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Abstract

We study the process of opinion formation in an Ising social network of scientific collabora-
tions. The network is undirected. An Ising spin is associated with each network node being
oriented up (red) or down (blue). Certain nodes carry fixed, opposite opinions whose influ-
ence propagates over the other spins, which are flipped according to the majority-influence
opinion of neighbors of a given spin during the asynchronous Monte Carlo process. The
amplitude influence of each spin is self-consistently adapted, and a flip occurs only if this
majority influence exceeds a certain conviction threshold. All non-fixed spins are initially
randomly distributed, with half of them oriented up and half down. Such a system can
be viewed as a model of elite influence, coming from the fixed spins, on the opinions of
the crowd of non-fixed spins. We show that a phase transition occurs as the amplitude
influence of the crowd spins increases: the dominant opinion shifts from that of the elite
nodes to a phase in which the crowd spins’ opinion becomes dominant and the elite can no
longer impose their views.

Keywords: opinion formation; social networks; Ising spins

1. Introduction
Social networks now exert a significant influence on human society, and, as a result,

their properties are being actively investigated by the scientific community (see, e.g., [1–3]).
Recently, their impact has been argued to extend specifically to opinion formation and
even to affect political elections [4,5]. This very problem of opinion formation in a group of
electors is being actively investigated in the field of sociophysics, using diverse models and
methods (see, e.g., [6–12]). Usually, in these studies, there are two competing opinions of
electors, often modeled as network nodes, governed by a local majority rule whereby an
elector’s opinion is determined by the majority opinion of its linked neighbors. Thus, each
node has a red or blue color (or an Ising spin up or down), and the system represents an Ising
network of spin halves with N nodes and a huge space of Ncon f = 2N configuration states
(see, e.g., [11]). The opinion, or spin polarization, of nodes is determined by an asynchronous
Monte Carlo process in a system of spins described by an Ising Hamiltonian on a network.
A similar Monte Carlo process is used in models of associative memory [13,14], and a similar
process is also considered in Boolean networks [15,16].

Recently, it was proposed that such an opinion formation process can also describe a
country’s preference to trade in one currency or another (e.g., USD or hypothetical BRICS
currency) [17]. An important new element, introduced in [17] and then extended in [18], is
that the opinion of certain network nodes is considered to be fixed (spin always up or down)
and not affected by the opinions of other nodes. In addition, in such an Ising Network of

Information 2026, 17, 41 https://doi.org/10.3390/info17010041

https://crossmark.crossref.org/dialog?doi=10.3390/info17010041&domain=pdf&date_stamp=2026-01-04
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0006-4768-195X
https://orcid.org/0000-0002-2752-0765
https://doi.org/10.3390/info17010041


Information 2026, 17, 41 2 of 13

Opinion Formation (INOF) model [18], it is assumed that, at the initial stage, only fixed
nodes have a given fixed spin polarization, while all other nodes are white (zero spin), thus
producing no influence on the opinions (spins) of other nodes. However, these white nodes
exhibit spin polarization up or down during the asynchronous Monte Carlo process of
opinion formation on the Ising network. All the above studies have been conducted on
directed networks with the INOF approach of fixed and white nodes applied to Wikipedia
Ising Networks (WIN) considering contests between different social concepts, companies,
political leaders and countries [18]. When we consider a contest between two political
leaders, like Trump and Putin, in WIN, it is rather natural to assume that all other nodes
(Wikipedia articles) have no specific opinion on these two figures at the initial stage of the
Monte Carlo process of INOF, so that they are considered white nodes. However, it may be
important to understand the influence of the initial random opinions of non-fixed nodes
on the contest results. Beyond this, the INOF approach can be applied to social networks,
which, in many cases, are undirected, such as Facebook. We note that the properties of the
Ising model of complex networks have been studied previously (see, e.g., [19,20]), but the
opinion formation process has not.

To this end, in this work, we apply the INOF approach to a social network of scientists
studied by Newman [21,22] with data sets from his database [23,24]. On the basis of this
undirected network, we study the process and features of opinion formation and analyze
the effects of the randomized opinions of non-fixed nodes on this process.

