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Abstract. We study the statistical properties of various directed networks using
ranking of their nodes based on the dominant vectors of the Google matrix known
as PageRank and CheiRank. On average PageRank orders nodes proportionally
to a number of ingoing links, while CheiRank orders nodes proportionally to
a number of outgoing links. In this way the ranking of nodes becomes two-
dimensional that paves the way for development of two-dimensional search engines
of new type. Statistical properties of information flow on PageRank-CheiRank
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1. Introduction

During the last decade the modern society developed enormously large communication
networks. The well known example is the World Wide Web (WWW) which starts to
approach to 1011 webpage [1]. The sizes of social networks like Facebook [2] and
VKONTAKTE [3] also become enormously large reaching 600 and 100 millions user
pages respectively. The information retrieval from such huge data bases becomes
the foundation and main challenge for search engines [4, 5]. The fundamental basis
of Google search engine is the PageRank algorithm [6]. This algorithm ranks all
websites in a decreasing order of components of the PageRank vector (see e.g. detailed
description at [7], historical surveys of PageRank are given at [8, 9]). This vector is
a right eigenvector of the Google matrix at the unit eigenvalue, it is constructed on
the basis of the adjacency matrix of the directed network, its components give a
probability to find a random surfer on a given node.

The Google matrix G of a directed network with N nodes is given by

Gij = αSij + (1− α)/N , (1)

where the matrix S is obtained by normalizing to unity all columns of the adjacency
matrix Ai,j , and replacing columns with zero elements by 1/N . An element Aij of
the adjacency matrix is equal to unity if a node j points to node i and zero otherwise.
The damping parameter α in the WWW context describes the probability (1− α) to
jump to any node for a random surfer. The value α = 0.85 gives a good classification
for WWW [7] and thus we also use this value here. A few examples of Google matrix
for various directed networks are shown in Fig. 1. The matrix G belongs to the class
of Perron-Frobenius operators [7], its largest eigenvalue is λ = 1 and other eigenvalues
have |λ| ≤ α. The right eigenvector at λ = 1 gives the probability P (i) to find a
random surfer at site i and is called the PageRank. Once the PageRank is found, all
nodes can be sorted by decreasing probabilities P (i). The node rank is then given by
index K(i) which reflects the relevance of the node i. The PageRank dependence on
K is well described by a power law P (K) ∝ 1/Kβin with βin ≈ 0.9. This is consistent
with the relation βin = 1/(µin − 1) corresponding to the average proportionality of
PageRank probability P (i) to its in-degree distribution win(k) ∝ 1/kµin where k(i)
is a number of ingoing links for a node i [10, 7]. For the WWW it is established
that for the ingoing links µin ≈ 2.1 (with βin ≈ 0.9) while for out-degree distribution
wout of outgoing links a power law has the exponent µout ≈ 2.7 [11, 12]. Similar
values of these exponents are found for the WWW British university networks [13],
the procedure call network (PCN) of Linux Kernel software introduced in [14] and for
Wikipedia hyperlink citation network of English articles (see e.g. [15]).

The PageRank gives at the top the most known and popular nodes. However, an
example of the Linux PCN studied in [14] shows that in this case the PageRank puts
at the top certain procedures which are not very important from the software view
point (e.g. printk). As a result it was proposed [14] to use in addition another ranking
taking the network with inverse link directions in the adjacency matrix corresponding
to Aij → AT = Aji and constructing from it an additional Google matrixG∗ according
to relation (1) at the same α. The eigenvector of G∗ with eigenvalue λ = 1 gives then
a new inverse PageRank P ∗(i) with ranking index K∗(i). This ranking was named
CheiRank [15] to mark that it allows to chercher l’information in a new way (that in
English means search the information in a new way). Indeed, for the Linux PCN the
CheiRank gives at the top more interesting and important procedures compared to
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Figure 1. Left column: coarse-grained density of Google matrix elements Gi,j

written in the PageRank basis K(i) with indexes j → K(i) (in x-axis) and
i → K ′(i) (in a usual matrix representation with K = K ′ = 1 on top left
corner); the coarse graining is done on 500 × 500 square cells for the networks
of University of Cambridge 2006, University of Oxford 2006, Wikipedia English
articles, PCN of Linux Kernel V2.6 (from top to bottom). Right column shows the
first 200 × 200 matrix elements of G matrix at α = 0.85 without coarse graining
with the same order of panels as in the left column. Color shows the density of
matrix elements changing from black for minimum value ((1− α)/N to white for
maximum value via green and yellow (density is coarse-grained in left column).
All matrices are shown in the basis of PageRank index K (and K ′) of matrix
GKK′ , which corresponds to x (and y) axis with 1 ≤ K,K ′ ≤ N (left column)
and 1 ≤ K,K ′ ≤ 200 (right column); all nodes are ordered by PageRank index
K of matrix G and thus we have two matrix indexes K,K ′ for matrix elements
in this basis.
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Figure 2. Dependence of probabilities of PageRank P (K) (red curve) and
CheiRank P ∗(K∗) (blue curve) on corresponding ranks K and K∗ for the network
of University of Cambridge in 2006 (dashed curve) and in 2011 (full curve). The
power law dependencies with the exponents β ≈ 0.91; 0.59, corresponding to the
relation β = 1/(µ−1) with µ = 2.1; 2.7 respectively, are shown by dotted straight
lines.

