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Введение: коллапсы и турбулентные спектры

Как известно, сингулярности дают степенное поведение
Фурье-амплитуд, что обеспечивает появление степенных
хвостов для спектров турбулентности. Поэтому этот вопрос
очень важен с точки зрения теории колмогоровских спектров.

I (1941) Спектр Колмогорова-Обухова, т.е. распределение
энергии пульсаций скорости в инерционном интервале при
(Re � 1)
Ek ∼ P2/3k−5/3

Здесь P - поток энергии от больших (энергосодежащих)
масштабов к малым. Этот спектр может быть получен из
соображений размерности.



Введение: коллапсы и турбулентные спектры

I Отсюда можно получить, что время перекачки T от
больших (энергосодежащих) масштабов L до
диссипативной области конечно и определяется только L

и P : T ∼ L2/3P−1/3.

I Распределение флуктуаций скорости в инерционном
интервале v ∼ P1/3r1/3.

Соответственно, для завихренности Ω = curl v мы имеем:

Ω ∼ P1/3r−2/3.

Вопрос: Есть ли это в действительности особенность?
Если - да, то возможно ли гововорить, что причина
появления колмогоровского спектра может быть связана с
такого рода сингулярностями?



Введение: коллапсы и турбулентные спектры

I (1958) Спектр Филлипса для гравитационных волн на
поверхности жидкости. Сингулярности на поверхности -
каспы (в виде угла):

X 0

⇐ z = η(x , t) ⇒
ηxx ∼ δ(x − x0)
или ηk ∼ k−2.
Отсюда, согласно
Филлипсу, Ek =
2πk · g〈|ηk |

2〉 ∼ k−3

или Eω ∼ ω−5, где
предполагается, что
ω =

√

gk.

I (1967) Слабо-турбулентный (СТ)
спектр Захарова-Филоненко: Eω ∼ P1/3ω−4, P - поток
энергии.



Введение: коллапсы и турбулентные спектры

I (1967) спектр Крейчнана для 2D гидродинамической

турбулентности при Re � 1: Ek ∼ η2/3k−3, где η - поток
энстрофии в область больших k.

ЗАМЕТИМ: Поток энергии направлен в малые k, где
реализуется колмогоровский спектр: Ek ∼ P2/3k−5/3.

I (1971) Спектр Саффмана: Ek ∼ k−4. Этот спектр обязан
разрывам (скачкам) завихренности, которые наблюдаются
практически во всех численных экспериментах (начиная с
1969 г.).



I (1973) Спектр Кадомцева- Петвиашвили. Согласно КП
акустическая турбулентность - это набор ударных волн,
положение и направление распространения которых
считаются случайными:

x0
ρx ∼ δ(x − x0),
ρk ∼ k−1 ⇒ Eω ∼ ω−2.

I (1951, не опубликовано) Бюргерс нашел этот спектр для
1D.

I (1971) СТ спектр Захарова-Сагдеева:

Eω ∼ P1/2ω−3/2.

I Замечание: Появление особенностей есть чисто
когерентный процесс, соответственно сингулярные
объекты (например, каспы) являются когерентными
структурами. Таким образом, мы приходим к очень
важной проблеме сосуществования турбулентности
(хаотической части) и когерентных структур.



Турбулентность волн на воде

Филлипс предполагал неявно сингулярности точечными, хотя
они сосредоточены на целых линиях.
0D: Зная временную автокорреляционную функцию (в
некоторой точке) K (τ) = 〈η(t + τ)η(t)〉, спектр турбулентности
дается ее преоразованием Фурье: Eω = g

∫∞

−∞ K (τ)e iωτdτ.
Предположим, что

∂2η

∂t2
=
∑

i

Γiδ(t − ti) + regular terms,

где Γi и ti являются случайными.
Фурье-образ от сингулярной части дается суммой

ηω = −
1

2πω2

∑

i

Γie
−iωti .



Турбулентность волн на воде

Отсюда после усреднения легко получить:

Eω =
g

2πT
〈|ηω |

2〉 =
gν

2πω4
Γ2

где ν = N/T - частота появления каспов, N - число разрывов
за время усреднения T .
Полученный спектр имеет туже степенную зависимость, что и
СТ спектр Захарова-Филоненко Eω ∼ P2/3ω−4.



