0\rangle \langle e_0|)U^{\dagger}]$$

= $\sum_k \langle e_k | U(\rho \otimes |e_0\rangle \langle e_0|)U^{\dagger} | e_k \rangle$
= $\sum_k E_k \rho E_k^{\dagger}$ with $E_k = \langle e_k | U | e_0 \rangle$ operation elements

Properties: $\sum_{k} E_{k}^{\dagger} E_{k} = 1$
Quantum operations

Measurement of the environment: $P_k \equiv |e_k\rangle \langle e_k|$

Remark: if we do not read out the measurement

$$\rho \to \mathcal{E}(\rho) = \sum_{k} p_k \rho_k$$

$$= \sum_{k} E_k \rho E_k^{\dagger}$$

HPI Zoller

2. System + environment models in Quantum Optics

formulation

– operator / c-number stochastic Schrödinger equation

– [(operator) Langevin equation] —_____

C. W. Gardiner P. Zoller Quantum Noise Normal Enlaged Editors:

System + environment model

- system operator

Assumptions:

rotating wave approximation

Simplest possible ...

Example: spontaneous emission

• driven two-level system undergoing spontaneous emission

$$c \rightarrow \sigma_{-} = |g\rangle\langle e| \qquad |e\rangle \qquad H_{sys} = \omega_{eg}|e\rangle\langle e| -(\frac{1}{2}\Omega e^{-i\omega_{L}t}\sigma_{+} + h.c.) \qquad H_{sys} = \omega_{eg}|e\rangle\langle e| -(\frac{1}{2}\Omega e^{-i\omega_{L}t}\sigma_{+} + h.c.) \qquad H_{int} = -\vec{\mu}_{eg} \cdot \vec{E}^{(+)}(0)\sigma_{+} + h.c. \qquad \rightarrow i \int_{\omega_{eg}-9}^{\omega_{eg}+9} d\omega \kappa(\omega)b^{\dagger}(\omega)\sigma_{+} + h.c.$$

• ... including the recoil from spontaneous emission

$$H_{\text{int}} = -\vec{\mu}_{eg} \cdot \vec{E}^{(+)}(\vec{x})\sigma_{+} + \text{h.c.}$$

$$\rightarrow \sum_{\lambda} \int d^{3}k \dots b_{\lambda \vec{k}} e^{i\vec{k}\cdot\vec{x}}\sigma_{+} + \text{h.c.}$$

recoil

System + environment model

Schrödinger Equation

• Schrödinger equation

$$\frac{d}{dt}|\Psi_t\rangle = -i[H_{sys} + H_B + H_{int}]|\Psi_t\rangle \qquad |\psi\rangle \otimes |\text{vac}\rangle$$

initial condition

convenient to transform ...

interaction picture $|\Psi_t\rangle \rightarrow e^{-iH_B t} |\Psi_t\rangle$ $b(\omega) \rightarrow b(\omega)e^{-i\omega t}$ with respect to bath "rotating frame" $H_{\rm svs} \to \tilde{H}_{\rm svs}$ $c \rightarrow c e^{-i\omega_0 t}$ (transform optical frequencies away) $\frac{d}{dt}|\tilde{\Psi}_{t}\rangle = \left[-i\tilde{H}_{sys} + \left(\int_{\omega_{0}-9}^{\omega_{0}+9} d\omega \kappa(\omega)b(\omega)^{\dagger}e^{i(\omega-\omega_{0})t}\right)c - \text{h.c.}\right]|\tilde{\Psi}_{t}\rangle$ $b(t) := \frac{1}{\sqrt{2\pi}} \int_{\omega_0 \to 9}^{\omega_0 + 9} d\omega \ b(\omega) e^{-\iota(\omega - \omega_0)t}$ $\kappa(\omega) \rightarrow \sqrt{\gamma/2\pi}$ flat over bandwidth "noise operators"