the PageRank [14] (e.g. start kernel). While the PageRank ranks the network nodes
in average proportionally to a number of ingoing links, the CheiRank ranks nodes
in average proportionally to a number of outgoing links. The physical meaning of
PageRank vector components is that they give the probability to find a random surfer
on a given node when a surfer follows the given directions of network links. In a similar
way the CheiRank vector components give the probability to find a random surfer on
a given node when a surfer follows the inverted directions of network links. Since each
node belongs both to CheiRank and PageRank vectors the ranking of information
flow on a directed network becomes two-dimensional. We note that there have
been earlier studies of PageRank of the Google matrix with inverted directions of
links [16, 17], but no systematic analysis of statistical properties of 2DRanking was
presented there.

An example of variation of PageRank probability P (K) with K and CheiRank
probability P ∗(K∗) with K∗ are shown in Fig. 2 for the WWW network of University
of Cambridge in years 2006 and 2011. Other examples for PCN Linux Kernel and
Wikipedia can be find in [14, 15]. Detailed parameters of networks which we analyze
in this paper and their sources are given in Appendix.

A detailed comparative analysis of PageRank and CheiRank two-dimensional
classification was done in [15] on the example of Wikipedia hyperlink citation network
of English articles. It was shown that CheiRank highlights communicative property
of nodes leading to a new way of two-dimensional ranking. While according to the
PageRank top three countries are 1. USA, 2. UK, 3. France the CheiRank gives
1.India, 2.Singapore, 3.Pakistan as most communicative Wikipedia country articles.
Top 100 personalities of PageRank has the following percents in 5 main category
activities 58 (politics), 10 (religion), 17 (arts), 15 (science), 0 (sport) [15]. Clearly
the significance of politicians is overestimated. In contrast, the CheiRank gives more
balanced distribution over these categories with 15, 1, 52, 16, 16 respectively. It
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allows to classify information in a new way finding composers, architects, botanists,
astronomers who are not well known but who, for example, discovered a lot of
Australians butterflies (George Lyell) or many asteroids (Nikolai Chernykh). These
two persons appear in the large Listings of Australians butterflies and in the Listing
of Asteroids (since they discovered many of them) and due to that they gain
high CheiRank values. This shows that the information retrieval, which uses both
PageRank and CheiRank, allows to rank nodes not only by an amount of their
popularity (how known is a given node) but also by an amount of their communicative
property (how communicative is a given node). This 2DRanking was also applied
to the brain model of neuronal network [18] and the business process management
network [19] and it was shown that it gives a new useful way of information treatment
in these networks. The 2DRanking in the PageRank-CheiRank plane also naturally
appears for the world trade network corresponding to import and export trade flows
[20]. Thus the 2DRanking based on PageRank and CheiRank paves the way to a
development of 2D search engines which can become more intelligent than the present
Google search based on 1D PageRank algorithm.

In this work we study the statistical properties of such a 2DRanking using
examples of various real directed networks including the WWW of British, French
and Italian University networks [21], Wikipedia network [15], Linux Kernel networks
[14, 22], gene regulation networks [23, 24] and other networks. The paper is
constructed as following: in Section 2 we study the properties of node density in
the plane of PageRank and CheiRank, in Section 3 the correlator properties between
PageRank and CheiRank vectors are analyzed for various networks, information flow
on the plane of PageRank and CheiRank is analyzed in Section 4, methods of control
of SPAM outgoing links are discussed in Section 5, 2DRanking applications for the
gene regulation networks are considered in Section 6, discussion of results is presented
in Section 7. The parameters of the networks and references on their sources are given
in Appendix.

2. Node Density of 2DRanking

A few examples of the Google matrix for four directed networks are shown in Fig. 1.
There is a significant similarity in the global structure of G for Universities of
Cambridge and Oxford with well visible hyperbolic curves (left column) even if at small
scales the matrix elements are rather different (right column) in these two networks
(see Fig. 1). Such hyperbolic curves are also visible in the Google matrix of Wikipedia
(left column) even if here they are less pronounced due to much larger averaging inside
the cells which contain about 15 times larger number of nodes (see network parameters
in Appendix). We make a conjecture that the appearance of such curves is related to
existence of certain natural categories existing in the network, e.g. departments for
Universities or countries, cities, personalities etc for Wikipedia. We expect that there
are relatively more links inside a given category compared to links between categories.
However, this is only a statistical property since on small scales at small K values
the hyperbolic curves are not visible (right column in Fig. 1). Hence, more detailed
studies are required for verification of this conjecture. At small scale G matrix of
Wikipedia is much more dense compared to the cases of Cambridge and Oxford (right
column). We attribute such an increase of density of significant matrix elements to
a stronger connectivity between nodes with large K in Wikipedia compared to the
case of universities where the links have more hierarchical structure. Partially this
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Figure 3. Density distribution W (K,K∗) = dNi/dKdK∗ for networks of four
British Universities in the plane of PageRank K and CheiRank K∗ indexes in log-
scale (logN K, logN K∗). The density is shown for 100 × 100 equidistant grid in
logN K, logN K∗ ∈ [0, 1], the density is averaged over all nodes inside each cell of
the grid, the normalization condition is