Турбулентность волн на воде

В теории СТ поведение nk (чисел заполнения) определяется
из кинетического уравнения :

dnk

dt
= St(nk) + γknk − νknk ,

где

St(nk) =

∫

W (k1|23)nkn1n2n3(n
−1

k + n−1

1
− n−1

2
− n−1

3
)dk1dk2dk3

- столкновительный член.

W (k1|23) = 2π|T (k1|23)|2δ(k + k1 − k2 − k3)δ(ωk + ω1 − ω2 − ω3)

вероятность рассеяния волн 2 → 2.



Турбулентность волн на воде

Для гравитационных волн на глубокой воде ωk и матричный
элемент T (k1|23) являются однородными функциями своих
аргументов. При преобразованиях ki → λki ,

ωk → λαωk , T (k1|23) → λβT (k1|23).

Для волн на глубокой воде α = 1/2 и β = 3.
В инерционном интервале стационарное кинетическое
уравнение сводится к

St(nk) = 0.

Решение этого уравнения с постоянным потоком энергии есть
как раз спектр Захарова-Филоненко: Eω ∼ P1/3ω−4.



Турбулентность волн на воде

Отметим, что в режиме слабой турбулентности ω- и k-
спектры связаны меду собой. Это следует из

Ekω = ε(k) δ(ω − ωk),

так что

Eω = 2πk
dk

dω
ε(k(ω)).

В сильно нелинейном режиме это не так.



Турбулентность волн на воде

Рассмотрим сингулярность в виде каспа, параллельного оси y ,
длины l = x1 − x2 с центром в точке (x0, y0) :

∂2η

∂y2
= Γ(x)δ(y − y0) + regular terms

Здесь Γ(x) = 0 вне интервала [x1, x2] и на границе Γ(x1,2) = 0.
Отсюда

ηk = −
1

k2
y

e−ikyy0

∫ x2

x1

Γ(x)e−ikxxdx ,

с k = (kx , ky ).



Турбулентность волн на воде

Суммирование по всем гребням дает

ηk = −
∑

α

e−i(knα)yα

(knα)2

∫ x2α

x1α

Γα(x)e−i(kτα)xdx .

Здесь нормаль nα и единичный касательный вектор τα
задают ориентацию каждого гребня α.
Спектр определяется после усреднения |ηk |

2 по всем
случайным переменным.
Усреднение относительно (xα, yα), однородно распределенных,
дает

|ηk |2 = N〈

∣

∣

∣

∣

1

(kn)4

∫ x2

x1

Γ(x)e−i(kτ)xdx

∣

∣

∣

∣

2

〉.

Здесь N - среднее значение гребней (с каспами) внутри
области S .



Турбулентность волн на воде

Нас интересует коротковолновая асимптотика, когда kL � 1,
где L характерная длина разрыва. Тогда для всех углов,
исключая θk ≤ θ0 = (kL)−1, спектр ε̃(k) (до усреднения по
углам!) записывается в виде

ε̃2(k) ≈
gn

2π2

〈(Γ′)2〉

(kn)4(kτ )4
,

где Γ
′

≡ Γ′(x1.2). Для узкого конуса углов ε̃(k)

ε̃1(k) ≈
gn

4π2k4
〈(Γ̄l)2〉, θk ≤ (kL)−1.

где n - плотность разрывов,

Γ̄l =

∫ x2

x1

Γ(x)dx , l = x1 − x2, L = 〈l〉.



Турбулентность волн на воде

Отсюда окончательное выражения для спектра получается
после усреднения по углам: E (k) = k ε̃(k).
Изотропный случай:

E (k) =
gn

π2k4L

[

〈(Γ̄l)2〉 +
2

3
〈(Γ′)2〉(L3 + a3)

]

,

что отличает на одну степень от спектра Филлипса. Здесь a -
средний изгиб гребней.
Этот спектр полностью соответствует ω-спектру Eω ∼ ω−4

поскольку в изотропном случае преобразование Фурье от
корреляционной функции K (|r|) = 〈η(r + x, t)η(x, t)〉 будет иметь
туже степень, т.е. ∼ k−4.
Заметим, что если ω =

√

gk, то Eω ∼ ω−7 вместо ω−4!