Schrödinger Equation

$$\frac{d}{dt}|\Psi_{t}\rangle = \left[-iH_{\text{sys}} + \sqrt{\gamma} b(t)^{\dagger}c - \sqrt{\gamma} c^{\dagger}b(t)\right]|\Psi_{t}\rangle$$

$$\downarrow$$

$$b(t) := \frac{1}{\sqrt{2\pi}} \int_{\omega_{0}-\vartheta}^{\omega_{0}+\vartheta} d\omega \ b(\omega)e^{-i(\omega-\omega_{0})t}$$
"noise operators"

White noise limit $9 \to \infty$ $\begin{bmatrix} b(t), b^{\dagger}(s) \end{bmatrix} = \delta(t-s)$ $\langle b(t)b^{\dagger}(s) \rangle = \delta(t-s)$ white noise transformed away after RWA

Remarks:

- [We can give precise meaning as a "Quantum Stochastic Schrödinger Equation" within a stochastic Stratonovich calculus]
- We can integrate this equation exactly
 - counting statistics
 - master equation

quantum operations

3. Integrating the "Quantum Stochastic Schrödinger Equation"

$$|\Psi_0\rangle \rightarrow |\Psi_t\rangle = e^{-iH_{tot}t}|\Psi_0\rangle$$

Schrödinger equation: system + environment

What we want to calculate ...

• We do not observe the environment: reduced density operator

$$|\psi\rangle$$
 _____ $\rho_t = tr_{\mathsf{B}}|\Psi_t\rangle\langle\Psi_t|$
 $|\mathsf{vac}\rangle$ _____ $U(t)$ _____ $P_t = tr_{\mathsf{B}}|\Psi_t\rangle\langle\Psi_t|$

master equation:

✓ decoherence

- ✓ preparation of the system (e.g. laser cooling to ground state)
- We measure the environment: continuous measurement

conditional wave function:

✓ counting statistics

 ✓ effect of observation on system evolution (e.g. preparation of the (single quantum) system)

Integration in small timesteps

Remark: simple man's version of conversion from Stratonovich to Ito

• We integrate the Schrödinger equation in small time steps

 $|\Psi(t = t_f)\rangle = U(\Delta t_f) \dots U(\Delta t_1) U(\Delta t_0) |\Psi(0)\rangle$

Remark: choice of time step

• **First time step:** first order in Δt

$$U(\Delta t)|\Psi(0)\rangle = \left\{ \hat{1} - iH_{sys}\Delta t + \sqrt{\gamma} c \int_{0}^{\Delta t} b^{\dagger}(t) dt - \sqrt{\gamma} c^{\dagger} \int_{0}^{\Delta t} \psi dt \\ \dots \right\} |\Psi(0)\rangle$$
$$\left\|\psi\right\rangle \otimes |\text{vac}\rangle$$

• **First time step:** first order in Δt

First time step: to first order in Δt

$$\begin{aligned} \Psi(\Delta t) \rangle &= \hat{U}(\Delta t) |\Psi(0)\rangle \\ &= \left\{ \hat{1} - H_{\text{eff}} \Delta t + \sqrt{\gamma} \, d\Delta B(0)^{\dagger} \right\} |\Psi(0)\rangle \end{aligned}$$

We define:

• effective (non-hermitian) system Hamiltonian

$$H_{\text{eff}} := H_{\text{sys}} - \frac{i}{2} \gamma c^{\dagger} c$$

• annihilation / creation operator for a photon in the time slot Δt :

$$\Delta B(t) := \int_{t}^{t+\Delta t} b(s) \, ds$$

• **First time step:** to first order in Δt

Discussion:

annihilation / creation operator for a photon in the time slot Δt :

$$\Delta B(t) := \int_{t}^{t+\Delta t} b(s) \, ds$$

Remarks and properties:

• commutation relations:

$$\left[\Delta B(t), \Delta B^{\dagger}(t')\right] = \begin{cases} \Delta t & t = t' \text{ overlapping intervals} \\ 0 & t \neq t' \text{ nonoverlapping intervals} \end{cases}$$