The paper is organized as follows. In Section 2, we describe the data sets and the
Generalized INOF (GINOF) model; Section 3 presents the results, starting with the original
INOF model and then analyzing the phase transition in the GINOF model; a discus-
sion of the results and conclusions is provided in Section 4. Certain data sets are also
available at https://www.quantware.ups-tlse.fr/QWLIB/GINOF4socialnets/ (accessed on
16 November 2025), marked below as the GINOF web page.

2. Data Sets and Model Description
For our studies, we choose the social collaborative network of N = 379 scientists

(nodes), analyzed in [21,22], taken from [23]. The network image is available in Figure 8
in [22] and in [24], where the network nodes are given with the names of scientists. This
is an undirected network with weighted symmetric adjacency matrix Aij = Aji, with the
number of links Nℓ = 1828; the weights of links change from a minimal amin = Aij = 0.125
to a maximal amax = 4.225 value; there are no isolated communities in this network. The
average number of links per node is κ = Nℓ/N ≈ 4.8. The effects of non-linear perturbation
and dynamical thermalization in this network were recently studied in [25]. The full list of
network links and node names is available in [23,24] and on the GINOF web page.

As in [25], we construct the Google matrix of the network defined in a standard
way [25,26] as Gij = αSij + (1 − α)/N, where Sij is the matrix of Markov transitions
obtained from Aij by normalizing to unity all matrix elements in each column. We use
here the standard value of damping factor α = 0.85. There are no dangling nodes in this
network. The PageRank vector Pi is the solution of the equation GP = λP at λ = 1; its
elements are positive and give a probability of finding a random surfer on a node i [26]. By
ordering all nodes by a decreasing order of Pi, we obtain the PageRank index K changing
from K = 1 at the maximal P(K) to K = 379 at the minimal P(K). The top 10 PageRank
nodes from K = 1 to 10 are Barabasi, Newman, Sole, Jeong, Pastorsatorras, Boccaletti,
Vespignani, Moreno, Kurths, and Stauffer [25]. All links Aij and PageRank indexes with
names are available at the GINOF web page given above.

The INOF procedure of opinion formation on Ising networks is described in detail
in [18]. It assumes that there is a group of fixed red nodes (spin σi = 1) and another group
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of fixed blue nodes (spin σi = −1); all other nodes are white (σi = 0) at the initial state but
can change their spins to ±1 during an asynchronous Monte Carlo process. Compared to
the INOF model [18], here, we extend the condition of spin flip and the initial states of white
nodes. Thus, to all originally white nodes, we attribute vote power, or amplitude influence,
determined by coefficients Wi, which characterize the level of an elector’s conviction
regarding the importance of the election and/or his interest in elections. Initially, all white
nodes have the same Wi = W < 1. For fixed nodes, we always have Wi = 1. Moreover,
all previously white nodes are randomly assigned spins σi = 1 or σi = −1. Thus, for our
network, we have 188 red and 188 blue nodes with a random distribution of colors (1 node
remains white due to the odd number of nodes), and there are also 2 fixed nodes with
opposite spins σ = ±1. With this initial configuration of all node spins, the spin i flip
condition is determined by the accumulated influence of the opinions of linked nodes j:

Zi = ∑
j ̸=i

σjWj Aij (1)

Here, the sum runs over all j nodes linked to i with the contribution of Aij links and vote
power Wj. The flip condition of spin i is defined as follows: for Zi > Zc, its σi = 1 and its
Wi = 1; for Zi < −Zc, its σi = −1 and its Wi = 1; for |Zi| ≤ Zc, its spin σi and coefficient
Wi remain unchanged. Thus, the parameter Zc denotes the opinion conviction threshold
(OCT), so that, if the module of influence of friends |Zi| is less than Zc, then the elector i
does not take into account their opinions. Moreover, if |Zi| > Zc, then this elector i becomes
convinced of the importance of this election and it reaches Wi = 1 for all future evolutions.