∑
K,K∗ W (K,K∗) = 1. Color varies from

black for zero to yellow for maximum density value WM with a saturation value

of W
1/4
s = 0.5W

1/4
M so that the same color is fixed for 0.5W

1/4
M ≤ W 1/4 ≤ W

1/4
M

to show in a better way low densities. The panels show networks of University
of Cambridge (2006) with N = 212710 (top left); University of Oxford with
N = 200823 (top right); University of Bath with N = 73491 (bottom left);
University of East Anglia with N = 33623 (bottom right). The axes show: logN K
in x-axis, logN K∗ in y-axis, in both axes the variation range is (0, 1).

increase of density can be attributed to a larger number of links per node in the case
of Wikipedia but this increase by a factor 2.1 is not so strong and cannot explain
all the differences of densities at small K scale. For Wikipedia there is about 20%
of nodes at the bottom of the matrix where there are almost no links. For PCN of
Linux Kernel this fraction becomes significantly larger with about 60% of nodes. The
hyperbolic curves are still well visible for Linux PCN inside remaining 40% of nodes.
On a small scale the density of matrix elements for Linux is rather small compared
to the three previous cases. We attribute this to a much smaller number of links per
node which is by factor 5 smaller for Linux compared to the university networks of
Fig. 1 (see data in Appendix).

The distributions of density of nodes W (K,K∗) = dNi/dKdK∗ in the plane
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Figure 4. Density distribution W (K,K∗) = dNi/dKdK∗ of four Linux Kernel
networks shown in the same frame as in Fig. 3. The panels show networks for
Linux versions V2.0 with N = 14080 (top left); V2.3 with N = 41117 (top right);
V2.4 with N = 85757 (bottom left); V2.6 with N = 285510 (bottom right). Color

panel is the same as in Fig. 3 with a saturation value of W
1/4
s = 0.2W

1/4
M so that

the same color is fixed for 0.2W
1/4
M ≤ W 1/4 ≤ W

1/4
M to show in a better way low

densities. The axes show: logN K in x-axis, logN K∗ in y-axis, in both axes the
variation range is (0, 1).

of PageRank and CheiRank in log-scale are shown for four networks of British
Universities in Fig. 3. Here dNi is a number of nodes in a cell of size dKdK∗ (see
detailed description in [15]). Even if the coarse-grained G matrices for Cambridge
and Oxford look rather similar the density distributions in (K,K∗) plane are rather
different. The density distributions for all four universities clearly show that nodes
with high PageRank have low CheiRank that corresponds to zero density at lowK, K∗

values. At large K, K∗ values there is a maximum line of density which is located not
very far from the diagonal K ≈ K∗. The presence of such a line should correspond to
significant correlations between P (K(i)) and P ∗(K∗(i)) vectors that will be discussed
in more detail in next Section. The presence of correlations between P (K(i)) and
P ∗(K∗(i)) leads to a probability distribution with one main maximum along a diagonal
at K + K∗ = const. This is similar to the properties of density distribution for the
Wikipedia network discussed in [15] (see also bottom right panel in Fig. 13 below).

The density of nodes for Linux networks is shown in Fig. 4. In these networks the
density is homogeneous along lines K + K∗ = const that corresponds to absence of
correlations between P (K(i)) and P ∗(K∗(i)). Indeed, in absence of such correlations
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the distribution of nodes in K, K∗ plane is given by the product of independent
probabilities. In the log-scale format used in Fig. 4 this leads to a homogeneous
density of nodes in the top right corner of (logN K, logN K∗) plane as it was discussed
in [15] (see right panel in Fig. 4 there). Indeed, the distributions in Fig. 4 are
very homogeneous inside top-right triangle. We note that, a part of fluctuations,
the distributions remain rather stable even if the size of the network is changed by
factor 20 from V2.0 to V2.6 version. The physical reasons for absence of correlations
between P (i) and P ∗(i) have been explained in [14] on the basis of the concept of
”separation of concerns” used in software architecture. As discussed in [14], a good
code should decrease a number of procedures that have high values of both PageRank
and CheiRank since such procedures will play a critical role in error propagation since
they are both popular and highly communicative at the same time. For example
in the Linux Kernel, do fork(), that creates new processes, belongs to this class.
These critical procedures may introduce subtle errors because they entangle otherwise
independent segments of code. The above observations suggest that the independence
between popular procedures, which have high P (Ki) and fulfill important but well
defined tasks, and communicative procedures, which have high P ∗(K∗

i ) and organize
and assign tasks in the code, is an important ingredient of well structured software.
We discuss the properties of PageRank-CheiRank correlations in the next Section.