• one-photon wave packet in time slot Δt

 $\frac{\Delta B^{\dagger}(t)}{\sqrt{\Delta t}} |\text{vac}\rangle \equiv |1\rangle_t \quad \text{(normalized)}$

• number operator of photon in time slot *t*:

$$N(t) = \frac{\Delta B^{\dagger}(t)}{\sqrt{\Delta t}} \frac{\Delta B(t)}{\sqrt{\Delta t}}$$

• N(t) as set up commuting operators, [N(t), N(t')] = 0, which can be measured "simultaneously"

 $|\psi
angle$ –

quantum operations

• Summary of first time step: to first order in Δt

Discussion 1:

• We do not read the detector: reduced density operator

master equation:

$$\begin{split} \rho(\Delta t) - \rho(0) &= -i \Big(H_{\text{eff}} \rho(0) - \rho(0) H_{\text{eff}}^{\dagger} \Big) \Delta t + \gamma c \rho(0) c^{\dagger} \Delta t \\ &\equiv -i \Big[H_{\text{sys}}, \rho(0) \Big] \Delta t + \frac{1}{2} \gamma (2c \rho(0) c^{\dagger} - c^{\dagger} c \rho(0) - \rho(0) c^{\dagger} c) \Delta t \end{split}$$

Discussion 2:

• We read the detector:

$$|\psi\rangle \qquad |\psi_{c}(t)\rangle \\ |\text{vac}\rangle \qquad U(\Delta t) \qquad \bigcup_{i=1}^{|\psi_{c}(t)\rangle} \\ \bullet \quad \text{Click: resulting state} \\ E_{1}|\psi(0)\rangle \ \equiv |\psi^{\text{click}}(\Delta t)\rangle \ = \sqrt{\gamma\Delta t} c|\psi(0)\rangle \quad (\text{quantum jump}) \\ \text{with probability} \end{aligned}$$

$$p^{\mathsf{click}} = \mathsf{tr}_{\mathsf{sys}}(E_1 \rho(0) E_1) = \gamma \Delta t \| c \psi(0) \|^2$$

Rem.: density matrix $\rho_1(0) = E_1 \rho(0) E_1/\text{tr}(...)$

$$|\psi\rangle - U \qquad |\Psi_k\rangle = (E_k |\psi\rangle) |e_k\rangle / ||...||$$
$$|e_0\rangle - U \qquad D - (K'') \quad p_k = ||E_k \psi||^2$$

Discussion 2:

• We read the detector:

• No click: resulting state decaying norm $E_0 |\psi(0)\rangle \equiv |\psi^{\text{no click}}(\Delta t)\rangle = (1 - iH_{\text{eff}}\Delta t)|\psi(0)\rangle \approx e^{-iH_{\text{eff}}\Delta t}|\psi(0)\rangle$ with probability

$$p^{\text{no click}} = \operatorname{tr}_{\text{sys}}(E_0\rho(0)E_0) = \left\| e^{-iH_{\text{eff}}\Delta t}\psi(0) \right\|^2$$

$$|\psi\rangle - U \qquad |\Psi_k\rangle = (E_k |\psi\rangle) |e_k\rangle / ||...||$$
$$|e_0\rangle - U \qquad D - (k'') \quad p_k = ||E_k \psi||^2$$

• Second and more time steps:

$$\begin{aligned} |\Psi(n\Delta t)\rangle &= \left[1 - iH_{\text{eff}}\Delta t + \sqrt{\gamma} c \Delta B^{\dagger}((n-1)\Delta t)\right] |\Psi((n-1)\Delta t)\rangle & \text{stroboscopic}\\ &= \left[1 - iH_{\text{eff}}\Delta t + \sqrt{\gamma} c \Delta B^{\dagger}((n-1)\Delta t)\right] \times\\ &\dots \times \left[1 - iH_{\text{eff}}\Delta t + \sqrt{\gamma} c \Delta B^{\dagger}(0)\right] |\Psi(0)\rangle \end{aligned}$$