This asynchronous Monte Carlo procedure of spin flips is applied for all spins (except
fixed ones) without repetitions. When the run over all spins is complete, we arrive at the
Monte Carlo time τ = 1, after which the procedure goes to τ = 2 with another random
pathway order of spin flips and so on till τ = 20, when the process has converged to a
steady state. This corresponds to a one-pathway realization for a specific order of spin
flips; then, the process is repeated for another pathway realization of spin flip order, and an
average fraction of red fr and blue fb nodes (up/down spins) is determined, averaging over
all pathway realizations and all nodes, which gives the total red fraction fr (by construction
fr + fb = 1 since there are no white nodes in this network at the steady state). Several
examples of the τ−evolution of red fraction fr are shown in Figure 1. We also determine
the average fraction of red nodes fr(i) for each node i by averaging over Nr pathway
realizations. We use Nr = 104 and 105 in this work.

We refer to the INOF model described above as the Generalized INOF model (GINOF).
The main new elements of GINOF are the following: there now no white nodes at the
initial state but all non-fixed nodes now have spins up or down, chosen as a random
spin configuration with half up and half down spins. However, now, each spin of this
configuration has an amplitude of influence Wi < 1, entering the influence score Zi at
(1); initially, all non-fixed nodes have Wi = W < 1. A flip of spin i takes place only if its
influence score exceeds the opinion conviction threshold Zc with |Zi| > Zc, and, if |Zi| > Zc,
then its amplitude of influence becomes Wi = 1 for all further iterations. Of course, the
fixed nodes always have their W = 1 and their opinions remain fixed.

In a certain sense, in the GINOF model, the fixed nodes can be viewed as two compet-
ing elite groups with opposite opinions that try to convince other society electors (people
crowd) with random opinions (half red and half blue). Moreover, these crowd electors at
the initial state of the election process have a weak amplitude influence on the scores of
other electors (W < 1). During the election campaign, modeled as a Monte Carlo process,
the crowd nodes, with influence scores above the opinion conviction threshold Zc, become
active in the election process, achieving the maximal amplitude influence Wi = 1. For
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the case with Wi = W = 0, the GINOF model is reduced to the original INOF model
studied in [18].

Figure 1. Evolution of the fraction of red nodes fr for Nr = 500 random pathway realizations.
An initial condition has one red fixed node (Newman) and one blue fixed node (Barabasi); they
remain fixed during an asynchronous Monte Carlo evolution based on the relation (1); all other nodes
are initially white (σj = 0 in (1)). Here, the x-axis represents time τ of the Monte Carlo process, where
each unit of τ marks one complete update of all nodes/spins following the INOF/GINOF model
(here, Zc = 0; W = 0); steady-state configurations are reached at τ = 20 (or earlier).

At first glance, it seems that the network with N = 379 nodes considered here is
much smaller compared to those in INOF studies with N ∼ 106 reported in [18]. However,
we point out that, even with N = 379, the number of configuration states of the Ising
network is huge, being Ncon f = 2N . Moreover, in studies of other spin systems with an
asynchronous Monte Carlo process, a similar number of nodes has been considered, with
N ≈ 400–1000 in [14] and N ≈ 100 in [27,28].

The results for the GINOF model are presented in the next section. They show that
there is a transition between two phases: from a phase where the elite is able to impose its
opinion to a phase where the opinion of the elector crowd is dominant over the elite opinion.

3. Results
3.1. INOF Results with White Notes

We first present the results for the INOF model [18] with an initial state where non-
fixed nodes are white. As nodes with fixed opinions, we choose the node of Newman (red,
spin up) and the node of Barabasi (blue, spin down) (see the network with the names of
scientists in [22,24]). We use these two fixed nodes for all other network results in this
work. We point out that such an initial condition of spin polarization also corresponds to
the GINOF model at Zc = 0, Wi = W = 0, as described in the previous section.