3. Correlations between PageRank and CheiRank

The correlations between PageRank and CheiRank can be quantitatively characterized
by the correlator

κ(τ) = N

N
∑

i=1

P (K(i) + τ)P ∗(K∗(i))− 1 . (2)

Such a correlator was introduced in [14] for τ = 0 and we will use the same notation
κ = κ(τ = 0). This correlator at τ = 0 shows if there are correlations and
dependencies between PageRank and CheiRank vectors. Indeed, for homogeneous
vectors P (K) = P ∗(K∗) = 1/N we have κ = 0 corresponding to absence of
correlations. We will see below that the values of κ are very different for various
directed networks. Hence, this new characteristic is able to distinguish various types
of networks even if they have rather similar algebraic decay of PageRank and CheiRank
vectors.

The values of κ for networks of various size N are shown in Fig. 5. The two types
of networks are well visible according to these data. The human created university
and Wikipedia networks have typical values of κ in the range 1 < κ < 8. Other
networks like Linux PCN, Gene Transcription networks, brain model and business
process management networks have κ ≈ 0.

The dependence of κ(τ) on the correlation “time” τ is shown in Fig. 6. For the
PCN of Linux there are no correlations at any τ while for the university networks we
find that the correlator drops to small values with increase of |τ | (e.g. |τ | > 5) even if
at certain rather large values of |τ | significant values of correlator κ can reappear.

It is interesting to see what are typical values κi = NP (K(i))P ∗(K∗(i)) of
contributions in the correlator sum (2) at τ = 0. The distribution of κi values for
a few networks are shown in Fig. 7. All of them follow a power law with an exponent
a =1.23 for PCN Linux, 0.70 Wikipedia and Univ. of Cambridge 0.76 (2006) and 0.66
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Figure 6. Correlator κ(τ) for two different long and short range of τ in the main
and inset panel respectively. The Kernel Linux PCN V 2.6 and V 2.4 are shown
by dashed curves while and Universities networks of Cambridge and Oxford are
shown by full curves.

(2011). We note that further studies are required to obtain analytically the values
of the exponent a. In the later two cases the exponent and the distribution shape
remains stable in time, however, in 2011 there appear few nodes with very large κi

values which give a significant increase of the correlator from κ = 1.71 (in 2006) up to
κ = 30.0 (in 2011). It is possible that such a situation can appear if it is imposed that
practically any page points to the main university page which may have rather high
CheiRank due to many outgoing links to other departments and university divisions.
We suppose that these are also the reasons due to which we have appearance of large
values of κ(τ) in University networks. At the same time more detailed studies are
required to clarify the correlation properties on directed networks of a deeper level.
We will return to a discussion of university networks collected in 2011 in Section 7.
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Figure 8. Dependence of the point-count correlation function ∆(n)/N on n/N for
networks of Wikipedia, British Universities, and Kernel Linux PCN. The curves
in the top panel show the cases of Wikipedia (solid violet) and four versions of
PCN of Linux Kernel with V 2.0 (solid black), V 2.3 (dashed red), V 2.4 (dot-
dashed green), and V 2.6 (dotted blue). The curves in the bottom panel show the
cases of British Universities with East Anglia (solid black), Bath (dashed red),
Oxford (dot-dashed green), and Cambridge 2006 (dotted blue). Dotted orange
curves represent the totally correlated case with ∆(n)/N = n/N , and the totally
uncorrelated one with ∆(n)/N = (n/N)2.
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Another way to analyze the correlations between PageRank and CheiRank is
simply to count the number of nodes ∆(n) inside a square 1 ≤ K(i),K∗(i) ≤ n.
For a totally correlated distribution with K(i) = K∗(i) we have ∆(n)/N = n/N
while in absence of correlations we should have points homogeneously distributed
inside a square n × n that gives ∆(n)/N = (n/N)2. The dependence of such
point-count correlator ∆(n) on size n is displayed in Fig. 8 for various networks.
These data clearly show that the Linux PCN is uncorrelated being close to the
limiting uncorrelated dependence while Wikipedia and British University networks
show intermediate strength of correlations being between the two limiting functions
of ∆(n).

4. Information flow of 2DRanking

According to 2DRanking all network nodes are distributed on a two-dimensional plane
(K,K∗). The directed links of the network create an information flow in this plane.
To visualize this flow we use the following procedure:
a) each node is represented by one point in the (K,K∗) plane;
b) the whole space is divided in equal size cells with indexes (i, i∗) with the number
of nodes inside each cell being ni,i∗ , in Fig. 9 we use cells of equal size in usual (left
column) and logarithmic (right column) scales;
c) for each node inside the cell (i, i∗), pointing to any other cell (i′, i∗′), we compute
the vector (i′ − i, i∗′− i∗) and average it over all nodes ni,i∗ inside the cell (the weight
of links is not taken into account);
d) we put an arrow centered at (i, i∗) with the modulus and direction given by the
average vector computed in c).