✓ Note: remember ... commute in different time slots

$$[\Delta B(t), \Delta B^{\dagger}(t')] = \begin{cases} \Delta t & t = t' & \text{overlapping intervals} \\ 0 & t \neq t' & \text{nonoverlapping intervals} \end{cases}$$

Final result for solution of SSE

Wave function of the system + environment: entangled state

• Tracing over the environment we obtain the master equation

$$\frac{d}{dt}\rho(t) = -i\left[H_{\text{sys}},\rho(t)\right] + \frac{1}{2}\gamma(2c\rho(t)c^{\dagger} - c^{\dagger}c\rho(t) - \rho(t)c^{\dagger}c)$$

master equation

- ✓ Lindblad form
- ✓ coarse grained time derivative

For theorists ...

Ito-Quantum Stochastic Schrödinger Equation

• taking the limit ...

$$\Delta t \rightarrow dt$$

 $\Delta B(t) \rightarrow dB(t)$ Ito o
 $\Delta B^{\dagger}(t) \rightarrow dB(t)^{\dagger}$ ir

Ito operator noise increments

• Quantum Stochastic Schrödinger Equation

$$d|\Psi(t)\rangle = \left[-\frac{i}{\hbar}H_{\rm sys}\,dt + \sqrt{\gamma}\,c\,dB^{\dagger}(t) - \sqrt{\gamma}\,c^{\dagger}dB(t)\,\right]|\Psi(t)\rangle$$

- Properties of Ito increments:
 - point to the future:

 $dB(t)|\Psi(t)\rangle = 0$

– Ito rules:

$$[dB(t)]^2 = [dB^{\dagger}(t)]^2 = 0,$$

$$dB(t) dB^{\dagger}(t) = dt,$$

$$dB^{\dagger}(t) dB(t) = 0.$$

4. Examples:

- Two-level atom undergoing spontaneous emission
- Driven two-level atom: Optical Bloch Equations

- laser cooling and reservoir engineering of single trapped ion
 - ground state cooling
 - squeezed state generation by reservoir engineering

Example 1: two-level atom undergoing spontaneous decay

probability that a photon is detected in (t,t+ Δt] $\mathcal{P}_1^{(t,t+\Delta t]} = \Gamma |c_e|^2 e^{-\Gamma t} \Delta t$

Example 2: driven two-level atom + spontaneous emission

Example 3: laser cooling of a trapped ion

$$H_{\rm sys} = \left(\frac{\hat{P}^2}{2m} + \frac{1}{2}mv^2\hat{X}^2\right) - \Delta |e\rangle \langle e| - \left(\frac{1}{2}\Omega e^{ik\hat{X}}\sigma_- + {\sf h.c.}\right)$$

• Master equation (1D):

$$\frac{d}{dt}\rho = -i\left[H_{\text{sys}},\rho\right] + \frac{1}{2}\Gamma\left(2\int_{-1}^{+1} du N(u)\left(e^{ik\hat{X}u}\sigma_{-}\right)\rho\left(\sigma_{+}e^{ik\hat{X}u}\right) - \sigma_{+}\sigma_{-}\rho - \rho\sigma_{+}\sigma_{-}\right)$$
quantum jump operator:
recoil from spontaneous emission
momentum
transfer
MPI Zoller

• Lamb-Dicke limit: adiabatic elimination of internal dynamics

$$\dot{\rho} = A_{+} \left(a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \rho \frac{1}{2}a^{\dagger}a \right)$$

$$+ A_{-} \left(a^{\dagger}\rho a - \frac{1}{2}aa^{\dagger}\rho - \rho \frac{1}{2}aa^{\dagger} \right)$$
heating term

processes contributing at low intensity

sideband cooling

• ... as optical pumping to the ground state

• master equation

$$\dot{\rho} = A_+ \left(a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \rho \frac{1}{2}a^{\dagger}a \right) \quad (A_+ \gg A_-)$$

• final state

 $\rho_{\rm osc} \rightarrow |0\rangle\langle 0|$ ($\Gamma \ll v$, sideband cooling)