Турбулентность волн на воде

Сильная анизотропия:

Если характерная ширина ∆θ функции распределения по
углам достаточно узкая, ∆θ < θ0 = 1/(kL), то в этом конусе
углов спектр будет спадать как ∼ k−3, т.е. аналогично спектру
Филлипса.

При k > k∗ = (L∆θ)−1 спектр имеет другую степенную
зависимость: k−4 и соответственно с увеличением k ширина
спектра по углам становится более узким, уменьшаясь как
(kL)−1. Это означает, что в k-пространстве распределение
имеет вид ДЖЕТА.



Турбулентность волн на воде

Недавно экспериментально две группы:
Falocon, Laroche and Fauve (March 2007) [ртуть, бассейн:
20 × 20 × 1.8 cm3]
Denisenko, Lukashchuk and Nazarenko (November 2007) [вода,
бассейн: 12 × 6 × 1.5 m3]
получили спектры, близкие к E ∼ ω−4.
Колмогоровская константа не масштабировалась ∼ P1/3, где P

- поток энергии (Falocon, Laroche and Fauve).

Основная причина - конечный размер бассейна и
соответсвенно дискретность спектра линейных волн!



Двумерная гидродинамическая турбулентность

Ситуация с двумерной ГД турбулентностью аналогична случаю
волн на воде, если, следуя Саффману, предположить, что у
завихренности Ω возникают скачки (шоки) с длинами L

порядка характерного масштаба турбулентности и ширинами
δ � L.
Для 2D турбулентности резкие градиенты завихренности
наблюдаются во многих численных экспериментах (Lilly, 1971;
McWilliams, 1984; Kida, 1985; Brachet, Meneguzzi, & Sulem,
1986; Okhitani, 1991).
Тенденция к появлению такого рода скачков может быть
понята, если в рамках уравнения Эйлера рассмотреть
бездивергентный вектор B (di-vorticity),

Bx =
∂Ω

∂y
, By = −

∂Ω

∂x
,

где B подчиняется уравнению



Двумерная гидродинамическая турбулентность

∂B

∂t
= rot [v × B].

Это векторное поле оказывается вмороженным, оно
изменяется благодаря компоненте скорости vn, нормальной к
B. Вводя новые траектории,

dr

dt
= vn(r, t); r|t=0 = a,

B выражается через отображение r = r(a, t) и его якобиан J

(аналог представления вихревых линий):

B(r, t) =
(B0(a) · ∇a)r(a, t)

J

J не фиксировано, т.е. отображение является сжимаемым, что
и является причиной появления резких градиентов в 2Д
Эйлере.



Двумерная гидродинамическая турбулентность

Замечание: Как было показано Волибнером (Wolibner), Като
(Kato) и Юдовичем, коллапс, как процесс возникновения
особенности за конечное время, запрещен для двумерной
гидродинамики идеальной жидкости: расстояние ρ(t) между
двумя частицами оказывается ограниченным снизу:

ρ(t) ≥ L exp [− log(L/ρ0)exp(C |ω|L∞t)] ,

где |ω|L∞ - супремум завихренности.
Для градиента завихренности это дает ограничение вида :

|∇ω(t)|L∞ ≤ |∇ω0|L∞ exp

[

C |ω0|α
C1|ω0|L∞

{exp(C1t|ω0|L∞) − 1}

]

.

Здесь |ω0|α - гельдеровская норма начальной завихренности.



Двумерная гидродинамическая турбулентность

Спектр в этом случае находится по аналогичной схеме.
Предположим, что L−1 � k � δ−1, где δ - харктерная ширина
скачка.
Рассмотривая один скачок,

∂Ω

∂y
= G(x) δ(y − y0) + регулярные члены

с G(x), равной нулю вне интервала [x1x2], а также в точках
x = x1,2, вначале мы находим Ωk от одного скачка, а затем
суммируем по всем скачкам

Ωk = −i
∑

α

e−i(knα)yα

(knα)

∫ x2α

x1α

Gα(x)e−i(kτ α)xdx .