Examples of such average flows for the networks of Fig. 1 are shown in Fig. 9.
All flows have a fixed point attractor. The fixed point is located at rather large
values K,K∗ ∼ N/4 that is due to the fact that in average nodes with maximal
values K,K∗ ∼ N point to lower values. At the same time nodes with very small
K,K∗ ∼ 1 still point to some nodes which have larger values of K,K∗ that places the
fixed point at certain intermediate K,K∗ values. We note that the analyzed directed
networks have dangling nodes which have no outgoing links, the fraction of such nodes
is especially large for the Linux network. Due to absence of outgoing links we obtain
an empty white regions in the information flow shown in Fig. 9. A more detailed
analysis of statistical properties of information flows on PageRank-CheiRank plane
requires further studies.

5. Control of spam links

For many networks ingoing and outgoing links have their own importance and thus
should be treated on equal grounds by PageRank and CheiRank as it is described
above. However, for the WWW it is more easy to manipulate outgoing links which
are handled by an owner of a given web page, while ingoing links are handled by
other users. This requires to introduce some level of control on the outgoing links
which should be taken into account for the ratings. Since it is very easy to create
links to highly popular sites, we will call “spam links” links for which the destination
site is much more popular than the source. A quantitative measure of popularity
can be provided by the PageRank of the sites. We do not think that spam links
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Figure 9. Information flow on PageRank - CheiRank plane (K,K∗) generated
by directed links of the networks of Fig. 1. Outgoing links flow is shown in
linear scale (K,K∗) with K,K∗ ∈ [1, N ] on left panels, and in logarithmic scale
(logN K, logN K∗) for logN K, logN K∗ ∈ [0, 1] on right panels. The flow is
shown by arrows which size is proportional to the vector amplitude, which is
also indicated by color [from yellow for large to blue for small amplitudes]. The
rows corresponds to University of Cambridge (2006); University of Oxford (2006),
Wikipedia English articles, PCN of Linux Kernel V.2.6 (from top to bottom).
The axes show: on left column K/N in x-axis, K∗/N in y-axes; on right column
logN K in x-axis, logN K∗ in y-axis; in all axes the variation range is (0, 1).
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Figure 10. Fraction f of inverted links as a function of filter parameter η for
various studied networks. Top panel: Wikipedia (violet curve) and four versions
of Kernel Linux PCN with V 2.0 (solid black curve), V 2.3 (dashed red curve),
V 2.4 (dot-dashed green curve), V 2.6 (dotted blue curve). Bottom panel shows
data for British University networks with East Anglia (solid black curve), Bath
(dashed red curve), Oxford (dot-dashed green curve), Cambridge 2006 (dotted
blue curve).

are frequent in networks like such as procedure calls in the Linux kernel, Wikipedia
and gene regulation. Even for University networks we think that there are no much
reasons to put spam links inside the university domain. However, for a large scale
WWW an excessive number of such spam links can become harmful for the network
performance. However, for WWW networks spam links are probably more widespread.
Some websites may try to improve their rating by carefully choosing their outgoing
links. Also it is a common policy to have links back to a website’s root pages to
facilitate navigation. Naturally, a good rating should not be sensitive to the presence
of such links. Thus it is important to treat spam-links appropriately in order to
construct a two dimensional web-search engine. Below we propose a method for
spam links control and test it on an example of the Wikipedia network which has
the largest size among networks analyzed in this paper. We stress that this is done as
a test example and not because we think that there are spam links between Wikipedia
articles.

With this aim we propose the following filter procedure for computation of
CheiRank. The standard procedure described above is to invert the directions of all
links of the network and then to compute the CheiRank. The filter procedure inverts a
link from j to i only if ηP (K(j)) > P (K(i)) where η is some positive filter parameter.
After a such inversion of certain links, while other links remain unchanged, the matrix
S∗ and G∗ are computed and the CheiRank vector P ∗(K∗(i)) of G∗ is determined in a
usual way. From the definition it is clear that for η = 0 there are no inverted links and
thus after filtering P ∗ is the same as the PageRank vector P . In the opposite limit
η = ∞ all links are inverted and P ∗ is then the usual CheiRank discussed in previous
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sections. Thus intermediate values of η allow to handle the properties of CheiRank
depending on a wanted strength of filtering.