"dark state" of the jump operator *a*:

$$a|0\rangle = 0$$

Example 4: State measurement & quantum jumps in 3level systems

• three level atom

single atom photon counting

photon counting on strong transition

simple way of creating entanglement

Example 5: Preparation of 2 atoms in a Bell state via measurement

• System: two atoms with ground states $|0\rangle$, $|1\rangle$ and excited state $|r\rangle$

- Weak (short) laser pulse, so that the excitation probability is small.
- If no detection, pump back and start again.
- If detection, an entangled state is created.

$$\sim |0,1\rangle + |1,0\rangle$$

for a first exp step: Monroe et al, Nature 2004

Process:

preparation (by optical pumping)

 $|\Psi(t=0)
angle = |\mathsf{vac}
angle|0
angle_1|0
angle_2$

excitation by a weak short laser pulse

$$\begin{split} |\Psi(t=0^{+})\rangle &= |\mathsf{vac}\rangle \left(|0\rangle_{2} + \epsilon |r\rangle_{2}\right) (|0\rangle_{2} + \epsilon |r\rangle_{2}) \\ &= |\mathsf{vac}\rangle \left[|0\rangle_{1}|0\rangle_{2} + \epsilon (|r\rangle_{1}|0\rangle_{2} + |0\rangle_{1}|r\rangle_{2}) + O(\epsilon^{2})\right] \end{split}$$

• spontaneous emission

$$\begin{split} |\Psi(t > 0^{+})\rangle &= \left[|0\rangle_{1}|0\rangle_{2} + \epsilon e^{-\gamma t/2} (|r\rangle_{1}|0\rangle_{2} + |0\rangle_{1}|r\rangle_{2})\right] \otimes |\mathsf{vac}\rangle \\ &+ \sum_{t_{1}} \Delta B_{1}^{\dagger}(t_{1})|\mathsf{vac}\rangle \otimes \epsilon \sqrt{\gamma} \, e^{-\gamma t_{1}/2}|1\rangle_{1}|0\rangle_{2} \\ &+ \Delta B_{2}^{\dagger}(t_{1})|\mathsf{vac}\rangle \otimes \epsilon \sqrt{\gamma} \, e^{-\gamma t_{1}/2}|0\rangle_{1}|1\rangle_{2} + O(\epsilon^{2}) \text{ atom A} \end{split}$$

• We observe the fluorescence through a beam splitter

$$\Delta B_{1,2}^{\dagger} \rightarrow \frac{1}{\sqrt{2}} (\Delta B_1^{\dagger} \pm \Delta B_2^{\dagger})$$

• Observation of a click prepares Bell state $|1\rangle_1|0\rangle_2 + |0\rangle_1|1\rangle_2$

atom B

HPI Zoller

laser

5. Cascaded Quantum Systems

- formal theory
- example
 - optical interconnects

Motivation: Theory of Optical Interconnects

J.I. Cirac, P.Z. H.J. Kimble and H. Mabuchi PRL '97

• A cavity QED implementation

Node A 0 fiberLaser fiber Laser fiber Laser fiber Laser fiber Laser fiber fiber

Optical cavities connected by a quantum channel

• We call this protocol *photonic channel*

Cascaded Quantum Systems

 cascaded quantum system = first quantum system drives a second quantum system: *unidirectional* coupling

Cascaded Quantum Systems

• example of a cascaded quantum system

Hamiltonian

$$H = H_{\rm sys}(1) + H_{\rm sys}(2) + H_{\rm B} + H_{\rm int}$$
$$H_B = \int_{\omega_0 - \vartheta}^{\omega_0 + \vartheta} d\omega \,\hbar\omega \,b^{\dagger}(\omega) b(\omega)$$

with $b(\omega)$ the annihilation operator

$$\begin{bmatrix} b(\omega), b^{\dagger}(\omega') \end{bmatrix} = \delta(\omega - \omega')$$
position of
first system

