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This comzunication will present some results of the analy-
tical and numerical investigations concerning the appesrance of
stochasticity in conservative systum of the type of woakly cou-
pled gonlinear osuillator with Hamiltonien *) &

H (Z, & K/-Z HAL)re G, 4.)

where ‘K,é? are canonical varlables and £ stands for a small
purameter of perturbation. By the term “stochasticity" I shall
briefly denote all the statistical properties of the dynamical
system. At present we are still umable to understand completely
the nature of statistical laws 3 and hence the conditions of
their appearance. Nevertheless, there is apparently no doubt now
as to which type of the mechanical motion is the basis for the
egppearsnce of the "real" stochasticity or, at least, of its very
similar imitation. That is the mixing motion with positive Kol-
mogorov entropy. **) So when I use the word "astochasticity",
I'1l mean just this type of the motion. The mairn problem to be
solved 1s the obtaining of stochasticity criteriom, s.g. find-
ing out the conditions under which the statistical laws start

*)Iam considering here only the simplest case of the vari-
ables separation at £ = . In general, the unperturbed

tunctions f{ may depend on some slow phases &, (29 ~E).
The method presented below can he used in this case as well

(see, for example, 1 ).

**) In my opinion, this was mnst clearly shown by Krylov > .
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to act in a dynamical system. From the standpoint of applica-
tions the stochasticity is the most dangerous instability of
nonlinear oscillations.

For a broad set of mechanical systems there is a simple
stochasticity criterion based on the presentation of the motion
as a geodesic flow along a certain Riemamn surface. Then the
everywhere negative curvature of this surface is & sufficient
condition for stochasticity. Unfortunately this condition is
not necessary at all and, therefore, it does not indicate the
real stochasticity-line. Particularly such a criterion cannot
be applied at all to the system of weakly coupled oscillators,
which is quite important from the standpoint of applications.
In the latter case the sign of the curvature for corresponding
Riemann surface is always uncertain.

To obtain the stochasticity criterion for this case I am
vaking into congideration the resonant interaction between the
osclllators of the system. It can be performed in accordance
with the following brief scheme.

First of all I will reduce the many-dimensional autono-
nous system (1) to the one-dimensional nonautonomous oscilla-
tor. To achieve that I can calculate the dynamical variables
of the unperturbed motion ( € = Q) as explicit functions of
time: [, = comt; 8. (¢)= S&J‘ a.)dt + ¥« and substitute
them to the perturbation term /) . 4s a result, I'll obtain
for each oscillator the Hamiltonian of the following type :

@)y () (—- '
= . /. .

H‘: H‘. (J‘/‘PEH -0)9‘ f/ 2)
In the first approximation with respect to & one may consi-
der the oscillators (2) as "independent", their coupling being

. <) S

reéalized via "external™ perturbation /7 (CZ;) &, t;/ .
The latter determines the set of resonant frequencies or,
briefly, resonances :

wi(ll )=

("/ r (35
It is well Xnown (see, for sxample " ) that each

separate resonance causes the so-called phase oscillations,
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or the pulsation of the oscillator amplitude and frequency
around the resonant value &« p - The maximwup swing of this
pulsation determines the range of the resonance influence.

In frequency units the order of magnitude of this range 1is as

follows :
4, ~ W /& )

where A. —-C/ / ) ) ( d QAT / is the dimensionless factor of

nonlinearity. The relation (4) is given in the first approxi-
mation with respect to / £, VEx  and is velid, therefore,
under moderate nonlinearity : ‘

£« X << Vg )

In the case of many resonances the oscillator behav:.or
depends essentially on the qua.ntity :

-(22¢)* @

where A is the average interval between the neighbour
resonances.

For %(4 | the range of resomance influence is relative—
ly small, 80 an oscillator is found either far from all the re-
sonances or under the influence of only one of them and, hence,
it performs stable phase oscillations. But if Z 2> | , then
the influence ranges of the neighbour resonances overlap and
an osclillator gets the possibility to transit from ons reso—
nance Yo the other, changing its frequency and energy. l‘ron
here the following hypothesis is naturally arising 1 :

the condition -{
-~ | (?)

determines the stochasticity-line.