The dependence of the fraction f of inverted links (defined as a ration between
the number of inverted links to the total number of links) on the filter parameter η is
shown for various networks in Fig. 10. There is a significant jump of f at η ≈ 1 for
British University networks. In fact the condition η ≈ 1 corresponds approximately
to the border relation P (K) ≈ P (K ′) with K ≈ K ′ that marks the diagonal of the G
matrix shown in Fig. 1 which has a significant density of matrix elements. As a result
for η > 1 we have a significant increase of inversion of links leading to a jump of f
present in Fig. 10. The diagonal density is most pronounced for university networks
so that for them the jump of f is mostly sharp.

It is also convenient to consider another condition for link inversion defined not
for P (Ki) but directly in the plane (K,K ′) defined by the condition: links are inverted
only ifK(j) < ηKK(i) (where node j points to node i, j → i). In a first approximation
we can assume that the links are homogeneously distributed in the plane of transitions
from K to K ′. This density is similar to the density distribution of Google matrix
elements GK′K shown in Fig. 1. For the homogeneous distribution the fraction f of
inverted links is given by an area ηK/2 of a triangle, which height is 1 and the basis
is ηK , for ηK ≤ 1. In a similar way we have f = 1 − 1/2ηK for ηK ≥ 1. We can
generalize this distribution assuming that there are only links with 1 ≤ K ′ ≤ aN ,
that is approximately the case for Linux network where a = 0.4 (see Fig. 1 bottom
row), and that inside this interval the density of links decreases as 1/(K ′)ν . Then
after computing the area we obtain the expression for the fraction of inverted links
valid for 0 ≤ ν < 1:

f(ηK) =

{

1−ν
2−ν

(aηK) ηK ≤ 1/a

1 +
(

1−ν
2−ν

− 1
)

(aηK)
ν−1

ηK > 1/a
(3)
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Figure 12. Density distribution W (K,K∗) = dNi/dKdK∗ for Wikipedia in
the plane of PageRank and filtered CheiRank indexes, (logN K, logN K∗), in a
equidistant 100 × 100 lattice with logN K, logN K∗ ∈ [0, 1]. The filter parameter
is η = 10 (left-top panel), 100 (right-top panel), 1000 (left-bottom panel), 105

where all links are inverted (right-bottom panel). The color panel is the same as

in Fig. 3 with the saturation value W
1/4
s = 0.5W

1/4
M . The axes show: logN K in

x-axis, logN K∗ in y-axis, in both axes the variation range is (0, 1).

The comparison of this theoretical expression with the numerical data for Linux PCN
is shown in Fig. 11. It shows that the data for Linux are well described by the theory
(3) with a = 0.4 and ν = 0.8. The last value takes into account the fact that the
density of links decreases with PageRank index K ′ as it is well visible in Fig. 1.

The variation of nodes density in the plane of PageRank and filtered CheiRank
(K,K∗) for the Wikipedia network is shown in Fig. 12 with the filtering by η for
P (K) and P (K ′) values. At moderate values η = 10 the density is concentrated near
diagonal, with further increase of η = 100; 1000 a broader density distribution appears
at large K values which goes to smaller and smaller K until the limiting distribution
without filtering is established at very large η. The top 100 Wikipedia articles obtained
with filtered CheiRank at the above values of η are given at [25]. We also give there
top articles in 2DRank which gives articles in order of their appearance on the borders
of a square of increasing size in (K,K∗) plane (see detailed description in [15]). These
data clearly show that filtering eliminates articles with many outgoing links and gives
a significant modification of top CheiRank articles. Thus the described method can
be efficiently used for control of spam links present at the WWW.
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Figure 13. Distribution of nodes in the plane of PageRank K and CheiRank
K∗ for Escherichia Coli, and Yeast transcription networks on left and right
panels respectively (network data are taken from [24]). The nodes with five
top probability values of PageRank, CheiRank and 2DRank are labeled by their
corresponding node names; they correspond to 5 lowest index values.

6. 2DRanking of gene regulation networks

The method of 2DRanking described above is rather generic and can be applied to
various types of directed networks. Here we apply it to gene regulation networks of
Escherichia Coli and Yeast with the network links taken from [24]. Such transcription
regulation networks control the expression of genes and have important biological
functions [23].

The distribution of nodes in PageRank-CheiRank plane is shown in Fig. 13. The
top 5 nodes in CheiRank probability value (lowest CheiRank indexes) are those which
send many outgoing orders, top 5 in PageRank probability are those which obtain
many incoming signals and the top 5 indexes in 2DRank (with 5 lowest 2DRank index
values) combine these two functions. For these networks the correlator κ is close
to zero (even slightly negative) which indicates the statistical independence between
outgoing and ingoing links quite similarly to the case of the PCN for the Linux Kernel.
This may indicate that a slightly negative correlator κ is a generic property for the
data flow network of control and regulation systems. Whether the obtained ratings
can bring some insights on the functioning of gene regulation can only be assessed by
experts in the field. However, we hope that such an analysis will prove to be useful
for a better understanding of gene regulation networks.