The histogram of the probability distribution p( fr) of red fractions fr, obtained in the
steady state (at τ = 20), is shown in Figure 2. It is obtained by averaging over Nr = 105

pathway realizations and all N = 379 nodes. The total average fraction of red nodes
is < fr >= 0.637, being in favor of Newman. The average polarization of all spins is
µ0 =< fr > − < fb >= 2 < fr > −1 = 0.276.
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Figure 2. Probability distribution p( fr) of red node fractions; the histogram of fr values is obtained
with 50 cells 1 ≤ m ≤ 50, each cell’s size is ∆ = 1/50, and the total probability is normalized to unity
as ∑m p( fr(m))∆ = 1; the average red value is < fr >= 0.637. Here, there are Nr = 105 pathway
realizations; fixed nodes are Newman (red) and Barabasi (blue), and all other nodes are white (spin
zero). Initially, all non-fixed nodes are white for the INOF model [or random red/blue for the GINOF
model at W = 0; Zc = 0]. Vertical dashed line marks average red value < fr >.

It is interesting to note that the distribution p( fr) can be significantly affected if, in
the initial state, one replaces a certain white node with an initial node with spin up or
down (red or blue), which, however, is not fixed and can be flipped during the Monte Carlo
process. We show an example of such a striking influence in Figure 3, where the initial
white node Sole (see network with names in [24]) is replaced by a blue node (all other
nodes are the same as in Figure 2). We see that such a one-node change causes the complete
modification of the distribution p( fr) with the total average probability < fr >= 0.325,
favoring Barabasi. The reason for such a strong effect is the fact that the Erdös number
NE [2] of Sole with respect to Newman is NE = 1 (direct link between them) and also
that the right part of the whole network (see [24]) is linked with Newman, mainly via
the Sole node. In a certain sense, such specific placement of a blue node in the initial
configuration of colored nodes represents the Erdös barrage, which was also shown to
be very efficient in the case of fibrosis disease propagation in the MetaCore network of
protein–protein interactions [29].

We note that from the perspective of certain network characteristics, the node Sole is
not very specific, e.g., it has a PageRank probability P(Sole) = 0.01263 and K = 3, being
not significantly different from, e.g., those of node Kurth at K = 9 with P(9) = 0.01006.
However, the node Sole effectively (but approximately) separates the network into two
parts, and this is why the initial blue color of this node strongly affects the opinion balance,
as shown in Figure 3. Various computer science algorithms have been developed to
determine weakly connected parts of a given network with the determination of crucial
nodes linking such parts (see, e.g., [30,31]). However, it is also possible to use the approach
applied in [29], which we also apply here: we consider a fixed node and determine all its
nodes with the Erdös number NE = 1; then, we check the influence of a non-fixed opposite
color placed on one of these Erdös nodes with NE = 1. This approach determines the
most efficient node of the Erdös barrage that affects the opinion in the strongest way. This
procedure is rather efficient and works well for our network with N = 379 and also for
a rather large MetaCore network of protein–protein interactions at N ≈ 4 × 104, as was
shown in [29].

https://doi.org/10.3390/info17010041
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Figure 3. Same as Figure 2 but with initial state node Sole being blue; < fr >= 0.325.

In the framework of the GINOF model, we obtain not only the average value of the
red opinion < fr > but also the average red opinion for each node fr(K) with K being
the PageRank index. The dependence fr(K) is shown in Figure 4 for the top 40 PageRank
nodes with K = 1, . . . , 40 (all fr(K) values are available at the GINOF web page). For the
top 10 PageRank nodes, we have fr(K) values: 0.000, 1.000, 0.991, 0.000, 0.913, 0.913, 0.913,
0.913, 0.913, 0.954 for K = 1, . . . , 10 (see the corresponding 10 names above). Usually, the
nodes with Erdös number NE = 1 with respect to Newman have a fr = 1 value or those
very close to 1, being similar for nodes at NE = 1 from Barabasi with fr ≈ 0. However,
there are cases with NE = 5 and fr(K = 9) = 0.913 (Kurths), indicating that the competition
of colors in this social network has a rather complex structure. It is also clear that there is no
simple correlation between the top PageRank index and the top values of the probabilities
of red or blue colors.