Двумерная гидродинамическая турбулентность

Спектр ε(k) тогда задается как

ε1(k) =
n

8π2k4
〈(Ḡ l)2〉, θk ≤ θ0;

ε2(k) =
n

4π2k2

〈(G ′)2〉

(kn)2(kτ)4
, θk > θ0,

где n - плотность скачков.
Отсюда после усреднения по углам в изотропном случае мы
имеем спектр Саффмана

E (k) =
n

2π2k4L

[

〈(Ḡ l)2〉 +
2L4

3
〈(G ′)2〉

]

,



Двумерная гидродинамическая турбулентность

В случае сильной анизотропии - комбинация спектров
Крейчнана и Саффмана

max
θ

E (k) ∼ k−3 if ∆θ < θ0 = (kL)−1 (Kraichnan);

max
θ

E (k) ∼ k−4 if ∆θ > θ0 = (kL)−1 (Saffman)

Отсюда следует, что с ростом k угловое распределение
становится более узким: θ0 = (kL)−1, т.е. при больших k

происходит формирование джетов.



Численный эксперимент

Для того чтобы установить связь между хвостами спектра и
резкими градиентами завихренности в численных
экспериментах рассматривалась задача об эволюции 2D
турбулентности без накачки.
Численно мы решали уравнение Эйлера с гипервязкостью :

∂ω

∂t
+ {ω, ψ} = µ2n∇

2nω,

с периодическими граничными условиями на сетке 2048× 2048

где ψ - функция тока, n = 3 и µ6 = 10−20. В нашем случае
энергия уменьшалась меньше 0.002% .



Численный эксперимент

Временной масштаб = ω−1

0
- величина, обратная

максимальному значению завихренности.
Рис.1. Начальное распределение



Численный эксперимент

Рис.2. Завихренность при = 95, соответствующим 10
периодам вращения. Максимум ω0 = 1 и минимум = -1.



Численный эксперимент

Рис.3. Скомпенсированный спектр k3E (k) в разные моменты
времени.



Численный эксперимент

Рис.4. |B| при T = 95. Максимум (красный) соответствует 673.



Численный эксперимент

Рис.5. Отфильтрованное значение |B| для рис. 2, k > 10.



Численный эксперимент

Рис.6. 2D спектр ε(kx , ky ), логарифмическая шкала.



Численный эксперимент

Рис.7. Временная зависимость максимума квадрата градиента
завихренности.

0   10
10

3

10
4

10
5

Time

|∇
 ω

|2



Анизотропные спектры Кадомцева-Петвиашвили

Рассмотрим расширяющуюся каустику, возникающую в
результате опрокидывания (формирования ударной волны).
Для расширяющейся каустики (см., например, Арнольд,
"Теория катастроф") R⊥ ∼ (t − t0)

1/2 и R|| ∼ (t − t0)
3/2, так что

R||

R⊥
∼ (t − t0) → 0, as t → t0.

На этой стадии каустики могут быть рассмотрены как плоские
объекты в виде дисков со скачком плотности, зависящим
только от r⊥. При этом ∆ρ плавно обращается в нуль при
r⊥ = R⊥.



Анизотропные спектры Кадомцева-Петвиашвили

Для одной каустики, перпендикулярной оси x с центром в
точке r0 = (x0, r⊥0):

∂ρ

∂x
= ∆ρ(|r⊥ − r⊥0|)δ(x − x0) + regular terms.

Фурье от этой (сингулярной) части дается интегралом

ρk = −
i

kx

e−ikr0

∫

r⊥≤R

∆ρ(r⊥)e−ik⊥r⊥dr⊥

= −
2πi

kx

e−ikr0

∫ R

0

r⊥∆ρ(r⊥)J0(k⊥r⊥)dr⊥,

где k = (kx , k⊥) и J0(k⊥r⊥) - функция Бесселя.



Анизотропные спектры Кадомцева-Петвиашвили

Полный вклад от всех каустик дается суммой:

ρk = −2πi
∑

α

e−ikrα

knα

∫ Rα

0

∆ρ(r⊥) r⊥J0(k⊥αr⊥)dr⊥.

Здесь nα - нормальный единичный вектор к разрыву α, rα -
координаты центра диска и k⊥α - поперечная проеккция
волнового вектора k к плоскости диска (k2

⊥α = k2 − (knα)2 ).