7. Discussion

Above we presented extensive studies of statistical properties of 2DRanking based of
PageRank and CheiRank for various types of directed networks. All studied networks
are of a free-scale type with an algebraic distribution of ingoing and outgoing links
with a usual values of exponents. In spite of that their statistical characteristics related
to PageRank and CheiRank are rather different. Some networks have high correlators
between PageRank and CheiRank (e.g. Wikipedia, British Universities), while others
have practically zero correlators (PCN of Linux Kernel, gene regulation networks).
The distribution of nodes in PageRank-CheiRank plane also varies significantly
between different types of networks. Thus 2DRanking discussed here gives more
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Figure 14. Density distribution W (K,K∗) = dNi/dKdK∗ shown in the same
frame as in Fig. 3 for networks collected in 2011: University of Cambridge (top
left), University of Bologna (top right), ENS Paris for crawling level 5 (bottom
left) and 7 (bottom right). The color panel is the same as in Fig. 3 with the

saturation value W
1/4
s = 0.5W

1/4
M . The axes show: logN K in x-axis, logN K∗ in

y-axis, is both axes the variation range is (0, 1).

detailed classification of information flows on directed networks.
We think that 2DRanking gives new possibilities for information retrieval from

large databases which are growing rapidly with time. Indeed, for example the size
of the Cambridge network increased by a factor 4 from 2006 to 2011 (see Appendix
and Fig. 2). At present, web robots start automatically generate new webpages.
These features can be responsible for appearance of gaps in density distribution in
(K,K∗) plane at large K,K∗ ∼ N values visible for large scale university networks
of Cambridge and ENS Paris in 2011 (see Fig. 14). Such an automatic generation
of links can change the scale-free properties of networks. Indeed, for ENS Paris we
observe appearance of large step in the PageRank distribution P (K) shown in Fig. 15.
This step for P (K) remains not sensitive to the deepness of crawling which goes on
a level of 3, 5 and 7 links. However, the CheiRank distribution changes with the
deepness level becoming more and more flat (see Fig. 15). Such a tendency in a
modification of network statistical properties is visible in 2011 for large size university
networks, while networks of moderate size, like University of Bologna 2011 (see data
in Figs. 14,15), are not yet affected. A sign of ongoing changes is a significant growth
of the correlator value κ which increases up to very large value (30 for Cambridge 2011
and 63 for ENS Paris). There is a danger that automatic generation of links can lead
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to a delocalization transition of PageRank that can destroy efficiency of information
retrieval from the WWW. We note that it is known that PageRank delocalization
can appear in certain models of Markov chains and Ulam networks [26]. Such a
delocalization of PageRank would make the ranking of nodes inefficient due to high
sensitivity of ranking to fluctuations that would create a very dangerous situation for
the WWW information retrieval and ranking. We also note that the spectrum of the
Google matrix of British universities networks has been recently analyzed in [27]. The
spectrum and eigenstates analysis can be a sensitive tool for location of precursors of
a delocalization transition.

Our studies of 2DRanking pave the way to development of two-dimensional search
engines which will use the advantages of both PageRank and CheiRank. Indeed, the
Google search engine uses as the fundamental mathematical basis the one-dimension
ranking related to PageRank [7]. Of course, there are various other important elements
used by the Google search which remain the company secret and not only PageRank
order matters for the Google ranking. However, the mathematical aspects of these
additional elements are not really known (e.g. they are not described in [7]). At
the same time the size of databases generated by the modern society continues its
enormous growth. Due to that the information retrieval and ordering of such data
sets becomes of primary importance and new mathematical tools should be developed
to operate and characterize efficiently their information flows and ranking. Here we
proposed and analyzed the properties the new two-dimensional search engine, which we
call Dvvadi from Russian “dva (two)” and “dimension”, will use the complementary
ranking abilities of both PageRank and CheiRank. Now the procedure of ordering of
all network nodes uses not one but two vectors of the Google matrix of a network. The
computational efforts are twice more expensive but for that we obtain a new quality
since now the nodes are ranked in 2D plane not only by their degree of popularity
but also by their degree of communicability. Thus for the Wikipedia network the
top 3 articles in PageRank probability are 3 countries (most popular), while the
top 3 articles in CheiRank probability are 3 listings of knowledge, state leaders and
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Figure 16. Examples of Dvvadi search analysis of Wikipedia articles shown on
2D plane of PageRank K and CheiRank K∗ local indexes for specific subjects
(articles): countries marked by their flag (top left), universities (top right),
physicists (bottom left), Nobel laureates in physics (bottom right), circles mark
the node location; high resolution figures and listings of names with local (K,K∗)
values in 100 × 100 square are available at [25] (listings with global ranking are
available at [15]).