Figure 4. Dependence of red fraction of nodes fr(K) on PageRank index K for the case of Figure 2
(K is obtained at damping factor α = 0.85).
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3.2. Effects of Opinion Conviction Threshold in GINOF

One of the most important elements of the INOF model is the presence of white nodes
at the initial state. This can be considered a natural choice for Wikipedia and some other
directed networks [18,29]. However, for models of election votes in social networks, it
may be more appropriate to assume that elite members of society have fixed opposite
opinions on the leaders of two parties, while the crowd of common people or electors has
some random red and blue opinions with low initial interest in elections and hence a low
amplitude influence among their votes W < 1 (e.g., because only a small fraction of such
electors participate in an election). Thus, we posit that the GINOF model is more suitable
for the situation of elections in social networks.

At first glance, it seems that it is sufficient to consider the GINOF model with the
opinion conviction threshold Zc = 0, taking a certain moderate value of vote amplitude
influence W. However, in the framework of GINOF at Zc = 0, even a very small value
W = 0.005 produces a complete change in the probability distribution p( fr) compared to
the INOF case with white nodes or the GINOF case at Zc = 0, W = 0 (see Figures 2 and 5).
The reason for this drastic change in distributions is that, at Zc = 0, even a very small
value of W ≪ 1 leads to a process whereby the crowd electors easily convince their friends
to have a red or blue opinion, which rapidly increases their vote amplitude influence
to W = 1, and then the elite influence becomes weak and the fr values are distributed
around fr ≈ 0.5, corresponding to the initial fractions of red and blue opinions of non-fixed
nodes (see Figure 5). In this situation, as seen in Figure 5, the elite influence is still present
with < fr >= 0.575, but we can see that even such a small value as W = 0.005 causes a
qualitative change in the probability distribution p( fr) in Figure 2.

Figure 5. Same as Figure 2 but for the GINOF model at Zc = 0, W = 0.005; here, Nr = 105,
< fr >= 0.575.

Thus, it is more appropriate to introduce the opinion conviction threshold Zc > 0
as described in Section 2. We choose Zc = 0.1 so that it is close to the minimum value
amin = 0.125 of the matrix elements of the weighted adjacency matrix Aij (excluding
zero elements). The evolution of the probability distribution with an increase in the vote
amplitude influence W is shown in Figure 6. For small W ≤ 0.005, the initial distribution
p( fr) in Figure 2 remains practically unchanged; then, with an increase to W = 0.015,
it starts to be modified, and, at W = 0.05, the initial structure of Figure 2 is completely
washed out, with p( fr) being close to that of Figure 5.
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Figure 6. Same as Figure 2 but for the GINOF model with the opinion conviction threshold Zc = 0.1
at W = 0.05 (top), 0.015 (middle), 0.005 (bottom) and, respectively, < fr >= 0.540, 0.689, 0.637 from
top to bottom; here, Nr = 105.
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The results in Figure 6 are obtained for one specific initial random configuration of
up–down spins of non-fixed nodes, but we have verified that the same results hold for
other random configurations. In [18], it was shown that the statistical error δ of p( fr) values
scales approximately as 1/

√
Nr, which, for Nr = 105, gives δ = 0.003. For our model, we

find the same statistical accuracy.

3.3. Phase Transition of Opinion Formation

The results in Figure 6 indicate that there is a phase transition from the regime at
W < Wcr, where the elite imposes its opinion, to a regime at W > Wcr, where the elite
influence is weak and elections are mainly affected by votes from crowd electors. This
transition is illustrated in Figure 7 and in a more detailed manner in Figure 8. Indeed,
in the transition band (marked in red in Figure 8), the probability p( fr) is changed by
approximately 20% of its value, while, on the left and right sides of this range, the variations
in p( fr) are about four to five times smaller (|∆p( fr)|/p( fp) ≈ 0.04). The critical vote
amplitude influence is approximately Wcr ≈ 0.027.

Figure 7. Probability of red nodes p( fr) shown by color in dependence on x = fr (taken for
40 columns in the range 0 ≤ fr ≤ 1) and on y = W (taken for 17 W equidistant values in the range
0 ≤ W ≤ 0.08) for the case with the opinion conviction threshold Zc = 0.1 in the GINOF model
(there are, in total, Ncell = 680 cells). Data are obtained with Nr = 104 pathway realizations for each
W value.