$$H_{\text{int}}^{(9)}(t) = i\hbar \int d\omega \kappa_1(\omega) \begin{bmatrix} b^{\dagger}(\omega)e^{-i\omega/cx_1}c_1 - c_1^{\dagger}b(\omega)e^{+i\omega/cx_1} \end{bmatrix}$$
position of
second system

$$+i\hbar \int d\omega \kappa_2(\omega) \begin{bmatrix} b^{\dagger}(\omega)e^{-i\omega/cx_2}c_2 - c_2^{\dagger}b(\omega)e^{+i\omega/cx_2} \end{bmatrix}$$

$$(x_2 > x_1)$$

interaction picture $H_{\text{int}}(t) = i\hbar \sqrt{\gamma_1} [b^{\dagger}(t)c_1 - b(t)c_1^{\dagger}] + i\hbar \sqrt{\gamma_2} [b^{\dagger}(t^{-})c_2 - b(t^{-})c_2^{\dagger}]$ with $t^- = t - \tau$ where $\tau \to 0^+$ $b(t) = b_{\text{in}}(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega b(\omega) e^{-i(\omega - \omega_0)t}$

$$b(t) \equiv b_{\rm in}(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty} d\omega b(\omega) e^{-i(\omega - \omega_0)t}$$

Stratonovich SSE

$$\frac{d}{dt}\Psi(t) = \left\{-\frac{i}{\hbar}(H_{\text{sys}}(1) + H_{\text{sys}}(2)) + \sqrt{\gamma_1}[b^{\dagger}(t)c_1 - b(t)c_1^{\dagger}] + \sqrt{\gamma_2}[b^{\dagger}(t^{-})c_2 - b(t^{-})c_2^{\dagger}]\right\}\Psi(t)$$

Initial condition:

$$|\Psi\rangle = |\psi\rangle \otimes |vac\rangle$$

Notation:

$$\sqrt{\gamma_1} c_1 \rightarrow c_1, \quad \sqrt{\gamma_2} c_2 \rightarrow c_2, \quad \hbar = 1$$

First time step

 Δt time t $U(\Delta t)|\Psi(0)\rangle = \left\{\hat{1} - i[H(1) + H(2)]\Delta t + (c_2 + c_1)\int_0^{\Delta t} dt \ b^{\dagger}(t)\right\}$ $(-i)^{2} \int_{0}^{\Delta t} dt_{1} \int_{0}^{t_{2}} dt_{2} (-b(t_{1})c_{1}^{\dagger} - b(t_{1}^{-})c_{2}^{\dagger}) (b^{\dagger}(t_{2})c_{1} + b^{\dagger}(t_{2}^{-})c_{2}) + \dots \Big\} |\Psi(\mathbf{0})\rangle$ $= \int_{0}^{\Delta t} dt_1 \int_{0}^{t_2} dt_2 (-\delta(t_1 - t_2)c_1^{\dagger}c_1 + \delta(t_1 - t_2 + \tau)c_1^{\dagger}c_2)$ time delay! $\longrightarrow -\delta(t_1 - \tau - t_2)c_2^{\dagger}c_1 - \delta(t_1 - t_2)c_2^{\dagger}c_2)|\text{vac}\rangle$ $= \left(-\frac{1}{2}c_{1}^{\dagger}c_{1} + 0 - c_{2}^{\dagger}c_{1} - \frac{1}{2}c_{2}^{\dagger}c_{2} \right) |\text{vac}\rangle \Delta t$ reabsorption

Summary of results:

Ito-type stochastic Schrödinger equation:

$$d|\Psi(t)\rangle = |\Psi(t+dt)\rangle - |\Psi(t)\rangle$$

= $\left\{\hat{1} - iH_{\text{eff}}dt + (c_1 + c_2)dB^{\dagger}(t)\right\}|\Psi(0)\rangle$
 $\hat{1}$
 $H_{\text{eff}} = H_{\text{sys}} + i\frac{1}{2}(c_1^{\dagger}c_2 - c_2^{\dagger}c_1) - i\frac{1}{2}c^{\dagger}c$

master equation for source + system:

Version 1:

$$\frac{d}{dt}\rho = -i(H_{\rm eff}\rho - \rho H_{\rm eff}^{\dagger}) + \frac{1}{2}(2c\rho c^{\dagger} - c^{\dagger}c\rho - \rho c^{\dagger}c) \quad \text{Lindblad form}$$

Version 2:

$$\frac{d}{dt}\rho = -i[H_{\text{sys}},\rho] + \frac{1}{2}\{2c_1\rho c_1^{\dagger} - \rho c_1^{\dagger}c_1 - c_1^{\dagger}c_1\rho\} + \frac{1}{2}\{2c_2\rho c_2^{\dagger} - \rho c_2^{\dagger}c_2 - c_2^{\dagger}c_2\rho\} - \{[c_2^{\dagger},c_1\rho] + [\rho c_1^{\dagger},c_2]\}.$$

unidirectional coupling of source to system

Example: Optical Interconnects

J.I. Cirac, P.Z. H.J. Kimble and H. Mabuchi PRL '97

A cavity QED implementation

Optical cavities connected by a quantum channel

• We call this protocol photonic channel

System

System

- Hamiltonian: eliminate the excited state adiabatically
 - Hamiltonian $H = H_1 + H_2$ node i $\hat{H}_i = -\delta \hat{a}_i^{\dagger} \hat{a}_i i g_i(t) [|1\rangle_i \langle 0|a h.c.]$ (i = 1, 2)Raman detuning $\delta = \omega_L \omega_c$ Rabi frequency $g_i(t) = \frac{g\Omega_i(t)}{2\Delta}$

Ideal transmission

• sending the qubit in state 0

$$\begin{pmatrix} \boxed{Node 1} \\ \hline{1} \\ \hline{1} \\ \hline{0} \end{pmatrix} \begin{pmatrix} 0 \\ \hline{1} \\ \hline{0} \\ 0 \end{pmatrix} = \begin{pmatrix} Node 2 \\ \hline{1} \\ \hline{1} \\ \hline{0} \\ 0 \end{pmatrix}$$

sending the qubit in state 1

superpositions

 $[\alpha \ |0\rangle + \beta |1\rangle] \ |0\rangle \quad \rightarrow \quad |0\rangle [\alpha \ |0\rangle + \beta \ |1\rangle]$

Physical picture as guideline for solution

- Ideal transmission = no reflection from the second cavity
- Physical picture as guideline for solution: "time reversing cavity decay"
 - consider one cavity alone

run the movie backwards

inverse laser pulse

- two cavities

- design laser pulses to make the outgoing wavepacket symmetric

 we try a solution where the laser pulses are the time reverse of each other

Description ... as a cascaded quantum systems

cascaded quantum system

 a theory of cascaded quantum systems H. Carmichael and C. Gardiner, PRL '94

- ... quantum trajectories
- Quantum trajectory picture: *evolution conditional to detector clicks*

 We want no reflection: this is equivalent to requiring that the detector never clicks (= dark state of the cascaded quantum system)

- system wave function $|\Psi_c(t)
 angle$
- between the quantum jumps the wave function evolves with

$$\hat{H}_{\text{eff}}(t) = \hat{H}_1(t) + \hat{H}_2(t) - i\kappa \left(\hat{a}_1^{\dagger} \hat{a}_1 + \hat{a}_2^{\dagger} \hat{a}_2 + 2 \hat{a}_2^{\dagger} \hat{a}_1 \right)$$

• quantum jump

 $|\psi_c(t+dt)\rangle \propto \hat{c}|\psi_c(t)\rangle$ (with $\hat{c} = \hat{a}_1 + \hat{a}_2$)

- probability for a jump $\propto \langle \psi_c(t) | \hat{c}^{\dagger} \hat{c} | \psi_c(t) \rangle$
- condition that no jump occurs

 $\langle \psi_c(t) | \hat{c}^{\dagger} \hat{c} | \psi_c(t) \rangle \stackrel{!}{=} 0 \implies \hat{c} | \psi_c(t) \rangle = 0 \quad \forall t$ no reflection HPI Zoller

detector

in

out

time

Node 1

Node 2

Equations

Wave function for quantum trajectories: ansatz

ONE excitation in system

- we derive equations of motion ... and impose the dark state conditions
- we find exact analytical solutions for pulse shapes leading to "no reflection" ...

similar theory developed for ...