geographical places (most communicative). Hence, we can rank the nodes of the
network in a new two-dimensional manner which highlight complementary properties
of node popularity and communicability. Thus the Dvvadi search can present nodes
not in a line but on a 2D plane characterizing these two complementary properties of
nodes. Examples of such 2D representation of nodes selected from Wikipedia articles
by a specific subject are shown in Fig. 16: we determine global K and K∗ indexes of
all articles, select a specific subject (e.g. countries) and then represent countries in
the local index K and K∗ corresponding to their appearance in the global order via
PageRank and CheiRank. For countries we see a clear tendency that the countries on
the top of PageRank probability (low K) have relatively high CheiRank index (high
K∗) (e.g. US, UK, France) while small countries in the region K ≈ 50,K∗ ≈ 10 have
another tendency (e.g. Singapore). We attribute this to specific routes of cultural
and industrial development of the world: e.g. Singapore was a colony of UK became
a strong trade country and due to that have historically many links pointing to UK
and other developed countries. For universities we also see that those at the top of
PageRank (Harvard, Oxford, Cambridge) are not very communicative having high
K∗ values, while Columbia, Berkeley are more balanced and Florida and FSU are
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very communicative probably due to initial location of Wikimedia Foundation at
Florida. For physicists we see that links to many scientific fields (like Shen Kuo)
or polularization of science (like Hawking and Feynman) place those people at the
top positions of CheiRank. In a similar way for the Nobel laureates in physics we
see that CheiRank stresses the communicative aspects: e.g. Feynman, due to his
popularization of physics; Salam due to the Institute on his name at Trieste with a
broad international activity; Raman due to Raman effect.

On the basis of the above results we think that PageRank-CheiRank classification
of network nodes on 2D plane will allow to analyze the information flows on directed
networks in a better way. It is also important to note that 2DRanking is very natural
for financial and trade networks. Indeed, the world trade usually uses the import
and export ranking which is analogous to PageRank and CheiRank, as it is shown in
[20]. We think that such Dvvadi engine/motor [25] will find useful applications for
treatment of enormously large databases created by modern society.
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Appendix A. Appendix

We list below the directed networks used in this work giving for them number of
nodes N , number of links Nlinks and correlator between PageRank and CheiRank κ.
Additional data can be find at [25].

Linux Kernel Procedure Call Networks are taken from [14] (see also [22])
with the parameters for various kernel versions shown in Table A1

Table A1. Linux Kernel network parameters

version N Nlinks κ

V1.0 2752 5933 κ = −0.11
V1.1 4247 9710 κ = −0.083
V1.2 4359 10215 κ = −0.048
V1.3 10233 24343 κ = −0.102
V2.0 14080 34551 κ = −0.037
V2.1 26268 59230 κ = −0.058
V2.2 38767 87480 κ = −0, 022
V2.3 41117 89355 κ = −0.081
V2.4 85757 195106 κ = −0.034
V2.6 285510 588861 κ = 0.022

Web networks of British Universities dated by year 2006 are taken from [21],
and are shown in Table A2.

We also developed a special code with which we performed crawling of university
web networks in January - March 2011 with the parameters given below: University
of Cambridge (2011) with N = 898262, Nlinks = 15027630, κ = 30.0; École
Normale Supérieure, Paris (ENS 2011) with N = 28144, Nlinks = 971856,
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Table A2. British Universities network parameters

University N Nlinks κ

RGU (Abardeen) 1658 15295 κ = 1.03
Uwic (Wales) 5524 111733 κ = 0.82

NTU (Nottingham) 6999 143358 κ = 0.50
Liverpool 11590 141447 κ = 1.49

Hull 16176 236525 κ = 5.31
Keele 16530 117944 κ = 3.24

UCE (Birmingham) 18055 351227 κ = 1.67
Kent 31972 277044 κ = 2.65

East Anglia 33623 325967 κ = 5.50
Sussex 54759 804246 κ = 7.29
York 59689 414200 κ = 8.13
Bath 73491 541351 κ = 3.97

Glasgow 90218 544774 κ = 2.22
Manchester 99930 1254939 κ = 3.47

UCL (London) 128450 1397261 κ = 2.33
Oxford 200823 1831542 κ = 4.66

Cambridge (2006) 212710 2015265 κ = 1.71

κ = 1.67 (crawling deepness level of 3 links), N = 129910, Nlinks = 2111944, κ = 16.2
(crawling deepness level of 5 links), N = 1820015, Nlinks = 25706373, κ = 63.6
(crawling deepness level of 7 links); University of Bologna with N = 339872,
Nlinks = 16345488, κ = 2.63.

The data for hyperlink network of Wikipedia English articles (2009) are
taken from [15] with N = 3282257, Nlinks = 71012307, κ = 4.08.

Transcription Gene networks are taken from [24]. We have for them:
Escherichia Coli with N = 423, Nlinks = 519, κ = −0.0645; Yeast with N = 690,
Nlinks = 1079, κ = −0.0497; for all links the weight is take to be the same.

Business Process Management network is taken from [19] with N = 175,
Nlinks = 240, κ = 0.164.

Brain Model network is taken from [18] with N = 10000, Nlinks = 1960108,
κ = −0.054 (unweighted), κ = −0.065 (weighted).
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