We argue that this critical Wcr value is determined by the condition that the votes of
all neighbors can exceed the opinion conviction threshold so that

Wcr ≈ Zc/κ. (2)

In our case, the average number of neighbors is κ = Nℓ/N ≈ 4.8, so that, for Zc = 0.1,
Wcr ≈ 0.021. This value is close to the above numerical values in Figures 7 and 8. The
estimate (2) assumes that the majority of κ neighbors have the same opinion, which allows
them to overcome the opinion conviction threshold Zc. It is possible that, for networks
with a high number of links per node κ ≫ 1, a more accurate estimate may be required.
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Figure 8. Dependence of average fraction of red nodes fr on amplitude of influence W for the GINOF
model shown by blue curve; data are taken from Figure 7; the red band marks the domain of a sharp
change in fr, and the dashed vertical line marks the middle of this band, giving the transition point
at Wcr = 0.0275.

Of course, it is desirable to have a developed theory for the above transition. It is
possible that a mean field approach, used, e.g., in [32], will allow us to achieve progress in
this direction. However, this task requires further investigations of the GINOF model, since
this model has certain features that are not standard for the mean field approach. Indeed,
at the initial stage, non-fixed nodes have amplitudes of vote influence W < 1 and they
achieve its maximal value W = 1 only during multiple steps of the Monte Carlo process.
This represents a kind of non-equilibrium stage during the Monte Carlo process, and we
suppose that this intermediate stage would require certain additional extensions for the
mean field approach, which will be of interest for future studies.

Thus, the obtained results for the GINOF model demonstrate that, in the presence of an
opinion conviction threshold, elections in social networks are characterized by a transition
from a phase where elections are dominated by the elite opinion to a phase dominated by
the votes of crowd electors. This transition takes place when the vote amplitude influence
W exceeds the critical value Wcr given by the relation (2).

We should note that there are many studies of social networks (see, e.g., [2,3]), includ-
ing a network of scientists from all their publications in Physical Review journals [33]. The
network considered here is relatively small, but it is useful for investigating new elements
of the GINOF approach. Its new elements are that each node has an Ising spin associated
with it and the opinion formation of all nodes is determined by the majority opinion of
neighbors, with the introduction of the opinion conviction threshold and amplitude of vote
influence. These new elements lead to a phase transition between two phases, as discussed
above. A somewhat similar approach has been studied for models of consensus processes
for interacting agents, as discussed in [34–37]. However, these studies were not performed
for Ising spin complex social networks with an opinion conviction threshold linked to the
amplitude of vote influence.
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4. Discussion
In this work, we have generalized the model of opinion formation on directed Ising

networks (INOF) introduced in [18]. This generalized GINOF model is applied to an
undirected social network of scientific collaboration studied by Newman in [21–24]. The
new elements of the GINOF model compared to the INOF one are as follows: in addition
to fixed-opinion nodes, considered as the society’s elite, all non-fixed nodes are initialized
with random opinions—half red and half blue. Furthermore, these non-fixed nodes initially
have a weak amplitude influence (W ≪ 1), which self-consistently increases during the
asynchronous Monte Carlo process that simulates an election campaign. In addition,
any change in opinion of a given spin node (a spin flip) takes place only if the modulus
of the majority score of a given node’s neighbors’ opinions is above a certain opinion
conviction threshold.

We show that, for the GINOF model of elections in undirected social networks, there is
a phase transition from elections dominated by the elite opinion to a phase where the elite
cannot affect the election and the vote results are determined by the opinions of electors. We
also demonstrate that the Erdös barrage can significantly affect the probability distribution
of red and blue nodes.

At present, there are numerous undirected networks functioning in human society and
various scientific fields, such as Facebook [38], VK [39], and the protein–protein interaction
network STRING [40]. Thus, in the work [30], the developed algorithm allowed a network
of politicians to be extracted from Facebook with about 6000 nodes, which can be analyzed
in the framework of the GINOF approach. It is possible also to model fibrosis progression
in the huge STRING network [40] using GINOF analysis following the strategy described
here and in [29]. In the same way, the treatment of other diseases can be studied with
GINOF methods within the STRING database. We hope that the GINOF model will find
useful applications in these domains.
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