This hypothesis proved to be guite fruitful and gave the
possibility to investigate some applied problems ineluding :
particle motion in magnetic traps 1,4,5 y Ferui stochastic
acceleration 6 » nonlinear waves 7 .

Numerical integration of motion equations for some spe-
cific examples confirms that the condition (7) determines a

-5 -



Toed Wysloal line of motion atability. This line is not sharp,
o the contvary, it forms an intermediste zone penetrating
deeply %Loih lote the region of stability and into that of sto-
chasticity. (pe can show that in the intermediate zone there
axiat, depending on the initial conditions, quite various types
of uo-t.idn, inciuding even a monotone change of oscillator's
enorgY &8s for a linear resonance.

The stable reglon ( X« /'corresponda, at least asympto-
tically, to the region for which everywhere demse set of inva-
riant tori, with almost-periodic motion on them, exists as it
was discovered by EKolmogorov and Arnold 8,9 It's possible
and even quite likely that for this region there exiats, never~
theless, a very slow mixing 0 » 80 slow that no one was able
+ill pow to find it out by mumerical calculations. However,
this does not belittle the importance of the stochasticity-line
(7) behind which a relatively fast mixing (in the first order
with respect to £ ) takes placa. I would like to emphasize
that in the region of stochasticity the mixing is not merely
<ast but a8 fast as possible for a given perturbation.

It is iamportant to mention that the quantity Z depends
rot owly on perameters of the system such as £ , but also on -
cous dynamical varisble J & . Hence, the stochasticity—

~line net only determines the eritical value of perturbation,
it also separates the phase space of the system and even, in
reneral, the sach energy surface. This leads to a very interes-
ing sitvation, qulite different from the classical statement

> the problem in the ergodic theory; the latter considers sto-
crasticity on the whole energy surface of conservative system.
Yerticularly the problem arises about the transition from the
statiatical description te the dynemical one, inside the inter-
mediate zone (7). In the first spproximastion this transition
can be described as a boundary condition like a reflecting
wall for the distribution function in the region of stochasti-
city. yet such an apyproximation is quite rough 6 .

I wish fo consider, as an example, the problem Permi-
~Fazta~Ulan 2 ahout the statistical properties of nonlinear
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string with fixed ends which is obeing the equation f) :
2> 2% ( 38/9% )% /.,_ 2%

Here X is displacement; ¥ - a co-ordinate along the string;
ﬂ) 4 svtand tror coefficients of nonlinearity and dispersion,
respectively. The dispersion term is included in the equation,
which 1s necessary for a correct formulation of the problem
that was cleared up by Zabusky 13 .

It 1s known thgt Fermi, Pasta, Ulam did not rind any sta-
tistical properties of the motion as a result of their numeri-
cal integration of the equation (8). This has provoked a live-
ly discussion which is still going on now. From my point of
view such a result may be explained by the use of unlucky (ox
rather lucky) initial conditions that were found in the region
of stability. An estimation of stechasticity-line position for
this problem was obtained in common with Israelev 7 v 1t can
be given in the form

2
3pw~ L2
(9)
where 1 is the density of oscillation energy per unit

length of the string, £ 1s the total energy, /1 - quantity
of excited modes with the mean number 4 . The mode means
space Pourier transform of displacement, number of which K =
= AZL/‘A , where L and L are the length of wave and
string, respectively.

The left-hand side of cxriterion (9) is equal to the ave-
rage value of the nonlinear term <‘3/3 Cax/?z. )z>/. Hence, for
a weak nonlinearity(]ﬁ@"/; z) ‘&/ /, the stochasticity is
possible only if high modes are excited. Their mean number is

*) I consider here_ only a simpler case with cubic nonlinearity
(tem»vcbx/a;) ); quadric nonlinearity (-~ OX/D2) shows a
similar picture.
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comnunicated either with the initial conditions ( K~ K, ) or
with the formation of a shock wave (or more correctly, soli-
tons 17 ). In the last case the following estimation is va-

14a 18

A
:JT)/ /d

A% &/—'r Q@ the quantity ic is increasing infinitely and the

stochasticity criterion (9) is always realised.