6. Homodyne Detection

homodyne detection

conditional system wave function

$$d|\psi_X(t)\rangle = \left[\left(-iH - \frac{1}{2}\gamma c^{\dagger}c \right) dt + \sqrt{\gamma} c dX(t) \right] |\psi_X(t)\rangle$$

with $dX(t) = \sqrt{\gamma} \langle x(t) \rangle_c dt + dW(t)$ and dW(t) a Wiener increment homodyne current shot noise

HPI Zoller

A few slides on ...

"How to write effective Hamiltonians for atom-light interactions"

mini-tutorial

Elementary atomic QO Hamiltonians (without dissipation)

atom interacting with classical laser light

• laser: electric field

$$H = H_{0A} - \vec{\mu} \cdot \vec{E}_{cl}(\vec{x} = 0, t)$$
dipole interaction

$$\vec{E}_{\rm cl}(\vec{x}=0,t)=\mathcal{E}(t)\vec{\epsilon}e^{-i\omega t}+{\rm c.\,c.}$$

selection rules / light polarization

two-level system + rotating wave approximation

mini-tutorial

 "Two-level atom + rotating wave approximation" as effective Hamiltonian

Remarks:

- optical frequencies transformed away
- validity $|\vec{\mu}_{ng,e}\vec{\epsilon}\mathcal{E}(t)| \ll |\text{detunings off-resonant states}|$
- Dynamics: Rabi oscillations vs. adiabatic sweep

 perturbation theory for the non-resonant states: example: AC Starkshift

$$H = [\hbar\omega_g + \hbar\delta\omega_g(t)]|g\rangle\langle g| + \dots \qquad \hbar\delta\omega_g(t) = \sum_n \frac{|\vec{\mu}_{ng}\vec{\epsilon}\mathcal{E}|^2}{\hbar(\omega_{gn}+\omega)} + \frac{|\vec{\mu}_{ng}\vec{\epsilon}\mathcal{E}|^2}{\hbar(\omega_{gn}-\omega)} \equiv \alpha(\omega)|\mathcal{E}|^2$$

decoherence: spontaneous emission

$$\begin{split} \Delta E_g &= \frac{1}{4} \frac{\Omega^2}{\Delta - \frac{1}{2}i\Gamma} = \delta E_g - i\frac{1}{2}\gamma_g \\ \frac{\text{good}}{\text{bad}} &= \frac{\delta E_g}{\gamma_g} \sim \frac{|\Delta|}{\Gamma} \gg 1 \end{split}$$

typical off-resonant lattice : $\gamma \sim \sec^{-1}$

In a blue detuned lattice this can be strongly suppressed HPI Zoller including the center-of-mass motion

$$H = \frac{\vec{p}^2}{2M} + V_T(\vec{x}) + H_{0A} - \vec{\mu} \cdot \vec{E}(\vec{x}, t)$$
 coupling internal – external dynamics atomic motion

• example 1: trapped ion

• example 2: atom in optical trap / lattice

optical lattice as array of microtraps

$$V(x) = V_0 \sin^2 kx \qquad (k = \frac{2\pi}{\lambda})$$

mini-tutorial

• Cavity QED: Jaynes-Cummings model

$$H = \hbar \omega_{eg} |e\rangle \langle e| + \hbar \omega b^{\dagger} b - (\vec{\mu} \vec{g} \sigma_{+} b + \vec{\mu}^{*} \vec{g}^{*} \sigma_{-} b^{\dagger})$$

dressed states

HPI Zoller