Анизотропные спектры Кадомцева-Петвиашвили

Чтобы найти спектр турбулентности нужно усреднить |ρk |
2 по

всем случайным переменным. Предполагая rα
распределенными однородно, усреднение по этим переменным
дает

|ρk |2 = 4π2n

〈∣

∣

∣

∣

∣

1

k‖

∫ R

0

∆ρ(r⊥)r⊥J0(k⊥r⊥)dr⊥

∣

∣

∣

∣

∣

2〉

.

Здесь n - плотность разрывов, k‖ ≡ kn, угловые скобки
означают усреднение по ∆ρ, R и углам.



Анизотропные спектры Кадомцева-Петвиашвили

В кортковолновом пределе k⊥R � 1 интеграл может быть
вычислен с помощью метода стационарной фазы, что дает
(до усреднения по углам !)

ε̃1(k) =
4πnc2

s

ρ0

〈Ψ〉

k5

⊥k2

‖

if θ ≥ ϑ0 =
(

kR
)−1

,

где θ - угол между векторами k и n,

Ψ = R

(

d

dr⊥
∆ρ(r⊥)

∣

∣

∣

∣

r⊥=R

)2



Анизотропные спектры Кадомцева-Петвиашвили

При малых θ (≤ ϑ0) спектр ε̃(k)

ε̃2(k) ≈
4πnc2

s

ρ0

〈

Γ2
〉

k2

‖

,

где Γ =
∫ R

0
∆ρ(r⊥)r⊥dr⊥.

Это выражение для спектра не справедливо вблизи π/2, где
необходимо учитывать изгибы каустики.
Для углов, близких к конусу θ ≈ ϑ0 and π − θ ≈ ϑ0, оба спектра
сшиваются: ε̃1 ∼ ε̃2.
В изотропной ситуации после усреднения по углам мы
приходим к спектру КП: E (k) ∼ k−2



Анизотропные спектры Кадомцева-Петвиашвили

В анизотропной ситуации спектр будет иметь различное
поведение в зависимости от соотношения между шириной ∆θ
угловой функции распределения и ϑ0. Если ∆θ > ϑ0, то
усреднение ε̃(k) дает при больших k для спектра такое же
поведение , что и для изотропного спектра КП: ∼ k−2. Для
дотаточно узких угловых распределений, т.е. если все фронты
шоков выстроены вдоль одного направления, то спектр будет
иметь резкий пик в данном направлении. Если ширина ∆θ
углового распределения уже ϑ0, то спектр E (k , θ), с точностью
до множителя k2, будет повторять распределение ε̃,т.е.,
распределение в k-пространстве будет иметь форму джетов .
Внутри конуса θ < ϑ0 спектр имеет максимум, спадающий
степенным образом при больших k как спектр КП ∼ k−2

‖ . При

больших углах, θ > ϑ0, спектр E (k , θ) будет быстро спадать в
поперечном к джету направлении пропорционально k−5

⊥ .



Заключение

I Для волн на воде спектр по частотам (∼ ω−4) за счет
каспов имеет такую же зависимость, что и СТ спектр
Захарова-Филоненко, и может рассматриваться как его
продолжение.

I Для двумерных (2D) спектров волн на воде:
i) в изотропном случае E (k) ∼ k−4, что сильно отличается
от спектра Филлипса,
ii) спектр Филлипса может быть получен для сильно
анизотропных распределений.



Заключение

I Для 2D гидродинамической турулентности в изотропном
случае воспроизведен спектр Саффмана. Спектр типа
Крейчнана получен в сильно анизотропном случае как
промежуточная асимптотика при k < k∗ = (L∆θ) ; при
k > k∗ получены джеты с сужающейся угловой шириной.

I Численный эксперимент для 2D турбулентности (без
накачки) показал, что степенное поведение спектра
обязано резким градиентам завихренности.



Заключение

I Для турбулентности акустического типа спектр при слабой
анизотропии совпадает со спектром
Кадомцева-Петвиашвили.

I В случае сильной анизотропии (∆θ < ϑ0) спектр имеет
вид джетов со степенным убыванием внутри джета при
больших k||, как для изотропного спектра КП, и в

поперечном направлении как k−5

⊥ .