Numerical integration of the eguation (8) was carried out
in common with Israelev and Khisamutdinov in order to obtain
“experimentally™ the stochasticity-line position. The loecal
motion instability *) proves to be a very convenient and sen-
gitive indication of stochasticity. We used the property of
space symmetry of the solution (8) according to which the even
nodes cannot appear during the motion if they were not excited
initially 12 , But if they are given very little energy J
(~ 10"'E in our case), then this emergy will remain at about
the same level in the region of stability, but in the region of
stochasticity it will be growing exponentially in time, achiev-
ing quickly the energy level of the main excited modes. An .
example of such a behavior of the even modes is given in Fig 1,
which demonstrates the crossing of stochasticity-line.

Dependence of the rise time ‘& for local instability
oa the perturbation parameter /6 (Fig 2) shows the existence
of & broad intermediate zone which is extending far into the
region of stability. It 1s interesting to note that even in
the case of exciting only the first mode (the main initial con-~
ditions for Fermi, Pasta, Ulam calculations 12 ) there i8 &
very weak stochasticity as well. It is cleaﬁly seen from the

(10)

*) In my opinion, it is the most important property of sto-
chastic motion which determines probably the very physical
nature of "real" stochasticity. The loeal instebility is

widely used in snalytical study of stochasticity ‘416 .
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curve of the second 'mod.e energy lncreasing (apper curve in
Mg 3), although the lower curve ( £, () ) seems to give a
convincing indication of the almost-periodic character of ths
motion.

For equidistant set of resonances the theory leads to
the linear relation between T~/ amd é’fﬁ (both quantities
are proportional to Kolmogorov eatropy):

I/Z. = SZ bn (/5/]31:,:) (1)

where /3., corresponds to the stochasticity-line apd the
factor of proportionality ~38/r. ¥or large /3 this law
is reciized quite well (Fig 2) and it gives a possibility to
get the upper stochasticity-line point (by the extrapolation
to T /=0 ). The upper line is the main stochasticity-line
which should be compared with the amalytical estimations ¢ .
Furthermore one cen distinguish, more or less certainly, in
the intermediate zZone in Fig 2, the other linesr plots which
apparently correspond to a more dense set of resonances.

All the critical perturbation values obtained in such
a8 way are plotted in Fig & and they agree in the order of mag-
nitude with analytical estimations / . Hemce, it can be
concluded that we rightly understand the main mechanics of sto-
chagticity for nonlinear waves of the type (8), though, of
course, there remain many interesting and unclear deteils in
their behavior. The only serious contradiction is comnected
with a wonderful stability of solitens discovered by Zabusky
and Kruskal 177 18 gnich seemed to exclude the stochasticity.
It's possible that this contradiction may be explaimed via non-
-equivalence of the origin wave equation (8) amd the first or-
der Korteweg ~ de Wries type equation from which solitens were
deduced 17, 18 \

Acknowledgement -~ I wish to thauk D.V.dnosov, V.I. Arnold,
M.D. Kruskal, Ya.G. Sinaj and N.J. Zabusiy for nmumerous useful
ddscussions.
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Fig.,2 JLependence cf the loecal inatability
: growth rate /% on perturbation pa-
ranwter ﬁ . Initial conditions:
= 31 (T); _Ko=
15,217, B Ko= 1y 35 S(III)e



(211

L

Fige3
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A veatige c¢f stochastigity in the region
of stability: Ke=4; /4 ,6 ~0,4. ™he upper
curve demonstrates “an onential growth
of the second mode energy (&t the average),
the lower one - almost-periodic oscilla-
tion of the first mode energy.



I

10} o

c. ) “\ \
2 . . #qu

T

& m oo

summary of results. Analytical estimations for the
stochasticity~line s &~ for €<« N H 8 - for
¥ NN ; o,d - qualitative interpolation. The re-
sults of pumerical calculations : A = 32; X =
=1 Kp=1: P =8(1)i Ko=7, B =1/16 (2).
The results of numerical determination of the sto-
chasticity-line - upper ( ? ), lower ( 8 ),
intermediate { @ )t A =31; Xa =1 Kp=1,3,5
(3); Ko, =15, 17, 19 (4); Ko =27, 29, 31 (5).
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